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Abstract

Learning safe reinforcement learning (RL) policies from offline multi-task datasets
without direct environmental interaction is crucial for efficient and reliable deploy-
ment of RL agents. Benefiting from their scalability and strong in-context learning
capabilities, recent approaches attempt to utilize Decision Transformer (DT) archi-
tectures for offline safe RL, demonstrating promising adaptability across varying
safety budgets. However, these methods primarily focus on single-constraint sce-
narios and struggle with diverse constraint configurations across multiple tasks.
Additionally, their reliance on heuristically defined Return-To-Go (RTG) inputs
limits flexibility and reduces learning efficiency, particularly in complex multi-task
scenarios. To address these limitations, we propose CoPDT, a novel DT-based
framework designed to enhance adaptability to diverse constraints (i.e., cost func-
tions) and varying budgets. Specifically, CoPDT introduces a constraint prioritized
prompt encoder, which leverages sparse binary cost signals to accurately identify
constraints, and a constraint prioritized Return-To-Go (CPRTG) token mechanism,
which dynamically generates RTGs based on identified constraints and correspond-
ing safety budgets. Extensive experiments on the OSRL benchmark demonstrate
that CoPDT achieves superior efficiency and significantly enhanced safety com-
pliance across diverse multi-task scenarios, surpassing state-of-the-art DT-based
methods by satisfying safety constraints in more than twice as many tasks.

1 Introduction

Safe reinforcement learning (RL), focusing on deriving policies that explicitly satisfy predefined
safety constraints, has garnered significant attention due to its applicability in critical domains such
as autonomous driving (Zhang et al., [2021]), robotic control (Brunke et al., [2022)), and aligning large
language models with human values (Dai et al.,[2024). However, conventional online RL methods
rely heavily on inherently risky trial-and-error interactions, limiting their practical deployment in
safety-critical environments (Xu et al.,[2022b). To address this limitation, offline safe RL, aiming to
learn safe policies purely from previously collected datasets without direct environmental interaction,
has emerged as a prominent research direction (Liu et al.,|2024b; |Chemingui et al., |[2025)).

Typical offline safe RL approaches predominantly rely on static datasets collected under predefined
safety constraints, employing methods such as Lagrangian constraint optimization (Le et al., 2019)
and Hamilton-Jacobi (HJ) reachability analysis (Zheng et al., |2024) to derive policies with robust
safety guarantees. Despite their effectiveness, these methods exhibit limited adaptability in realistic
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multi-task scenarios involving multiple safety constraints (i.e., multiple cost functions) or dynamically
changing safety budgets. For instance, in autonomous driving tasks, vehicles must respect diverse
constraints, including lane-dependent speed limits (multi-constraint) and varying fuel consumption
budgets along a driving trajectory (multi-budget) (Kiran et al.,[2021). Addressing these multi-task
settings via independently trained individual policies is computationally prohibitive and inefficient,
as it neglects the intrinsic structural similarities across tasks. This exacerbates learning complexity,
particularly in practical offline safe RL contexts, where available data is inherently scarce (Dulac-
Arnold et al.| 2021} Gu et al.} [2022).

Leveraging knowledge-sharing mechanisms, multi-task learning approaches (Zhang & Yang 2021}
Gronauer & Diepold, [2022)) have notably enhanced sample efficiency across interrelated tasks.
Transformer architectures (Vaswani et al.,|2017; |[Islam et al.,2024)), celebrated for their scalability and
in-context learning ability, have demonstrated remarkable versatility in fields such as natural language
processing (Kalyan et al.}[2021)), computer vision (Khan et al.,[2022)), and decision-making (Yang et al.}
2023). Recent developments have also expanded Transformers into offline safe RL, incorporating
explicit constraint representations such as Cost-To-Go (CTG) tokens (Zhang et al., 2023} Liu et al.|
2023)) or logic tokens (Guo et al., [2024). These tokens analogously extend the Return-To-Go
(RTG) formalism introduced in DT (Chen et al.| 2021} [Li et al.l |2023)), facilitating autoregressive
policy training under explicitly modeled safety constraints. Despite significant progress, these
approaches currently face limitations in adaptive safety within complex multi-task environments: they
inadequately distinguish between diverse constraint specifications, resulting in reduced adaptability
when cost functions differ across tasks. Additionally, inherent tensions between maximizing rewards
and maintaining safety force these methods to rely extensively on predefined RTG objectives derived
from prior knowledge, thus restricting dynamic adjustment capabilities in response to evolving safety
budgets during policy execution, and ultimately constraining their flexibility.

