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Figure 1: The Verti-Wheelers: Conventional
Wheeled Vehicles Moving through Vertically
Challenging Terrain.

Most conventional wheeled robots can only1

move in flat environments and simply di-2

vide their planar workspaces into free spaces3

and obstacles. Deeming obstacles as non-4

traversable significantly limits wheeled robots’5

mobility in real-world, non-flat, off-road envi-6

ronments, where part of the terrain (e.g., steep7

slopes or rugged boulders) will be treated as8

non-traversable obstacles. Our work is mo-9

tivated by such limitations and aims at ex-10

panding the mobility of these widely available11

wheeled robot platforms so that they can ven-12

ture into vertically challenging environments,13

which would otherwise be deemed as obstacles14

(non-traversable) or require specialized hardware.15

Thanks to the recent advancement in machine learning, data-driven approaches have been leveraged16

to improve robot mobility [1]. Learning from data removes the necessity of building analytical17

models of the environments, such as vehicle-terrain or human-robot interactions, and alleviates the18

burden of crafting delicate cost functions [2] or tuning unintuitive parameters [3]. Therefore, we19

hypothesize that data-driven approaches are one avenue toward enabling enhanced wheeled mobility20

on previously impossible, vertically challenging terrain.21

Considering that most ground robots are wheeled with no or passive suspension systems and the22

potential of machine learning methods, we develop wheeled platforms, large-scale datasets, and23

both classical and data-driven algorithms to facilitate robot mobility on vertically challenging ter-24

rain. We present an open-source design of two wheeled robot platforms, the Verti-Wheelers (VW),25

which are representative of the majority of existing conventional ground mobile robot platforms, and26

hypothesize that conventional wheeled robots can also navigate many vertically challenging envi-27

ronments (Figure 1); We identify the following seven desiderata for their hardware and achieve all of28

them in our design: All-Wheel Drive (D1), Independent Suspensions (D2), Differential Lock (D3),29

Low/High Gear (D4), Wheel Speed / RPM Sensing (D5), Ground Speed Sensing (D6), Actuated30

Perception (D7); We collect two datasets to facilitate future data-driven mobility research; We de-31

velop three algorithms to autonomously drive wheeled robots over vertically challenging terrain: an32

Open-Loop (OL), a classical Rule-Based (RB), and a data-driven Behavior Cloning (BC) approach.33

For the mechanical components in D1 to D4, we base our platforms on two off-the-shelf, two-axle34

and four-wheel, three-axle and six-wheel, all-wheel-drive, off-road vehicle chassis from Traxxas. D135

and D2 are therefore achieved. We use an Arduino Mega micro-controller to lock/unlock the front36

and rear differential (D3) and switch between low and high gear (D4) through three servos. For D5,37

we install four magnetic sensors on the front and rear axles for our Verti-4-wheeler (V4W) and on38

the front and middle axles for our Verti-6-Wheeler (V6W), and eight magnets per wheel to sense the39

wheel rotation. For D6, we install a Crazyflie Flow deck v2 sensor on the chassis facing downward,40
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Figure 3: Custom-Built Testbed with V6W and V4W and Example Traversals by the Three Algo-
rithms (OL, RB, and BC).

providing not only 2D ground speed (x and y) but also distance between the sensor and the ground41

(z). We choose an Azure Kinect RGB-D camera due to its high-resolution depth perception at close42

range. For D7, we add a tilt joint for the camera actuated by a servo. We use a complementary filter43

to estimate the camera orientation and a PID controller to regulate the camera pitch angle. We use44

NVIDIA Jetson AGX Orin and Xavier NX to provide both onboard CPU and GPU computation.45

To interface all low-level sensors and actuators, we use the Arduino Mega micro-controller. The46

mechanical and electrical components for both V4W and V6W are shown in Fig. 247

Figure 2: Components of the Verti-Wheelers.

Considering the difficulty in representing sur-48

face topography and modeling complex vehi-49

cle dynamics and the recent success in data-50

driven mobility [1], we collect two datasets51

with the two wheeled robots on our custom-52

built testbed. We reconfigure our testbed mul-53

tiple times and both robots are manually driven54

through different vertically challenging terrain.55

We collect the following data streams from the56

onboard sensors and human teleoperation com-57

mands: RGB (1280 × 720 × 3) and depth58

(512× 512) images i, wheel speed w (4D float59

vector for four wheels), ground speed g (rel-60

ative movement indicators along ∆x and ∆y61

and displacement along z, along with two bi-62

nary reliability indicators for speeds and dis-63

placement), differential release/lock d (2D bi-64

nary vector for both front and rear differentials),65

low/high gear switch s (1D binary vector), lin-66

ear velocity v (scalar float number), and steering angle ω (scalar float number). Each dataset D is67

therefore D = {it, wt, gt, dt, st, vt, ωt}Nt=1, where N indicates the total number of data frames.68

We deploy all three methods, i.e., OL, RB, and BC (BC4 and BC6 learned with the V4W and V6W69

dataset respectively), on three different test courses (Figure 3). Table 1 reports number of successful70

trials and mean traversal time with variance. BC4 achieves the best performance among all methods.71

Table 1: Number of Successful Trials (Out of 10) and Mean Traversal Time (of Successful Trials in
Seconds) with Variance

V6W V4W

OL RB BC6 BC4 OL RB BC6 BC4

Easy 5 (20.7± 1.7) 8 (19.2± 3.9) 9 (13.8± 8.2) 10 (11.6± 1.9) 6 (17.7± 3.8) 6 (13.4± 2.5) 7 (17.2± 6.7) 9 (14.1± 7.7)
Medium 6 (15.4± 0.9) 9 (14.8± 2.2) 9 (14.6± 11.2) 10 (13.6± 2.3) 4 (15.6± 14.2) 6 (12.9± 1.8) 3 (19.2± 10.6) 8 (13.7± 1.6)
Difficult 3 (24.1± 2.6) 6 (14.3± 1.9) 6 (15.7± 18.5) 9 (14.9± 2.9) 3 (19.7± 29.4) 5 (16.8± 20.5) 3 (23.3± 43.4) 7 (14.9± 8.2)

During the demonstration session at the workshop, we will showcase our physical VW platforms and72

demonstrate their autonomous crawling and navigation capability on vertically challenging terrain73

with a small-scale rock testbed.74
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