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ABSTRACT

In robust machine learning, there is a widespread belief that samples can be decom-
posed into robust features (parts of the data that withstand small perturbations) and
non-robust ones, and it is the role of the robust algorithm (i.e. adversarial training)
to amplify the former and erase the latter. In this work, we challenge this view and
try to position adversarial robustness as a more model-dependent property: many
approaches that assume this simplistic distinction in the features, optimizing the
data directly, only give rise to superficial adversarial robustness. We revisit prior
approaches in the literature that were believed to be robust, and proceed to devise a
principled meta-learning algorithm, that optimizes the dataset for robustness. Our
method can be thought as a non-parametric version of adversarial training, and
it is of independent interest and potentially wider applicability. Specifically, we
cast the bi-level optimization as a min-max procedure on kernel regression, with a
class of kernels that describe infinitely wide neural nets (Neural Tangent Kernels).
Through extensive experiments we analyse the properties of the models trained
on the optimized datasets and identify their shortcomings - all of them come in a
similar flavor.

1 INTRODUCTION

Since the discovery of adversarial examples (Szegedy et al., 2014; Goodfellow et al., 2015; Papernot
et al., 2017; Carlini & Wagner, 2017), the pursuit for adversarially robust machine learning models
has been very fruitful in terms of new ideas and concepts that are of interest for the whole machine
learning community. Such ideas include for example a new training paradigm, adversarial training
(Kurakin et al., 2017; Madry et al., 2018), which adapts the learning framework for defending against
malicious perturbations. In principle, if P denotes a data distribution and ∆ is a set of allowed
perturbations of the input space, we would like to solve the following problem (Madry et al., 2018)

inf
θ
E(x,y)∼P sup

δ∈∆
L(f(x+ δ; θ,Dtrain), y), (1)

where f is a model parameterized by θ (e.g. a neural network), Dtrain denotes a finite dataset used
for training, and L is a loss function used for classification.

Another particularly intriguing concept that has been proposed for understanding the success of adver-
sarial attacks is the presence of non-robust features in the data, patterns that seem incomprehensible to
humans, yet are useful for classification (Schmidt et al., 2018; Tsipras et al., 2019). Ilyas et al. (2019)
captured this notion in a theoretical framework and showed both theoretically and empirically that
such patterns can produce vulnerable classifiers. In a dual sense, that work argued that robust features
alone are sufficient for robust classification; evidence was provided by training a neural network
with gradient descent on a modified dataset that presumably contained only such robust features
(based on the activations of a previously adversarially trained net), and then observing that this model
had non-trivial robustness against gradient based attacks (on the original, unmodified dataset). This
seminal work influenced many derivative works that either tried to devise new algorithms or tried
to understand the brittleness of models (see e.g. Allen-Zhu & Li (2022); Tsilivis & Kempe (2022)).
However, to the best of our knowledge, this data based approach to adversarial robustness has been
relatively unexplored thus far.

In this work we challenge the current viewpoint on the role of robust features in the data itself
through several angles. First, we scrutinize the “robust” dataset of Ilyas et al. (2019) to show that its
robustness is fallacious: it does not withstand adaptive adversarial attacks that are not gradient based.
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Even though the dataset was produced from an adversarially trained model that is truly robust (Croce
& Hein, 2020), this robustness collapses when the training algorithm does not follow the paradigm of
Eq. (1). We also analyze the dataset that is produced on-the-fly during adversarial training to show
that it does not, by itself, exhibit robust features of any generality. That is, once we train a model
(with different initial seed) with gradient descent on the worst case perturbations that are generated
through adversarial training, we fail to achieve adversarial robustness of any form.

To provide a more principled foundation, we develop a non-parametric approach to produce robust
datasets by directly optimizing for the robustness objective. This method uses kernel ridge regression
with the Neural Tangent Kernel (NTK) as a surrogate to solve an otherwise intractable optimization.
It is inspired by recent advances in dataset distillation using NTKs, the kernel-inducing points
(KIP) algorithm (Nguyen et al. (2021a;b)). In principle, this approach also makes the underlying
assumption that the dataset itself contains all the information needed to yield robust classifiers. Our
new method, advKIP, produces datasets that on common architectures seem to be even more robust
than the previous two approaches that we described. Yet, we find that they also fail to defend against
adaptive attacks, further challenging the idea of robust features in common computer vision tasks.
Our algorithm is of independent interest, since (i) it shows that certain robust properties transfer
from kernel regression with kernels that correspond to infinite neural networks to actual, finite width
neural nets, and, (ii) it can serve as a blueprint for any bi-level maximization problem that would be
intractable for neural nets and might hence be of interest to other such problems in meta-learning and
beyond.

Lastly, we zoom in on all these methods and analyze the properties of the neural nets that were trained
with these optimized datasets. We find, perhaps surprisingly, common “signatures of failure” for
all of them: shattered gradients give a false sense of robustness, evidencing the well-documented
phenomenon of “obfuscated” gradients. What is surprising is the fact that this “obfuscation” does not
come from non-differentiable parts of the architecture or addition of stochasticity in the evaluation
pipeline, rather it is a property of the data alone. We complement our analysis by showing the
overconfidence and overcalibration of the models, and contrast them with truly robust networks. We
believe that these findings will help designing and faster debugging of data-based approaches in the
future, and allow to better understand properties of truly robust models. To summarize:

1. We systematically explore the idea that robust features in the data underlie robust models. We
revisit the work of Ilyas et al. (2019) and show that an optimized dataset which presumably
contains only robust features yields models that are only superficially robust (fail to withstand
adaptive attacks (Croce & Hein, 2020)). We also challenge the data-based viewpoint of
robustness by collecting data generated during adversarial training and showing that it fails
to yield robust models when deployed on an independent model.

2. We devise a principled meta-learning algorithm, adv-KIP, to optimize datasets for the robust
loss. Our approach is rooted in kernel regression with a particular class of kernels called
Neural Tangent Kernels (NTKs) (Jacot et al., 2018), which are known to describe infinitely
wide neural networks. We discover a range of surprising transfer properties from kernels to
common networks and point out how the underlying algorithmic framework, which is of
independent interest, can be adapted to a range of two-loop (min-max) opimization tasks
(Section 4). We find that kernels and neural networks share some common robustness
properties, but demonstrate that adv-KIP also fails to produce truly robust models.

3. Finally, we analyze common architectures that are trained with all these datasets and find
surprising similarities and common risks. In particular, we show that the models suffer from
the “obfuscated gradient” phenomenon (Athalye et al., 2018), and discuss several interesting
properties of the model, in terms of overconfidence and poor calibration.