To overcome these limitations, we introduce Constraint Prioritized Decision Transformer (CoPDT),
a novel DT-based framework designed for offline safe RL that exhibits enhanced adaptability to
multiple safety constraints and dynamically changing budgets in multi-task settings. Specifically,
we propose a constraint prioritized prompt encoder, which explicitly partitions trajectory data into
safe and unsafe segments guided by observed cost signals, individually encoding each segment to
effectively capture constraint-specific characteristics. This approach enables CoPDT to clearly differ-
entiate among diverse constraints, facilitating adaptive decision-making across varying conditions.
Moreover, we introduce a constraint prioritized Return-To-Go (CPRTG) token mechanism, dynam-
ically generating RTG targets based on the constraint-specific encodings and current CTG tokens.
Unlike traditional methods reliant upon static RTG inputs, the proposed CPRTG mechanism achieves
enhanced flexibility by adaptively accommodating changing safety budgets, thereby producing more
robust and effective policies. Extensive experiments on the OSRL benchmark (Liu et al., |2024b))
demonstrate that CoPDT significantly surpasses existing DT-based approaches in multi-task safety
adaptability, successfully satisfying constraints in over twice as many tasks, and exhibiting superior
efficacy in safe transfer learning scenarios.

2 Preliminaries

2.1 Multi-task offline safe RL

Safe RL is typically modeled as a Constrained Markov Decision Process (CMDP), defined as
a tuple (S, A,r, ¢, P,7v,b). Here, S and A denote the state and action spaces, respectively; r :
S x A = [—Rmax, Rmax] and ¢ : S x A — {0, 1} represent the reward and binary cost functions.
P:SxAxS—|0,1] specifies the transition dynamics, v € (0, 1) is the discount factor, and b is
the safety threshold. A policy 7 : S — A(A) maps states to action distributions. Under policy 7, the
expected discounted reward return and cost return are defined as R(w) = E,wp_ [> o0 77 (51, ar)]
and C(m) = E;rp, [Y oo v c(se, ar)], where T = (sg, ag, 81, a1, ...) ~ Py denotes a trajectory
induced by 7 and the environment dynamics P. Thus, the objective of solving a CMDP is to find a
policy that maximizes reward return while ensuring the cost return remains below the safety threshold:

max R(m), s.t.C(m) <b. (1)

In multi-task offline safe RL, a policy m must effectively adapt across multiple safety budgets or
constraints. Each task is formulated as a distinct CMDP, characterized by variations in elements



such as states .S, actions A, transition dynamics P, reward functions r, cost functions ¢, and safety
thresholds (budgets) b. Specifically, multi-budget scenarios involve tasks that differ primarily in their
safety threshold b, where, for example, a lower budget (b = 10) enforces more conservative behavior
compared to a higher budget (b = 100), which allows more aggressive policies. In contrast, multi-
constraint scenarios entail variations in the cost functions themselves; for instance, one task may
employ a cost function ¢; = Icondition(v > 1.0), whereas another task adopts co = Leondition (v >
2.0), where Icondition(+) is the indicator function and v denotes a state variable such as velocity.
Additionally, other CMDP components (S, A, P, r) may also vary across tasks. During training,
the policy is exposed to a collection of tasks {T 1 | and their offline datasets {D;}M j=1. While at

deployment, it must generalize effectively to a given task 7. If 7 € {7, } _1, the policy receives a
single expert trajectory for task identification in multi-constraint settlngs Otherwise, for efficient
transfer to an unseen task, it is provided with L expert trajectories from task 7.

