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ABSTRACT

We introduce a dynamic framework for 3D sparse-view Gaussian Splatting that
learns scene representations through layerwise, iterative refinement of the Gaus-
sian primitives. Conventional methods typically rely on dense, one-time initial-
ization, where the placement of Gaussians is guided by 2D projection supervision
and density control. However, such strategies can lead to misalignment with the
true 3D structure, particularly in regions with insufficient projection information
due to sparse-view acquisition. In contrast, we adopt a coarse-to-fine approach
beginning with a base representation and progressively expanding it by adding
new layers of smaller Gaussians to accommodate finer-grained details. At each
such iteration, the placement of new primitives is guided by a 3D error map, ob-
tained by the back projection of 2D projections’ residuals. This process acts as
adaptive importance sampling in 3D space, directing model capacity to regions
with high error. We evaluate our approach on sparse-view computed tomography
reconstruction tasks, demonstrating improved performance over existing methods.

1 INTRODUCTION

Computed Tomography (CT) is a widely used imaging technology enabling non-destructive inspec-
tion of internal structures in various domains, e.g., industrial quality control and medical diagnostics
(Kak & Slaney, 2001; Herman, 2009). A key challenge in CT imaging is the trade-off between scan
settings and image quality: more intensive scans provide detailed reconstructions but increase sys-
tem usage and radiation exposure. To address this, recent research has focused on sparse-view CT
reconstruction (Shen et al., 2022; Li et al., 2025; Zha et al., 2022; Xie et al., 2025; Cai et al., 2024b;
Zha et al., 2024), which aims to perform accurate reconstruction from minimal projection data.

3D Gaussian Splatting (3DGS) (Kerbl et al., 2023) was first introduced as an explicit scene repre-
sentation model for novel view synthesis under natural lighting conditions, and later adapted for CT
reconstruction (Cai et al., 2024a; Zha et al., 2024; Wang et al., 2025). A fundamental aspect of the
3DGS model is how Gaussians are introduced and positioned. Current approaches typically rely on
a dense, one-time initialization of primitives. This representation is subsequently refined through a
densification strategy guided by accumulated 2D projection gradients. This process is local in its
nature, since it splits or clones primitives only in the immediate vicinity of their parents. Addition-
ally, the supervisory signal is indirect: a 2D projection gradient indicates that refinement is needed
but does not uniquely specify the 3D location of the error. In sparse-view settings, this lack of direct
3D information leads to overfitting observed views, producing artifacts in unobserved regions.

In this work, we propose, instead, a 3D error-guided reconstruction approach within a hierarchical,
layer-based framework (cf. Figure 1). In this formulation, a layer1 refers to a new set of Gaussians
added at a specific stage to address remaining volumetric errors. The process begins by initializing
a coarse-grained layer of Gaussians representing the scene to capture the basic shape of the object.
Subsequent layers of smaller and lower-density Gaussians are then iteratively introduced to resolve
finer details and perform error correction. The core of our method is an error-driven strategy that ex-
ploits the known CT scanner geometry to aggregate 2D residuals from all views and reconstructs an
explicit 3D error map. This map provides explicit guidance for both densification and sparsification:
areas with positive error indicate under-represented regions requiring the inclusion of new Gaus-

1The term ”layer” here is borrowed from the Computer Graphics field.
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Figure 1: Overview of the layer-based approach. The volume is progressively reconstructed by
adding and jointly optimizing new layers of Gaussians, each focusing on residual errors left by
previous layers. The point clouds depict Gaussian centers, with colors indicating different layers.

sians, while negative error regions highlight over-represented areas that require merging existing
Gaussians.

While our method is hierarchical, its core mechanism is fundamentally different from existing hi-
erarchical approaches, e.g., (Kerbl et al., 2024; Müller et al., 2022; Zha et al., 2022; Rückert et al.,
2022), which typically organize primitives by dividing the volume into independent subunits (e.g.,
octree nodes or hash grid cells). In those frameworks, primitives are locked to their assigned unit
and optimized independently. This approach is often suboptimal in sparse-view CT because (i) many
local cells have a too sparse ground truth signal, leading to inconsistent solutions at cell boundaries,
and (ii) such structures typically rely on fixed subdivision rules that cannot easily recover if the initial
partitioning is incorrect. Our method, instead, employs a non-rigid hierarchy induced by residuals,
rather than a spatial one. In this sense, our approach is holistic: we optimize the representation glob-
ally rather than partitioning it into independent, localized sub-units. As a result, all layers coexist in
the same 3D space and are jointly optimized to ensure global consistency.

This design is conceptually inspired by the coarse-to-fine approach (Tanimoto & Pavlidis, 1975;
Burt & Adelson, 1987), often used in 3D reconstruction tasks (Gu et al., 2020; Yi et al., 2020; Wang
et al., 2021; Barron et al., 2021; Yu et al., 2021; Kerbl et al., 2024), and the principle of iterative
residual fitting. At its core is the idea that learning a corrective update to an existing representation
is a more effective optimization strategy than learning the entire transformation from scratch. This
principle empowers successful methods across different fields, including ensemble techniques such
as Gradient Boosting (Friedman, 2001), and deep learning architectures such as Residual Networks
(He et al., 2015). In our method, each layer of Gaussians is placed and optimized to correct the
volumetric errors highlighted by the 3D error map generated in the previous layers. This step-by-
step refinement reaches superior performance in the sparse view reconstruction.

The main contributions of this work can be summarized as follows: (a) we introduce a hierarchical,
layer-based framework that approaches 3DGS reconstruction as an iterative residual fitting prob-
lem. Unlike standard local splitting strategies or rigid spatial partitioning, we employ a holistic,
non-rigid hierarchy where new layers of primitives are globally initialized and jointly optimized
to correct errors left by previous layers; (b) we propose a 3D error-driven guidance strategy that
exploits the known scanner geometry to reconstruct an explicit volumetric error map. This map pro-
vides direct structural guidance in 3D space, that enables distinct mechanisms for both densification
(adding primitives in under-represented regions) and a novel concept of sparsification (fusing prim-
itives in over-represented regions); (c) we demonstrate, with a series of experimental evaluations,
that our method achieves state-of-the-art performance and geometric fidelity on the sparse-view CT
reconstruction task. Furthermore, we validate our design choices through ablation studies.

2 RELATED WORK

2.1 TRADITIONAL RECONSTRUCTION

The foundational task in computed tomography, specifically for cone-beam CT, is the reconstruc-
tion of a volume from its 2D projections, a process framed as the inverse Radon transform (Kak
& Slaney, 2001). Traditional methods to solve this problem fall into two main categories: analyt-
ical and iterative. The filtered backprojection algorithm FDK (Feldkamp et al., 1984) remains the
standard analytical method for cone-beam CT reconstruction due to its computational efficiency and
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simplicity. Iterative methods, including CGLS (Hestenes & Stiefel, 1952), SART, Andersen & Kak
(1984), SART TV Biguri et al. (2016), ASD-POCS (Sidky & Pan, 2008), formulate reconstruction
as an optimization problem, aiming to recover a volume that best explains the measured projections.
However, traditional methods assume dense and high-quality projections. In sparse-view or noisy
settings, they often produce artifacts and noise that reduce reconstruction accuracy.