2 PRELIMINARIES

Adversarial Training. Eq. 1 establishes the min-max underpinning for the construction of adversari-
ally robust classifiers (Madry et al., 2018). The most common way to approximate the solution of
this optimization problem for a neural network f on a data point (x, y) is to first generate adversarial
examples by running multiple steps of projected gradient descent (PGD) (Kurakin et al., 2017; Madry
et al., 2018). When the set of allowed perturbations ∆ is Bϵx - the ℓ∞ ball of radius ϵ and center x -
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the iterative N -step approximation is given by

xk+1 = ΠBϵ
x0

(
xk + α · sign(∇xkL(f(xk), y)

)
, (2)

where x0 = x is the original example, α is a learning step, x̃ = xN is the final adversarial example,
and Π is the projection on the valid constraint set of the data. During adversarial training we alternate
steps of generating adversarial examples (using f from the current network) and training on this data
instead of the original one. Several variations of this approach have been proposed in the literature
(e.g. Zhang et al. (2019); Shafahi et al. (2019); Wong et al. (2020)), modifying either the attack used
for data generation (inner loop in Eq. (1)) or the loss in the outer loop.

Kernel Regression and NTK. Kernel regression is a fundamental non-linear regression method.
Given a dataset (X ,Y) , where X ∈ Rn×d and Y ∈ Rn×k (e.g., a set of one-hot vectors), kernel
regression computes an estimate

f̂(x) = K(x,X )⊤K(X ,X )−1Y, (3)

where K(x,X ) = [k(x,x1), . . . , k(x,xn)]
⊤ ∈ Rn, K(X ,X )ij = k(xi,xj) and k is a kernel

function that measures similarity between points in Rd.

Recent work in deep learning theory has established a profound connection between kernel regression
and the infinite width, low learning rate limit of deep neural networks (Jacot et al., 2018; Lee et al.,
2019; Arora et al., 2019). In particular, it can be shown that the evolution of such suitably initialized
infinitely wide neural networks admits a closed form solution as in Eq. (3), with a network-dependent
kernel function k. Focusing on a scalar neural net for ease of notation, it is given by:

k(xi,xj) = ∇θf(xi; θ)
⊤∇θf(xj ; θ), (4)

where θ are the parameters of the network. This expression becomes constant (in time) in the infinite
width limit.

As outlined in the introduction there are many fruitful applications of the NTK framework, some
of which have benefited from transfer properties to common neural nets. Our work builds on a
recent data distillation algorithm called Kernel Inducing Points (KIP) (Nguyen et al., 2021a;b). These
works introduce a meta-learning algorithm for data distillation from an original training set D, to an
optimized source set (XS ,YS) of reduced size but similar output on a test set. The closed form of
Eq. (3) allows to express this objective via a loss function on a target data set (XT ,YT ) as:

LKIP(XS ,YS) = ∥YT −K(XT ,XS)
⊤K(XS ,XS)

−1YS∥2. (5)

The error of Eq. (5) can be minimized via gradient descent on XS (and optionally YS). Starting with
a smaller subset of D, sampling a target dataset from D to simulate test points, and backpropagating
the gradients of the error with respect to the data allows to progressively find better and better
synthetic data. Importantly, leveraging the NTK for kernel regression renders the datasets suitable for
deployment on actual neural nets as well.

Prior work on dataset optimization. To the best of our knowledge, the idea of trying to obtain
robust classifiers through data or representation optimization is rather unexplored. Garg et al. (2018)
design a spectral method to extract robust embeddings from a dataset. (Awasthi et al., 2021) formulate
an adversarially robust formulation of PCA, to extract provably robust representations. (Ilyas et al.,
2019) constructs a robust dataset by traversing the representation layer of a previously trained robust
classifier and serves as an inspiration for this work. Yet, all of these methods achieve substantially
lower robust accuracy compared to adversarial training.

3 PREVIOUS DATA BASED APPROACHES TO ROBUSTNESS

Next, we describe prior (this section) and new (Sec. 4) methods that we use for synthesizing datasets
that are presumably free from non-robust parts, and hence should be able to yield robust machine
models from standard training alone.

3.1 REMOVAL OF NON-ROBUST FEATURES BASED ON ADVERSARIAL TRAINING

To illustrate the theory of robust and non-robust features in the data, Ilyas et al. (2019) have introduced
a “robustified” data set (“Robust Feature Dataset” RFD), the only dataset we are aware of that is
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believed to provide models with some notable robustness via standard training. RFD is generated by
traversing the representation layer of an adversarially trained neural network, and is thus believed
to provide a general sense of robustness (Ilyas et al., 2019). More specifically, given a mapping
x 7→ g(x) of an input x to the penultimate (“representation”) layer of an adversarially trained neural
net, a “robustified” input is obtained by optimizing minxr

∥g(x)− g(xr)∥2, starting from a random
data point using gradient descent, thus enforcing that the robust representations of x and xr are
similar while xr does not contain non-robust features given a starting point that is uncorrelated with
the label of x.

3.2 WORST-CASE AUGMENTATION FROM ADVERSARIAL TRAINING

Perhaps the most obvious dataset that could potentially have the property to induce robustness in
models via standard training alone is the “worst-case” augmented dataset that is produced on the fly
during adversarial training. Let ft denote a neural network after t steps of parameter update during
adversarial training, and x

(t)
i = argmaxδ∈∆ L(ft(xi + δ), y) be the worst case version of each of

the training samples xi for ft. Let Xt =
⋃

i∈[n] x
(t)
i denote the collection of all adversarial examples

at time t (where n is the number of the training points). Then, we collect X̂ :=
⋃

t∈T Xt, where T is
the number of epochs needed for convergence of the algorithm. We can analyse robustness properties
of X̂ by giving it as an input to a model (possibly of the same architecture, but with a different seed)
to be trained with standard gradient descent.

4 OUR ADV-KIP ALGORITHM

A centerpiece of our work is a new framework to approach min-max optimization tasks as bi-level
optimization on the training data and its instantiation, advKIP, to optimize for adversarial robustness.
Adversarial training gives an approximation to the solution of Eq. (4) by iterating gradient steps on
model parameters and on data. However, once we focus on non-parametric models f (such as kernel
ridge regression), we can pose a more “direct” problem

inf
Dtrain

E(x,y)∼P sup
δ∈∆
L(f(x+ δ;Dtrain), y), (6)

where instead of optimizing the model parameters, we optimize the training data. The above
formulation has the benefit of directly optimizing the quantity of interest, that is the robust loss
at the end of “training”/deployment. Additionally, since the outcome of this optimization is a
dataset, it can be deployed with any other model, and, given favorable transfer properties, might
yield good performance even outside the scope it was optimized for, without the need for costly
adversarial training on the new model. This latter hope is not unfounded, since adversarial examples
themselves have been shown to be rather universal and transferable across models (Papernot et al.,
2017; Moosavi-Dezfooli et al., 2017).

