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Abstract

Constraint-based causal discovery algorithms aim
to extract causal relationships between variables
of interest by using conditional independence tests
(CITs). However, CITs with large conditioning sets
often lead to unreliable results due to their low sta-
tistical power, propagating errors throughout the
course of causal discovery. As the reliability of
CITs is crucial for their practical applicability, re-
cent approaches rely on either tricky heuristics
or complicated routines with high computational
costs to tackle inconsistent test results. Against
this background, we propose a principled, simple,
yet effective method, coined DEDUCE-DEP, which
corrects unreliable conditional independence state-
ments by replacing them with deductively reasoned
results from lower-order CITs. An appealing prop-
erty of DEDUCE-DEP is that it can be seamlessly
plugged into existing constraint-based methods
and serves as a modular subroutine. In particular,
we showcase the integration of DEDUCE-DEP into
representative algorithms such as HITON-PC and
PC, illustrating its practicality. Empirical evalua-
tion demonstrates that our method properly cor-
rects unreliable CITs, leading to improved perfor-
mance in causal structure learning.

1 INTRODUCTION

One of the fundamental tasks in the realm of scientific in-
quiry is to extract cause-and-effect relationships among di-
verse variables of interest. Typically, causal relationships are
often elucidated through randomized experiments. However,
there are instances where extracting causal relationships
through experiments is not feasible due to cost or ethical
considerations. In such cases, causal discovery from obser-
vational data is crucial. [Pearl, 2009, Spirtes et al., 2000].

Causal discovery is the process of learning the underlying
causal relationships in the form of a directed acyclic graph
(DAG) typically from observational data. So far, several
methodologies related to this task have been proposed.

Among the well-known causal discovery methodologies is
the constraint-based method, represented by the PC algo-
rithm [Spirtes et al., 2000]. It involves sequentially perform-
ing conditional independence tests (CITs) in a principled
manner and synthesizing the results to induce the equiv-
alence class of underlying causal structure [Meek, 1995,
Dor and Tarsi, 1992]. Therefore, the reliability of CITs is
crucial in this methodology. Similarly, the algorithmic cor-
rectness of many constraint-based methods is contingent on
the critical assumption that all CITs performed on the data
are correct. However, an oracle CIT rarely, if ever, exists in
the real world.

In practice, CITs are prone to errors, particularly when deal-
ing with large conditioning sets. As the size of the con-
ditioning set increases, the number of data instances re-
quired grows exponentially, and thus, the statistical power
of the corresponding CIT decreases. Such high-order CITs
frequently lead to unreliable results, propagating errors
throughout the process of structure learning. This con-
tributes to the instability and performance degradation of
the algorithm [Spirtes et al., 2000, Aliferis et al., 2010b,
Armen and Tsamardinos, 2014].

Recent approaches to addressing the reliability concerns of
CITs utilize rules derived from graphoid axioms [Geiger,
1990, Pearl and Paz, 1987] to build a causal structure that
is as consistent as possible given the inconsistent CIT re-
sults [Bromberg and Margaritis, 2009, Ma et al., 2023]. The
intuition is that graphoid axioms can be used to constrain
conditional independence (CI) statements by other CI state-
ments. However, they lack a principled way of determining
the preference of CI statements and their practical applica-
bility is often limited due to the high computational cost
of searching possible combinations of rules from graphoid
axioms.
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Figure 1: A subgraph of a true causal graph.

Against this background, this paper presents a straightfor-
ward, practical approach to causal discovery based on de-
ductive reasoning over CI statements and graphoid axioms.
Our method, coined DEDUCE-DEP, offers a simple and
sound condition for correcting CITs, in contrast to previ-
ous approaches relying on complex routines. Specifically,
our method replaces unreliable high-order CIT with out-
comes derived from deductive reasoning with lower-order
CITs and rules from graphoid axioms. Notably, our method
serves as a modular subroutine that can be seamlessly inte-
grated into various constraint-based methods, highlighting
its practicality.

Motivating example. Consider the following scenario
where a constraint-based method tries to discover the struc-
ture illustrated in Fig. 1. Due to the behavior of the algo-
rithm, it tries to examine the adjacency between X and Y
where the following CI statements are accurately obtained

(X ̸⊥⊥ Y | Z ′) and (X ̸⊥⊥ Y | Z ′′).

Unfortunately, the relationship between X and Y is rela-
tively weak, and we wrongly obtained

(X ⊥⊥ Y | Z ′,Z ′′),

which usually grants the removal of the true edge between X
and Y . We may have a doubt about the CI result, worrying
about its power being low. We then examine the following
CI between Y and Z ′′ given Z ′, where the CIT correctly
yields (Y ⊥⊥ Z ′′ | Z ′). In such case, we can indeed induce
(X ̸⊥⊥ Y | Z ′,Z ′′) from the previous CIT results and (Y ⊥⊥
Z ′′ | Z ′) via applying rules derived from graphoid axioms,
which will falsify the suspicious result, (X ⊥⊥ Y | Z ′,Z ′′).
Here, we prefer deductively reasoned (X ̸⊥⊥ Y | Z ′,Z ′′)
to the CIT result (X ⊥⊥ Y | Z ′,Z ′′) given that tests with a
smaller number of conditioning sets are likely more reliable.

Contributions. We propose a practical correction method
for unreliable CITs using deductive reasoning. Our contri-
butions are as follows. 1) We devised conditions and rules
for deducing high-order CI statement with low-order CI
statements. We developed DEDUCE-DEP, a sound algorithm
that implements these rules in a recursive manner. The al-
gorithm corrects unreliable independence statements with
the (in)dependence statements from deductive reasoning.
2) Our correction algorithm can be effortlessly adapted to

any constraint-based causal discovery algorithm as a subrou-
tine. In particular, we presented HITON-PC [Aliferis et al.,
2010a] and PC [Spirtes et al., 2000] equipped with DEDUCE-
DEP. 3) We examined our method with comprehensive ex-
periments using both synthetic and semi-synthetic datasets.
Empirical evaluation reveals that our method properly rec-
tifies the consequences of unreliable CITs, improving the
performance of causal structure learning.

2 PRELIMINARIES

We denote a variable by a capital letter X and its realized
value by the lowercase x in the domain DX . A set of vari-
ables will be expressed by a bold letter X. We denote by
X ⊥⊥ Y | Z the CI statement that the random variables X
and Y are conditionally independent given a set of variables
Z. Similarly, we use X ̸⊥⊥ Y | Z to express conditional
dependence. We denote a CI query by (X;Y | Z), which
can be either true (independent) or false (dependent).

A Bayesian network (BN) [Neapolitan, 1990, Pearl, 2000]
is a tuple (G,P ) where the joint distribution P over a set
of variables V is represented by the directed acyclic graph
(DAG) G. We assume that the underlying causal mechanisms
can be encoded using a directed graphical model. A DAG
G is defined as a tuple (V, E) where V and E are the set
of all vertices and edges between pairs of vertices, respec-
tively. We employ graphical kinship terminology Pa(·) and
Ch(·) to represent parents and children in G, respectively.
Further, Ne(·) represents neighbors, i.e., nodes adjacent to
the argument in an (un)directed graph.

2.1 CONSTRAINT-BASED CAUSAL DISCOVERY

Constraint-based causal discovery methods utilize multiple
CITs to uncover causal relations from data. These meth-
ods are flexible since they do not impose any functional
assumptions on the underlying causal relations. Prominent
algorithms in this category include the PC (Peter-Clark) al-
gorithm [Spirtes et al., 2000], which is sound and complete
to discover the completed partially DAG (CPDAG). FCI
[Spirtes et al., 2000] also belongs to this group but relaxes
causal sufficiency, i.e., no unmeasured confounder.