2.2 CONTINUOUS REPRESENTATION

To address these limitations, recent methods have moved beyond traditional solvers by modeling the
volume as a continuous field, using implicit neural representation (Sitzmann et al., 2020) and explicit
representation with 3D Gaussian primitives (Kerbl et al., 2023). They follow two main strategies
for 3D reconstruction: augmenting the input data via novel view synthesis or directly optimizing a
continuous volumetric representation.

One line of work follows a two-stage strategy, where novel view synthesis (NVS) generates images
from unseen viewpoints to augment the available projections for 3D reconstruction. Representative
methods include neural radiance fields (Mildenhall et al., 2020; Zha et al., 2022; Cai et al., 2024b),
modeling the scene as an implicit continuous function parameterized by neural network weights.
Recently, 3DGS (Kerbl et al., 2023; Cai et al., 2024a) offers an explicit alternative, representing
scenes with a collection of learnable Gaussians. These primitives are projected onto image planes
through efficient splatting operations, enabling fast and high-fidelity rendering.

A more direct paradigm bypasses the intermediate NVS step, and instead learns a continuous rep-
resentation of the volume that is optimized end-to-end from the sparse projections. Methods in this
category include implicit neural representations (Zha et al., 2022; Xie et al., 2025; Shen et al., 2022)
as well as explicit representations (Zha et al., 2024; Li et al., 2025), which have shown state-of-the-
art performance. For example, 3DGR-CT (Li et al., 2025) renders projections by first voxelizing
the Gaussian field into a 3D grid and then applying a differentiable CT projector. R2-Gaussian (Zha
et al., 2024) employs a custom radiative rasterizer, while using a voxelized grid solely to apply a
total variation loss for regularization. Our work builds upon this direct, end-to-end paradigm, but
introduces a hierarchical Gaussian representation guided by a 3D error map. This design enables
iterative refinement of the volume via targeted updates, improving reconstruction accuracy in the
sparse-view settings.

2.3 HIERARCHICAL REPRESENTATION

To improve computational efficiency and scalability, a common strategy is to structure the represen-
tation hierarchically. A prevalent approach involves spatial partitioning, where the scene is divided
into independent sub-units. Prior work has employed multi-resolution feature grids to accelerate
training (Müller et al., 2022; Zha et al., 2022), as well as adaptive tree structures such as the octrees
(Martel et al., 2021; Rückert et al., 2022) or discrete structural primitives (Lu et al., 2024; Shen et al.,
2025) to dynamically allocate model capacity. Other hierarchical designs include training pyramids
of models for scale-aware rendering (Turki et al., 2023) and dividing the scene into spatial chunks
for large-scale environments (Kerbl et al., 2024; Kulhanek et al., 2025).

In contrast to these approaches, our work adopts a holistic, non-rigid hierarchy. Instead of partition-
ing the space into independent chunks, we build the representation progressively through additive
layers of Gaussian primitives. Importantly, each layer is guided by a global 3D error map to correct
the volumetric residuals of the previous layers, allowing all primitives to be jointly optimized in a
continuous space to ensure global consistency.

3 METHODOLOGY

A CT scan is the representation of an object (volume) through its radiodensity field σ(x) : R3 →
[0, 1] 2, associating with each coordinate x of the scanned volume an X-ray attenuation value rep-
resenting the internal structure of the object. The primary goal of CT reconstruction is to recover
the volume’s radiodensity field leveraging a set of spatially localised 2D projections {(Iv,Γv)}Vv=1

2The radiodensity may have a different codomain, based on the application.
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as the supervised signal. Each projection Iv : Rd1×d2 → R≥0 is a 2D X-ray image acquired from
a specific viewpoint v. The geometry information Γv specifies the acquisition parameters of the
cone-beam scanner, including the source-to-detector distance, projection angle, detector pixel size,
and more. The task consists, then, of devising an opportune representation of the volume whose
projections taken from the same viewpoints coincide with the original projection. Our approach
represents the volume leveraging a 3D Gaussian Splatting model, where a set of Gaussian primitives
models the tomographic data reconstruction. Instead of training all the Gaussians at once, in our
approach, we define a hierarchical representation where the Gaussians are divided into layers. New
layers are progressively included and fit to the representation to mitigate the error “unmodeled” by
previous ones. In the following, we describe our proposed methodology to perform reconstruction.

3.1 3D GAUSSIAN REPRESENTATION FOR X-RAY IMAGING

A popular approach to CT reconstruction represents the volume through a collection of Gaussian
primitives {Gi}Ni=1. Each primitive Gi defines a localized distribution in space, which is geometri-
cally described by a center position µi ∈ R3 and a covariance matrix Σi ∈ R3×3

⪰0 , controlling its
shape and orientation. In essence,

Gi(x;µi,Σi) ∝ exp
{
− 1

2
(x− µi)

⊤Σ−1
i (x− µi)

}
. (1)

The radiodensity field σ(x) is then modeled as a linear combination of N Gaussian primitives, each
scaled by a corresponding central density parameter αi ∈ [0, 1]:

σ(x) =

N∑
i=1

αi Gi(x;µi,Σi) (2)

The model is therefore parameterised by (αi, µi,Σi)
N
i=1. To train these parameters, the 3D radio-

density field must be rendered into 2D projections that can be compared with the ground truth. This
rendering process simulates the physics of X-ray imaging, which follows the Beer-Lambert law
(Kak & Slaney, 2001). Specifically, the value of each pixel in a projection image corresponds to the
line integral of the radiodensity field along the ray traced from the X-ray source to that pixel. For a
single ray r(t), the projected value I(r) is given by:

I(r) =
∫
r

σ(x) dt =

∫
r

N∑
i=1

αi Gi(x;µi,Σi) dt =

N∑
i=1

αi

∫
r

Gi(x;µi,Σi) dt. (3)

While the line integral defines the physical process, its direct computation is inefficient. Therefore,
we employ a differentiable rasterization approach based on the principles of splatting (Zwicker et al.,
2002; Kerbl et al., 2023). Specifically, we adopt the rasterization logic from the R2-Gaussian frame-
work (Zha et al., 2024), designed for tomographic reconstruction. In this method, each 3D Gaussian
is projected onto the 2D detector plane, and the final pixel values are computed by summing the
contributions of these projected 2D Gaussians. This process yields a fully differentiable rendered
projection, Îv , which can be compared to the ground truth image Iv for optimization.

3.2 LAYER-BASED APPROACH

Our reconstruction strategy adopts a layered architecture, whose pipeline is illustrated in detail
in Figure 2. The process begins by initializing a base layer of Gaussians, G(0), by sampling from
an initial volume created with a classical reconstruction method. At each subsequent layer l ≥ 1, a
new set of Nℓ primitives is introduced and added to the cumulative model from all previous layers,
G(l−1). The updated model is formed by the union G(l) = G(l−1) ∪ {G(l)

j }Nℓ
j=1, where the newly

added Gaussians, {G(l)
j }Nℓ

j=1, are strategically placed to correct the residual error left uncorrected by
the previously optimized layers in G(l−1).

