
zip2zip: Inference-Time Adaptive Tokenization via
Online Compression

Saibo Geng1∗ Nathan Ranchin1∗ Yunzhen Yao1 Maxime Peyrard4

Chris Wendler1,2 Michael Gastpar1 Robert West1

1EPFL 2Northeastern University
4Université Grenoble Alpes, CNRS, Grenoble INP, LIG

{saibo.geng, nathan.ranchin, yunzhen.yao, michael.gastpar, robert.west}@epfl.ch
maxime.peyrard@univ-grenoble-alpes.fr ch.wendler@northeastern.edu

Abstract

Tokenization efficiency plays a critical role in the performance and cost of large
language models (LLMs), yet most models rely on static tokenizers optimized on
general-purpose corpora. These tokenizers’ fixed vocabularies often fail to adapt
to domain- or language-specific inputs, leading to longer token sequences and
higher computational costs. We introduce zip2zip, a novel method for achieving
context-adaptive tokenization in LLMs at inference time. Leveraging an online
data compression algorithm (Lempel–Ziv–Welch), zip2zip dynamically expands
its active vocabulary at inference time by continuously replacing fragmented token
sequences with more compact hypertokens, which it can immediately output during
generation. In doing so, the model refines its internal tokenization scheme to match
the token distribution of the current context, reducing redundancy and improving
representational efficiency. zip2zip consists of three key components: (1) a
tokenizer based on Lempel–Ziv–Welch compression that incrementally merges
co-occurring tokens into reusable hypertokens on the fly; (2) a dynamic embedding
(and unembedding) layer that computes embeddings for newly formed hypertokens
at runtime; and (3) a variant of autoregressive language modeling that pretrains the
model to handle hypertokenized, compressed text sequences as inputs and outputs.
We show that an existing LLM can be uptrained for zip2zip in 10 GPU-hours via
parameter-efficient finetuning. The resulting LLM performs test-time adaptation,
learning to use hypertokens in unseen contexts and reducing input and output tokens
by 15–40%. Code and models are released at https://github.com/epfl-dlab/zip2zip.

1 Introduction

Large language models (LLMs) have shown impressive versatility across a broad spectrum of tasks
and domains [Brown et al., 2020, Bubeck et al., 2023], including biomedical tests [Nori et al., 2023],
mathematical reasoning [Frieder et al., 2023], programming [Jiang et al., 2024], and multiple human
languages. A critical underlying component of this flexibility is the tokenizer, which defines the
model’s vocabulary and governs how raw text is converted into token sequences fed to the model.
The efficiency of the tokenization scheme—i.e., how compactly a text is represented as tokens—has
significant impact on model performance. In particular, a more compact tokenization yields three key
benefits: (1) larger effective context windows; (2) lower computational (and thus monetary) cost; and
(3) shorter response times.

Despite its importance, the tokenizers used in most LLMs operate with fixed, static vocabularies
obtained by running algorithms such as Byte Pair Encoding [Sennrich et al., 2016] over large-scale,
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Figure 1: zip2zip inference process. At each decoding step, the model has a growing context composed
of both base tokens (blue) and hypertokens (green). The static vocabulary of size 6 remains fixed, while
the dynamic vocabulary is continuously expanded by merging co-occurring tokens using LZW compression.
The codebook (right) maps hypertoken IDs to their corresponding base tokens. As decoding progresses, new
hypertokens created at step t (e.g., “to be”, “or not”) become immediately available for reuse at step t + 1.
Hypertokens are also eligible for merging, enabling the formation of nested hypertokens. The final output
sequence (bottom) is reconstructed via LZW decompression.

general-purpose web corpora. While this globally optimized vocabulary performs reasonably well on
average, it often fails to adapt to domain-specific or language-specific distributions [Ahia et al., 2023,
Petrov et al., 2023], where the text distribution diverges significantly from the pretraining data. The
resulting mismatch leads to longer token sequences, increasing both memory and compute demands,
as well as the end user’s cost by a factor of 2–3x when processing domain-specific text [Ahia et al.,
2023]. To mitigate this issue, prior work has explored expanding the token vocabulary during domain
or language adaptation to improve tokenization efficiency [Wang et al., 2019, Zhao et al., 2024, Kim
et al., 2024, Liu et al., 2023, 2024a]. While effective, this approach needs to be repeated for each
target domain or language and requires maintaining separate tokenizers. Meanwhile, commercial
LLM providers trend toward increasing the size of token vocabularies—growing from 32K to
128K [Grattafiori et al., 2024] and even up to 200K [Abdin et al., 2024] tokens—to improve overall
tokenization efficiency. However, prior work [Dagan et al., 2024, Liang et al., 2023] shows that
simply enlarging the vocabulary yields diminishing returns in domain adaptation, and vocabularies
past a certain size can potentially degrade model performance [Liang et al., 2023]. These limitations
point to a compelling need for an adaptive tokenization mechanism—one that can dynamically
tailor the vocabulary to the input text at inference time, without retraining the model or maintaining
separate tokenizers. Such a mechanism would allow the model to construct new domain-specific
tokens on-the-fly, so as to enhance tokenization efficiency. However, adaptive tokenization poses
architectural challenges, as both the embedding layer and the language modeling head in transformer
models [Vaswani et al., 2017] are static matrices tied to a fixed vocabulary size.

In this paper, we propose zip2zip (with a hat-tip to seq2seq [Sutskever et al., 2014]), a novel building
block that brings inference-time adaptive tokenization to LLMs. zip2zip comprises three key
components: (1) LZW tokenizer: A tokenizer that integrates the Lempel–Ziv–Welch2 compression
algorithm on top of Byte Pair Encoding (BPE) [Welch, 1984]. By applying the LZW compression
algorithm to the base token sequence—continuously merging frequently co-occurring token sequences
into reusable longer tokens (hypertokens)—the resulting tokenization becomes less fragmented
and more compact. (2) Dynamic-embedding architecture: An augmentation of the transformer
architecture with a lightweight encoder that replaces the static embedding matrix, allowing the
model to compute embeddings for newly formed hypertokens on the fly. (3) Pretraining under
online token compression: a variant of causal language modeling that trains the model directly on
LZW-compressed sequences, aligning learning with the inference-time (hyper)token distribution. The
overall process is illustrated in Figure 1, which shows how the context window, dynamic vocabulary,
and codebook evolve together during decoding. The name zip2zip reflects its dual role in achieving
compression of both the input tokens (the first zip) and output tokens (the second zip), thereby jointly
improving the efficiency of input encoding and output decoding. We conduct continued pretraining
on Phi-3-4B and Phi-3.5-14B to support zip2zip using as few as 100M tokens. The resulting

2LZW is the algorithm used in the ZIP compression tool, which inspired the name zip2zip.
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models demonstrate strong inference-time compression capabilities across various domains, achieving
15–40% reductions in sequence length and up to 40% improvements in end-to-end latency.

To make it easy to upgrade existing LLMs to zip2zip, we release an efficient, open-source im-
plementation of the training and inference stack. It includes (1) a fast Rust-based LZW tokenizer,
(2) a drop-in model architecture compatible with HuggingFace Transformers, (3) a training pipeline
for LZW-compression-based finetuning. Existing LLMs can be seamlessly extended with zip2zip,
gaining adaptive tokenization capabilities through parameter-efficient finetuning.