2.2 Decision Transformer for offline safe RL

Decision Transformer (DT) is one of the most prominent methods that apply sequence modeling to
decision-making. It uses a Transformer framework, modeling RL’s reward maximization problem
as a sequence prediction task. When applied to offline safe RL, DT models the trajectory as the
following to support training and generation with Transformers:

T = (017 ]:?'17 S1, 01, 027 RQ? 52,02, ... CA’T7 J%Tv ST, aT) (2)

where ]A%t = ZLT . T is the Return-To-Go (RTG) token at time step ¢, and Ct = ZiT:t c; is the
Cost-To-Go (CTG) token. Let 7_g.; = (Ct K Rt Ky St— Ky Qt— Ky - - Ct,l, Ri_ 1, St—1,0¢—1),
DT’s policy can be expressed as mpr (G| 7— k¢, Cy, Rt, s¢), inferring the current action based on the
previous K-step trajectory, the current RTG, CTG and state. The policy is trained by minimizing
the difference between the inferred actions a; and actions a; in offline datasets. During deployment,
the DT’s policy mpr requires an initial RTG token Ry, CTG token C (which is exactly the safety
threshold b), and state s; to generate actions, with the RTG and CTG updated using Rt+1 = Rt — 1

and Ct+1 = Ct — Ct¢.

3 Method

This section gives the detailed CoPDT, a novel algorithm for adaptable multi-task offline safe RL
(Figure[T). Section [3.1] presents CoPDT’s procedure for prompt encoding, Section [3.2)illustrates the
process of CPRTG token generation, while Section [3.3]introduces CoPDT’s overall algorithm.

3.1 Constraint prioritized prompt encoder learning

To enable CoPDT to effectively adapt to tasks with varying constraints, the policy must accurately
identify these constraints. Therefore, we introduce a prompt encoder that extracts relevant information
from task trajectories to generate task representations, helping distinguish between constraints.
Environment-specific Encoders First, considering the presence of tasks with different state action
spaces, using a single unified neural network for all tasks becomes challenging due to the inconsistency
in input dimensions. Therefore, we categorize different tasks into distinct environments, where
tasks within the same environment share identical (S, A, P). Then, for each environment, we
apply environment-specific encoders to align the dimensionality of states and actions across tasks.
Specifically, for the i-th environment &;, we introduce two encoders, e, ; for states and e, ; for actions,
along with decoders d; ; and d, ;. To ensure that the action encodings retain sufficient information
from the original actions, e, ; and d, ; are trained using the reconstruction loss:

. 2

. min - EatNDi[(da7i(€a;i(at)) —at) ]a 3)

where D; represents the combined offline dataset for all tasks within environment &; and a; is the

sampled action. As for e, ; and d ;, we introduce an additional inverse dynamics model g;, and

train them by simultaneously minimizing the reconstruction error and the inverse dynamics error to
incorporate both state information and dynamics transition information into state encodings:

. 2 2
min By, 50 [(dsi(es,i(st)) = 50)° + (gi(es,i(se), €s,i(s1)) — €aiar))’], (4

es,iyds,i,gi
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Figure 1: Structure of CoPDT.

where s, at, s} are the sampled state-action transitions.

In previous DT-based methods for handling same-environment tasks with varying rewards, the
typical method Prompt-DT uses limited K -step trajectory segments as prompts for
task representation. However, due to the sparse nature of costs, short trajectory segments may not
contain sufficient information for constraint recognition. Therefore, new methods are needed to more
effectively extract cost-related information from the trajectories.