We propose a gradient-based approach for solving the optimization in Eq. (6), focusing on kernel
regression; specifically with a particular class of kernel functions, Neural Tangent Kernels (NTKs).
Kernel regression with NTKs is known to describe the training process of infinitely wide, suitably
initialized networks (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019), yet in some cases has
shown considerable transfer properties to commonly used neural nets.

Dataset Distillation. The inspiration for our advKIP framework comes from a number of recent
works on Dataset Distillation (Wang et al., 2018): the procedure of distilling knowledge from a large
dataset to a smaller one. Following Nguyen et al. (2021a;b), our method works with kernel machines,
and especially with NTKs. However, the goal here is slightly different; instead of deriving a dataset of
reduced size, we aim to create one that induces better robustness properties on the original unmodified
test set. For further motivation and comparison to previous work, see App. A.1.

We depart from the KIP setting to introduce our framework for dataset optimization for robust
classification. Our method is a natural extension of the KIP algorithm outlined in the previous section,
but suitably adjusted for adversarially robust classification.

In particular, instead of optimizing the data (XS ,YS) with respect to the “clean” loss of Eq. (5), we
minimize

LadvKIP(XS ,YS) = ∥YT −K(X̃T ,XS)
⊤K(XS ,XS)

−1YS∥2, (7)
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where, in a slight abuse of notation, X̃T = XT + δ̃, and

δ̃ = argmax
δ∈∆
L(K(X̃T ,XS)

⊤K(XS ,XS)
−1YS ,YT ). (8)

In what follows we will take the loss L in Eq. (8) to be the cross-entropy loss Lce as is very common
in adversarial training, but note that we have the freedom to choose any loss function, for instance
losses used for alternative attacks like the CW-loss (Carlini & Wagner, 2017). The loss in Eq. (7) can
also be adapted to other losses that balance clean and robust accuracy (see e.g. Zhang et al. (2019)).

We observe that this approach follows what we advertised in Eq. (6). It adds an inner maximization to
the KIP framework. Solving this optimization now requires an inner loop that tackles the maximization
in Eq. (8). Here, we choose to apply a similar iterative procedure as in the PGD approach of Eq. (2).
For the remainder of the paper, we restrict ourselves to the case of an ℓ∞ adversary. However, note
that our method is easily extendable to any constraint set ∆.

Algorithm 1: Adversarial KIP
Input: A training dataset Dtrain = {X ,Y}.
Output: A new dataset Drob.

1 Sample data S = {XS ,YS} from Dtrain;
2 for i← 1 to epochs do
3 Sample data T = {XT ,YT } from Dtrain;
4 for j← 1 to pgd steps do
5 XT ← XT + α ·

sign(∇XT
Lce(KXTXS

K−1
XSXS

YS ,YT ));
6 XT ← ΠBϵ

(XT );

7 XS ← XS − λ∇XS
L(KXTXS

K−1
XSXS

YS ,YT );
8 YS ← YS − λ∇YS

L(KXTXS
K−1

XSXS
YS ,YT );

9 Drob ← (XS ,YS)

Algorithm choices: Algorithm 1 de-
scribes our generic robust training data
set distillation framework. There are sev-
eral options to specialize:
Outer loss function (lines 7 and 8): We
have considered both Mean Squared Er-
ror (mse) (as in Eq. (7)) and Cross
Entropy loss (ce). Experiments on
MNIST suggest ce as the marginally bet-
ter choice to achieve PGD-robustness.
Optimization of labels: We have con-
sidered Algorithm 1 both as is (learned
labels) and without line 8 (fixed labels).
We find little difference and opted to in-
clude label learning.

|XS | and |XT |: We observe in all our experiments that the larger the source (training) data set XS ,
the better performance, though larger sets incur higher computational cost. Sensitivity to test set size
|XT | is much less pronounced.

Number of PGD-steps: We have run the algorithm with either 1,6 or 10 PGD-steps. 1 PGD-step
corresponds to the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015). In our experiments
we observe that single-step attacks (FGSM) are strictly weaker than iterative ones, and training
against a higher number of PGD-steps provides defense against FGSM attacks for kernels, as is the
case for adversarial training.

Algorithmic Framework for Min-Max Problems: Algorithm 1 is an approach to a particular
min-max problem given in Eq. (6). The advantage of deploying the NTK here is that it affords an
analytic surrogate expression for the output of the trained model, which allows to compute gradients
with respect to the input dataset. As we show in Sec. 5.3, the resulting datasets enjoy surprising
transfer properties to common neural nets, even in the case where the kernel has an entirely different
architecture. For other bi-level problems we can imagine modifying the inner and outer loop objective
function of Algorithm 1 to provide dataset based solutions to other min-max optimizations, in
particular in meta-learning. For example, the problem of few-shot learning might be cast in this
framework, where the inner loop would optimize for accuracy on a small out-of-distribution target
set. We thus hope that our approach, bolstered by its supporting transfer results might be useful in
other settings.

5 EXPERIMENTAL EVALUATION OF DATA BASED APPROACHES

Here we evaluate the approaches described or introduced in Sec. 3. We perform experiments on
MNIST (Deng, 2012) and CIFAR-10 (Krizhevsky, 2009) against ℓ∞ adversaries of size ϵ equal to
0.3 and 8/255, respectively, or ℓ2-adversaries of size 128/255 for CIFAR-10. In all cases, robust
performance is measured on adversarially perturbed original (test) images. For MNIST, we train a

5



Under review as a conference paper at ICLR 2023

simple three-layer CNN of width 64 with Max-Pooling. For CIFAR-10, we train this three-layer
CNN, as well as two more complex architectures, AlexNet (Krizhevsky et al., 2012) and VGG11
(Simonyan & Zisserman, 2015). We also analyze transfer results on a set of wide, fully-connected
networks (see App. A.6). Further experimental details can be found in App. A.2.