2 zip2zip

2.1 Dynamic Token Vocabulary

To enable dynamic tokenization at inference time, we associate the LLM with a hyper-vocabulary
Vh that augments the model’s static token vocabulary. Tokens from the original vocabulary V are
referred to as base tokens. Each entry in the hyper-vocabulary is a hypertoken, representing a merged
sequence of base tokens. The total vocabulary for a zip2zip model is the union V ∪Vh. At the
beginning of each inference session, Vh is initialized as an empty set, and is incrementally populated
during decoding by identifying and merging recurring token subsequences in the context window, as
illustrated in Figure 1.

Continuous Vocabulary Expansion. As decoding proceeds, zip2zip continuously merges co-
occurring tokens into new hypertokens and recursively applies merging on new hypertokens. This
continual expansion allows the model to represent longer, recurring sequences of base tokens
compactly. Hypertokens are treated as first-class tokens within the model, used interchangeably
with base tokens throughout the decoding process. Importantly, this process occurs entirely during
inference, without modifying the underlying tokenizer or requiring model retraining.

LZW Algorithm. We implement vocabulary expansion using the Lempel–Ziv–Welch (LZW)
compression algorithm—a dictionary-based, lossless compression method that incrementally builds
a codebook of variable-length sequences. In our setting, the codebook is initialized with the base
token vocabulary V and expands by adding new hypertokens on the fly as recurring token patterns
are encountered. To control the growth of the dynamically expanding vocabulary, we impose a
maximum merge size M that restricts how many base tokens a single hypertoken can represent. LZW
is particularly well-suited for zip2zip due to the following properties:

(1) it is online: hypertokens created at step t can be immediately reusable at step t +1; in contrast,
methods like BPE require access to the full sequence and operate offline;

(2) it is self-contained: input base tokens can be perfectly reconstructed from the compressed
token sequence alone;3

(3) it is unambiguous: when both base tokens and hypertokens are available, which one to use is
consistently determined by the LZW algorithm without ambiguity.

2.2 Hyper-Embedding and Hyper-Unembedding

Hypertokens do not have fixed embedding vectors in the original model’s embedding layer (and
unembedding layer), as they are not part of the original vocabulary. To compute the embedding of a
hypertoken, we learn a mapping from the base token embeddings to the hypertoken embedding. We
achieve this by introducing a hyper-encoder, which is a neural network that takes the embeddings
of the constituent base tokens as input and outputs the corresponding hypertoken embedding (see
Figure 2(a)). Specifically, for a sequence of M base tokens y1:M := y1 . . .yM , the hyper-encoder
fφ : VM → Rd produces the hypertoken embedding h = fφ (y1:M) ∈ Rd , where M is the maximum
merge size and d is the embedding dimension. For hypertokens composed of fewer than M base
tokens, we pad the input sequence to length M. Since the embedding map for base tokens remains
unchanged, the hyper-encoder fφ essentially maps the concatenated base token embeddings from an
(M×d)-dimensional space to a d-dimensional hypertoken embedding vector, performing nonlinear
dimensionality reduction. For the output unembedding layer, if the underlying transformer ties the
embedding and the unembedding matrices, one can reuse the same hyper-encoder to compute the

3There is no need to persist or transmit the codebook across inference calls, preserving compatibility with
existing LLM libraries and interfaces.
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Figure 2: (a) Dynamic embedding: Base tokens are embedded via a static LM embedding matrix, while
hypertokens (e.g., “to be” or “to be or”) are dynamically composed using a hyper-encoder over their constituent
base tokens. (b) Language modeling in compressed space: The model is trained to predict compressed token
sequences produced by LZW, optimizing cross-entropy loss over compressed token IDs. (c) Auto-encoding loss:
To ensure hypertokens are semantically consistent with their base-token compositions, the model also learns to
reconstruct the original base tokens from the hyper-token via a decoding loss.

representation used for unembedding. Otherwise, a separate hyper-encoder is trained to produce the
hypertoken unembedding vectors.

2.3 Architecture
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Figure 3: zip2zip architecture and pipeline. At inference
time, base tokens are compressed into hypertokens using LZW.
A hyper-encoder computes embeddings for hypertokens, which are
processed by the base LLM. Output representations are projected
jointly on base and hyper-unembedding layers, producing joint log-
its and sampled tokens, which can be decoded back to base tokens.

We illustrate the zip2zip architecture
in Figure 3. The input text is first
tokenized into base tokens (STEP 1),
which are then passed through an on-
line LZW compressing module that
compresses the token sequence into
a stream of hypertokens (STEP 2).
Since hypertokens are not part of
the model’s original embedding layer,
their embedding vectors are computed
on-the-fly using the hyper-encoder
during inference (STEP 3–4). Once
embedded, both base token embed-
dings and hypertokens embeddings
are passed through the standard trans-
former layers of the base model, pro-
ducing contextualized hidden states
(STEP 5–6). This step is identical
to vanilla transformer, with hyperto-
kens and base tokens treated equally.
At the output unembedding layer, hy-
pertoken unembedding vectors (same
as the hypertoken embedding vectors
in the tied case, and computed by
a separate hyper-encoder otherwise)
are appended to the original unembed-
ding matrix in the language model-
ing head (STEP 7). This allows the
model to compute a joint softmax over
the union of the base vocabulary and
the hyper vocabulary V ∪Vh (STEP 8).
The resulting probability distribution
is over V ∪Vh, and the sampled token may be either a base token or a hypertoken (STEP 9). In the
next cycle, the newly generated token (STEP 10)—whether base or hyper—is appended to the input
sequence, and the process repeats (back to STEP 1). At the end of generation, the hypertoken sequence
is decompressed via the LZW decoding function into a sequence of base tokens (STEP 11–12). The
whole process works in a fully autoregressive way, where newly generated hypertokens will also be
merged into new hypertokens for future steps. Furthermore, we highlight two points:
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Consistent Vocabulary Updates. The expanding vocabulary—comprising newly created hyperto-
kens—must be updated in a consistent manner across both the input embedding layer and the output
unembedding layer, maintaining a consistent view of the hypertoken set. Failure to update both sides
consistently can result in two types of errors: (1) hypertokens that cannot be decoded, or (2) the
model attempting to decode a non-existing hypertoken.

Hyper-Embedding Cache. Although hypertoken embeddings are computed on-the-fly, they are
context-independent and can thus be cached across inference steps. Similar to the transformer’s
KV-cache, this enables incremental updates: only newly created hypertokens need to be embedded
at each step. Since the codebook grows linearly with the number of tokens in the context, the total
cache size also grows linearly in memory. Thus, the computational cost for hypertoken embeddings
remains constant per step—i.e., one token embedding is computed per step.

2.4 zip2zip Pretraining

Objective. Let D denote the target text distribution. Given a language model πθ parameterized
by θ , standard pretraining seeks to minimize the causal language modeling (CLM) objective (see
Figure 2(b)), which corresponds to the expected negative log-probability of data sequences under the
model:

min
θ

Ey∼D [− logπθ (y)] , (1)

where πθ (y) denotes the probability of the token sequence y under the model πθ .

Let C be an online compression algorithm (e.g., LZW), and φ be the parameters of the hyper-encoder.
Given a sequence y ∼D, let z = C(y) be its compressed form. In zip2zip, we aim to optimize the
same CLM loss, but over the compressed sequences z. The training objective becomes:

min
θ ,φ

Ey∼D
[
− logπθ ,φ (C(y))

]
= min

θ ,φ
Ez∼C(D)

[
− logπθ ,φ (z)

]
. (2)

Here, we slightly abuse the notation to let πθ ,φ (z) denote the probability assigned to the compressed
sequence z, parameterized by the base model weights θ and the hyper-encoder parameters φ .