Constraint Prioritized Prompt Encoder To address the challenge posed by the sparse nature of c,
we propose the constraint prioritized prompt encoder p,.. Specifically, p. = (ps, p,,) consists of two
sub-prompt encoders. Given a reference trajectory 7 = (s1,a1,71,¢1, ..., ST, ar, 7, cr) for task
T, where ry, ¢; are the reward and cost of time step ¢, the prompt encoding z is computed as follows:
T
1

2 =pe(r") = 5 )_(Leondition (€t = 0)ps(st, ar,74) + Leondition (¢t = Dpu(st, ar, 11)),  (5)
t=1

where [.ondition 1S the indicator function. Since task differences may arise from variations in state
spaces (environments), reward functions, and cost functions, it is crucial for p. to capture information
from all three factors to ensure accurate task differentiation. To accomplish this, we introduce three
additional decoder networks fs, f, and f., and train them by minimizing prediction errors:

2

B B iy (o, anpelr) = 5)

H(fr (51,00, pe(T7)) = 1) + (fe(se, a0, pe(77) — )],

where D is the dataset for task 7, containing trajectories with both reward and cost information, 7*
refers to the trajectory that includes s}, 7, ¢;.

(6)

The constraint prioritized prompt encoder exploits the binary nature of cost signals to decouple cost
information from the prompt encoder’s input and uses it to select the appropriate sub-encoder network.
This design enables efficient utilization of cost information by capturing task distinctions through
variations in the input distributions of states, actions, and rewards across different encoders. The
resulting prompt encoding z serves as part of the input of the DT policy for task identification.

3.2 Constraint prioritized RTG token generation

Leveraging constraint-level representations from the prompt encoder and budget-level signals from
the CTG, a unified DT policy can potentially support adaptable multi-task offline safe learning.
However, prior methods often overlook a key issue in multi-budget settings: the conflict between
reward and cost objectives, which are represented by the RTG token R, and the CTG token C, in
DT, respectively. Handling varying budgets requires adapting to diverse CTG inputs, but selecting
a suitable RTG under changing CTGs remains challenging. When RTG values are misaligned, the
agent tends to prioritize rewards due to its limited ability to resolve the conflict between RTG and



CTG, risking safety violations. Therefore, our goal is to automatically generate a conflict-free RTG
based on the identified constraint representation and the current CTG.

Modeling RTG Conditioned on CTG To achieve the generation of conflict-free RTGs in CoPDT
for different budgets, a straightforward approach is to model RTG as conditioned on CTG, i.e.,
learning the model p(R;|C}) from the offline data. Since the relationship between RTG and CTG
is primarily derived from offline trajectories, where multiple RT'Gs might correspond to the same
CTG, we further constrain the generation process by incorporating state information at each time
step, and model p as a non-deterministic normal distribution A" approximated by a neural network gy.

Formally, given the offline data D = {(s¢, at, s}, 7, ¢t, Rt, C’t, t)k}LD:‘P we have:

s (-|Ct, 5¢) = N(pg(Cr, 50), S6(Ch, 50)), (7)

where (14 and ¥4 are the mean and standard deviation networks, respectively, and Cy and s, represent
the CTG and state at step ¢. To maximize the probability of generating Ry conditioned on the given
C' and s, the model g4 is optimized by the following negative log-likelihood objective:

II;inEst,Rt,C'th[_ log q¢(]A%t|CA't,st)}. )

¢

CTG-based $-quantile Sampling for Safe And Expert Inference However, such modeling
only prioritizes CTG without considering the need for expert-level inferences after ensuring safety.
Therefore, in addition to maximizing p(R;|C}, s;), we also aim to maximize p(R;|Gy, Cy, s¢) by

introducing a variable G, that indicates the trajectory is expert after time step ¢. Similar to MGDT (Lee
et al.| 2022), we apply Bayes’ theorem to obtain the following:

P(Ri|Gy, Cy, 5¢) o p(Re|Cy, 5)p(Gi| Ry, Cy, 51), 9

where p(G; |Rt7 Cy, s¢) represents the probability that the future trajectory is expert given the current
RTG, CTG, and state. Intuitively, when fixing C;, a hi gher probability is attributed to p(G; \Rt, Cy, St)
if R, possesses a larger value. Therefore, this term could be maximized by sampling large R,.
However, when R; becomes excessively large, the conditional probability p(Rt|C't, s¢) tends to
decrease. To optimize the joint likelihood p(]?t|Gt, é’t, s¢), it is therefore essential to select an
appropriate R, that strikes a suitable balance. To this end, we adopt a quantile-based selection
strategy. Specifically, we first sample X values from q¢(~|é’t, st), and then choose the 3-quantile
among them as the final RTG token. To find a balanced R, we propose the CTG-based 3 decay:

C,—C
Bt = min(ﬁstart + (ﬂstart - Bend)%a Bend)a (10)

1

where C is the initially given safety threshold, SBa and Senq are two hyperparameters. When
CTG is large—indicating more room for potential future safety violations—a larger /3, for more
aggressive decision-making is acceptable. Conversely, when CTG is small, the policy should be more
conservative, resulting in a smaller ;.

Overall Generation Process In conclusion, at time step ¢, we sample X candidate values from

44 (+|Ct, s¢), and chose the 5;-quantile value as the CPRTG token, denoted as R;. This token provides
a simple but efficient method for adjusting policy conservatism while attaining high-rewarding
behaviors during deployment. If the policy does not meet safety requirements, lowering [y Or
Bend can increase conservatism without altering model parameters. Similarly, adjustments can be
made to improve reward return when the policy is too conservative. In practice, we typically fix
Bstart as 0.99 and adjust Beng only. Additionally, the past trajectory 7_ k- is incorporated into gy to
improve inference accuracy and maintain greater consistency with training. Additional explanations
and theoretical analyses of CPRTG from the perspective of offline RL are provided in Appendix [A]

3.3 Opverall algorithm

With the design above, we can apply CoPDT to multi-task scenarios to learn safe policies. Below, we
briefly outline CoPDT’s training and deployment. Detailed pseudo-codes are provided in Appendix [B]
and the approach for task identification in unknown environments is provided in Appendix



During training, CoPDT first learns the environment-specific encoders by Equation (3)) and Equa-
tion () to align the dimensionalities of state, action spaces. Then, the constrained prioritized prompt
encoder p. is trained via Equation (5) to produce a prompt encoding z that captures constraint-relevant
information. Given the prompt encoding z as an additional input, the CPRTG generator ¢ is then
similarly optimized by Equation (8] to generate suitable RTGs under various constraints and budgets.
With all components prepared, we finally learn the DT policy. Let the policy network be denoted as
g, which consists of two output heads: 7y , for actions and 7y . for costs. The additional cost head
is designed to help the policy capture cost-related patterns, thereby improving task identification.
Given the expert trajectory 7, the learned p., environment ID ¢ (for choosing environment-specific
encoders), and a sampled trajectory 7_ g .+, Ry, s; from task 77's offline dataset, the input can be repre-

sented as 0y = (T— k.1, Cy, Rt, St, Pe(7*), ). The cost output head 7y . is modeled deterministically,
while the action output head is modeled as a normal distribution:

7T97a("0t) :N(MQ,G(Ot)729,a(Ot))a (1D

where pg , and g , are the mean and standard deviation networks for the action output head,
respectively. We optimize the policy by minimizing the negative log-likelihood loss and negative
entropy loss of the actions, as well as the difference between the predicted costs and true costs:

wer,zl}%,c ETviN{Tj }§VL1 [ET* aT—K:tyét;Rt;St:atvct"’DT [_ 1Og 770,a(®t|0t) (12)

—AnH [mg.a(-|00)] + Ac(mo.c(0r) — )],

where H is the Shannon entropy regularizer (Haarnoja et al.,[2018)), A, and A are two hyperparame-
ters that control the weighting of the entropy regularization and the cost loss.