Besides, there are local structure learning algorithms that
learn the Markov blanket or parent-children set of a target
variable from data [Yu et al., 2020]. In practice, such algo-
rithms have shown remarkable scalability with thousands of
variables [Aliferis et al., 2010a]. IAMB [Tsamardinos and
Aliferis, 2003] and PCMB [Pena et al., 2007] are some of the
renowned examples of Markov blanket learning algorithm,
whereas MMPC [Aliferis et al., 2010a] and HITON-PC1

[Aliferis et al., 2010a] are for parents-children learning.

1HITON comes from χıτών (chiton), a form of fabric (blan-
ket). Here, PC stands for Parents and Children, not Peter-Clark.



Constraint-based methods vary in multiple aspects, e.g.,
their underlying assumptions, types of output, strategies,
and inductive biases employed to construct causal structures.
For instance, the PC algorithm initiates learning from a
complete undirected graph, while the MMPC and HITON-
PC algorithms start from an empty graph. Despite these
differences, these algorithms commonly encounter issues
with unreliable CITs and the subsequent negative impacts
on the learning process, posing a significant challenge in the
task of causal discovery [Claassen and Heskes, 2012].

2.2 RELIABILITY CRITERION

So far, several constraint-based methods have introduced
a few methods to properly tackle the reliability issue of
CITs. The majority of these methods are based on heuristics.
Some prominent examples are heuristic power rule and the
degree of freedom adjustment heuristic [Tsamardinos and
Borboudakis, 2010], which are adopted by PC and MMHC
algorithm [Tsamardinos et al., 2006].

The heuristic power rule prescribes that a statistical test
can be considered reliable and should be conducted only
if a sufficient number of data instances are available per
parameter, i.e., the number of cells in the contingency tables
required for the CIT. If not, the statistical test does not
proceed. In this way, the heuristic power rule implicitly
considers the decision of the latest CIT performed as more
reliable than that of the current test. As a result, when tests
with higher-order conditioning sets are omitted, algorithms
like HITON-PC assume dependence between the variables,
delegating their decisions to the latest CIT performed. The
threshold for the heuristic power rule varies across different
causal discovery algorithms (e.g., 5 in Tsamardinos et al.
[2006], or 10 in Spirtes et al. [2000]). However, an issue
arises from the uncertainty surrounding how many instances
are truly sufficient for accurate statistical inference.

The degree of freedom adjustment heuristic calibrates the
degree of freedom (DoF) with respect to zero counts that ap-
pear in the contingency table when performing CITs. These
zero counts may come from either random events or struc-
tural constraints of data generating process where the latter
is called structural zero. Since structural zeros are not free to
vary, the DoF should be recalculated in a way that subtracts
one for each structural zero. A reduced DoF is expected to
increase the power of the CIT. However, the problem is that
we may not know which zero count is structural zero.

In addition to the previously discussed heuristics, there is
another heuristic that involves limiting the size of the condi-
tioning set when performing CITs [Tsamardinos et al., 2006,
Aliferis et al., 2010a]. This prevents certain CITs from be-
ing performed if their conditioning set size exceeds a user-
specified threshold. The behavior of this heuristic is akin to
that of the heuristic power rule, since it skips some CITs

to avoid potential false negatives. Several implementations
of constraint-based algorithms (e.g., causal-learn Python
package [Zheng et al., 2024]) have implicitly adopted this
heuristic to prematurely terminate the structure learning
process. Despite its frequent adoption, a comprehensive
understanding of the outcomes generated by these imple-
mentations has been lacking so far. Only recently has the
understanding of this heuristic become a subject of ongoing
research [Kocaoglu, 2024].

2.3 RULES FROM GRAPHOID AXIOMS

We introduce rules derived from graphoid axioms, which
govern the relationships between CI statements [Pearl and
Paz, 1987, Lauritzen, 1996, Paz et al., 1997]. The rules play
a crucial role as integrity constraints, aiding in the reso-
lution of conflicts arising from inconsistent CI statements
[Bromberg and Margaritis, 2009]. Among several rules (see
Appendix A), we will make use of the following rules:

1. Symmetry:
(X⊥⊥Y|Z) ⇔ (Y⊥⊥X|Z)
2. Contraction:
(X⊥⊥Y|Z) ∧ (X⊥⊥W|Z,Y) ⇒ (X⊥⊥Y,W|Z)
3. Decomposition:
(X⊥⊥Y,W|Z) ⇒ (X⊥⊥Y|Z) ∧ (X⊥⊥W|Z)
4. Weak transitivity:
(X⊥⊥Y|Z) ∧ (X⊥⊥Y|Z,W ) ⇒ (X⊥⊥W |Z) ∨ (W⊥⊥Y|Z)
Unlike others, weak transitivity holds only under the as-
sumption of a faithful Bayesian network (G,P ), in which
the graph G encodes all the CI information from the proba-
bility distribution P . Also note that W in weak transitivity
is a single variable. In the sequel, these rules will be useful
for our approach to causal discovery based on deductive
reasoning over CI statements.

3 METHOD

In this work, we make two assumptions widely adopted in
the literature: causal Markov assumption and faithfulness,
which play crucial roles in connecting probability distri-
bution with a graph structure. Causal Markov assumption
states that if d-separation holds in a causal graph, then the
corresponding CI holds in the associated probability distri-
bution. Faithfulness assumption ensures that all the observed
CI in the probability distribution can be read off the corre-
sponding causal graph. For the demonstration, we utilize
constraint-based methods which assume causal sufficiency.

As discussed earlier, low-power CITs produce unreliable CI
statements, leading to errors and instability in the structure
learning. Although several heuristics have been proposed to
tackle this issue, they either lack a theoretical basis or fall



(X ̸⊥⊥ Y | Z)
succeeds ✓

(X ̸⊥⊥ Y | Z)
fails ✗

(X ̸⊥⊥ Y | Z)
succeeds ✓

# of available samples

test cannot be performed due to the
reliability criterion on the amount of
data instances (regarded as dep)

test is well-performed with suffi-
cient power, resulting in TP (re-
garded as dep)

test is poorly-performed due to low-
power, resulting in FN (regarded as ind)

Figure 2: Behavior of HITON-PC and PC with heuristic
power rule (adapted from Tsamardinos et al. [2006]).

short of properly correcting unreliable CITs. For instance,
the heuristic power rule considers only the amount of data
available for the test to determine its reliability. However, as
illustrated in Fig. 2, it leaves quite a few CITs with CI state-
ments untouched, even though they are suspicious of being
unreliable. This phenomenon is problematic because even
with the number of data instances above the user-specified
threshold, we can expect that CITs falsely declare indepen-
dence due to their lack of statistical power. In this respect,
our approach should aim possibly all the CI statements
during the learning process. Putting pre-existing heuristics
aside, how can we properly tell whether CI statements from
CITs are true?

Inspiration for our method comes from the fact that the out-
come of CIT can be constrained by the outcomes of other
CITs through graphoid axioms [Pearl and Paz, 1987]. This
insight opens the door for CI statement correction through
deductive reasoning with the rules derived from graphoid
axioms. It provides a sound way to reason about the CI
query of interest from multiple other CI statements that we
judge to be reliable. In this regard, we sketch our approach
as follows. For every CI statement obtained, we conduct
deductive reasoning to figure out whether a dependence
statement can be logically induced from other low-order
CITs. If it can be, we adopt the result from deductive rea-
soning and, if otherwise, the one from a statistical test.