To construct the compressed dataset C(D), we first tokenize the corpus using a standard tokenizer,
and then apply the LZW compression algorithm. This preprocessing step is performed once prior to
training and can be efficiently parallelized through batching. Compression is applied at the document
level, meaning that each document is compressed independently. This prevents the compressor from
learning patterns across unrelated documents.

Parallelizable Training via Causal Masking. Although hypertokens introduce additional vocabulary
dynamics, training remains fully parallelizable. We leverage the standard causal masking mechanism
used in language models, allowing the model to predict the next token—whether a base token or
a hypertoken—at each position in parallel. To eliminate the need for sequential codebook updates
during inference, we precompute a fixed codebook by applying LZW compression to the entire input
sequence. This precomputed codebook is then used consistently throughout training to condition
token predictions, ensuring efficiency and compatibility with standard training pipelines.

Auxiliary Reconstruction Loss. We introduce an auxiliary reconstruction objective that encourages
a hypertoken embedding to retain sufficient information about its underlying base token sequence
(see Figure 2(c)). Specifically, the model is trained to reconstruct the original base token embeddings
from the hypertoken embedding. We jointly optimize the language model and the hyper-encoder
using a combined loss that includes both the standard next-token prediction loss and the auxiliary
reconstruction loss. Formally, we optimize:

min
θ ,φ ,ψ

Ey∼D
[
− logπθ ,φ (C(y))

]
+λ Ey1:M

[
∆
(
y1:M, fψ

(
fφ (y1:M)

))]
, (3)

where fφ : VM → Rd is the hyper-encoder, fψ : Rd →VM is the decoder aiming to reconstruct the
corresponding base tokens from their hyper-embedding, and ∆ : VM ×VM → R is the reconstruction
loss function, such as the cross-entropy loss, between the base tokens y1:M and the reconstructed
base tokens fψ

(
fφ (y1:M)

)
. The hyperparameter λ ≥ 0 controls the trade-off between the prediction

error of the language model and the reconstruction error of the autoencoder. This joint optimization
objective encourages the hyper-encoder to learn a compact d-dimensional manifold embedded in the
higher-dimensional (M×d) space of base token embeddings, while the language model πθ ,φ learns
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to predict the next (hyper)token given the preceding context. The reconstruction loss can be viewed
as a form of auto-encoding, where the hypertoken acts as a compressed latent representation and
reconstruction encourages the preservation of semantic content and the compression to be lossless.

Adapting Pretrained Language Models. Retraining large language models from scratch is compu-
tationally expensive and often infeasible for most research labs. A more economical alternative is to
perform continued pretraining (or adaptation) on existing pretrained model weights. The proposed
objectives (Equations 2, 3) integrate naturally into this setup. Parameter-efficient methods such as
LoRA [Hu et al., 2022] may also be used, which allow selectively updating parts of the base model
weights with minimal computational cost.

2.5 Efficiency Advantage

zip2zip improves efficiency by increasing the average token length, thereby reducing the number of
tokens required to represent the same text. This compression applies to both inputs (e.g., prompts)
and outputs (e.g., completions). As a result, the model performs fewer computations—both in the at-
tention mechanism and the feedforward layers—and, more importantly, requires fewer autoregressive
decoding steps during inference. Since the latency of large language models is primarily driven by
the cost of sequential decoding, reducing the number of output tokens by n% leads to an approximate
n% speedup in decoding latency, which we will demonstrate empirically in Section 3.6. A more
detailed discussion of FLOPs is provided in Appendix E for completeness.

2.6 Entropy Invariance under Lossless Compression

Before turning to empirical results, we analyze whether a lossless compression of the data representa-
tion can fundamentally alter the achievable performance of a model. We show that for any lossless
mapping g, there always exists a corresponding transported model distribution in the compressed
space that achieves exactly the same (cross-)entropy as in the original space.

Let X be the original alphabet and Z an arbitrary alphabet obtained via a lossless compressor
g : X ∗ →Z∗, which is a bijection onto its image. Denote by PX the true distribution over sequences
x ∈ X ∗, and by pθ the model distribution on the same space. The corresponding push-forward
(compressed-space) true distribution PZ and model distribution pγ are defined as

PZ(z) = PX (g−1(z)), pγ(z) = pθ (g−1(z)), z ∈ Z∗.

Theorem 2.1 (Entropy invariance under lossless compression). If g is lossless (i.e., bijective onto its
image), then the total entropy and cross-entropy are invariant under the transformation:

H(PZ) = H(PX ), H(PZ , pγ) = H(PX , pθ ).

A detailed proof is provided in Appendix G.

The theorem implies that the optimal achievable cross-entropy in the compressed representation is
identical to that in the original domain: for any model family on X ∗, one can always construct a
corresponding model family on Z∗ via push-forward that attains the same likelihood. In practice,
the training process can be viewed as an attempt to approximate this transported model through
optimization; however, convergence to the target model is not guaranteed (see Section 5).

3 Experiments

To evaluate the effectiveness of zip2zip, we perform continued pretraining on the Phi-3 models
(3B and 14B) within the zip2zip framework. We train a single model on a general-purpose corpus
and evaluate it across four dimensions: (1) token efficiency, (2) language modeling perplexity,
(3) downstream task performance, and (4) inference efficiency. This setup allows us to assess
how well zip2zip generalizes to diverse domains without any task- or domain-specific fine-tuning.
For perplexity and downstream benchmarks, we use the widely adopted lm-evaluation-harness
framework [Gao et al., 2024].

3.1 Training Setup

Rather than updating the full model weights, we adopt parameter-efficient finetuning using LoRA [Hu
et al., 2022]. In addition, we train the hyper-embedding and hyper-unembedding modules. We set

6
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Figure 4: Phi-3.5-zip2zip output examples. Blue: base tokens. Yellow: hypertokens (composed of 2 base
tokens). Orange: hypertokens (composed of 3+ base tokens).

Table 1: Examples of hypertokens formed by Phi-3.5-zip2zip across three domains
Code Generation Biomedical French
tor + ch = torch m + R + NA = mRNA E + iff + el = Eiffel

Att + ention = Attention trans + cribed = transcribed de + la = de la

Multi + Head = MultiHead synth + esis = synthesis Gust + ave = Gustave

k + dim = kdim cell + ular = cellular comm + enc + é = commencé

the maximum merge size to M = 3 and use a two-layer transformer encoder as the hyper-encoder.
The loss weighting coefficient λ was chosen to be 0.1, as justified in Appendix I. Ablation studies
on M and the hyper-encoder architecture can be found in Appendix C. For comparison, we also
perform continual pretraining of the base model using LoRA under identical training conditions,
serving as a baseline (denoted as Cont. Pretraining in the tables). The continual pretraining process is
highly efficient, requiring approximately 10 H100-GPU hours for a 4B-parameter model and up to 40
H100-GPU hours for a 14B-parameter model, using only 0.1 billion training tokens. Interestingly, the
reconstruction loss converges to near zero during continued pretraining, indicating that the model can
almost perfectly recover the original base token sequences from the hypertoken representations. This
highlights the learned compression is highly information-preserving. Details of the training setup,
compute infrastructure, and dataset curation are provided in Appendices I and J.

3.2 Qualitative Examples and Hypertoken Patterns

We present several examples (Figure 4 and Table 1) to provide intuition into how the zip2zip model
generates text. We see that the model generates a mixture of hypertokens and base tokens in the
output (Figure 4). The hypertoken ratio is as high as 40% in the Python code generation example, and
20% in the biomedical text generation example. Many of the hypertokens correspond to semantically
meaningful units or domain-specific terms as shown in Table 1. For a more fine-grained visualization
of hypertoken with zip2zip, we provide visualizations of token streams in Figure 10 in the appendix.