Deployment During deployment, the initial task safety threshold Cyis provided, and in each time
step, the CPRTG R; is computed to replace the original RTG R;. At this point, the policy’s input is
Oy = (%—K:h Ct; Rtv St7p€(7—*)7 Z)a where

Tkt = (Cop, Rk, St—k» Gty - - -, Co—1, Re—1, S¢—1, Gy—1). (13)

4 Experiments

In this section, we present our experimental analysis conducted on 26 tasks from the OSRL (Liu
et al.| 2024b)) dataset to answer the following questions: (1) Can CoPDT outperform other baselines
across various multi-task settings (Section ? (2) How the design of CoPDT contributes to its
performance (Section F.3)? (3) Can multi-task learning bring about benefits, and whether each
component of CoPDT contribute effectively to the performance (Section [4.4)? For page limits,
additional experimental results will be provided in Appendix [F}

4.1 Baselines and tasks

To evaluate the performance of CoPDT, we conduct experiments across several baselines in various
multi-task settings. We first compare CoPDT to CPQ (Xu et al., [2022a), a widely used single-
task offline safe RL method based on conservative estimation, and to CDT (Liu et al., [2023)), the
SOTA DT-based method designed for multi-budget decision-making. Additionally, we consider
FISOR (Zheng et al.,2024) and LSPC (Koirala et al., [2025)), two recent baselines that integrate hard
constraint modeling and demonstrates SOTA safety performance in single-task settings. To assess
performance in more general multi-constraint scenarios, we extend CDT in two ways: (1) by training
it on multiple constraints, resulting in MTCDT, and (2) by incorporating expert trajectory segments
as prompts (Xu et al.|[2022c)), referred to as Prompt-CDT. These baselines are evaluated under three
settings: Single-constraint Multi-budget, Multi-constraint Single-budget, and Multi-constraint
Multi-budget, where each method aims to handle four distinct budget levels [10, 20, 40, 80] per
constraint in multi-budget settings. For training, single-task baselines like CPQ are trained separately
for each budget level, while FISOR, which does not support budget conditioning, is trained four times
independently and evaluated under the same protocol to ensure fair comparison. In multi-constraint
settings, a unified policy is trained for each method to handle all 26 OSRL tasks simultaneously.

The tasks selected from the OSRL dataset used in our experiments consist of 16 navigation tasks
and 10 velocity tasks. Specifically, the navigation tasks involve two types of robots (Point and Car)



Table 1: Overall normalized rewards and costs. Each value is averaged over 20 evaluation episodes, 3