3D error reconstruction Let Î(l)v denote the rendered projection obtained with the first l layers.
We can then quantify the error of such representation as e(l)v = Iv− Î

(l)
v . Notably, instead of directly

4
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Figure 2: Overview of the layer-based reconstruction pipeline. (a) A classical tomographic re-
construction generates an initial volume to guide the sampling of the first Gaussian layer and to
compute an object mask. (b) The iterative loop renders the current set of Gaussians via rasterization
and voxelization to produce predicted projection images, which are compared with the ground truth
to compute residual maps. (c) These residuals are reconstructed into a 3D volumetric error map,
which guides an importance sampling strategy: positive-error regions are sampled for densification
(adding a new layer of Gaussians), while negative-error regions are sampled for sparsification (fus-
ing existing Gaussians). The properties of the new Gaussians are adaptively initialized based on the
local error magnitude and the current model state.

optimizing the Gaussian positions in the 2D projection space, we use the residual maps e
(l)
v from

different views to solve an inverse problem, yielding a 3D volumetric error map E(l)(x) with the
same size as the original volume. The 3D error reconstruction is achieved by solving the linear
least-squares problem using the Conjugate Gradient for Least Squares (CGLS) (Hestenes & Stiefel,
1952; Biguri et al., 2016).

Sampling procedure To guide the model’s refinement, we first decompose the 3D error map into
its positive and negative components. We then independently sample locations from each map using
the Gumbel-Max trick (Gumbel, 1958), which correspondingly guide densification and sparsifica-
tion (cf. Figure 2). The sampling is error-guided and explained in detail in Appendix B. Based on the
sign of the error at the sampled locations, two complementary updates can be performed. Positive
error regions indicate density under-representation, where the model lacks sufficient representation.
We densify these regions by placing new Gaussian primitives, thereby enriching the scene with finer
detail and improving reconstruction fidelity (cf. Figure 1). Negative error regions reveal density
over-representation, where too many Gaussians contribute additional value. In these areas, we re-
duce density through local fusion, merging nearby Gaussians into a single, less dense primitive. This
acts as a form of regularization by reallocating capacity and reducing geometric redundancy. In the
following, we describe both operations in detail.

Layered densification In the case of a location associated with positive error, we place a new
Gaussian G(l)

i , whose density α
(l)
i is initialized in proportion to the local error e(l)i = E(l)(xi) at

sampled point xi. As the model grows, we normalize this initial density by the model’s current
capacity, approximated by the number of primitives N (l−1), to ensure that new primitives provide
gentle corrections to the residual error rather than destabilizing the structure established by previ-
ous layers. We apply the following scaling, tuned by the hyperparameter Cα , to ensure a stable
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contribution in the final rendering:

α
(l)
i = Cα

e
(l)
i

3
√
N (l−1)

. (4)

The initial size of new Gaussians is set to a fraction of the average scale of all existing primitives
present in the model. This enforces a coarse-to-fine refinement strategy: as the model’s average
scale naturally decreases with each layer, new primitives are born progressively smaller, ensuring
they are dedicated to capturing finer details rather than re-learning the established broad structure.

Layered sparsification In case of a location associated with negative error, we sample a set of
points from these regions to serve as fusion centers. At each center, we fuse all Gaussians within
a small neighborhood Nε(i) into a single primitive. The density α

(l)
i of the fused Gaussian is cal-

culated by summing the densities of the neighbors and then reducing the total by the local error (in
absolute value) scaled by the model’s capacity, similar to the initialization in Equation 4:

α
(l)
i =

∑
j∈Nε(i)

α
(l−1)
j − Cα

∣∣e(l)i

∣∣
3
√
N (l−1)

. (5)

Other properties are aggregated based on neighbor density: position and scale are computed via a
weighted average, rotation is inherited from the most opaque neighbor. This ensures the fused prim-
itive represents the dominant local structure while avoiding the complexities of rotational averaging.

3.3 TRAINING

Guided by this 3D error map, we add a new layer of Gaussian primitives, G(l+1), strategically
placed within high-error regions. After that, the updated model is jointly optimized to minimize
the reconstruction error across all projections using a differentiable projection-domain loss function
Ltotal. Following Zha et al. (2024), we compute the optimization loss and update our model on a
per-view basis, progressively selecting them in random order:

The total loss Ltotal comprises a photometric L1 and a structural fidelity LSSIM term. Similar to Zha
et al. (2024), we incorporate a 3D total variation LTV regularization term applied to randomly sam-
pled volumetric patches. This term imposes a smoothness prior by penalizing high-frequency varia-
tions in the radiodensity field:

Ltotal(Iv, Î
(l)
v ) = L1(Iv, Î

(l)
v ) + λSSIM LSSIM(Iv, Î

(l)
v ) + λTV LTV(Xp;G

(l)), (6)

where λSSIM and λTV are two hyperparameters, and Xp is a 3D patch randomly sampled from the
current model G(l) used to compute the total variation loss.

4 EXPERIMENTS

In this section, we describe the experimental setup used to assess the performance of our method
and discuss the results we have obtained. Additionally, we conduct several ablation studies to gain
additional insight into the motivation behind the reported performance.

4.1 EXPERIMENTAL SETTINGS

Dataset Following (Cai et al., 2024a; Zha et al., 2024), we conduct experiments on both synthetic
and real-world datasets representing diverse object types. The synthetic dataset includes fifteen 3D
volumes categorized into three classes: medical, food, and everyday objects. We use the TIGRE
(Biguri et al., 2016) toolbox to generate cone-beam X-ray projections, simulating realistic imaging
conditions by incorporating Compton scatter and electronic noise. The real-world dataset includes
scans of walnut, seashell, and pine. Similarly, we treat the fully reconstructed high-resolution vol-
umes of these objects as ground truth and simulate a sparse-view acquisition using the same projec-
tion pipeline as the synthetic set.

6
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Table 1: Quantitative comparison on the 3D reconstruction task across 5, 10, 15, and 25 views
settings. The reported metrics are computed over the full volumes and averaged across all scans. We
apply colors to the first , second , and third ranked numbers.

Methods 5 views 10 views 15 views 25 views

PSNR↑ SSIM↑ Time↓ PSNR↑ SSIM↑ Time↓ PSNR↑ SSIM↑ Time↓ PSNR↑ SSIM↑ Time↓
Real dataset

FDK 14.71 0.066 – 17.77 0.106 – 19.34 0.138 – 23.30 0.335 –
CGLS 24.57 0.546 0.7s 26.21 0.585 0.7s 27.18 0.611 0.8s 28.26 0.673 0.9s
SART 25.84 0.648 6.1s 28.21 0.696 11.0s 29.61 0.722 16.0s 31.52 0.790 26.0s
SART TV 26.65 0.720 33.0s 29.68 0.795 54.7s 31.24 0.829 1.3m 32.89 0.836 2.1m
ASD-POCS 26.65 0.711 43.6s 29.84 0.788 51.6s 31.60 0.827 52.2s 32.38 0.826 2.0m
NAF 27.94 0.802 1.3m 32.47 0.859 2.5m 33.90 0.876 3.7m 32.76 0.783 7.2m
X-Gaussian 20.72 0.639 3.1m 20.73 0.637 3.0m 20.73 0.638 2.9m 20.72 0.636 5.4m
R2-Gaussian 27.24 0.715 4.3m 31.90 0.812 4.7m 34.40 0.854 4.9m 35.52 0.843 7.7m
Ours 28.75 0.828 5.6m 33.59 0.891 6.3m 35.47 0.908 6.6m 36.46 0.850 8.4m