3.3 Token Efficiency

Given an input text x and a tokenizer, we define the token efficiency η := Bytes(x)
Tokens(x) as the average

number of bytes represented by each token (also called compression ratio), where Bytes(x) refers
to the number of bytes in the UTF-8 encoding of x. This measures how compactly a tokenizer
encodes input text—higher values of η indicate more efficient tokenization. We evaluate token
efficiency using the tokenizers of four LLMs—Llama-3 [Grattafiori et al., 2024], Qwen-2 [Yang et al.,
2024], Phi-4 [Abdin et al., 2024], and Gemma-3 [Team, 2025]—each associated with a different base
vocabulary size ranging from 128K to 256K. Token efficiency is measured across five representative
domains, sampled from publicly available datasets: code [Lozhkov et al., 2024b], math [LI et al.,
2024], chat [Ding et al., 2023], multilingual [Penedo et al., 2024], and web [Lozhkov et al., 2024a].
Table 2 shows that applying LZW zip2zip consistently improves token efficiency across all tokenizer
and domains. Gains are particularly strong in structured domains like code and math—with gains
of 48% and more over the base tokenizer. Interestingly, models with larger vocabulary sizes do not
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Table 2: Token efficiency (bytes per token) across domains for different tokenizers with and without zip2zip.

Tokenizer Code Math Chat Multilingual Web

Llama-3-128K [Grattafiori et al., 2024] 4.1 2.7 5.1 3.8 4.6
+zip2zip 6.3 (+54%) 4.0 (+48%) 6.4 (+25%) 4.7 (+24%) 5.4 (+17%)
Qwen-2-150K [Yang et al., 2024] 4.0 2.3 5.1 3.7 4.4
+zip2zip 6.2 (+55%) 3.7 (+61%) 6.4 (+25%) 4.6 (+24%) 5.2 (+18%)
Phi-4-200K [Abdin et al., 2024] 4.1 2.7 5.4 4.6 4.7
+zip2zip 6.3 (+54%) 4.1 (+52%) 6.7 (+24%) 5.5 (+20%) 5.4 (+15%)
Gemma-3-256K [Team, 2025] 3.3 2.3 5.0 4.4 4.5
+zip2zip 5.6 (+70%) 3.7 (+61%) 6.4 (+28%) 5.4 (+23%) 5.4 (+20%)

always achieve better token efficiency, suggesting that simply enlarging the vocabulary size is not
sufficient to improve it.

3.4 Perplexity

We evaluate the perplexity of zip2zip models on four corpora: Wikitext [Merity et al., 2016], The
Pile [Gao et al., 2020], and two subsets of Paloma [Magnusson et al., 2023]: mC4, a multilingual
subset of C4, and dC4 (aka C4-100D), a subset of C4 spanning 100 domains. Given a token sequence
x = x1, . . . ,xN , and a model q, perplexity and byte-level perplexity [Radford et al., 2019, Magnusson
et al., 2023] are defined as: PPL :=

(
∏

N
i=1 q(xi)

)−1/N , Byte-PPL :=
(
∏

N
i=1 q(xi)

)−1/B
= PPL1/η ,

where B is the number of UTF-8 bytes of the text, and η denotes the token efficiency (i.e., bytes
per token). Token-level perplexity depends on the tokenization scheme and is unsuitable for cross-
tokenizer comparison. We instead report byte-level perplexity, a vocabulary-agnostic metric that
normalizes for tokenization differences. Table 3 (right panel) shows that zip2zip models see a
modest increase in byte-level perplexity, indicating a slight drop in language modeling performance.

Table 3: Two-shot accuracy across seven NLP benchmarks (left) and byte-level perplexity (↓) on four corpora
using a 1024-token context window (right). Standard deviations (bootstrapped) ≈ 0.02 across all tasks.

Model Method ARC-c ARC-e HS OBQA PIQA WG GSM8K Wiki Pile mC4 dC4

Phi-3.5-4B Base 0.60 0.83 0.66 0.46 0.79 0.75 0.82 1.58 1.79 1.88 1.74
Cont. pretrain 0.60 0.82 0.63 0.47 0.82 0.75 0.40 1.59 1.81 1.88 1.74
zip2zip 0.57 0.83 0.61 0.46 0.82 0.75 0.15 1.69 1.95 2.00 1.82

Phi-3-14B Base 0.62 0.80 0.70 0.51 0.83 0.76 0.84 1.43 1.72 1.82 1.67
Cont. pretrain 0.62 0.88 0.66 0.52 0.87 0.80 0.52 1.47 1.79 1.86 1.68
zip2zip 0.62 0.86 0.68 0.51 0.85 0.79 0.25 1.56 1.90 1.96 1.75

3.5 Evaluation on NLP Benchmarks

We next evaluate zip2zip’s few-shot performance on real-world tasks. We evaluate on seven widely
used NLP benchmarks, including ARC-[Challenge, Easy] [Clark et al., 2018], HellaSwag [Zellers
et al., 2019], LAMBADA [Paperno et al., 2016], OpenbookQA [Mihaylov et al., 2018], PIQA [Bisk
et al., 2019], Winogrande [Sakaguchi et al., 2019] and GSM8K [Cobbe et al., 2021]. As shown in
Table 3, the model continued-pretrained with zip2zip performs similarly to the baseline on most
tasks. However, on GSM8K, where the primary task involves numerical computation, the model
exhibits significant degradation. While token-level operations are already known to be challenging
for LLMs [Singh and Strouse, 2024], it is possible that adaptive tokenization exacerbates this effect,
though further validation is required to confirm this hypothesis.

Multilinguality. To validate the effectiveness of zip2zip on non-English languages, we evaluate the
model on machine translation tasks, including WMT14 [Macháček and Bojar, 2014], WMT16 [Bojar
et al., 2016]. The results, shown in Table 4, indicate a small performance degradation across the BLEU,
CHRF, and TER metrics when using zip2zip. However, the drop is relatively minor, suggesting that
the model retains strong multilingual capabilities even in the compressed representation. Additional
experiments on multilingual QA benchmarks are provided in Appendix H.2.
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Table 4: Machine translation performance on WMT benchmarks. Scores are averaged across both translation
directions. Standard deviations (approximately 1.0 ∼ 2.0) are reported in Table 11 in Appendix H.

Model Method WMT14 En-Fr WMT16 En-De WMT16 En-Ro
BLEU↑ CHRF↑ TER↓ BLEU↑ CHRF↑ TER↓ BLEU↑ CHRF↑ TER↓

Phi-3.5-4B Base 33.6 58.3 53.0 39.2 63.2 47.9 17.7 45.5 73.4
Cont. pretrain 36.5 61.0 51.5 42.3 65.4 44.9 16.7 45.8 79.7
zip2zip 34.1 59.4 54.5 39.7 64.5 48.0 14.3 44.2 93.5

Phi-3-14B Base 39.1 62.6 49.3 43.1 65.6 44.1 21.3 51.0 70.5
Cont. pretrain 38.9 63.2 48.8 48.4 70.1 39.8 21.8 52.0 68.3
zip2zip 36.4 62.8 51.2 44.8 68.1 42.9 19.5 50.1 72.9

3.6 Inference Efficiency

zip2zip reduces decoding time by lowering the number of tokens that need to be generated. However,
it introduces additional FLOPs due to the on-the-fly computation of hyper-embeddings by the hyper-
encoder. To address this overhead, we implement hyper-embedding caching and optimize the
computation using a custom Triton kernel. We report separate timings for prefilling and decoding
across multiple models, with and without zip2zip, in Table 5. As we show in Table 5, zip2zip
achieves a significant speedup in all four settings. Both prefilling and decoding times are significantly
reduced, with the most substantial gains observed in the 512+256 setting with the Phi-3.5-4B model.
Improvements are significantly stronger on datacenter-grade GPUs like the NVIDIA H100 and more
modest on consumer hardware (e.g., Apple M1).