In our approach, we restricted the ingredients of deductive
reasoning to lower-order CIT, whose conditioning set is
a proper subset of that of the CI query. Clearly, they are
expected to be more reliable than CI statements of our in-
terest since the amount of data needed for sound statistical
inference is smaller. Therefore, we opt to the result from
deductive reasoning whenever dependence is logically at-
tainable from these lower-order tests. If needed, we add new
lower-order CITs for our reasoning. As long as the CIT is
lower-order, then the corresponding test result is eligible to
be the ingredients of our deductive reasoning and should
be performed. Allowing conducting more CITs, not just
harnessing already executed, broadens the scope to which
our deductive reasoning can be applied.

Algorithm 1 DEDUCE-DEP

1: Input: {X}, {Y },Z disjoint subsets of V, reliability thresh-
old K (default 1)

2: Output: Whether (X ̸⊥⊥ Y | Z) is deducible or not.

3: if |Z| ≤ K return FALSE

4: for Z ∈ Z
5: Z′ ← Z \ {Z}
6: for (A,B,C) in {(X,Y ,Z′), (X,Z,Z′), (Y ,Z,Z′)}
7: if (A ⊥⊥ B | C) and not DEDUCE-DEP(A,B,C)
8: mark (A;B | C) as ⊥⊥
9: else mark (A;B | C) as ̸⊥⊥

10: if (X ̸⊥⊥ Y | Z′)⊕
(
(X ̸⊥⊥ Z | Z′) ∧ (Y ̸⊥⊥ Z | Z′)

)
11: return TRUE

12: return FALSE

3.1 RULES FOR DEDUCTIVE REASONING

In the following proposition, we present the rules for our rea-
soning method. Omitted proof is provided in Appendix B.

Proposition 1. Under the faithful Bayesian network (G,P ),
let X, Y, and Z be disjoint subsets of V where Z is par-
titioned into Z′ and Z′′ such that Z = Z′ ⊔ Z′′, |Z′′| = 1.
Then, (X ̸⊥⊥ Y | Z) if one of the following holds:

1. (X ̸⊥⊥ Y | Z′) ∧ (X ⊥⊥ Z′′ | Z′)

2. (X ⊥⊥ Y | Z′) ∧ (X ̸⊥⊥ Z′′ | Z′) ∧ (Y ̸⊥⊥ Z′′ | Z′)

These rules provide a theoretical background for our de-
ductive reasoning-based approach. They stipulate several
conditions where we can deduce high-order dependence
statements from strictly low-order CI statements. Note that
the first condition in Prop. 1 can be modified to

(X ̸⊥⊥ Y | Z′) ∧ (Y ⊥⊥ Z′′ | Z′)

by the symmetry, which we will make use of it in the sequel.
We now proceed to incorporate these rules into an algorithm.

3.2 INCORPORATING DEDUCTIVE REASONING
RULES INTO ALGORITHM

We propose DEDUCE-DEP (Alg. 1), a sound algorithm for
deducing dependence statements from strictly low-order CI
statements. In particular, it can be viewed as a special case
of Prop. 1 where X = {X} and Y = {Y }.

As DEDUCE-DEP is designed to examine CI statements, ar-
guments of the algorithm are X , Y , and Z which constitute
the statement (X ⊥⊥ Y | Z). We let the size of the minimal
conditioning set as a hyperparameter K, which specifies
the base case for recursive calls. We assume a marker (a
cache keeping CIT results) is globally defined. As an out-
put, DEDUCE-DEP returns whether a dependence statement
(X ̸⊥⊥ Y | Z) is attainable from strictly low-order CITs.
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Figure 3: Examples for Prop. 2.

DEDUCE-DEP starts with checking the size of conditioning
set Z (line 3 in Alg. 1). If it is smaller than the reliability
threshold K, then DEDUCE-DEP returns FALSE, affirming
the corresponding CIT result as reliable. If not, DEDUCE-
DEP proceeds to partition Z into a singleton {Z} and the
complementary Z′ (lines 4–5). Based on Prop. 1, it performs
three CITs, (X;Y | Z′), (X;Z | Z′), (Y ;Z | Z′), to infer
whether (X ̸⊥⊥ Y | Z′,Z) is deducible or not (line 6), where
the results are marked in marker. If the marked result is
independence, then it recursively calls DEDUCE-DEP (lines
7–8) and mark the results either from CITs or deductive
reasoning (lines 8–9). Here, marks can be updated from
independence to dependence. If Prop. 1 can be applied based
on the marks of three CI statements, it returns TRUE (lines
10–11). It repeats this procedure for all Z ∈ Z until it returns
TRUE; otherwise, it returns FALSE (line 12).

In theory, our algorithm examines three CI statements to
determine whether a dependence statement of our interest is
deducible. However, in some cases, it can do so with just two
CI statements. If we obtain (X ̸⊥⊥ Y | Z′) and subsequently
obtain (X ⊥⊥ Z | Z′), then with these two CI statements,
we can satisfy the conditions to deduce the dependence
statement in Line 10. Similarly, if we obtain (X ̸⊥⊥ Y | Z′)
and then obtain (Y ⊥⊥ Z | Z′), the same applies. This early
stopping mechanism could be quite efficient in practical
implementation as it reduces unnecessary recursive calls.
We now proceed to show the correctness of DEDUCE-DEP.

Corollary 1. Under the faithful Bayesian network (G,P ),
let {X} ⊔ {Y } ⊔ Z ⊆ V, Z ∈ Z, and Z′ = Z \ {Z}. If

(X ̸⊥⊥ Y | Z′)⊕
(
(X ̸⊥⊥ Z | Z′) ∧ (Y ̸⊥⊥ Z | Z′)

)
,

then (X ̸⊥⊥ Y | Z) holds.

Cor. 1 provides a sound condition for deducing the depen-
dence given the three statements and claims nothing for the
cases where the condition is false. We show the possibility
of (X ⊥⊥ Y | Z) for the cases that are not true in Cor. 1.

Proposition 2. The condition in Cor. 1 is complete for
deducing (X ̸⊥⊥ Y | Z) with respect to the three conditional
CI statements.

Proof. We prove by constructing a counterexample for each
tuple ((X;Y | Z′), (X;Z | Z′), (Y ;Z | Z′)) where the

Algorithm 2 HITON-PC-Nonsym with DEDUCE-DEP

1: Input: a set of variables V, the target variable T , dependency
measure, CI tester

2: Output: a tentative parents-children set TPC for T

3: Initialize TPC with an empty set.
4: Let OPEN be {X ∈ V | X ̸⊥⊥ T}
5: Sort OPEN in descending order w.r.t correlation with T
6: while OPEN is not empty
7: Let X be an element popped from OPEN.
8: Update TPC with X .
9: repeat

10: for Y ∈ TPC

11: if (Y ⊥⊥ T | S) for some S ⊆ TPC \ {Y }
12: if not DEDUCE-DEP({Y }, {T},S)
13: Remove Y from TPC.
14: until No change in TPC

15: return TPC

condition is not satisfied: ( ̸⊥⊥, ̸⊥⊥, ̸⊥⊥) in Fig. 3a, (⊥⊥, ⊥⊥,⊥⊥)
in Fig. 3b, (⊥⊥, ⊥⊥, ̸⊥⊥) in Fig. 3c, and (⊥⊥, ̸⊥⊥,⊥⊥) in Fig. 3d
where Z′ → W implies Z ′ → W for every Z ′ ∈ Z′. For
all cases, we have (X ⊥⊥ Y | Z).