Synthetic dataset

FDK 12.66 0.045 – 15.26 0.068 – 16.81 0.090 – 22.99 0.317 –
CGLS 22.79 0.482 0.7s 24.64 0.512 0.7s 25.61 0.535 0.8s 27.99 0.664 0.9s
SART 24.10 0.638 5.7s 26.31 0.669 10.7s 27.58 0.683 15.5s 31.14 0.825 25.4s
SART TV 24.88 0.709 31.6s 27.70 0.766 55.6s 29.20 0.795 1.3m 31.48 0.864 2.3m
ASD-POCS 24.98 0.725 42.4s 27.91 0.779 45.9s 29.52 0.806 47.7s 33.92 0.907 1.6m
NAF 25.11 0.724 1.2m 28.29 0.781 2.4m 29.82 0.804 3.6m 33.48 0.893 6.1m
X-Gaussian 17.45 0.620 3.5m 17.46 0.620 3.3m 17.46 0.620 3.1m 17.46 0.620 3.7m
R2-Gaussian 23.48 0.670 9.8m 27.00 0.759 8.4m 29.60 0.813 7.6m 35.39 0.926 5.7m
Ours 25.67 0.788 5.8m 29.65 0.858 6.4m 31.62 0.886 6.9m 34.43 0.922 7.5m

Implementation details We implement our method in PyTorch with CUDA acceleration 3. All
experiments are conducted on an NVIDIA H200 GPU. As initialization step, we reconstruct a coarse
volume using the SART-TV algorithm (Biguri et al., 2016). A binary object soft mask is then calcu-
lated using Otsu thresholding (Otsu, 1979). Next, we construct the Gaussian field using a 20-layer
hierarchical strategy, where a new layer of 2500 Gaussians is introduced every 500 iterations, guided
by the reconstructed 3D error map. The positive error map is first denoised using the object mask
and a 3D Gaussian blur with a standard deviation of σ = 2 to yield an importance map. From
this map, we sample locations for new Gaussians using the Gumbel-max trick with temperature
τ = 5 × 10−3. To progressively capture finer details, these new Gaussians are initialized with a
reduced scale (half the current average) and a density scaled by Cα = 0.5 (Equations (4–5)). Con-
currently, the negative error map guides our layered sparsification. We sample 30K fusion centers
and aggregate nearby Gaussians within a radius of ϵ = 0.05 into a single, less dense primitive. This
layer-building phase continues until all layers are placed, with all existing Gaussians being jointly
optimized. Afterwards, vanilla density control (Kerbl et al., 2023) is enabled for a final fine-tuning
stage. Across all experiments, the total optimization runs for 30K iterations. To quantitatively as-
sess reconstruction quality, we use the 3D PSNR and SSIM metrics, following the implementation
provided in R2-Gaussian (Zha et al., 2024). More details can be found in Appendices A and B.

Baselines We benchmark our method against traditional reconstruction techniques, as well as re-
cent implicit and explicit representation techniques. This comparison is limited to self-supervised
approaches, as our work focuses on single-scene reconstruction, where supervised methods requir-
ing external datasets are not applicable. As classical baselines, we use the analytical FDK algorithm
(Feldkamp et al., 1984) and several iterative methods. While many variations of iterative recon-
struction algorithms exist, we focus on a few representative ones: CGLS (Hestenes & Stiefel, 1952),
SART (Andersen & Kak, 1984), SART-TV (Biguri et al., 2016), and ASD-POCS (Sidky & Pan,
2008). We tune the number of iterations for each classical algorithm to achieve optimal results

3Our code is available at the anonymous GitHub repository
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Figure 3: Qualitative evaluation of reconstruction algorithms under varying degrees of data sparsity.
Our coarse-to-fine approach uses a 3D volumetric error map to strategically allocate model capac-
ity, focusing refinement only on regions with high structural error. This targeted strategy avoids
overfitting to sparse views, resulting in a cleaner and more geometrically accurate reconstruction.
Zoomed-in patches are provided for a clearer inspection of reconstruction quality.

across all datasets. Alongside traditional approaches, we evaluate recent implicit and explicit re-
construction methods. For implicit reconstruction, we use NAF (Zha et al., 2022), which models
voxel-wise attenuation coefficients as continuous neural fields. For explicit reconstruction, we con-
sider X-Gaussians (Cai et al., 2024a) and R2-Gaussian (Zha et al., 2024) models. Since X-Gaussians
is designed for novel view synthesis, we first generate intermediate projections and then apply the
classical reconstruction algorithm ASD-POCS to obtain the volume. R-Gaussian, in contrast, recon-
structs the volume directly using voxelization.

4.2 BASELINE COMPARISON

The performance of our layer-based method is evaluated both quantitatively and qualitatively. Ta-
ble 1 reports the volumetric 3D PSNR and SSIM metrics for various sparse-view configurations,
where our method consistently demonstrates improved performance. More detailed results are pro-
vided in Appendix C. These numerical gains are visually supported in Figure 3. The qualitative
comparison shows that our layer-based Gaussian model achieves higher fidelity, producing cleaner
transitions between neighboring views and preserving finer details.

Analysis of reconstruction accuracy Our method demonstrates its main strengths in sparse-view
settings (e.g., 5-15 views), while comparable in more densely-sampled scenarios. This advantage
stems from our progressive, coarse-to-fine strategy, which acts as a regularizer against overfitting.
The initial layers establish a robust, low-frequency structure using large Gaussians, capturing the
object’s general form. Subsequent refinements are guided by the 3D volumetric error map, which

8
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strategically places smaller, lower-density Gaussians to correct true volumetric inaccuracies. This
ensures better geometric fidelity and generalization to in-between views. Conversely, in more data-
rich settings (e.g., 25 views), the large number of projections provides more reliable signals from all
directions. This is often sufficient to effectively guide a standard optimization of all Gaussians at
once. In these cases, the implicit regularization from our layered approach is less critical.

Analysis of runtime Our method’s overall timing is comparable with state-of-the-art approaches.
Our process introduces extra computations from the initial SART-TV reconstruction and the peri-
odic layered densification and sparsification. However, these costs are effectively balanced by the
efficiency gains from our layered fitting strategy. Instead of optimizing all N Gaussians from the
start, our method incrementally builds the scene in L stages. For a significant portion of the training,
we operate on a much smaller subset of primitives, each time including N/L Gaussians. Further-
more, our layered sparsification step prunes redundant Gaussians. The combined effect produces a
more compact representation and comparable fitting time, as empirically validated in Table 3.

4.3 ABLATION STUDY

Layered densification We investigate how reconstruction quality is affected by the choice in the
placement of new Gaussian layers. Specifically, we focus on the hierarchical depth, defined by the
number of layers, and (2) the spatial density, defined by the initial number of Gaussians per layer.
We set a total of 50K primitives to be introduced during the layer-building phase. In a multi-layer
setup with L layers, primitives are added incrementally in batches of 50K/L per layer. This is
compared against a single-layer baseline where all 50K primitives are present from the start. Ta-
ble 3 presents results for different architectures of layered Gaussian model. We report 3D metrics
for reconstruction quality, the total number of Gaussians after 30K optimization steps, and training
time. Results show that generally multi-layered approaches outperform the single-layer baseline.
Moreover, multi-layer design achieves this performance with less number of primitives and, there-
fore, less training time, with the 20 layer configuration achieving the best results across all views.
Figure 4 provides visual comparison of multi-layer and one-layer approaches.