Table 5: Throughput (tokens/sec) comparison of the zip2zip framework against the baseline HuggingFace
Transformers generate and MLX generate implementation. Performance is detailed for prefilling and decode
phases across various context lengths (first value in column headers) combined with a 256-token generation
length. zip2zip demonstrates notable throughput improvements, in both the prefilling and decoding phases.

Setting Method 256+256 512+256 1024+256 2048+256

Prefill Decode Prefill Decode Prefill Decode Prefill Decode

Hardware: Apple M1 (16GB RAM)

Phi-3.5-4B
Base model 165.0 7.3 211.3 7.5 200.9 7.1 196.6 6.8
zip2zip 145.5 7.9 231.4 10.1 189.6 7.4 233.8 7.3
Relative % -11.8% +7.5% +9.5% +34.8% -6.6% +3.9% +18.9% +7.5%

Hardware: NVIDIA H100 80GB GPU

Phi-3.5-4B
Base model 700.9 56.2 1347.2 54.4 2689.4 52.8 4993.2 53.1
zip2zip 936.6 61.4 2722.1 79.8 4326.7 61.5 9258.1 61.9
Relative % +33.6% +9.3% +102.6% +46.6% +60.9% +16.6% +85.4% +16.5%

Phi-3-14B
Base model 724.4 44.6 1356.3 43.8 2328.6 45.1 3849.5 42.2
zip2zip 1024.6 54.9 1973.0 61.1 3657.0 66.8 7239.1 46.3
Relative % +41.5% +23.0% +45.5% +39.5% +57.0% +48.1% +88.1% +9.6%

Efficient LZW-Tokenizer Implementation. zip2zip introduces an additional LZW compression
step during inference and a decompression step at the end of generation. As a result, the efficiency
of LZW-integrated tokenization is important to overall performance. To minimize overhead, we
implemented a Rust-based zip2zip tokenizer that outperforms the Python version (see Figure 7) and
matches the latency of HuggingFace’s fast BPE tokenizer.

4 Related Work

Domain-Adapted Tokenizers. Several works have explored tokenizer adaptation by expanding the
token vocabulary to better support specific domains or languages. Zhao et al. [2024], Kim et al.
[2024], Liu et al. [2023, 2024a] adapt the Llama tokenizer to Chinese, Korean, and specialized
domains such as mental health and law by adding new tokens. However, these approaches yield a
fixed vocabulary that does not adapt during inference.
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Input Compression for LLMs. Prompt compression methods such as gist tokens [Mu et al., 2023],
selective context [Li et al., 2023], LLMLingua [Jiang et al., 2023], summary vectors [Chevalier
et al., 2023], in-context autoencoders [Ge et al., 2024], and others [Wingate et al., 2022] reduce the
context length by lossy compression. While their lossy compression nature enables high compression
ratios, these prompt compression methods can only compress input tokens, but not the output tokens,
although output tokens typically dominate generation time under low-batch workloads. Lester et al.
[2024] propose improving language model efficiency by training LLMs directly on text compressed
with arithmetic coding.

Transformers with Dynamic Embeddings. Architecture-wise, zip2zip employs a dynamic embed-
ding layer built upon transformer blocks. Similar ideas have been explored in prior work aimed at
reducing the computational cost of transformers, including Hourglass [Nawrot et al., 2022], dynamic-
pooling transformer [Nawrot et al., 2023], MegaByte [Yu et al., 2023], Toucan [Fleshman and Durme,
2023], Learn-Your-Token [Thawani et al., 2023], SpaceByte [Slagle, 2024], ZeTT [Minixhofer et al.,
2024], dynamic tokenization [Feher et al., 2025], BLT [Pagnoni et al., 2025], and H-Net [Hwang
et al., 2025]. These approaches vary in their model architectures and chunking strategies. Dynamic
Vocab [Liu et al., 2024b] is probably the closest in terms of conceptual motivation, as it also expands
the vocabulary dynamically during generation. The main difference lies in the dynamic vocabulary
construction algorithm and the model training procedure.

5 Discussion and Limitations

Beyond LZW. While we adopt LZW for dynamic construction of hypertokens, zip2zip is broadly
compatible with any online compression algorithm. Future work may explore alternative schemes
that provide different trade-offs between compression efficiency and model performance.

Codebook Management Strategy. The LZW algorithm grows the codebook linearly with the
number of tokens in the context window. Empirical results show that only about 25% of hypertokens
are reused during generation, leaving substantial room for optimization. Two potential improvements
are (1) pruning or selective retention strategies to reduce unused entries, and (2) codebook prefilling,
which could be beneficial if likely tokens can be speculated ahead of input processing.

Optimization Under Lossless Compression. Since zip2zip employs lossless compression, the
achievable performance is theoretically invariant under the transformation: a transported model, as
described in Section 2.6, can attain identical likelihood to that in the original space. Empirically,
however, we observe a mild increase in perplexity under compression (Table 3), indicating that
the trained model does not perfectly recover the transported model. This discrepancy arises from
optimization challenges rather than representational limits—gradient descent may converge more
slowly or settle in suboptimal regions due to more complex loss landscape. Understanding this
optimization difficulty—how the search landscape changes under compression and whether targeted
preconditioning or extended training budgets can close the gap—remains an important question for
future work.

6 Conclusion

We presented zip2zip, an approach that brings inference-time tokenization to large language models
through online token compression. By combining LZW-based sequence compression with dynamic
hypertoken embeddings, zip2zip enables compact, adaptive tokenization with lightweight uptraining
and little architectural changes. Across multiple domains and languages, it achieves substantial
reductions in sequence length and decoding cost while maintaining strong task performance. These
results demonstrate that online token compression can serve as a practical path toward dynamic
tokenization, pointing to new directions for efficient and adaptable LLM inference.
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Matouš Macháček and Ondřej Bojar. Results of the WMT14 metrics shared task. In Ondřej Bojar,
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son, L. Mackey, D. Belgrave, A. Fan, U. Paquet, J. Tomczak, and C. Zhang, editors, Ad-
vances in Neural Information Processing Systems, volume 37, pages 46791–46818. Curran Asso-
ciates, Inc., 2024. URL https://proceedings.neurips.cc/paper_files/paper/2024/file/
532ce4fcf853023c4cf2ac38cbc5d002-Paper-Conference.pdf.

Jesse Mu, Xiang Li, and Noah Goodman. Learning to compress prompts with gist tokens. In
A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Advances
in Neural Information Processing Systems, volume 36, pages 19327–19352. Curran Asso-
ciates, Inc., 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/
3d77c6dcc7f143aa2154e7f4d5e22d68-Paper-Conference.pdf.

Piotr Nawrot, Szymon Tworkowski, Michał Tyrolski, Lukasz Kaiser, Yuhuai Wu, Christian Szegedy,
and Henryk Michalewski. Hierarchical transformers are more efficient language models. In Marine
Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz, editors, Findings of the
Association for Computational Linguistics: NAACL 2022, pages 1559–1571, Seattle, United States,
July 2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.findings-naacl.117.
URL https://aclanthology.org/2022.findings-naacl.117/.