4 APPLICATION OF DEDUCTIVE
REASONING ON CAUSAL DISCOVERY

An appealing property of DEDUCE-DEP is that it can be
seamlessly integrated into any constraint-based methods
and serves as a modular subroutine. This highlights the prac-
ticality of DEDUCE-DEP since it aims to correct statistical
errors from unreliable CITs, which could further prevent
error propagation throughout the learning process. To elu-
cidate how our method works inside the constraint-based
methods, we take HITON-PC (Sec. 4.1) and PC algorithms
(Sec. 4.2), representative local and global structure learning
algorithms, respectively, as illustrative examples.

4.1 HITON-PC WITH DEDUCE-DEP

We augment a local structure learning algorithm, HITON-
PC [Aliferis et al., 2010a], with DEDUCE-DEP as a subrou-
tine. HITON-PC is an algorithmic instance from the Gen-
eralized Local Learning Parents and Children framework
[Aliferis et al., 2010a], which outputs parents and children
of a target variable. It consists of two subroutines, namely,
HITON-PC-Nonsym and symmetry correction. The former
outputs the superset of the parents-children set of a target
variable, which is then pruned by the latter. Although prun-
ing ensures the outcome of HITON-PC-NonSym is correct,
empirical evaluations have shown that applying symmetry
correction adds little to performance improvement, some-
times leading to performance degradation. This is due to the
frequent occurrence of low-power CITs and their subsequent
influences on the algorithm [Aliferis et al., 2010b].



Algorithm 3 PC with DEDUCE-DEP

1: Input: a set of variables V, CI tester
2: Output: a CPDAG

3: Initialize G with a complete undirected graph
4: for k ∈ 1, 2, . . . ,
5: for an ordered pair of adjacent vertices (X,Y ) ∈ G s.t.
|Ne({X})G \ {Y }| ≥ k

6: for S ⊆ Ne({X})G \ {Y } s.t. |S| = k
7: if (X ⊥⊥ Y | S)
8: if not DEDUCE-DEP({X}, {Y },S)
9: Remove X-Y from G

10: else break
11: Orient G for unshielded colliders
12: Complete orientation of G with Meek’s rules
13: return G

In Alg. 2, we augment HITON-PC-Nonsym with DEDUCE-
DEP and illustrate how our method serves as a subroutine.
Specifically, DEDUCE-DEP is called whenever a CIT outputs
independence (lines 11–12). If DEDUCE-DEP confirms the
CI statement, a subsequent removal operation is performed
accordingly (line 13). It is worth noting that DEDUCE-DEP
reuses previous low-order CIT results, enhancing the effi-
ciency of correcting unreliable CITs.

4.2 PC WITH DEDUCE-DEP

PC algorithm [Spirtes et al., 2000] is a representative, sound
and complete constraint-based method. It begins with a
complete graph and proceeds to identify the skeleton of
the underlying Bayesian network, subsequently orienting
the edges. For skeleton identification, it conducts multiple
CITs, removing an edge between variables X and Y if there
exists a conditioning set S such that (X ⊥⊥ Y | S). Since
previous CIT results are used to orient other edges, even a
single error from the unreliable CIT may incur other errors
accordingly [Dash and Druzdzel, 2003, Tsamardinos et al.,
2006]. Despite several attempts to mitigate error propagation
[Colombo et al., 2014], this issue is still prevalent.

In Alg. 3, we integrate the DEDUCE-DEP into the PC algo-
rithm. Analogous to the previous example, DEDUCE-DEP
comes into play in the PC algorithm after performing CIT
to confirm its result (line 8). If DEDUCE-DEP ultimately
confirms the result of CIT, edges are removed (line 9). Con-
sidering that PC performs CITs by increasing the order of
tests, our method will efficiently reuse many of the previous
CIT results generated as the algorithm runs. In Sec. 5.3,
we demonstrate that DEDUCE-DEP effectively controls the
negative influence of low-power CITs, leading to improved
performance for PC algorithm.2

2For the demonstration, we implemented PC-stable [Colombo
et al., 2014], which is order-independent, making it more suitable
for comparing the performance.

5 EMPIRICAL EVALUATIONS

We empirically investigate whether replacing the high-order
CI statement with the result from deductive reasoning leads
to a better performance in structure learning. Specifically,
we first examine the effectiveness of our approach for cor-
recting false negatives (FN) from CITs (Sec. 5.2). This al-
lows us to assess the inherent capabilities and limitations of
our method under controlled conditions. We then assess the
performance improvement our method brings to constraint-
based causal discovery algorithms (Sec. 5.3). This experi-
ment enables us to assess the complementary nature of our
method within the context of structure learning. We now
describe the experimental setup.

5.1 EXPERIMENTAL SETUP

Correcting CIT with DEDUCE-DEP. In this experiment,
we utilize random CI queries within random Bayesian net-
works (BNs) and compare the performance of our method
with a counterpart where our method was not applied. This
allows us to isolate the algorithm-dependent factors and
purely validate the intrinsic effectiveness of our method:
how well does our method correct CI statements? For this,
we used the Erdös-Renyi model [Erdős et al., 1960] to gen-
erate random DAGs. Based on these DAG topologies, we
designed conditional probability tables with binary vari-
ables, i.e., P (Vi | Pa(Vi)) follows Bernoulli distribution
with its parameter uniformly sampled from [0, 1]. Following
this process, we generated random BNs across 50 iterations,
varying the number of variables (|V| ∈ {10, 20, 30}) and
the ratio of edges to variables (|E| / |V| ∈ {1.2, 1.5, 2}).
For each random BN, data instances were sampled with the
number of instances varying across n ∈ {200, 500, 1000}.
Additionally, we composed random combinations of disjoint
sets X , Y , and Z to formulate CI queries, repeating this pro-
cess 20 times for each BN. The range of conditioning set
sizes was set between 2 and 4.

Causal discovery with DEDUCE-DEP. We assess the per-
formance improvement of HITON-PC with DEDUCE-DEP
(Alg. 2) and PC with DEDUCE-DEP (Alg. 3). We used semi-
synthetic datasets for evaluation. We sampled data instances
from three benchmark BNs (i.e., Sachs, Alarm, and In-
surance). HITON-PC and PC are both constraint-based;
however, the former learns structure from an empty graph,
whereas the latter learns structure from a complete graph.
This experiment allows us to examine the efficacy of our
method under different algorithmic behaviors. We note that
we focused on the skeleton discovery phase from PC algo-
rithm for evaluation.

Implementation detail. We employed the G-test for CIT
to use. We set the default significance level for CIT to 0.05.
The minimal conditioning set size K is set to 1 for DEDUCE-
DEP. We primarily utilized the following evaluation metrics:



Table 1: |V| = 20 with 95% confidence interval. N and e denote the number of instances and edges, respectively.