Layered sparsification We analyze the key hyperparameters of our sparsification mechanism,
the number of sampled fusion centers and the fusion radius, which together control the degree of
structural regularization. This volumetric, error-guided fusion is distinct from standard density-
based pruning. Its goal is to manage model complexity by correcting for over-represented regions
identified in the 3D error map. An ablation study was performed to identify the optimal configuration
that maximizes reconstruction accuracy, as detailed in Table 4, revealing the need to balance between
overfitting from insufficient fusion and over-smoothing from an overly aggressive approach.

Masking We analyze the impact of applying the soft Otsu mask during our error-guided densi-
fication. As shown in Table 5, the mask provides a spatial prior that yields improvements in both
reconstruction quality and model compactness. Without this prior, the model tends to place Gaus-
sians in empty space to minimize 2D projection errors, a form of overfitting that degrades the 3D
structure and inflates model size. By constraining densification to the object’s volume, the mask
ensures model capacity is used to refine true geometric details. This results in superior 3D metrics
and a more regularized model with substantially fewer Gaussians.

Layer selection We explore training strategies to mimic a boosting-like approach: train only the
newest layer, train the last few layers, and probabilistically select layers, either as a contiguous
chain or independently. Although these methods can reduce computation, optimizing all layers
consistently produces the best results as shown in Table 6.

5 DISCUSSION

Our framework demonstrates a robust approach to sparse-view reconstruction, yet it leaves room
for future exploration. First, the accuracy of the guiding 3D error map is tied to the quality of the
back-projection solver. In highly sparse scenarios, this map can become noisy, especially after many
layers, potentially leading to the placement of new primitives that capture noise artifacts instead of

9
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true structural errors. We mitigate this by denoising the error map with soft object mask and 3D
Gaussian blur, but more advanced techniques could be explored in the future. Second, a promising
direction is to move beyond a fixed number of primitives per layer towards an adaptive strategy
where the number and properties of new Gaussians are determined theoretically by the local error
distribution. Third, beyond CT data, this concept may generalize to other tomographic modalities,
highlighting the broader relevance of explicit error-guided reconstruction. Finally, the core principle
of our method is fundamentally representation-agnostic. For example, the 3D error map can guide
importance sampling of training coordinates for an implicit neural representation, directing the net-
work’s capacity toward high-error regions and mirroring the coarse-to-fine refinement strategy.

6 CONCLUSION

In this work, we introduced a hierarchical, layer-based coarse-to-fine framework for sparse-view CT
reconstruction leveraging a 3D error map to guide the iterative refinement of a 3D Gaussian rep-
resentation. Our densification and sparsification strategy allocates model capacity more effectively
by directly addressing volumetric inaccuracies. This mitigates a key problem in baseline methods,
often overfitting to the training projections when initialized with a dense set of primitives. As shown
in our experiments, our approach yields reconstructions with superior geometric fidelity, particularly
in highly sparse settings. Therefore, the principle of explicit 3D error correction offers a promising
path towards more robust and reliable CT reconstruction in data-limited scenarios.
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A MODEL INITIALIZATION

A.1 INITIAL RECONSTRUCTION

For the initial approximation of the object volume, we employ the Simultaneous Algebraic Recon-
struction Technique with Total Variation regularization (SART-TV) using the TIGRE toolkit (Biguri
et al., 2016). Other approaches include uniform distribution initialization (Cai et al., 2024a), recon-
struction with FDK (Zha et al., 2024), and mixed methods (Wang et al., 2025). We select SART-TV
for its superior ability to produce a high-fidelity volume with well-defined edges and reduced arti-
facts for sampling the first layer and calculating the object mask.

A.2 FIRST LAYER INITIALIZATION

To maintain a consistent sampling methodology throughout our layer-based framework, the initial-
ization of the first layer of Gaussians, G(0), also employs an importance sampling strategy based on
the Gumbel-Max trick. Unlike subsequent layers, which are guided by a 3D error map, the first layer
is guided by the initial volumetric reconstruction produced by the SART-TV solver. This initial vol-
ume serves as a coarse density map, where voxel intensities represent the probability of belonging to
the object. Although our method is more robust to initialization due to its iterative, error-correcting
design, this starting estimate is still important for generating the object mask via Otsu thresholding
used in subsequent denoising steps.

A.3 OTSU SOFT MASKING

The mask is computed once at the beginning of the pipeline. To separate the object from the back-
ground, we apply Otsu’s thresholding (Otsu, 1979) to determine the optimal binary threshold t∗:

t∗ = argmax
t

Varb(t), (7)

where Varb(t) denotes the between-class variance for a given threshold t.

In a sparse-view setting, the initial volume is prone to artifacts, which makes a traditional binary
mask created by hard thresholding unreliable. Such a mask would incorrectly classify uncertain
regions, potentially removing parts of the object or leaving background noise unfiltered. To mitigate
these issues, we replace the binary mask with a probabilistic soft mask. First, for each voxel x, we
calculate a normalized and scaled distance d(x) from the Otsu threshold t∗:

d(x) = β
Vinit(x)− t∗

σV
, (8)

where β > 0 is a steepness parameter and σV is the standard deviation of the volume’s intensities.
This step quantifies how far each voxel is from the decision boundary.

Second, we apply the logistic sigmoid function to map this distance into a probabilistic value:

M(x) =
1

1 + exp(−d(x))
. (9)

This formulation produces a smooth mask with values in [0, 1], representing the probability of a
voxel belonging to the object. This method preserves uncertain boundary regions and provides a
more reliable guide for subsequent processing steps.

B SAMPLING PROCEDURE

To guide the placement of new Gaussians (densification) and the fusion of existing ones (sparsifica-
tion), we require a robust method for sampling locations from the 3D error map, E(l). Our procedure
begins by decomposing this map into its positive and negative components, E(l)

pos and E
(l)
neg, which

are sampled independently. The positive map, which guides densification, undergoes a denoising
step prior to sampling to ensure new primitives are placed in regions of coherent error rather than
noise. The negative map is sampled directly to identify candidates for fusion. For both maps, we
employ an error-guided importance sampling strategy.
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B.1 ERROR-GUIDED GUMBEL SAMPLING

To sample positions from either the positive or negative error maps, we use the Gumbel-Max
trick (Gumbel, 1958). This technique allows for efficient importance sampling from a discrete dis-
tribution defined by unnormalized scores. This is particularly beneficial in large 3D volumes where
computing a partition function would be computationally expensive.

Let e(l)i = E(l)(xi) denote the absolute error value at position xi, and let τ be a temperature pa-
rameter controlling the stochasticity of the process. We generate Gumbel noise gi from the standard
Gumbel distribution gi = − log(− log(ui)), where ui ∼ Uniform(0, 1). The final score for position
xi is computed as s(l)i = |e(l)i |/τ + gi. We then select the top-k highest-scoring indices i1, . . . , ik to
form the set of sampled locations for layer l.