Piotr Nawrot, Jan Chorowski, Adrian Lancucki, and Edoardo Maria Ponti. Efficient transformers
with dynamic token pooling. In Anna Rogers, Jordan Boyd-Graber, and Naoaki Okazaki, editors,
Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 6403–6417, Toronto, Canada, July 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.acl-long.353. URL https://aclanthology.org/2023.
acl-long.353/.

Harsha Nori, Nicholas King, Scott Mayer McKinney, Dean Carignan, and Eric Horvitz. Capabilities
of gpt-4 on medical challenge problems, 2023. URL https://arxiv.org/abs/2303.13375.

Abraham Toluwase Owodunni, Orevaoghene Ahia, and Sachin Kumar. Flexitokens: Flexible
tokenization for evolving language models, 2025. URL https://arxiv.org/abs/2507.12720.

14

https://arxiv.org/abs/2504.02122
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu
https://aclanthology.org/W14-3336/
https://api.semanticscholar.org/CorpusID:266348815
https://api.semanticscholar.org/CorpusID:266348815
https://arxiv.org/abs/1609.07843
https://aclanthology.org/D18-1260/
https://proceedings.neurips.cc/paper_files/paper/2024/file/532ce4fcf853023c4cf2ac38cbc5d002-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/532ce4fcf853023c4cf2ac38cbc5d002-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3d77c6dcc7f143aa2154e7f4d5e22d68-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/3d77c6dcc7f143aa2154e7f4d5e22d68-Paper-Conference.pdf
https://aclanthology.org/2022.findings-naacl.117/
https://aclanthology.org/2023.acl-long.353/
https://aclanthology.org/2023.acl-long.353/
https://arxiv.org/abs/2303.13375
https://arxiv.org/abs/2507.12720


Artidoro Pagnoni, Ramakanth Pasunuru, Pedro Rodriguez, John Nguyen, Benjamin Muller, Margaret
Li, Chunting Zhou, Lili Yu, Jason E Weston, Luke Zettlemoyer, Gargi Ghosh, Mike Lewis,
Ari Holtzman, and Srini Iyer. Byte latent transformer: Patches scale better than tokens. In
Wanxiang Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors,
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 9238–9258, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-251-0. doi: 10.18653/v1/2025.acl-long.453. URL https:
//aclanthology.org/2025.acl-long.453/.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The LAMBADA dataset:
Word prediction requiring a broad discourse context. In Katrin Erk and Noah A. Smith, editors,
Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pages 1525–1534, Berlin, Germany, August 2016. Association for Computational
Linguistics. doi: 10.18653/v1/P16-1144. URL https://aclanthology.org/P16-1144/.

Guilherme Penedo, Hynek Kydlíček, Vinko Sabolčec, Bettina Messmer, Negar Foroutan, Martin
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B Discussions on Merge Size

B.1 An Upper Bound on Merge Size

Proposition B.1. Let T be an input sequence of length N over a finite alphabet. LZW compression
algorithm merges substrings by identifying and replacing the most frequent substrings with new
symbols, iteratively. Then, the size M of the largest merged unit (i.e., the longest substring created
via merging) is bounded above by O(

√
N).

Proof. Assume that the largest merged unit has size M. This implies that there exists at least one
merge at level M involving a substring of length M. Furthermore, due to the nature of merge-based
algorithms, any merged unit of size k must be composed of previously merged units of smaller sizes
(e.g., from sizes k−1 and 1, or similar). Hence, in order to construct a merged unit of size M, the
algorithm must have previously created all merged units of sizes 1 through M−1.

Thus, the existence of a merged unit of size M implies the existence of merged units of every size k
such that 1 ≤ k ≤ M. Each such unit must occur at least once in the input sequence in order to be
merged.

Therefore, the total number of characters in T must be at least the sum of the lengths of all merged
units from size 1 to M, i.e.,

N ≥
M

∑
k=1

k =
M(M+1)

2
.

This implies:
M = O(

√
N).

Thus, the length M of the largest merged unit is bounded above by O(
√

N).

B.2 Relation Between Merge Size and Compression Rate

Definition B.1 (Compression Rate). We define the compression rate as the ratio between the number
of tokens after compression (Ncomp) and the number of tokens in the original uncompressed text
(Norig), expressed as a percentage:

Compression Rate =
Ncomp

Norig
×100%.

A lower compression rate indicates greater reduction in token count, and thus more effective com-
pression.

The last column of Table 6 shows how the maximum merge size M affects compression rate when the
context window length is 2048. As M increases, compression rate improves significantly, especially
from M = 1 to M = 3. Beyond that, gains diminish, suggesting M = 3 strikes a good balance between
efficiency and compression rate.

Table 6: Effect of maximum merge size (M) on byte-level perplexity and compression rate. Perplexity is
measured for Phi-3.5-4B across four corpora with a 1024-token context window. Compression rate is evaluated
over the training corpus with a 2048-token context. M = 1 corresponds to no compression.

M Wiki Pile mC4 dC4 Compression Rate(%)

1 1.62 1.70 2.00 1.91 100.00
2 1.96 2.21 2.55 2.22 75.30
3 1.72 1.84 2.15 2.00 71.21
4 1.71 1.84 2.14 1.99 68.93
5 1.72 1.84 2.14 1.99 68.41

Interestingly, the relationship between maximum merge size and training loss in Figure 5 as well
as perplexity in Table 6 is non-monotonic. The baseline case with M = 1 (i.e., no zip2zip compres-
sion) yields the lowest perplexity overall, which is expected and consistent with prior findings that
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Table 7: Ablation of hyper-encoder architecture on byte-perplexity (↓) across four corpora using a 1024-token
context window. Performance improves with increasingly expressive architectures.

Model Method Wiki Pile mC4 dC4

Phi-3.5-4B averaging 1.81 1.97 2.29 2.08
1-attention-layer 1.73 1.86 2.16 2.01
1-transformer-layer 1.71 1.83 2.13 1.99
2-transformer-layer 1.72 1.84 2.15 2.00

compression typically incurs a trade-off in model performance. Among the compressed settings,
the case M = 2 performs the worst, with noticeably slower convergence and higher final loss. In
contrast, the case M = 3 achieves the best performance within the compressed configurations, striking
a favorable balance between compression and prediction performance. While M = 4 and M = 5 also
perform reasonably well, they exhibit slightly higher loss than M = 3, suggesting diminishing returns
or possible over-compression at larger maximum merge sizes (see Figure 5).

Figure 5: Effect of maximum merge size M on zip2zip training loss: M = 1 (no compression) achieves
the lowest loss overall. Among compressed settings, M = 3 performs best, while M = 2 shows the worst
convergence. Larger M (4 and 5) yield slightly worse results than M = 3.

Table 6 reports the byte-level perplexity across four corpora using a 1024-token context window. The
results align closely with the training loss trends observed earlier. Setting M = 1 (i.e., no compression)
consistently achieves the lowest perplexity across all datasets, reaffirming that compression introduces
a performance trade-off. Notably, M = 2 performs the worst across all corpora, exhibiting the highest
perplexity values. For merge sizes M = 3, M = 4, and M = 5, perplexity scores are nearly identical,
suggesting that moderate compression can be achieved without significantly sacrificing language
modeling quality—provided M = 2 is avoided. This consistency across loss and perplexity metrics
further supports the robustness of maximum merge size M = 3 as the most effective trade-off point.