To evaluate adversarial robustness, we compute the earlier gradient-based FGSM (Goodfellow et al.,
2014) and PGD (Madry et al., 2018; Kurakin et al., 2017) metrics, but also evaluate robustness against
the adaptive suite of the AutoAttack benchmark (Croce & Hein, 2020), which contains attacks that
do not use gradient information.

5.1 ROBUSTNESS OF RFD

We start by revisiting the “robust-feature” dataset of Ilyas et al. (2019) which is presumed to only
contain robust features and hence to provide a general sense of robustness, as described in Sec.
3.1. To replicate these results on our architectures, we use an ℓ∞-adversarially trained ResNet50 to
generate a variant of this dataset on CIFAR-101. Table 1 shows performance of our models.

CIFAR-10 Accuracy with ℓ∞ Robust Feature dataset (Ilyas et al., 2019)

Neural Net Clean PGD ℓ∞ 20 AA ℓ∞

Simple CNN 59.15 ± 0.37 52.91 ± 0.66 0.00 ± 0.00
AlexNet 51.62 ± 1.14 25.64 ± 4.32 0.02 ± 0.03
VGG11 61.59 ± 0.80 34.64 ± 8.47 0.40 ± 0.42

Table 1: Test accuracies for various models trained on a
50K ℓ∞ “robust feature” dataset (RFD) for CIFAR-10.

Indeed, the trained models record high ro-
bustness against PGD attacks, confirming
the findings of Ilyas et al. (2019) (see Fig. 2
for the evolution of test accuracies during
training). However, we observe almost 0%
accuracy against the adaptive suite of Au-
toAttack. This is a surprising finding, since
the dataset was generated using adversari-

ally trained networks that guarantee a wide sense of robustness. It is a first indication that achieving
true robustness from data alone might be a challenging task when decoupled from the training
algorithm.

5.2 USING DATA GENERATED FROM ADVERSARIAL TRAINING

Following Sec. 3.2 we have also tested our convolutional architectures on CIFAR-10 on the dataset
obtained from epoch-wise worst-case augmentations of the training data during adversarial training.
We evaluate on same model, changing only its initialization. Table 6 in App. A.4 shows test results
for our convolutional architectures. Perhaps surprisingly, none of these models retain any robustness,
not even against FGSM and PGD attacks. We conclude that data alone here is not sufficient: the
model dependency of the perturbed inputs cannot be eliminated.

5.3 ROBUSTNESS FROM ADV-KIP

We now proceed to implement our advKIP algorithm and evaluate the robustness of the distilled
dataset on kernels and neural nets.

AdvKIP Setup: To apply Adversarial KIP for learning robust datasets we consider several different
fully connected (FC) and convolutional (Conv) kernels, whose expressions are available through
the Neural Tangents library (Novak et al., 2020), built on top of JAX (Bradbury et al., 2018). In
particular, for MNIST we implement fully connected kernels2 of depth 3, 5 and 7 (FC3, FC5, FC7)
and a 3-layer convolutional kernel (Conv3); and for CIFAR-10 fully connected kernels of depth 2 and
3 (FC2, FC3). For FC kernels data set sizes are |XS | = 30K (MNIST) and 40K (CIFAR10) with
|XT | = 10K. For CIFAR-10 and the FC3 kernel we also generate a dataset with |XS | = 50K to be
deployed on the convolutional neural nets. For Conv3, computational resources have restricted us to
runs with data sets of size |XS | = 5K and |XT | = 1K. We set the number of PGD-steps in the inner
loop (line 4) to 10 for MNIST and 6 for CIFAR10. We implement early stopping if robust validation
accuracy ceases to increase.

1Note that the publicly available dataset of Ilyas et al. (2019) is derived from an adversarially trained network
trained against an ℓ2 adversary, so for completeness we include an ℓ2 evaluation of that dataset in App. A.3; it
also does not give any robustness against AA attacks.

2We are currently unable to produce large datasets with Convolutional Kernels. We leave the exploration and
potential performance improvement to future work.
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Robustness on Kernels: In a first set of experiments with MNIST, we verify on the validation set
that Algorithm 1 succeeds to converge. Fig. 1 shows accuracy throughout training for 3-layer kernels.
We see how robust validation accuracy against FGSM and PGD attacks increases with the number of
outer loop steps, essentially without compromising performance on clean data. Note that at the start
of optimization the robustness of the dataset is effectively 0%, as expected from studies on neural
nets. We also note that the convolutional architecture achieves better performance, despite the fact
that we can only deploy it with a smaller dataset XS of size 5K. This indicates that convolutional
architectures might be more optimizable than their fully connected counterparts.
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Figure 1: MNIST: Training curves on kernels. Shows validation performance as a function of training
epochs. Left: CONV3, |XS | = 5K, |XT | = 1K Right: FC3, |XS | = 30K, |XT | = 10K.

Table 2 tabulates clean and robust test accuracy after the algorithm has converged or stopped on the
validation set. Here, we record accuracy for our deepest models, Conv3 and FC7 on MNIST. We
see that robust performance generalizes well to the test set (where we have tested against pgd-attacks
with the same number of steps as optimized for in line 4 of Algorithm 1). Producing these robust
classifiers with kernel regression is an encouraging step, in particular since kernel machines are not
directly amenable to adversarial training, and thus robustness to PGD attacks has not been observed
before.

Robust
Dataset Kernel, Dataset Size Clean FGSM PGD

MNIST Conv3, 5k 96.31 94.82 76.62
MNIST FC7, 30k 97.21 67.04 50.34

CIFAR-10 FC2, 40k 59.65 20.49 20.37
CIFAR-10 FC3, 40k 59.95 21.67 21.56

Table 2: Kernel results on MNIST and CIFAR-10:
Clean and Robust test accuracy (%). For MNIST,
we test with PGD-10, and for CIFAR, we test with
PGD-6.

For the CIFAR-10 results, we see a marked
drop in both clean and robust accuracy; but note
that generally fully connected architectures are
not very suitable classifiers for the CIFAR-10
dataset. To achieve some level of robustness
with these simple architectures gives credence
to our approach.

In addition, to verify the necessity of bi-level
optimization with the adv-KIP algorithm (as op-
posed to single-loop KIP-dataset distillation),
we check robust accuracy on datasets of the
same size as ours, but produced by the original
KIP algorithm (Nguyen et al., 2021a;b) which is

optimized for clean test accuracy only (see Appendix A.5). We find that KIP datasets do not provide
any robust accuracy, neither against FGSM nor PGD attacks . This indicates the clear need to adjust
the optimization objective to robust performance, as is done in the adv-KIP algorithm.