B.2 DENOISING OF THE ERROR MAP

The error volume reconstructed from sparse-view data, E(l), often contains artifacts such as streaks
and noise. To ensure that new Gaussians are placed in regions of meaningful error rather than
artifacts, we apply a two-stage denoising process to the positive component, E(l)

pos, before sampling.
First, we apply a probabilistic soft mask, M(x), via a Hadamard product: Ẽ(l)

pos = M ⊙ E
(l)
pos. The

generation of this mask is detailed in Appendix A.3. Second, the masked volume is smoothed with a
Gaussian blur. This step suppresses high-frequency noise and enhances spatial coherence, yielding
a robust importance map that guides the subsequent Gumbel sampling for densification.

C PER-SCENE COMPARISON

We compare our layer-based approach with the R2-Gaussian model in Table 2. To ensure a fair
comparison on the sparse-view datasets, we address overfitting issue in standard R2-Gaussian model
(Zha et al., 2024). R2-Gaussian model trained with its original parameters tends to overfit to sparse
views, resulting in severe needle-like artifacts, especially in settings with very few input images.
To mitigate this effect and establish a stronger baseline, we adjusted parameters in favor to the
sparse-view setting. Specifically, we (1) increased Total Variation regularization with a weight of
λTV = 0.25 to encourage smoother geometry; (2) increasing the minimum allowed Gaussian scale
to 0.005 to prevent overly thin structures; and (3) increased the densification gradient threshold to
0.001 to reduce excessive splitting and cloning. Collectively, these changes regularize the model
and improve robustness under sparse-view conditions. However, they introduce a trade-off: a less-
regularized model achieves higher fidelity in higher-view settings (e.g., 25 views), while the more-
regularized model tends to oversmooth results and lowers the metrics. Despite this, our layer-based
strategy achieves better results.

D ABLATIONS

D.1 LAYERED DENSIFICATION

In Table 3, we present an ablation on the number of layers across different sparse-view settings. We
report 3D PSNR, 3D SSIM, the number of Gaussians, and training time. Multi-layer architectures
generally outperform the single-layer baseline while using fewer primitives and less training time.
A configuration with 20 layers results in the best trade-off across all view settings.

D.2 LAYERED SPARSIFICATION

In Table 4, we present an ablation on sparsification hyperparameters, fusion radius, and the number
of sampled fusion centers, comparing performance on real and synthetic datasets across different
sparse-view settings. We report 3D PSNR, 3D SSIM, the number of Gaussians, and training time.
The best parameters are highlighted. In Figure 4, we additionally include a visual comparison
between the 1-layer and 20-layer models.
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Table 2: 3D PSNR comparison between R2-Gaussian and our method across different numbers of
sparse views on synthetic and real datasets. Gray-colored numbers indicate R2-Gaussian metrics
obtained with a set of parameters optimized for the sparse-view setting.

Scene
5 views 10 views 15 views 25 views

R2-Gaussian Ours R2-Gaussian Ours R2-Gaussian Ours R2-Gaussian Ours

Real dataset

Pine 29.93 / 31.49 32.04 33.94 / 35.26 35.88 36.52 / 37.03 37.68 38.10 / 37.70 37.84
Seashell 29.00 / 29.04 30.97 34.99 / 34.73 37.43 37.81 / 36.57 39.24 39.53 / 38.77 41.52
Walnut 22.79 / 23.15 23.24 26.76 / 26.97 27.47 28.87 / 28.74 29.47 28.94 / 29.91 30.01
Average 27.24 / 27.89 28.75 31.90 / 32.32 33.59 34.40 / 34.11 35.47 35.52 / 35.46 36.46

Synthetics dataset

Chest 19.39 / 22.43 22.88 22.58 / 26.38 26.44 26.53 / 28.07 28.44 32.18 / 30.50 31.48
Foot 22.63 / 24.54 24.58 25.91 / 27.15 27.60 27.78 / 28.86 29.18 30.38 / 30.26 30.53
Head 24.04 / 26.49 26.97 28.79 / 30.77 31.14 30.77 / 32.10 32.55 36.86 / 35.68 36.34
Jaw 24.45 / 24.57 25.06 27.20 / 27.48 28.83 29.31 / 29.49 30.94 33.35 / 32.60 33.47
Pancreas 22.01 / 25.16 25.40 25.61 / 27.15 27.49 28.43 / 29.07 29.38 33.08 / 31.01 32.39
Beetle 32.52 / 32.88 32.94 34.98 / 34.22 34.65 37.39 / 35.45 36.41 40.09 / 36.12 37.36
Bonsai 21.68 / 24.92 25.10 23.78 / 28.33 28.50 26.18 / 29.88 30.00 33.06 / 32.03 32.56
Broccoli 18.37 / 19.80 19.95 20.95 / 22.48 22.54 23.13 / 24.96 25.01 29.25 / 28.16 28.62
Kingsnake 31.80 / 33.58 34.02 35.33 / 36.22 36.73 36.19 / 36.47 36.84 39.03 / 37.22 37.89
Pepper 16.25 / 17.97 18.42 20.16 / 26.24 26.43 24.21 / 28.76 29.16 35.08 / 32.52 34.21
Backpack 26.60 / 27.75 28.15 29.13 / 29.30 29.96 31.07 / 30.19 31.07 34.97 / 31.17 32.70
Engine 17.65 / 20.27 20.42 22.27 / 24.71 25.27 27.10 / 29.27 30.24 35.23 / 33.45 35.08
Mount 19.99 / 24.73 24.37 21.58 / 30.50 30.46 25.00 / 32.47 33.32 37.39 / 35.58 36.92
Present 26.10 / 26.27 26.88 28.73 / 28.24 29.35 30.26 / 29.14 30.37 35.04 / 31.18 33.42
Teapot 28.77 / 29.33 29.98 37.91 / 38.58 39.43 40.70 / 41.10 41.31 45.81 / 43.47 43.51
Average 23.48 / 25.38 25.67 27.00 / 29.18 29.65 29.60 / 31.02 31.62 35.39 / 33.40 34.43

Table 3: Ablation on the number of layers (L) across different sparse-view settings. Multi-layer
architectures generally outperform the single-layer baseline while using fewer primitives (N ) and
less training time. L = 20 results in the best trade-off across all view settings.

Real Dataset Synthetic Dataset

L PSNR↑ SSIM↑ N↓ Time↓ PSNR↑ SSIM↑ N↓ Time↓

5
vi

ew
s

1 27.68 0.773 50K 8.1m 25.46 0.765 66K 8.7m
5 28.07 0.794 23K 6.1m 25.58 0.778 54K 7.7m

10 28.18 0.801 19K 5.5m 25.61 0.781 39K 7.0m
20 28.34 0.806 17K 5.1m 25.68 0.786 31K 6.3m
30 28.37 0.809 15K 4.9m 25.73 0.788 28K 5.8m

10
vi

ew
s 1 31.79 0.849 50K 8.5m 28.97 0.839 56K 9.2m

5 32.33 0.866 32K 7.0m 29.16 0.849 45K 8.1m
10 32.47 0.872 26K 6.4m 29.20 0.850 40K 7.5m
20 32.68 0.880 22K 6.1m 29.30 0.852 37K 7.0m
30 32.40 0.875 19K 6.0m 29.24 0.848 33K 6.7m

15
vi

ew
s 1 33.62 0.880 50K 8.6m 30.76 0.870 54K 9.3m
5 34.10 0.894 37K 7.5m 30.91 0.877 47K 8.3m

10 34.21 0.898 31K 7.1m 30.93 0.878 43K 7.8m
20 34.29 0.900 27K 6.6m 30.99 0.878 41K 7.4m
30 33.84 0.891 24K 6.5m 30.87 0.874 37K 7.0m

25
vi

ew
s 1 36.23 0.862 55K 9.6m 33.34 0.909 54K 7.3m

5 36.46 0.856 52K 8.1m 33.42 0.912 49K 6.5m
10 36.49 0.855 48K 7.5m 33.45 0.913 45K 6.1m
20 36.38 0.853 47K 6.8m 33.46 0.913 42K 5.6m
30 33.95 0.812 32K 6.0m 32.95 0.904 35K 5.3m
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Figure 4: Comparison between 1- & 20-layer models. The total number of Gaussians is shown in
the bottom-right corner.