C Discussions on Hyper-Encoder Architecture

C.1 Hyper-encoder architecture

We ablate the architecture of the hyper-encoder to evaluate its effect on language modeling perfor-
mance, as shown in Table 7. We compare increasingly expressive architectures, starting with a simple
averaging method that introduces no additional parameters. This baseline yields the highest perplexity,
highlighting its limited capacity. Adding a single attention layer significantly improves performance,
and further gains are observed with a 1-layer transformer encoder. The 2-layer transformer offers
marginal additional benefit, suggesting that a lightweight transformer (1–2 layers) is sufficient for
effective hypertoken modeling.

Figure 6 illustrates the effect of hyper-encoder architecture on zip2zip training loss. We observe that
the simple averaging method converges the fastest but plateaus at a relatively high loss, reflecting
its limited capacity. As model complexity increases—with attention and transformer layers—the
convergence becomes slower, yet the final loss is significantly lower. Notably, the 1-layer and 2-layer
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transformer encoders yield the best performance, demonstrating that additional parameters enable the
model to better capture structure, albeit at the cost of slower training dynamics.

Figure 6: Effect of hyper-encoder architecture on zip2zip training loss. Averaging (no additional parameters)
converges quickly but to a higher loss. As architectural complexity increases—from attention to transformer
layers—convergence becomes slower, but the final loss is lower. This highlights a trade-off between training
speed and modeling capacity.

D Discussions on Compression

Table 8: Token statistics for Code Generation, Biomedical, and French QA domains.
Stats Code Biomedical French

Original Seq Len 344 322 399
Zip2Zip Seq Len 265 270 367
Num Hypertoken 44 35 26
Hypertoken Ratio 0.166 0.130 0.071
Compression Rate 0.770 0.839 0.920

Table 8 shows detailed token statistics on illustrative examples across three domains in Figure 4,
highlighting zip2zip’s ability to reduce sequence length and introduce reusable hypertokens with
domain-specific efficiency.

Table 9: Sequence length reduction (%) across domains, inferred from the inverse of token efficiency
gains in Table 2.

Tokenizer Code Math Chat Multilingual Web

Llama-3-128K 34.9% 32.5% 20.3% 19.1% 14.8%
Qwen-2-150K 35.5% 37.8% 20.3% 19.6% 15.4%
Phi-4-200K 34.9% 34.1% 19.4% 16.4% 13.0%
Gemma-3-256K 41.1% 37.8% 21.9% 18.5% 16.7%

Table 9 reports the estimated sequence length reduction across domains, showing that zip2zip
consistently shortens token sequences by 13–41%, with the strongest gains observed in structured
domains like code and math.

E FLOPs Estimation for zip2zip

Following the assumptions of Kaplan et al. [2020], we estimate training FLOPs (Γ) as:

Γ ≈ 6 ·Ntokens ·Nparams,

where Ntokens is the total number of processed tokens and Nparams is the number of trainable parameters.
This estimate ignores the quadratic attention cost, assuming:
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12 ·dmodel ≪ sequence length.

For zip2zip, this becomes:

Γz2z ≈ 6 ·Ntokens ·ρ ·Nparams(1+α),

where ρ is the compression ratio, and α accounts for the overhead of the hyper-encoder applied at
the embedding and LM head. The relative FLOPs ratio is then:

Γz2z

Γ
= ρ · (1+α).

Assuming the hyper-encoder mirrors the base model’s configuration, we estimate:

α ≈ lM
L

,

where l is the number of hyper-encoder layers, M is the maximum merge size, and L is the number of
base model layers. We illustrate this estimate across several model scales in Table 10, showing that
the relative FLOPs overhead from the hyper-module remains modest (typically under 15%).

Model L M l α = lM
L

Transformer-4B 14 2 1 0.14
Transformer-7B 32 2 2 0.13
Transformer-70B 80 3 3 0.11
Transformer-400B 128 3 4 0.09

Table 10: Relative FLOPs overhead from the hyper-module across different model sizes.

F Discussions on Tokenizer

Figure 7 compares the tokenization and detokenization latencies across different tokenizer con-
figurations. The Base Tokenizer corresponds to the standard BPE tokenizer implemented by the
Hugging Face tokenizers library. The Rust LZW Tokenizer represents the end-to-end latency when
LZW compression and decompression are applied on top of the BPE tokenization. As shown, this
configuration introduces only a small additional latency in the tokenization process while leaving
the detokenization latency virtually unchanged. The Python LZW Tokenizer, in contrast, exhibits
significantly higher latency due to Python’s runtime overhead. Overall, the results indicate that
most of the observed latency arises from the BPE segmentation process itself rather than the LZW
compression, suggesting that efficient implementations of compression add minimal overhead to
tokenization workflows.

G Entropy Invariance under Lossless Transformations

Theorem G.1 (Entropy Invariance under Lossless Compression). Let g : X ∗ →Z∗ be a bijection
onto its image, and let PZ and pγ denote the push-forward distributions of PX and pθ , respectively:

PZ(z) = PX (g−1(z)), pγ(z) = pθ (g−1(z)).

Then the total entropy and cross-entropy are invariant under g:

H(PZ) = H(PX ), H(PZ , pγ) = H(PX , pθ ).
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Figure 7: zip2zip tokenizer latency (ms) vs. HF tokenizer.

X ∗ Z∗

x1

x2

x3

x4

z1

z2

z3

z4g : X ∗ →Z∗

Figure 8: Lossless compression mapping (bijective) g (e.g., LZW) from original sequences X ∗ to
compressed sequences Z∗.

Proof. By definition of the push-forward distribution,

H(PZ) =− ∑
z∈Z∗

PZ(z) logPZ(z)

=− ∑
z∈Z∗

PX (g−1(z)) logPX (g−1(z))

=− ∑
g(x′)∈Z∗

PX (x′) logPX (x′).

Since g is a bijection, we can replace the summation by x′ ∈ X ∗, which yields

H(PZ) =− ∑
x∈X ∗

PX (x) logPX (x) = H(PX ).

An identical argument applies to the cross-entropy by considering PX (x) log pθ (x) as a single function,
since the invariance property does not depend on the specific form of the function being summed:

H(PZ , pγ) =−∑
z

PZ(z) log pγ(z)

=−∑
x

PX (x) log pθ (x) = H(PX , pθ ).

Hence, both entropy and cross-entropy remain invariant under any lossless (bijective) transformation
g.
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H Additional Results

H.1 Machine Translation

We report standard deviations for machine translation results across WMT benchmarks in Table 11,
computed using the lm-evaluation-harness codebase.

Table 11: Machine translation performance on WMT benchmarks (BLEU↑, CHRF↑, TER↓) with standard
deviations (±) from bootstrapped estimates. Scores are averaged across both directions.