Transfer of PGD-Robustness to wide neural nets. We perform a first set of transfer studies
of robustness from FC kernels to their corresponding wide neural nets of the same architecture
(Appendix A.6). We find that PGD-robustness transfers well to these large-width counterparts. This
is an indication that features learned by kernels are similar to those learned by neural nets.

Robustness for Common Architectures. We now turn our attention to commonly employed
convolutional neural networks to study the relevance of our datasets for robust classification using
modern architectures. In particular we report how datasets generated by FC kernels transfer to such
convolutional architectures, since the datasets we can currently distill with CONV kernels are too
small.

Tables 3 and 4 summarize our findings for MNIST and CIFAR-10. We note an astonishing “boost”
in robust test accuracy against gradient-based attacks on these convolutional networks when com-
pared to the fully connected kernel results in Table 2 and results for wide FC networks in Table
8. Very remarkably, it seems that datasets optimized for relatively simple kernels “transfer” their
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pgd-performance to networks far removed from this “idealistic” regime, even to more expressive
architectures.

Robust
Train method Clean FGSM PGD40 AA

FC3 98.15 ± 0.12 98.06 ± 0.18 97.17 ± 0.10 0.00 ± 0.00
FC5 97.96 ± 0.55 97.87 ± 0.64 97.20 ± 0.74 0.00 ± 0.00
FC7 98.03 ± 0.16 97.91 ± 0.22 97.14 ± 0.43 0.00 ± 0.00

Adversarial Training 99.11 97.52 95.82 88.77

Table 3: MNIST with Simple-CNN: Test accuracies when trained on Adv-KIP datasets optimized
with FC kernels (first 3 rows). We also show test accuracies for the adversarially trained simple-CNN
(without any data augmentation). AA refers to the AutoAttack test suite with ℓ∞.

CIFAR-10 Adv-KIP Results CIFAR-10 AT Baseline
Neural Net Clean FGSM PGD20 AA Clean FGSM PGD ℓ∞ 20 PGD ℓ2 20 AA

Simple CNN 72.10 ± 0.10 67.45 ± 0.37 67.03 ± 0.24 0.00 ± 0.00 58.07 33.94 31.49 43.89 26.18
AlexNet 68.87 ± 0.76 49.30 ± 0.69 49.06 ± 0.63 0.89 ± 1.41 44.35 30.12 24.41 16.68 18.95
VGG11 74.88 ± 0.45 53.98 ± 9.71 53.18 ± 10.32 0.27 ± 0.18 69.65 31.30 24.68 46.67 23.85

Table 4: CIFAR-10: Test accuracies of several convolutional architectures trained on our Adv-KIP
dataset from the FC3 kernel (left), and from Adversarial Training (right).

Fig. 2 shows the evolution of test PGD-accuracies during training. We point out that while clean
accuracy increases rapidly, robust accuracy only starts to increase once clean accuracy is essentially
optimized. We hypothesize that this might be due to the fact that our distillation optimizes using the
expression of the kernel at the end of training. A similar behaviour can be observed for training on
RFD, perhaps for similar reasons: the data synthesis utilizes an adversarially trained neural net at
convergence.
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Figure 2: Evolution of accuracies during training with our 50K Adv-KIP dataset, the RFD dataset of
App. A.3, and normal Adversarial Training for CIFAR-10 on ConvNet.

It seems promising at first that modern networks trained with adv-KIP datasets without much tuning
enjoy astonishing defense properties against PGD-attacks in various settings, similar, or in some
cases even higher, than what truly robust models (i.e adversarially trained) obtain. However, when
we deploy the AutoAttack suite to our convolutional nets, we observe a sharp drop in robust test
accuracy close to zero, as can be seen in the ”AA”-columns of Tables 3 and 4. We hence observe
a similar failure to produce true robustness as in the case of the RFD-dataset (Sec. 5.1), despite an
arguably more principled approach to optimize for robustness.

6 ANALYSIS OF DATASET-BASED APPROACHES AND DISCUSSION

In this section, we analyze the models trained with optimized datasets that yield superficial robustness.
We demonstrate that, surprisingly, they share many common properties and signatures of failure
which can be identified during training, and contrast them to adversarially trained neural networks.
These similarities might be germane to all attempts that explicitly optimize the dataset with gradient
based approaches. Figures can be found in Apps. A.7 and A.8.

First, in Fig. 5 notice how test loss behaves differently in correctly classified vs wrongly classified
samples during training on the synthetic datasets. We see that after a few epochs the model “sacrifices”
performance on the subset of data that is misclassified, in order to fit the rest. This is in sharp contrast
with the situation during adversarial training (Fig. 5, right). This is already an indication of failure of
learning. Remarkably, Fig. 7 shows that this failure of learning is also evident in the gradient norms
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of the loss with respect to the input. The average gradient norm on the wrongly classified points
explodes with the number of epochs for both the advKIP dataset and the RFD. This behavior, together
with the false sense of robustness that AutoAttack evaluation reveals, suggests that the model learns
to shatter the gradients locally in the neighborhood of correctly classified examples, causing simple
gradient-based attacks to fail. This is evidently similar to what is commonly termed the obfuscated
gradient phenomenon (Athalye et al., 2018), a situation where model gradients do not provide good
directions for generating successful adversarial examples. However, in the past, this has only been
observed with techniques that were introducing non-differentiable parts in the inference pipeline, or
stochasticity, or multiple iterations of neural network evaluation to the model. Interestingly, we now
observe this phenomenon from altering the training data alone and, even more remarkably, from data
optimized using kernels. Indeed, we see in Fig. 9 how the distillation procedure effectively shrinks
the gradients of the model. Further analysis shows that models trained on the robustified datasets
are geared towards becoming overconfident. To illustrate this we provide confidence histograms and
reliability diagrams (Guo et al., 2017) to compare standard training, adversarial training, KIP-training
(see App. A.5), adv-KIP and RFD for the simple CNN in Figs. 3 and 4. They reveal that the models
trained on both our dataset and the RFD dataset are extremely confident on nearly all test examples,
whether correctly labeled or not (see App. A.10 for details).