Table 4: Ablation study on sparsification hyperparameters across different sparse-view settings.
We vary the fusion radius (r) and the number of sampled fusion centers (k). A fusion radius of
r = 0.05 and the number of sampled fusion centers k = 30K provide the best trade-off between
model compactness and fidelity.

Real Dataset Synthetic Dataset

r k PSNR↑ SSIM↑ N↓ Time↓ PSNR↑ SSIM↑ N↓ Time↓

5
vi

ew
s

0.03 1K 28.39 0.807 17K 5.5m 25.68 0.787 31K 6.8m
0.03 10K 28.42 0.808 13K 5.6m 25.67 0.788 26K 6.6m
0.03 30K 28.52 0.813 9K 5.6m 25.74 0.791 19K 6.5m
0.05 10K 28.52 0.815 9K 5.4m 25.70 0.791 18K 6.1m
0.05 30K 28.58 0.825 6K 5.7m 25.75 0.795 11K 6.0m
0.10 10K 28.49 0.820 6K 5.1m 25.71 0.794 11K 5.6m
0.10 30K 28.48 0.811 6K 5.4m 25.71 0.795 8K 6.2m

10
vi

ew
s

0.03 1K 32.68 0.880 22K 6.1m 29.30 0.852 37K 7.0m
0.03 10K 32.75 0.881 17K 6.2m 29.32 0.853 29K 6.9m
0.03 30K 32.85 0.882 12K 6.5m 29.37 0.855 21K 7.0m
0.05 10K 32.95 0.885 11K 6.2m 29.34 0.855 20K 6.7m
0.05 30K 33.04 0.890 9K 6.8m 29.45 0.858 14K 6.8m
0.10 10K 33.00 0.888 9K 6.2m 29.40 0.856 13K 6.5m
0.10 30K 32.93 0.883 8K 6.2m 29.43 0.857 11K 7.1m

15
vi

ew
s

0.03 1K 34.30 0.900 27K 6.7m 31.00 0.878 41K 7.4m
0.03 10K 34.38 0.900 21K 6.8m 31.06 0.879 32K 7.3m
0.03 30K 34.50 0.901 16K 7.1m 31.10 0.880 23K 7.4m
0.05 10K 34.52 0.902 15K 6.8m 31.10 0.881 22K 7.1m
0.05 30K 34.62 0.903 10K 7.3m 31.16 0.882 15K 7.3m
0.10 10K 34.52 0.902 10K 6.8m 31.12 0.881 14K 6.9m
0.10 30K 34.50 0.902 9K 6.9m 31.14 0.881 13K 7.6m

25
vi

ew
s

0.03 1K 36.38 0.853 47K 9.0m 33.45 0.913 42K 7.9m
0.03 10K 36.40 0.852 43K 9.0m 33.45 0.913 36K 8.0m
0.03 30K 36.43 0.852 38K 9.1m 33.46 0.912 31K 8.1m
0.05 10K 36.47 0.851 32K 8.6m 33.44 0.912 27K 7.7m
0.05 30K 36.48 0.851 26K 8.8m 33.45 0.912 21K 7.9m
0.10 10K 36.43 0.850 22K 8.3m 33.32 0.911 18K 7.5m
0.10 30K 36.44 0.849 22K 9.0m 33.31 0.910 17K 8.1m
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D.3 MASKING

In Table 5, we present an ablation on the use of the soft Otsu mask during 3D error-guided densifi-
cation. Particularly in sparse-view configurations, the mask acts as a crucial spatial prior, improving
reconstruction quality and model compactness. Without it, the model tends to overfit by placing
Gaussians in empty space to minimize 2D projection errors, degrading the 3D geometry and inflat-
ing model size. The mask constrains densification to the object’s volume, focusing model capacity
on refining true geometric details.

Table 5: Ablation on background masking, comparing performance on real and synthetic datasets
across different sparse-view settings for a fixed 20-layer model. Mask improves reconstruction
quality (PSNR, SSIM) and leads to a more compact model with fewer primitives (N ).

Real Dataset Synthetic Dataset

Masking PSNR↑ SSIM↑ N↓ Time↓ PSNR↑ SSIM↑ N↓ Time↓

5 views without 28.11 0.786 15K 5.0m 25.52 0.766 20K 5.8m
with 28.65 0.827 6K 5.6m 25.73 0.794 11K 6.0m

10 views without 32.54 0.856 16K 5.4m 29.16 0.840 20K 5.8m
with 33.05 0.890 9K 6.7m 29.43 0.858 14K 6.8m

15 views without 34.23 0.885 18K 5.5m 30.90 0.870 20K 5.8m
with 34.65 0.903 10K 7.0m 31.14 0.882 15K 7.3m

25 views without 36.57 0.855 33K 6.5m 33.46 0.912 24K 5.7m
with 36.46 0.851 26K 8.7m 33.39 0.913 21K 8.0m

D.4 LAYER SELECTION

We investigated several layer selection strategies aimed at reducing computational cost by selec-
tively updating subsets of layers. These included boosting-like approaches, such as training only
the newest layer or optimizing a sliding window of recent layers. However, as shown in Table 6,
joint optimization of all layers consistently yielded superior results. We attribute this to the need for
global coherence: freezing earlier layers prevents them from adapting to the details introduced by
new layers.

Table 6: Ablation on layer training strategies for a 20-layer model under the 10-view setting. The
superior full-training strategy is highlighted.

Real Dataset Synthetic Dataset

Strategy PSNR↑ SSIM↑ N↓ Time↓ PSNR↑ SSIM↑ N↓ Time↓

10
vi

ew
s

Train newest layer 32.28 0.873 20K 6.9m 28.98 0.841 24K 7.3m
Train last 2 layers 32.41 0.876 18K 6.8m 29.05 0.844 23K 7.5m
Train last 2 layers 32.41 0.876 18K 6.8m 29.05 0.844 23K 7.5m
Train last 3 layers 32.41 0.878 17K 6.7m 29.04 0.844 23K 7.4m

Prob. chain 32.64 0.880 13K 6.4m 29.25 0.851 16K 7.4m
Prob. independent 32.66 0.878 13K 6.3m 29.19 0.850 17K 7.0m

Train all layers 33.02 0.889 7K 6.6m 29.45 0.857 14K 6.8m

D.5 SCALING TERM FOR DENSITY INITIALIZATION

In Table 7, we evaluate different scaling functions for density initialization based on the primitive
count N . By initializing new layers with progressively lower densities, new primitives make gentle
corrections to the residual error rather than destabilizing the structure learned by previous layers.
We selected 1/ 3

√
N based on our empirical results and the intuition of working in 3D space.
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Table 7: Ablation study on the density normalization scaling factor for the 10-view setting. We
select 1/ 3

√
N (highlighted).