Method e = 24 e = 30 e = 40

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 CIT 0.26±0.06 0.63±0.11 0.18±0.04 0.28±0.04 0.79±0.09 0.18±0.03 0.30±0.04 0.92±0.06 0.19±0.03

CIT + DD 0.59±0.03 0.50±0.04 0.76±0.04 0.70±0.03 0.69±0.04 0.73±0.03 0.78±0.03 0.86±0.03 0.73±0.03

500 CIT 0.40±0.05 0.78±0.08 0.29±0.04 0.39±0.05 0.84±0.07 0.26±0.04 0.41±0.03 0.97±0.02 0.26±0.02

CIT + DD 0.60±0.03 0.50±0.04 0.78±0.04 0.71±0.04 0.66±0.04 0.80±0.04 0.82±0.02 0.86±0.03 0.78±0.03

1000 CIT 0.50±0.05 0.86±0.05 0.37±0.05 0.47±0.04 0.89±0.06 0.33±0.04 0.49±0.04 0.97±0.02 0.34±0.03

CIT + DD 0.61±0.03 0.50±0.04 0.81±0.04 0.74±0.02 0.70±0.03 0.82±0.03 0.83±0.02 0.86±0.03 0.81±0.03

precision, recall, and F1. We consider the output from the
causal discovery algorithm with CI oracle as ground truth,
and we compare our method’s output to assess performance
improvement. For HITON-PC, we calculated the evaluation
score by averaging the score for every local skeleton learned.
For PC, we calculated the evaluation score based on the
global skeleton learned.

5.2 RESULTS OF CORRECTION EXPERIMENT

Table 1 presents the experimental results on random BN
datasets with varying numbers of edges and data instances,
where the number of variables is set to 20. It is evident
that across all the cases listed, applying DEDUCE-DEP re-
sulted in higher F1 scores compared to when it was not
applied. While a significant increase in recall was accompa-
nied by a corresponding decrease in precision, the overall
improvement in F1 scores implies that our method does not
indiscriminately retain any edge but rather accurately targets
low-power tests to correct. However, a decrease in precision
might indicate that the control of false positive rates might
be important for further improving our method since statis-
tical errors can also occur in CITs with dependence results.
We also illustrate the results with similar experiments with
the number of variables set to 10 and 30 in Figs. 9 to 11 in
Appendix C.2. Furthermore, we present the experimental re-
sults on continuous data with linear/non-linear relationships
Fig. 12 in Appendix C.2.

One interesting finding from Table 1 is that as the number of
edges increases and the amount of data decreases, the differ-
ence in F1 scores between using and not using our method
becomes more pronounced. Considering the experimental
setup, CI queries randomly generated from dense graphs
are more likely to indicate actual dependence. However,
under such graph structures with a small amount of data,
the original CIT tends to produce more false negatives due
to the decrease in statistical power. In contrast, our method
effectively corrects these false negatives, leading to an im-
provement in F1 scores. This suggests that our approach can
be particularly useful in situations with low data volume
and dense graph structures.

5.3 RESULTS OF PERFORMANCE EXPERIMENT

In the performance experiment, we investigate how much
DEDUCE-DEP can enhance the overall performance of causal
discovery algorithms by correcting unreliable CITs. As
shown in Fig. 4 (values are reported in Tables 7 and 8 in
Appendix C.2), DEDUCE-DEP consistently improves perfor-
mance in terms of F1 score regardless of the algorithm used,
with a significant increase in recall.

Notably, unlike the previous experiment, the precision when
applying DEDUCE-DEP is quite comparable to cases where
it is not applied. In cases where DEDUCE-DEP was applied,
there were instances where both recall and precision in-
creased compared to scenarios without it. This phenomenon
can be explained by the interplay of false positives and
false negatives [Armen and Tsamardinos, 2014]. False posi-
tives (in this context, wrongly added edges) occurring in the
structure learning process can actually be induced by false
negatives from previous steps. False positives, in turn, can
incur false negatives (wrongly omitted edges), further prop-
agating errors. Our experiment indicates that DEDUCE-DEP
might help break this negative cycle to some extent.

Evaluation after edge orientation. So far, our focus has
been primarily on the skeleton discovery phase of structure
learning algorithms. This is because our method intervenes
specifically in the skeleton learning step, while the subse-
quent steps remain unchanged for algorithms like PC (and
HITON-PC focuses solely on finding neighbor sets for in-
dividual variables, leaving no further steps after skeleton
discovery). To understand the broader impact of our method,
we extend our analysis to orient edges after the skeleton
learning step of PC and evaluate the resulting structure us-
ing the structural hamming distance (SHD).

As shown in Fig. 5, DEDUCE-DEP indeed leads to improve-
ments in SHD as well, consistent with our previous findings
in Fig. 4. This observation can be further illustrated through
our motivating example in Sec. 1. Suppose the PC algorithm
tries to learn the structure in Fig. 1. By correctly retaining
the edge between X and Y through deductive reasoning, we
can anticipate accurately identifying colliders, thereby facil-
itating the correct orientation of other edges. This indicates
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Figure 4: Performances (F1, precision, and recall) with varying dataset sizes. Blue (w/ DD) and red (as-is) lines are for
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the importance of robust skeleton discovery in enhancing
the performance of structure learning.

5.4 ANALYSIS

Computational cost. Applying DEDUCE-DEP to causal dis-
covery algorithms may lead to an increase in the total num-
ber of CITs performed since it conducts new CITs if needed.
In practice, our method efficiently reuses previously con-
ducted CI information during the structure learning process.
Fig. 6 demonstrates the computational performance mea-
sured in wall-clock time (seconds) and the number of CITs,
across varying dataset sizes. We observe that computational
costs are comparable to the original algorithm when data
is scarce (n = 200, 500, 1000), indicating that our method
efficiently corrects unreliable CI statements.

Ablation on K. We investigate the effect of the size of the

minimal conditioning set K in DEDUCE-DEP. As shown in
Fig. 7, a higher K enhances computational efficiency by
reducing the depth of recursion, whereas a lower K tends
to improve performance by allowing for more thorough
exploration. Our method allows practitioners to tailor this
trade-off between computational cost and performance to
their specific needs and preferences.

DEDUCE-DEP with reliability criterion. We investigate
how our method performs in conjunction with the reliabil-
ity criterion heuristic. Specifically, we applied the heuristic
power rule to the HITON-PC with a threshold of 5. As
shown in Fig. 8, our method continues to improve perfor-
mance over its counterpart. It is worth noting that this may
not always be the case, as the reliability criterion heuristic
distorts the whole structure learning process by selectively
skipping certain CITs necessary for determining the under-
lying causal structure. We also observe only marginal per-
formance improvement when data is scarce (e.g., n = 200).
We speculate that this is because skipping CITs based on
heuristics deprived our method of opportunities to correct
tests, limiting its effectiveness.

6 RELATED WORKS

We categorize prior works addressing unreliable CITs into
two main perspectives: namely, internal approaches focus-
ing solely on the test itself and external approaches taking
into account relationships with other tests.
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6.1 INTERNAL APPROACHES

The majority of methods tackling reliability issues of CIT
involves seeking solutions within the boundary of a single
statistical test, such as enhancing the innate performance of
the test or omitting the test itself. One prominent example
is to employ heuristics for reliability criteria [Spirtes et al.,
2000, Tsamardinos et al., 2006], which decides whether to
perform or omit the test solely based on the amount of data
needed. Although this renders simple measures to tackle the
unreliable CITs, this lacks theoretical soundness, and to our
knowledge, it is only applicable to discrete data.

Another example involves opting for permutation-based
tests over classical asymptotic ones (e.g., χ2 test, G-test)
[Tsamardinos and Borboudakis, 2010]. As permutation-
based tests exhibit better calibration under data-scarce sce-
narios, various works extend permutation-based CIT to
tackle various regimes (e.g., continuous settings), with the
prospect of broadly applying it to structure learning [Doran
et al., 2014, Lee and Honavar, 2017, Berrett et al., 2020,
Zhang et al., 2022, Kim et al., 2023].