Stepping back, we have established that datasets optimized for robustness provide a false sense
of security against gradient-based attacks, but fail to show true robustness. Note that the advKIP
Algorithm 1 applies PGD-optimization in the inner maximisation of steps 4, 5 and 6. This is similar
to adversarial training where the optimization is only carried out against inner-loop PGD-attacks on
the data. We thus remain with a conundrum: while in the case of adversarial training optimizing
against PGD-attacks yields the stronger AA-robustness (see Table 4 right), in the case of optimization
of datasets with advKIP or with the RFD procedure the same is not true. Giving credence to our
hypothesis that these modes of failure seem to be inherent to all gradient-based approaches to data
optimization, we try several variations of Algorithm 1 (by either changing the outer or the inner loop
of the optimization), and we observe no qualitative difference (see App. A.9)

Figure 3: Confidence Histograms of several models. From left to right: standard model; AT model;
KIP model; Adv-KIP model and RFD model.

Figure 4: Reliability Diagrams of several models. From left to right: standard model; AT model; KIP
model; Adv-KIP model and RFD model.

7 CONCLUSION

In this work, we reexamine the idea of robust features. Through extensive experiments on common
computer vision tasks, we show that robust representations can only induce robustness in models
trained with gradient descent on a superficial level. We feel that this clarifies the importance of
specialized robust training algorithms, and switches the focus to the model side. Of independent
interest, we believe that the adv-KIP algorithm, a principled method for dataset optimization, provides
insights into the relationship between kernels and neural nets, and serves as a framework that can be
adapted to other data-optimization tasks, as described in Sec. 4.
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A APPENDIX

A.1 RELATED WORK

Distributionally Robust Optimization and Adversarial Augmentation. Related to our work
are also works on distributionally robust optimization (Sinha et al., 2018) and adversarial data
augmentation for out-of-distribution generalization (Volpi et al., 2018). The latter proposes an
algorithm that augments the training dataset on-the-fly (i.e. during training of a neural net) with
worst-case samples from a target distribution. In contrast, our method optimizes the original dataset
against worst-case samples/adversarial examples from the original distribution, which correspond to
a final predictor (kernel machine). The only prior work that gives an algorithm based on NTK theory
to derive dataset perturbations in some adversarial setting is due to Yuan & Wu (2021), yet with
entirely different focus. It deals with what is coined generalization attacks: the process of altering
the training data distribution to prevent models to generalise on clean data. To our knowledge, KIP
and this NTGA algorithm are the only examples of leveraging NTKs for dataset optimization.

Adv-KIP shares similarities with all the above areas, but has distinct differences: the goal of our
method is to obtain robust classifiers, as in adversarial training, but it does not alter the training
algorithm; it generates worst-case samples, but instead of adding them to the training dataset (as
adversarial data augmentation techniques do), it uses them to optimize the dataset itself, similar to a
dataset distillation procedure but tailored to adversarially robust classification.

A.2 EXPERIMENTAL DETAILS

For all models trained on our Adv-KIP dataset and the RFD dataset (Ilyas et al., 2019), we use the
Adam optimizer to perform a small grid search for the learning rate, and pick the best model with
respect to the PGD test accuracy.

On MNIST, we train fully connected networks of width 1024 in Sec. A.6, and the simple-CNN
network in Sec. 5. FC networks are trained for 2,000 epochs and the simple-CNN network for 800
epochs.

On CIFAR-10, we again train fully connected networks of width 1024 in Sec. A.6, and the simple-
CNN, AlexNet and VGG11 networks in Sec. 5. We train all these networks for 2,000 epochs.

For the Adversarial Training baseline, on MNIST, we adopt the setting of Madry et al. (2018), that is
we train the simple-CNN network with the Adam optimizer towards convergence, and set the initial
learning rate to 1e-4. In Madry et al. (2018) the number of epochs was set to 100, while we use 200.

On CIFAR-10, since we do not use data augmentation, we train with both SGD and Adam for 200
epochs for each model, and pick the better one in terms of robustness. For the simple-CNN and
AlexNet, the Adam optimizer is better. For VGG11, we use the SGD optimizer, with initial learning
rate 1e-1, decay rate of 10 at the 100-th and the 150-th epoch, and with weight decay 5e-4.

Simple-CNN architecture: We use a simple convolutional architecture with three convolutional
layers and a linear layer. Each convolutional layer computes a convolution with a 3×3 kernel,
followed by a ReLU and a max-pooling layer (of kernel size 2×2 and stride 2). The linear layer is
fully-connected with ten outputs. All convolutional layers have a fixed width of 64.

Training of Convolutional Nets: We use the Adam optimizer (Kingma & Ba, 2015) and perform
a small grid search over the fixed learning rate. We stop training when robust validation accuracy
ceases to decrease, where we measure against PGD40 attacks for MNIST and PGD20 attacks for
CIFAR-10, as is often standard. We report the best results across the sweep for FGSM and PGD test
accuracies. After picking the best learning rate, for each experiment in this paper, we report the mean
and standard deviation of three experiments with different seeds.

Description of Evaluation Metrics: For all the adversarial attack related measurements including
FGSM, ℓ∞ PGD and ℓ2 PGD, we adopt the cleverhans code implementation (Papernot et al., 2018).
For ℓ∞ PGD, on MNIST we use step size 0.1 and radius 0.3, while on CIFAR we use step size 2/255
and radius 8/255. For ℓ2 PGD on CIFAR, we use step size 15/255 and radius 128/255.
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For AutoAttack, we adopt the open-source original implementation (Croce & Hein, 2020; 2021). As
for the other attacks, we set ϵ = 0.3 for MNIST and 8/255 for CIFAR-10 for ℓ∞ attacks and adopt
the 128/255 radius for CIFAR-10 for the ℓ2 adversary.

A.3 ROBUSTNESS OF THE PUBLICLY AVAILABLE RFD

Here, we replicate the results of Sec. 5.1 for the publicly available RFD dataset of Ilyas et al. (2019).
Since it stems from a network trained against an ℓ2 adversary, we have included robustness against
ℓ2-attacks.

CIFAR-10 Accuracy with Robust Feature dataset (Ilyas et al., 2019)

Neural Net Clean PGD ℓ∞ 20 PGD ℓ2 20 AA ℓ2

Simple CNN 65.25 ± 0.44 60.73 ± 0.24 63.73 ± 0.40 0.47 ± 0.11
AlexNet 57.07 ± 1.25 25.12 ± 5.46 26.58 ± 4.80 0.62 ± 0.25
VGG11 68.41 ± 1.95 42.92 ± 11.23 47.49 ± 6.12 6.94 ± 2.47

Table 5: Test accuracies for various models trained on the publicly-available 50K “robust feature”
dataset (RFD) for CIFAR-10.