Real Dataset Synthetic Dataset

Scaling PSNR↑ SSIM↑ PSNR↑ SSIM↑

10
vi

ew
s Linear (1/N ) 32.65 0.871 29.33 0.854

Square Root (1/
√
N ) 33.06 0.889 29.46 0.858

Cube Root (1/ 3
√
N ) 33.04 0.889 29.44 0.858

None (1/1) 32.94 0.889 29.19 0.854

D.6 CGLS NUMBER OF ITERATIONS

We conducted an ablation study on the number of iterations for CGLS solver in Table Table 8.
In sparse-view settings, iterative solvers tend to show semi-convergence: they recover the object’s
low-frequency structure in the first iterations but eventually begin to overfit high-frequency noise
and streaking artifacts. Our results show that reconstruction fidelity peaks at 10 iterations before
degrading. We therefore use 10 iterations for residual reconstruction, relying on early stopping as
an effective form of regularization.

Table 8: Ablation study on the number of CGLS iterations across different sparse-view settings. We
select 10 iterations (highlighted).

Real Dataset Synthetic Dataset

#iter PSNR↑ SSIM↑ Time↓ PSNR↑ SSIM↑ Time↓

5
vi

ew
s

1 22.87 0.472 0.13s 20.28 0.360 0.13s
3 24.52 0.582 0.25s 22.59 0.547 0.24s
5 24.61 0.579 0.36s 22.79 0.537 0.36s

10 24.57 0.546 0.65s 22.79 0.482 0.65s
20 24.57 0.546 0.65s 22.79 0.482 0.66s
100 24.57 0.546 0.65s 22.79 0.482 0.66s

10
vi

ew
s

1 22.91 0.464 0.13s 20.32 0.354 0.13s
3 25.65 0.630 0.26s 23.78 0.603 0.26s
5 26.17 0.614 0.38s 24.51 0.579 0.38s

10 26.21 0.585 0.69s 24.64 0.512 0.70s
20 26.08 0.553 0.89s 24.48 0.467 0.90s
100 26.08 0.553 0.89s 24.48 0.467 0.90s

15
vi

ew
s

1 22.91 0.463 0.14s 20.33 0.352 0.14s
3 26.04 0.655 0.27s 24.19 0.629 0.27s
5 26.92 0.637 0.40s 25.26 0.601 0.40s

10 27.18 0.611 0.73s 25.61 0.535 0.74s
20 26.69 0.518 1.24s 24.99 0.406 1.27s
100 26.69 0.518 1.24s 24.99 0.406 1.26s

25
vi

ew
s

1 22.93 0.482 0.17s 20.35 0.356 0.16s
3 26.67 0.703 0.33s 24.59 0.679 0.31s
5 28.08 0.689 0.50s 26.61 0.677 0.46s

10 28.25 0.673 0.92s 27.99 0.664 0.84s
20 26.89 0.633 1.66s 28.26 0.633 1.61s
100 25.62 0.561 2.18s 28.16 0.601 2.08s

D.7 3D GAUSSIAN BLUR

In Table 9, we present an ablation on the Gaussian blur parameter (σ) applied to the 3D error map
prior to sampling. This step is used for suppressing high-frequency noise inherent in sparse-view
tomographic reconstruction. The results demonstrate a trade-off: lower values fail to filter noise
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streaks, while excessively high values may oversmooth the error signal. We find that σ = 2.0
provides the optimal balance.

Table 9: Ablation study on the Gaussian blur parameter (σ) applied to the 3D error map for the
5-view setting. We vary σ to control the suppression of high-frequency noise before sampling. We
find σ = 2.0 (highlighted) provides the best balance.

Real Dataset Synthetic Dataset

σ PSNR↑ SSIM↑ PSNR↑ SSIM↑

5
vi

ew
s

0.1 28.45 0.826 25.67 0.793
0.5 28.44 0.830 25.68 0.792
1.0 28.57 0.829 25.74 0.793
2.0 28.62 0.829 25.73 0.794
10.0 28.60 0.824 25.72 0.790

D.8 GUMBEL SAMPLING TEMPERATURE

In Table 10, we evaluate the impact of the temperature parameter (τ ) used in Gumbel-Max sampling
strategy. This parameter controls the entropy of the sampling distribution derived from the 3D
error map. A near-zero temperature approaches a deterministic argmax operation. In sparse-view
tomography, these maxima often correspond to noise spikes or streak intersections rather than true
missing geometry. Conversely, excessively high temperatures flatten the distribution, causing the
model to ignore the error guidance and sample uniformly. Our results show that τ = 0.005 offers
the best robustness, allowing the model to sample broadly from the high-error regions to recover
structure while avoiding overfitting to specific high-frequency noise artifacts.

Table 10: Ablation study on the Gumbel-Max sampling temperature (τ ) for the 5-view setting, where
sensitivity to noise is most critical. We select τ = 0.005 (highlighted) to balance diverse sampling
from high-error regions with robustness against noise artifacts.

Real Dataset Synthetic Dataset

τ PSNR↑ SSIM↑ PSNR↑ SSIM↑

5
vi

ew
s

0.0005 28.49 0.817 25.75 0.793
0.001 28.46 0.819 25.76 0.792
0.005 28.64 0.830 25.72 0.793
0.01 28.58 0.824 25.68 0.794
0.05 28.44 0.817 25.63 0.793

D.9 TV LOSS

In Table 11, we examine the impact of the Total Variation regularization weight (λTV). This loss
functions as a general smoothness prior by penalizing local gradient magnitudes across the entire
volume. Because the penalty is applied uniformly to all spatial gradients, it suppresses noise but
may also suppress real structural details. The results reflect this trade-off: lower weights fail to
contain sparse-view noise, while higher weights lead to an over-smoothed representation. We adopt
λTV = 0.25 to maintain a baseline of structural coherence.
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Table 11: Ablation study on the Total Variation regularization weight (λTV). We find λTV = 0.25
(highlighted) provides the optimal balance, maximizing reconstruction quality.

Real Dataset Synthetic Dataset

λTV PSNR↑ SSIM↑ PSNR↑ SSIM↑

5
vi

ew
s

0.05 28.20 0.811 24.80 0.751
0.25 28.75 0.828 25.67 0.788
0.50 28.56 0.829 25.75 0.793
0.75 28.44 0.823 25.71 0.794

10
vi

ew
s 0.05 33.39 0.884 28.73 0.833

0.25 33.59 0.892 29.65 0.858
0.50 32.99 0.888 29.41 0.857
0.75 32.52 0.883 29.15 0.854

15
vi

ew
s 0.05 35.72 0.906 31.25 0.875

0.25 35.47 0.908 31.62 0.886
0.50 34.59 0.903 31.13 0.882
0.75 33.84 0.897 30.69 0.876

25
vi

ew
s 0.05 35.29 0.840 35.03 0.925

0.25 36.46 0.850 34.43 0.922
0.50 36.41 0.851 33.46 0.912
0.75 36.00 0.849 32.71 0.904
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