Recent research suggested causal structure learning within
the confines of low-order CITs [Wienöbst and Liskiewicz,
2020, Kocaoglu, 2024]. By excluding unreliable, high-order
CITs, they attempt to yield more robust causal structures.
However, such approaches may lack the full specification
of a graph structure.

6.2 EXTERNAL APPROACHES

Another line of work goes beyond individual tests and con-
siders relationships with other tests, addressing statistical
errors of CITs with conflict resolution among inconsistent
CI statements. By translating CI statements from data into
logical constraints, researchers aim to search for a causal



structure consistent with all the encoded constraints using
various solvers (e.g., SAT, ASP solvers) [Hyttinen et al.,
2013, 2014]. Another prominent example is utilizing rules
from graphoid axioms [Bromberg and Margaritis, 2009, Ma
et al., 2023]. This involves adopting either a preference-
based argumentative framework [Bromberg and Margaritis,
2009] or off-the-shelf SMT solver [Ma et al., 2023], de-
signed to facilitate reasoning with CI statements. However,
they often involve complicated routines and high computa-
tional costs, limiting their practical applicability.

6.3 DISCUSSION

In contrast to prior approaches, our work combines inter-
nal and external perspectives, considering the relationships
with other CITs but strictly limited to lower-order ones that
are deemed reliable. This strategy allows DEDUCE-DEP to
selectively apply rules derived from graphoid axioms, pro-
viding a more efficient and principled means of constraining
higher-order CIT results and avoiding the complicated com-
putation associated with all possible combinations of rules
from graphoid axioms.

Additionally, DEDUCE-DEP actively executes new CITs,
unlike other methods utilizing graphoid axioms. This al-
lows us to effectively correct unreliable CITs. For instance,
consider the scenario where a structure learning algorithm
attempts to learn a causal graph in Fig. 1. Initially, the al-
gorithm performs unconditional independence tests, yield-
ing (Y ⊥⊥ Z ′′), which we assume to be correct. Subse-
quently, it no longer examines CI between Y and Z ′′ given
any conditioning set, resulting in (Y ⊥⊥ Z ′′ | Z ′), not
available. In such a case, inferring higher-order CI state-
ments solely based on previously performed lower-order
CIT results might be limited, potentially failing to correct
(X ⊥⊥ Y | Z ′,Z ′′). Without performing additional tests,
like (Y ⊥⊥ Z ′′ | Z ′), the correction of unreliable CITs
can be restricted. This suggests that correcting false nega-
tives might require more than just resolving conflicts among
existing CIT results.

7 CONCLUSION

We presented DEDUCE-DEP, a simple, principled, and prac-
tical correction method for addressing unreliable CITs us-
ing deductive reasoning. By leveraging rules derived from
graphoid axioms, we explored the conditions for deduc-
ing high-order CI statements from low-order CI statements
and integrated these rules into our algorithm. DEDUCE-
DEP systematically replaces unreliable independence state-
ments with deductively reasoned dependence statements
from lower-order CITs. We showed how our method can be
seamlessly integrated into causal discovery algorithms like
HITON-PC or PC and provided empirical evidence of its ef-
ficacy. Despite its distinct results, there still remains a need

to address dependence statements to prevent errors from
false positives. Therefore, future research directions may
involve combining our method with existing false positive
control methods [Li and Wang, 2009, Strobl et al., 2019] for
a more robust causal discovery. Another promising future
direction is extending our framework to local independence
relationships, e.g., context-specific independence [Boutilier
et al., 1996, Pensar et al., 2016, Hwang et al., 2023].
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A RULES DERIVED FROM GRAPHOID AXIOMS

We present rules derived from graphoid axioms [Pearl and Paz, 1987, Geiger, 1990, Bromberg and Margaritis, 2009].

(Symmetry) (X ⊥⊥ Y | Z) ⇐⇒ (Y ⊥⊥ X | Z)
(Decomposition) (X ⊥⊥ Y,W | Z) =⇒ (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z)

(Weak Union) (X ⊥⊥ Y,W | Z) =⇒ (X ⊥⊥ Y | Z,W)

(Contraction) (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z,Y) =⇒ (X ⊥⊥ Y,W | Z)
(Intersection) (X ⊥⊥ Y | Z,W) ∧ (X ⊥⊥ W | Z,Y) =⇒ (X ⊥⊥ Y,W | Z)

Under a (causal) faithfulness assumption, we have a more relaxed set of rules as follows.

(Symmetry) (X ⊥⊥ Y | Z) ⇐⇒ (Y ⊥⊥ X | Z)
(Composition) (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z) =⇒ (X ⊥⊥ Y,W | Z)

(Decomposition) (X ⊥⊥ Y,W | Z) =⇒ (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z)
(Intersection) (X ⊥⊥ Y | Z,W) ∧ (X ⊥⊥ W | Z,Y) =⇒ (X ⊥⊥ Y,W | Z)

(Weak Union) (X ⊥⊥ Y,W | Z) =⇒ (X ⊥⊥ Y | Z,W)

(Contraction) (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ W | Z,Y) =⇒ (X ⊥⊥ Y,W | Z)
(Weak Transitivity) (X ⊥⊥ Y | Z) ∧ (X ⊥⊥ Y | Z,W ) =⇒ (X ⊥⊥ W | Z) ∨ (W ⊥⊥ Y | Z)

(Chordality) (X ⊥⊥ Y | W ,Z) ∧ (W ⊥⊥ Z | X,Y ) =⇒ (X ⊥⊥ Y | W ) ∨ (X ⊥⊥ Y | Z)

Each non-bold letter in weak transitivity and chordality is a variable (i.e., a singleton).

B OMITTED PROOFS

Proposition 1. Under the faithful Bayesian network (G,P ), let X, Y, and Z be disjoint subsets of V where Z is partitioned
into Z′ and Z′′ such that Z = Z′ ⊔ Z′′, |Z′′| = 1. Then, (X ̸⊥⊥ Y | Z) if one of the following holds:

1. (X ̸⊥⊥ Y | Z′) ∧ (X ⊥⊥ Z′′ | Z′)

2. (X ⊥⊥ Y | Z′) ∧ (X ̸⊥⊥ Z′′ | Z′) ∧ (Y ̸⊥⊥ Z′′ | Z′)

Proof. We prove each item below.

(1) We begin with the definition of the contraction rule:

(X ⊥⊥ Z′′ | Z′) ∧ (X ⊥⊥ Y | Z′,Z′′)

=⇒ (X ⊥⊥ Y,Z′′ | Z′).

sanghack@snu.ac.kr


By the decomposition rule, we have:

=⇒ (X ⊥⊥ Z′′ | Z′) ∧ (X ⊥⊥ Y | Z′).

Now, by taking contraposition, we acquire

(X ̸⊥⊥ Z′′ | Z′) ∨ (X ̸⊥⊥ Y | Z′) =⇒
(X ̸⊥⊥ Z′′ | Z′) ∨ (X ̸⊥⊥ Y | Z′,Z′′).

Therefore, if (X ̸⊥⊥ Y | Z′) and (X ⊥⊥ Z′′ | Z′), then (X ̸⊥⊥ Y | Z′ ∪ Z′′).

(2) By weak transitivity rule,

(X ⊥⊥ Y | Z′) ∧ (X ⊥⊥Y | Z′,Z′′) =⇒
(X ⊥⊥ Z′′ | Z′) ∨ (Y ⊥⊥ Z′′ | Z′).