A.4 USING DATA GENERATED FROM ADVERSARIAL TRAINING

To show its complete lack of induced robustness for the worst-case dataset obtained on-the-fly
during adversarial training, we conduct the following experiment: first, we adversarially train a
network towards general robustness and record all perturbed data and corresponding labels. Then,
we reinitialize the same network and retrain it with precisely the same set of perturbed data in
identical order. In other words, we use the data trajectory that produces a robust network with the
first initialization, and evaluate whether it is still useful for the second.

Table 6 shows the results discussed in Sec. 5.2.

Robust
Neural Net Clean FGSM PGD ℓ∞ 20

Simple CNN 70.22 ± 1.13 0.92 ± 0.33 0.00 ± 0.00
AlexNet 76.53 3.15 0.03
VGG11 84.01 ± 0.39 5.00 ± 0.36 0.06 ± 0.00

Table 6: Test accuracies of several convolutional architectures trained on the AT data trajectory with
different initializations. The AlexNet result is unstable: two models got stuck at 10% accuracy. We
discard those results.

A.5 KIP BASELINE

The original KIP algorithm (Nguyen et al., 2021a;b) is designed to reduce the size of the training set,
while keeping the induced accuracy close to the original one. It could be reasonable to hypothesize
that such information compression might possibly lead to an increase of robustness as well. As
a sanity check we evaluate robust accuracy on data sets produced by the original KIP algorithm
(Nguyen et al., 2021a;b), which is designed for reduction of dataset size, while keeping (clean)
accuracy as uncompromised as possible. For fair comparison, we produce a larger data set using the
KIP algorithm (of the same size as used in our adv-KIP algorithm) and check for FGSM-robustness.
Table 7 shows that effectively PGD-robustness of the datasets remains close to 0, as is the case for
the original datasets. This indicates the clear need to adjust the optimization objective to robust
performance, as is done in the adv-KIP algorithm.

We also evaluated FC{3, 5, 7} and Conv{3, 5, 7} kernels (together with a Convolutional Kernel with
1 hidden layer followed by global average-pooling) on datasets (with 50 images per class) released
by (Nguyen et al., 2021b) and we found their FGSM robustness to be 0% in all cases. URLs for the
datasets we considered: 1st and 2nd.
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Kernel, Dataset Size Clean FGSM

MNIST FC3, 5k 97.51 ± 0.03 0.00 ± 0.00
FC7, 30k 98.23 ± 0.06 0.00 ± 0.00

CIFAR-10
FC3, 1k 48.45 ± 0.34 2.50 ± 0.21
FC3, 5k 52.48 ± 0.23 0.22 ± 0.05

FC3, 10k 54.04 ± 0.41 0.10 ± 0.04

Table 7: KIP baseline datasets (reproduced). Setting: No preprocessing/data augmentation, target
size 1k images, learned labels, mse loss, lr=1e-3, datasets were optimized for 1000 epochs, with
potential early stopping if validation accuracy did not increase across 200 epochs. Random seed
denotes different draws of the initial support images.

A.6 TRANSFER RESULTS TO WIDE FC NETWORKS

Here, we evaluate how well datasets produced with kernel methods in Algorithm 1 transfer to
relatively wide neural nets of the same architecture and depth as used in the adv-KIP optimization.
We implement multilayer fully connected neural nets of width 1024 and perform a hyperparameter
search for the (constant) learning rate. We use the Adam optimizer (Kingma & Ba, 2015) and test for
both FGSM and PGD accuracy, where we apply the most common PGD attacks (PGD40 for MNIST
and PGD20 for CIFAR10). Table 8 summarize our results for MNIST and CIFAR-10.

Robust
Dataset Kernel, Dataset Size Clean FGSM PGD

MNIST FC3, 30k 80.08 77.67 53.85
MNIST FC5, 30k 97.75 64.83 35.14
MNIST FC7, 30k 97.45 70.58 40.70

CIFAR-10 FC2, 40k 46.29 20.98 16.89
CIFAR-10 FC3, 40k 46.33 40.07 39.15

Table 8: Transferability : Kernel to Neural Network of same architecture, test accuracy in %. For
MNIST, we test with PGD-40, and for CIFAR, we test with PGD-20.

We find that robustness properties transfer well from kernels to their corresponding neural nets, an
encouraging sign. Our sweeps also show that this holds for a rather wide range of learning rates,
evidencing a certain insensitivity to exact parameter choices.

A.7 STATISTICS OF LOSS FUNCTION AND GRADIENT NORM DECOMPOSITION

Here we provide more illustration of gradient and loss magnitudes during training of our simple-
CONV. Figure 5 shows the loss dynamics of several models decomposing the loss according to
correctly and incorrectly labeled test samples. We zoom in with Figure 6 that shows the loss on
correctly labeled data, which is otherwise dominated by the loss on mislabeled data in Figure 5. We
see clearly that for models trained with our Adv-KIP dataset and the RFD, the loss on mislabeled
samples increases during training, while for adversarial training it decreases.
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Figure 5: Test Loss Curves of models trained on our Adv-KIP Dataset, on the RFD, and during
Adversarial Training. For the first two, the loss on incorrectly labeled samples increases, while for
AT it decreases.
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Figure 6: Test Loss Curves of models trained on our adv-KIP Dataset, the RFD, and with Adversarial
Training on correctly labeled test data.

Figures 7 and 8 (zooming in on correctly labeled data) show a similar dynamics for the gradient norm.
Again, models trained with our Adv-KIP Dataset and the RFD have explosively increasing gradients
on incorrectly labeled samples.
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Figure 7: Gradient Norm Curves of models trained on our Adv-KIP Dataset, the RFD, and with
adversarial training. For the first two, the loss on incorrectly labeled samples increases, while for AT
it converges.
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Figure 8: Gradient Norm Curves of models trained on our adv-KIP Dataset, the RFD and with
Adversarial Training on correctly labeled data.

A.8 KERNEL GRADIENT NORMS

A.9 RESULTS USING MODIFICATIONS OF ADV-KIP

Here we check several modifications of the adv-KIP algorithm to see if they prevent the data to
settle for ill-behaved representations. We modify the inner loop objective with variations of different
attacks (like the ones considered in AutoAttack) to verify if this provides a broader defense. We test
a mixture of clean and robust loss for the outer loop of Algorithm 1, as in (Zhang et al., 2019). Lastly,
we modify the target set XT to a smaller set that only contain correctly labeled data, to prevent the
optimization from ”compensating” on mislabeled target data. However, none of these modifications
changes the picture and we invariably find that the resulting networks lack any true robustness.
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Figure 9: The average gradient norm of an FC3 kernel on a validation set during the distillation
procedure of Algorithm 1. We see that the training data evolves to cause gradient shrinkage of the
model. Setting: CIFAR-10, FC3, |XS | = 40k, |XT | = 10k, 10 PGD steps, cross entropy loss in outer
loop.