Model Method WMT14 En-Fr WMT16 En-De WMT16 En-Ro
BLEU CHRF TER BLEU CHRF TER BLEU CHRF TER

Phi-3.5-4B Base 33.6±2.1 58.3±1.4 53.0±1.7 39.2±1.9 63.2±1.6 47.9±1.8 17.7±1.5 45.5±1.3 73.4±2.4
Cont. pretrain 36.5±2.2 61.0±1.6 51.5±1.8 42.3±1.8 65.4±1.4 44.9±1.7 16.7±1.4 45.8±1.5 79.7±2.3
zip2zip 34.1±1.9 59.4±1.5 54.5±2.0 39.7±1.7 64.5±1.6 48.0±1.9 14.3±1.6 44.2±1.4 93.5±2.5

Phi-3-14B Base 39.1±2.0 62.6±1.4 49.3±1.9 43.1±2.0 65.6±1.5 44.1±1.7 21.3±1.5 51.0±1.4 70.5±2.2
Cont. pretrain 38.9±2.2 63.2±1.4 48.8±1.9 48.4±2.0 70.1±1.3 39.8±1.9 21.8±1.4 52.0±1.3 68.3±2.9
zip2zip 36.4±2.1 62.8±1.5 51.2±1.8 44.8±2.1 68.1±1.6 42.9±1.8 19.5±1.5 50.1±1.3 72.9±2.6

H.2 Multilingual QA Tasks

We evaluate Phi-3.5–4B on multilingual downstream tasks beyond translation, including TruthfulQA-
2, HellaSwag, and Winograd across five languages (French, Spanish, Russian, Chinese, and Arabic).
As shown in Table 12, the base model demonstrates strong cross-lingual generalization. Continued
pretraining in the vanilla setting slightly reduces performance, likely due to domain drift, while
the zip2zip variant performs similarly. Overall, the results indicate that the proposed multilingual
adaptation strategy maintains competitive performance across diverse evaluation benchmarks.

Table 12: Evaluation on Multilingual Tasks in addition to Translation. We report results on
TruthfulQA-2, HellaSwag, and Winograd across 5 languages (FR, ES, RU, ZH, AR) using
lm-evaluation-harness.

Model Method TruthfulQA-2 HellaSwag Winograd
FR ES RU ZH AR FR ES RU ZH AR FR ES RU ZH AR

Phi-3.5–4B Base 0.47 0.51 0.46 0.41 0.42 0.61 0.66 0.49 NA 0.44 0.70 NA 0.74 0.74 NA
Cont. Pretrain. Vanilla 0.42 0.47 0.46 0.46 0.43 0.54 0.57 0.37 NA 0.27 0.76 NA 0.70 0.61 NA
Cont. Pretrain. zip2zip 0.41 0.46 0.47 0.43 0.40 0.55 0.55 0.36 NA 0.27 0.77 NA 0.73 0.64 NA

I Technical Details

I.1 Model and Training Configuration

• Pretrained Model: microsoft/Phi-3-medium-4k-instruct
• Sequence Length: 1024
• Total Batch Size: 32,768 tokens
• Learning Rate Schedule: Cosine decay
• Learning Rate Range: Max = 3e-4, Min = 1e-5
• LoRA rank and alpha value: Both are 32
• Training Steps: 10,000
• Validation Interval: Every 100 steps
• Checkpoint Interval: Every 500 steps
• Pytorch Model Compilation: Enabled

I.2 LoRA Configuration

• Rank: 16
• Alpha: 16
• Target Modules: qkv_proj, o_proj, gate_proj, down_proj, up_proj
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I.3 Loss Weighting Coefficient

Since both the language modeling loss and the auxiliary reconstruction loss are formulated as cross-
entropy objectives over tokens, they are naturally on a comparable scale. For a sequence of N base
tokens, the number of hypertokens used in the auto-reconstruction loss is upper-bounded by N, while
each hypertoken corresponds to at most M base tokens in the reconstruction target. The loss weighting
coefficient λ primarily serves to fine-tune the relative importance of the auxiliary objective rather
than to correct for scale mismatch. We set λ = 0.1, which yielded stable training. We did not perform
extensive exploration over the value of λ , which we leave as an interesting direction for future work.

I.4 System and Libraries

• Hardware: 4 × NVIDIA A100-SXM4-80GB GPUs, 64-core CPU (128 threads)
• Key Libraries:

– PyTorch >= 2.5.0

– Transformers >= 4.47.0

– Datasets <= 3.1.0

– Accelerate >= 0.26.0

I.5 Compute Resources

We report the compute resources used for training our models in Table 13. All training was conducted
on internal servers equipped with NVIDIA H100 GPUs. We estimate GPU-hours by multiplying
wall-clock training time by the number of GPUs used. No additional compute was used beyond the
reported experiments; we did not perform parameter grid search, large-scale hyperparameter tuning,
or exploratory runs that were excluded from the paper.

Table 13: Training compute resources for zip2zip experiments.
Model GPUs Time GPU Type GPU-Hours
Phi-3-Medium (14B) 4 15h 46m NVIDIA H100 80GB 63.0
Phi-3.5-Mini (4B) 2 7h 0m NVIDIA H100 80GB 14.0

I.6 Evaluation

All evaluations complete within 1 hour on a single A100 GPU, demonstrating the runtime efficiency
of zip2zip.

I.7 Loss Ratio

J Data Mixture

To support effective fine-tuning, we construct a curated dataset with balanced representation across
diverse domains, including code, mathematics, dialogue, general web content, and multilingual text.
The final dataset contains approximately 1 billion compressed tokens.

Table 14 summarizes the constituent datasets and their respective proportions. A visualization of the
dataset composition and sequence length characteristics is shown in Figure 9.

The multilingual subset in fineweb-2 includes the following languages: Mandarin Chinese (cmn_-
Hani), German (deu_Latn), Japanese (jpn_Jpan), Spanish (spa_Latn), French (fra_Latn), Italian
(ita_Latn), Portuguese (por_Latn), Dutch (nld_Latn), and Arabic (arb_Arab).

K Token Stream Visualization
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Dataset Domain Proportion (%)
HuggingFaceFW/fineweb-edu[Lozhkov et al., 2024a] Web / Knowledge 20%
devngho/the-stack-llm-annotations-v2[Lozhkov et al., 2024b] Code 25%
AI-MO/NuminaMath-1.5[LI et al., 2024] Math 20%
HuggingFaceH4/ultrachat_200k[Ding et al., 2023] Chat / Dialogue 20%
HuggingFaceFW/fineweb-2[Penedo et al., 2024] Multilingual 15%

Table 14: Training data composition across domains.

Figure 9: Left: Proportional breakdown of the fine-tuning dataset across five domains. Right:
Cumulative distribution of input sequence lengths per domain (log scale). Code and multilingual data
exhibit longer tail distributions, indicating greater variability in sequence lengths.
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(a) Default Tokenization of some Python code. (b) The same code with adaptive tokenization.

(c) Default Tokenization of some biomedical text. (d) The same text with adaptive tokenization.

(e) Default Tokenization of text in French. (f) The same text with adaptive tokenization.

Figure 10: Examples comparing default and adaptive tokenization. Dotted-line frames highlight
where the differences are most noticeable.

25


	Introduction
	zip2zip
	Dynamic Token Vocabulary
	Hyper-Embedding and Hyper-Unembedding
	Architecture
	zip2zip Pretraining
	Efficiency Advantage
	Entropy Invariance under Lossless Compression

	Experiments
	Training Setup
	Qualitative Examples and Hypertoken Patterns
	Token Efficiency
	Perplexity
	Evaluation on NLP Benchmarks
	Inference Efficiency

	Related Work
	Discussion and Limitations
	Conclusion
	More Related Work
	Discussions on Merge Size
	An Upper Bound on Merge Size
	Relation Between Merge Size and Compression Rate

	Discussions on Hyper-Encoder Architecture
	Hyper-encoder architecture

	Discussions on Compression
	FLOPs Estimation for zip2zip
	Discussions on Tokenizer
	Entropy Invariance under Lossless Transformations
	Additional Results
	Machine Translation
	Multilingual QA Tasks

	Technical Details
	Model and Training Configuration
	LoRA Configuration
	Loss Weighting Coefficient
	System and Libraries
	Compute Resources
	Evaluation
	Loss Ratio

	Data Mixture
	Token Stream Visualization