By contraposition, (X ̸⊥⊥ Z′′ | Z′) ∧ (Y ̸⊥⊥ Z′′ | Z′) =⇒ (X ̸⊥⊥ Y | Z′) ∨ (X ̸⊥⊥ Y | Z′,Z′′). Therefore, if

(X ⊥⊥ Y | Z′) ∧ (X ̸⊥⊥ Z′′ | Z′) ∧ (Y ̸⊥⊥ Z′′ | Z′),

then (X ̸⊥⊥ Y | Z′,Z′′).

C APPENDIX FOR EXPERIMENTS

C.1 EXPERIMENTAL DETAILS

C.1.1 Datasets

Sachs dataset [Sachs et al., 2005] pertains to protein expression in human immune system cells. It encompasses simultaneous
measurements of 11 phosphorylated proteins and phospholipids obtained from thousands of individual primary immune
system cells. The dataset comprises 11 vertices representing the different proteins and phospholipids, with a total of 17
edges indicating the relationships between them. On average, each node has a degree of 3.09, with the maximum in-degree
being 3.

ALARM dataset [Beinlich et al., 1989], short for "A Logical Alarm Reduction Mechanism," represents a Bayesian network
tailored to serve as an alarm message system for patient monitoring. It consists of 37 variables, each representing various
factors of patient health and monitoring parameters. These nodes are interconnected by 46 edges, reflecting the relationships
between different variables in the network. On average, each node has a degree of 2.49, with the maximum in-degree being
4.

Insurance dataset [Binder et al., 1997] is designed for evaluating car insurance risks. It comprises 27 variables representing
different features related to insurance risk assessment. These variables are associated with each other by 52 edges. On
average, each node in the Insurance network has a degree of 3.85, with the maximum in-degree being 3.

C.1.2 Implementation details

We utilized several semi-synthetic BN datasets from the repository of R package BNlearn [Scutari, 2010]. All experiments
were processed using Intel(R) Xeon(R) Gold 6342 CPU @ 2.80GHz. Our code is available at https://github.com/
snu-causality-lab/deduce-dep.

C.2 ADDITIONAL EXPERIMENTAL RESULTS

We provide all experimental results with varying numbers of nodes (|V| = 10, 20, 30) in Figs. 9 to 11 and Tables 2 to 8.

https://github.com/snu-causality-lab/deduce-dep
https://github.com/snu-causality-lab/deduce-dep
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Figure 9: Results of Correction Experiment (F1) (Left, 95% Confidence Interval, Right, Standard Deviation).
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Figure 10: Results of Correction Experiment (Precision) (Left, 95% Confidence Interval, Right, Standard Deviation).
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Figure 11: Results of Correction Experiment (Recall) (Left, 95% Confidence Interval, Right, Standard Deviation).



Table 2: |V| = 10 with Standard Deviation.

Method e = 12 e = 15 e = 20

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 CIT 0.46±0.19 0.92±0.14 0.32±0.16 0.44±0.17 0.96±0.09 0.30±0.14 0.51±0.14 0.99±0.03 0.35±0.12

CIT + DD 0.65±0.17 0.71±0.16 0.63±0.21 0.67±0.12 0.82±0.13 0.59±0.15 0.79±0.10 0.95±0.06 0.70±0.14

500 CIT 0.57±0.17 0.92±0.13 0.44±0.17 0.62±0.14 0.96±0.07 0.47±0.14 0.71±0.10 0.99±0.04 0.56±0.12

CIT + DD 0.68±0.13 0.69±0.14 0.71±0.18 0.76±0.11 0.8±0.13 0.73±0.15 0.87±0.08 0.93±0.06 0.82±0.13

1000 CIT 0.68±0.14 0.90±0.11 0.56±0.17 0.70±0.12 0.96±0.08 0.57±0.14 0.79±0.09 0.99±0.02 0.67±0.13

CIT + DD 0.71±0.11 0.66±0.13 0.78±0.13 0.81±0.09 0.82±0.12 0.82±0.12 0.91±0.06 0.94±0.06 0.88±0.10

Table 3: |V| = 10 with 95% Confidence Interval.

Method e = 12 e = 15 e = 20

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 CIT 0.46±0.05 0.92±0.04 0.32±0.05 0.44±0.05 0.96±0.02 0.30±0.04 0.51±0.04 0.99±0.01 0.35±0.03

CIT + DD 0.65±0.05 0.71±0.04 0.63±0.06 0.67±0.03 0.82±0.04 0.59±0.04 0.79±0.03 0.95±0.02 0.70±0.04

500 CIT 0.57±0.05 0.92±0.04 0.44±0.05 0.62±0.04 0.96±0.02 0.47±0.04 0.71±0.03 0.99±0.01 0.56±0.03

CIT + DD 0.68±0.03 0.69±0.04 0.71±0.05 0.76±0.03 0.80±0.03 0.73±0.04 0.87±0.02 0.93±0.02 0.82±0.03

1000 CIT 0.68±0.04 0.90±0.03 0.56±0.05 0.70±0.03 0.96±0.02 0.57±0.04 0.79±0.03 0.99±0.01 0.67±0.04

CIT + DD 0.71±0.03 0.66±0.04 0.78±0.04 0.81±0.03 0.82±0.03 0.82±0.03 0.91±0.02 0.94±0.02 0.88±0.03

Table 4: |V| = 20 with Standard Deviation.

Method e = 24 e = 30 e = 40

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 CIT 0.26±0.21 0.63±0.41 0.18±0.16 0.28±0.16 0.79±0.33 0.18±0.11 0.30±0.13 0.92±0.22 0.19±0.09

CIT + DD 0.59±0.11 0.50±0.13 0.76±0.14 0.70±0.10 0.69±0.13 0.73±0.12 0.78±0.10 0.86±0.11 0.73±0.12

500 CIT 0.40±0.17 0.78±0.28 0.29±0.14 0.39±0.17 0.84±0.27 0.26±0.13 0.41±0.11 0.97±0.08 0.26±0.09

CIT + DD 0.60±0.12 0.50±0.13 0.78±0.14 0.71±0.13 0.66±0.16 0.80±0.14 0.82±0.09 0.86±0.1 0.78±0.12

1000 CIT 0.50±0.18 0.86±0.20 0.37±0.19 0.47±0.16 0.89±0.2 0.33±0.13 0.49±0.14 0.97±0.09 0.34±0.12

CIT + DD 0.61±0.13 0.50±0.14 0.81±0.14 0.74±0.09 0.70±0.12 0.82±0.12 0.83±0.07 0.86±0.09 0.81±0.10

Table 5: |V| = 30 with Standard Deviation.

Method e = 36 e = 45 e = 60

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 CIT 0.24±0.21 0.54±0.43 0.17±0.16 0.23±0.14 0.69±0.36 0.14±0.10 0.23±0.13 0.83±0.32 0.14±0.09

CIT + DD 0.51±0.14 0.38±0.13 0.84±0.15 0.64±0.13 0.57±0.16 0.77±0.13 0.8±0.09 0.80±0.11 0.81±0.11

500 CIT 0.32±0.24 0.60±0.38 0.24±0.21 0.30±0.17 0.77±0.32 0.19±0.12 0.32±0.13 0.90±0.21 0.20±0.10

CIT + DD 0.51±0.14 0.38±0.13 0.85±0.14 0.67±0.11 0.58±0.15 0.83±0.10 0.80±0.09 0.78±0.12 0.83±0.09

1000 CIT 0.38±0.21 0.69±0.34 0.27±0.18 0.36±0.15 0.80±0.27 0.25±0.12 0.39±0.13 0.92±0.20 0.25±0.10

CIT + DD 0.54±0.15 0.41±0.15 0.87±0.14 0.65±0.12 0.56±0.15 0.83±0.12 0.81±0.08 0.79±0.12 0.86±0.09



Table 6: |V| = 30 with 95% Confidence Interval.