For our Adv-KIP min-max procedure, in the inner loop we choose multi-step PGD with CE loss as
the attacker since it is the gold standard in the current literature. For the outer loop, we compared
of CE and MSE loss and settled for CE due to slightly better results. Given our failure to extract
true robustness, we test whether we can distill more fruitful “robust features” into our dataset, by
varying both inner and outer loss functions. For the inner loop, we replace the CE with the DLR
loss, which is an extension of the CW loss (Carlini & Wagner, 2017). For the outer loop, instead of
using pure CE, we incorporate the TRADES loss (Zhang et al., 2019) as an ablation. We also ran a
variant of addKIP (with CE-loss) on CIFAR-10 with a smaller |XT | = 5K such that it only contains
correctly labeled data, to check if the obfuscated gradient phenomenon results from optimization on
the misclassified part of XT .

Let z represent the pre-softmax logits. Recall that CE loss is defined as:

CE(x, y) = −zy + log(

K∑
i=1

ezj ) (9)

Carlini & Wagner (2017) proposed to use the following (CW) loss to perturb the input:

CW(x, y) = −zy +max
i ̸=y

zi (10)

We implement a variant of the above loss, namely the Difference of Logits Ratio (DLR) loss proposed
in (Croce & Hein, 2020):

DLR(x, y) = −zy −maxi̸=y zi
zπ1
− zπ3

(11)

where π is the ordering of the components of z in decreasing order (the untargeted version). This loss
is invariant to scaling of the logits, and it has been used to detect cases where attacking the CE loss
fails due to overconfidence of the model.

The TRADES loss (Zhang et al., 2019) aims to trade off robustness and accuracy. Given a specific
input (x, y), TRADES optimizes over

L(f(x; θ), y) + λ max
x′∈B(x)

L(f(x; θ), f(x′; θ)). (12)

In our case,

L(KXTXS
K−1

XSXS
YS ,YT ) + λ max

XT ′∈B(XT )
L(KXTXS

K−1
XSXS

YS ,KXT ′XS
K−1

XSXS
YS). (13)

A.9.1 KERNEL RESULTS

We first provide robustness on the kernel directly, using either the CE or DLR loss in the iterated
attack. Results are shown in Table 9.

For the version of av-KIP that only collects correctly labeled test samples n XT , CE and DLR
robustness do not improve and remain at 19.9% and 15.2% validation robust accuracy respectively
for kernels.
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CE DLR

CE 21.37% 16.89%
DLR 18.16% 13.35%

TRADES (λ = 100) 5.14% 5.60%

Table 9: Test accuracy evaluated on the best dataset found in advKIP (selected from a separate
validation set). Row shows method used inside the inner loop. Column denotes evaluation attack.
Setup: CIFAR-10, size of support set is 40k (and 30k for TRADES), size of target set is 10k, FC3
kernel.

A.9.2 RESULTS ON CONVOLUTIONAL NETS

Table 10, 11 and 12 show results with our DLR / TRADES datasets for CIFAR-10 for our convolu-
tional neural nets. As we can see, the loss used to optimize the data clearly is not the trigger towards
fake robustness, since none of these models exhibit robustness against attacks besides PGD.

Robust
Neural Net Clean FGSM PGD ℓ∞ 20 AA

Simple CNN 70.87 ± 0.44 65.06 ± 0.52 64.88 ± 0.51 0.00 ± 0.00
AlexNet 63.58 ± 5.50 47.62 ± 8.51 47.08 ± 8.65 0.11 ± 0.11
VGG11 73.72 ± 1.90 63.05 ± 4.14 62.76 ± 4.40 2.11 ± 3.28

Table 10: Test accuracies of several convolutional architectures trained on our Adv-KIP CIFAR-10
DLR dataset from the FC3 kernel.

Robust
Neural Net Clean FGSM PGD ℓ∞ 20 AA

Simple CNN 67.39 ± 0.18 58.21 ± 0.33 58.03 ± 0.34 0.00 ± 0.00
AlexNet 59.69 ± 1.13 47.44 ± 8.00 47.08 ± 8.47 0.29 ± 0.17
VGG11 68.31 ± 1.17 60.97 ± 3.37 60.61 ± 3.46 3.58 ± 2.01

Table 11: Test accuracies of several convolutional architectures trained on our Adv-KIP CIFAR-10
TRADES dataset from the FC3 kernel.

A.10 DETAILS ON THE CONFIDENCE AND RELIABILITY VISUALIZATION

It has been shown that calibration of modern neural networks can be poor, despite advances in
accuracy (Guo et al., 2017; Lakshminarayanan et al., 2017; Wenzel et al., 2020; Havasi et al., 2020).
Guo et al. (2017) point out that more accurate and larger models tend to have worse calibration.
A common measurement of miscalibration is the Expected Calibration Error (ECE) (Naeini et al.,
2015), which quantifies the difference in expectation between confidence and accuracy using binning.
Since obtaining accurate estimation of ECE is difficult, due to the dependency of the estimator on the
binning scheme, we adopt the reliability diagram (DeGroot & Fienberg, 1983; Niculescu-Mizil &
Caruana, 2005) and the confidence histogram (Guo et al., 2017), both tools with nice visualization.
In the confidence histogram, we display the distribution of the predicted confidence, i.e., the output
probability of the predicted label, as a histogram. In the reliability diagram, we calculate the expected
sample accuracy as a function of the confidence level by grouping all samples by their confidence.
For a well-calibrated model, the reliability diagram should output the identity function, so we also
plot the gap between the well-calibrated accuracy v.s. real accuracy.

A.11 VISUALIZATION OF ADVKIP DISTILLED IMAGES
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Robust
Neural Net Clean FGSM PGD ℓ∞ 20 AA

Simple CNN 70.70 ± 0.38 65.22 ± 0.60 64.84 ± 0.56 0.00 ± 0.00

Table 12: Test accuracies of several convolutional architectures trained on our Adv-KIP CIFAR-10
dataset which only optimizes over correctly classified data from the FC3 kernel as described in
Sec. A.9.1.

Figure 10: MNIST distilled images with trained labels from an FC7 kernel
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Figure 11: CIFAR-10 distilled images with trained labels from an FC3 kernel
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