Method e = 36 e = 45 e = 60

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 CIT 0.24±0.06 0.54±0.12 0.17±0.04 0.23±0.04 0.69±0.10 0.14±0.03 0.23±0.04 0.83±0.09 0.14±0.02

CIT + DD 0.51±0.04 0.38±0.03 0.84±0.04 0.64±0.04 0.57±0.04 0.77±0.04 0.80±0.02 0.80±0.03 0.81±0.03

500 CIT 0.32±0.07 0.60±0.10 0.24±0.06 0.30±0.05 0.77±0.09 0.19±0.03 0.32±0.04 0.90±0.06 0.20±0.03

CIT + DD 0.51±0.04 0.38±0.04 0.85±0.04 0.67±0.03 0.58±0.04 0.83±0.03 0.80±0.02 0.78±0.03 0.83±0.02

1000 CIT 0.38±0.06 0.69±0.09 0.27±0.05 0.36±0.04 0.80±0.07 0.25±0.03 0.39±0.03 0.92±0.05 0.25±0.03

CIT + DD 0.54±0.04 0.41±0.04 0.87±0.04 0.65±0.03 0.56±0.04 0.83±0.03 0.81±0.02 0.79±0.03 0.86±0.03

Table 7: Results of Performance Experiment (PC).

Method Alarm Sachs Insurance

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 PC 0.41±0.04 0.87±0.05 0.27±0.03 0.40±0.11 0.92±0.12 0.26±0.09 0.37±0.03 0.85±0.05 0.24±0.02

PC + DD 0.49±0.08 0.91±0.07 0.34±0.07 0.48±0.08 0.86±0.10 0.34±0.08 0.41±0.03 0.91±0.04 0.26±0.03

500 PC 0.50±0.07 0.90±0.03 0.35±0.06 0.54±0.06 1.00±0.00 0.37±0.06 0.46±0.04 0.95±0.05 0.30±0.03

PC + DD 0.56±0.05 0.91±0.02 0.40±0.05 0.74±0.08 1.00±0.00 0.60±0.10 0.53±0.04 0.96±0.05 0.37±0.03

1000 PC 0.68±0.04 0.97±0.05 0.52±0.04 0.72±0.07 1.00±0.00 0.57±0.09 0.53±0.03 1.00±0.00 0.36±0.02

PC + DD 0.71±0.05 0.96±0.05 0.57±0.05 0.78±0.06 1.00±0.00 0.64±0.08 0.59±0.03 1.00±0.00 0.41±0.03

2000 PC 0.78±0.03 1.00±0.00 0.64±0.04 0.65±0.10 1.00±0.00 0.49±0.10 0.55±0.04 1.00±0.00 0.38±0.03

PC + DD 0.81±0.03 1.00±0.01 0.68±0.04 0.88±0.05 1.00±0.00 0.78±0.08 0.63±0.04 1.00±0.00 0.47±0.04

Table 8: Results of Performance Experiment (HITON-PC).

Method Alarm Sachs Insurance

N F1 Precision Recall F1 Precision Recall F1 Precision Recall

200 HITON 0.52±0.01 0.75±0.02 0.44±0.01 0.64±0.02 0.91±0.04 0.54±0.02 0.38±0.01 0.75±0.02 0.29±0.01

HITON + DD 0.55±0.01 0.77±0.01 0.48±0.01 0.69±0.02 0.88±0.01 0.61±0.02 0.42±0.01 0.77±0.02 0.33±0.01

500 HITON 0.58±0.01 0.83±0.02 0.50±0.01 0.75±0.00 0.92±0.01 0.66±0.00 0.46±0.01 0.85±0.01 0.35±0.01

HITON + DD 0.66±0.01 0.88±0.01 0.57±0.02 0.78±0.02 0.93±0.02 0.70±0.02 0.49±0.01 0.85±0.02 0.38±0.01

1000 HITON 0.71±0.01 0.90±0.01 0.64±0.01 0.78±0.02 0.99±0.00 0.67±0.02 0.48±0.01 0.87±0.01 0.36±0.01

HITON + DD 0.72±0.01 0.88±0.01 0.65±0.01 0.83±0.02 0.99±0.00 0.74±0.03 0.52±0.01 0.88±0.01 0.40±0.01

2000 HITON 0.77±0.00 0.95±0.01 0.69±0.00 0.86±0.00 1.00±0.00 0.77±0.00 0.51±0.01 0.90±0.01 0.38±0.01

HITON + DD 0.78±0.01 0.94±0.01 0.72±0.01 0.89±0.01 1.00±0.00 0.83±0.01 0.54±0.01 0.90±0.01 0.42±0.01
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Figure 12: Results of correction experiments on continuous data with linear/non-linear relationships and different graph
topologies, Erdös-Renyi (ER) and Scale-Free (SF). Error bars represent 95% confidence interval.

C.3 RESULTS OF CORRECTION EXPERIMENT ON CONTINUOUS DATA

Although our experiments primarily focused on discrete data, it’s worth noting that our method is versatile and applicable to
various data types. To demonstrate this, we conducted additional evaluations using continuous data exhibiting both linear
and non-linear relationships. We present the experimental results in Fig. 12. We constructed DAGs with 10 variables and 24
edges, adopting both Erdös-Renyi (ER) and Scale-Free (SF) models for DAG topologies. In parameterizing the Bayesian
networks, we explored both linear and non-linear models. Specifically, we utilized multi-layer perceptrons to conduct
non-linear parameterizations. For performing CIT, we employed partial correlation for linear settings and kernel-based CIT
(KCI) [Zhang et al., 2012] for non-linear settings. We employed a Gaussian kernel for KCI and set kernel width using the
median heuristic.1

Similar to our evaluations on discrete data, Fig. 12 illustrates that DEDUCE-DEP has the ability to effectively correct
underpowered tests in a continuous data setting as well. This is evidenced by the increased recall and competitive performance
in terms of precision. Notably, this improvement was consistently observed across different DAG topologies and Bayesian
network parameterizations. This suggests that our method holds promise for a broader range of applications beyond discrete
data analysis.

1We adopted KCI implementation from causal-learn Python package [Zheng et al., 2024].
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Figure 13: Recursive relationships induced by DEDUCE-DEP. Note, however, that not all recursion is necessary due to early
stopping and/or conditional dependence. Given one higher-order test, the three one-less-order tests connected with the same
colored edges form a single condition to deduce the dependence of the higher-order test.

In theory, the worst-case complexity of DEDUCE-DEP is exponential with respect to the worst-case depth. The worst-case
scenario can be understood through a hypothetical call-tree exemplified in Fig. 13, where every CIT invokes recursive calls.
However, we emphasize that this is generally not the case in practice. As shown in Fig. 6, the additional computational cost
is not prohibitive due to cached previous CIT results and early stopping (i.e., not meeting conditions for deduction). As a
side note, we can introduce a new hyperparameter H which limits the maximum depth of recursion. The worst-case depth
would then depend on H , involving the trade-off between efficiency (lower H) and accuracy (higher H).
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