random seeds, and the given budgets in each setting. Bold: Safe agents. : Unsafe agents. Blue:
Safe agent with the highest reward in each setting.
Single-constraint Multi-budget Multi-constraint Single-budget Multi-constraint Multi-budget
Task CPQ CDT FISOR LSPC CoPDT MTCDT Prompt-CDT CoPDT MTCDT Prompt-CDT CoPDT
T cl T cl T cl T cl T cl T cl T cl T cl T cl T cl T cl
PointButton] 0.67 5.28 054 516 0.08 1.30  0.16 1.90  0.05 0.66 | 0.48 4.66 0.57 6.02 0.02 044|049 4.17 0.55 4.90 0.04 0.55
PointButton2 0.53 6.04 045 432 0.11 1.41 0.17 1.70  0.14 1.41 | 043 4.65 0.43 4.32 0.09 1.43 | 0.38 3.81 040 422 0.08 098
PointCirclel 0.41 094 055 055 044 554 055 664 050 063|051 052 053 088 0.55 1,191 052 047 055 087 0.55 1.09
PointCircle2 0.23 540 0.61 1.33  0.71 6.21 0.62 5.31 0.61 0.98 | 0.61 2.84 0.58 2.96 0.58 2.14 | 0.61 3.13 0.58 2.68 0.57 1.75
PointGoal 0.58 048 0.67 1.71 066 214 025 027 036 0.56 | 0.60 1.20 0.71 1.66 0.16 0.27 | 0.61 1.28 0.68 1.68 0.24  0.30
PointGoal2 0.39 345 054 284 029 128 025 0.85 031 1.02 | 046 230 055 334 0.19 0.60 | 045 201 0.54 294 0.26 0.66
PointPush1 0.23 1.60 027 142 0.31 089 013 097 0.19 088 | 0.24 1.14 0.24 1.49 0.08 050 | 0.23 1.11 0.24 1.25 0.12  0.69
PointPush2 0.16 1.42 020 1.76 0.24 1.40  0.11 0.89 0.19 1.47 | 0.22 1.93 0.18 1.53 0.11 1.28 | 0.20 1.77 0.17 1.49 0.11 0.83
CarButtonl 0.48 1540 020 397 -0.06 0.16 -0.07 137 007 074|021 5.42 0.29 7.03 0.03 1.25 ] 0.23 4.61 0.29 6.38 0.04 0.89
CarButton2 0.29 1932 0.14 470 -0.02 040 -0.15 152 -0.02 133|024 5.58 0.25 6.01 -0.01 1.28 | 0.22 5.19 0.25 5.46 -0.02 094
CarCirclel 0.04 469 055 403 069 535 045 350 051 3.34 | 0.50 3.11 0.49 3.49 042 251 |0.55 347 0.51 3.39 0.50 2.89
CarCircle2 0.45 1.31 0.63 628 0.51 413026 0.00 028 098 | 0.56 7.44 0.55 6.11 0.29 1.81 | 0.56 6.37 0.57 5.61 0.34 1.67
CarGoall 0.76 229 064 213 043 072 024 051 033 047 | 054 1.39 0.57 1.90 0.17 026 | 0.54 1.48 0.56 1.80 0.22 032
CarGoal2 0.57 472 042 259 007 027 012 059 0.19 081 | 032 190 040 3.05 0.12  1.20 | 0.30 1.93 038 270 0.13 091
CarPush1 0.03 1.07 029 098 025 043 022 086 020 0.67 | 0.23 1.16 0.25 1.33 0.14 047|025 084 025 093 0.18 048
CarPush2 0.16 750 008 230 013 059 009 093 007 073|016 2.16 0.14 2.52 0.04 057 | 0.18 2.31 0.17 2.27 0.06 0.62
SwimmerVelocity VO 0.09 0.99 0.71 132 -0.04 031 071 258  0.63 1.29 | 0.71 6.54 0.71 0.75 0.69 099 | 0.72 748 0.72 0.75 0.69 0.84
SwimmerVelocityV1 0.15 140 065 121 -0.04 0.14 052 077 044 087|061 038 0.66 0.86 0.60 076 | 0.62 048 0.66 0.68 0.61 0.74
HopperVelocity VO 0.04 2.01 084 092 030 023 097 819 084 1.50 | 0.63 15.08 0.83 5.11 0.63 645 | 0.68 1337 0.89 5.01 0.57 4.28
HopperVelocityV1 0.15 149 072 160 016 086 097 1.24 035 1.17 | 0.67 1.31 0.70 6.85 0.16 1.07 | 0.68 1.13 0.68 5.50 0.27 1.09
HalfCheetahVelocityVO | 0.40 2.24 094 105 089 0.00 096 046 051 036 | 0838 1550 1.08 38.91 0.63 0.60 | 0.89 14.71 1.08 35.24 0.70  0.36
HalfCheetahVelocityV1 | 0.38 220 098 093 089 0.00 097 124 0.84 1.00 | 0.94 1.02 095 030 0.78 1.39 | 0.94 1.16 095 041 0.75 1.22
‘Walker2dVelocity VO 0.04 046 029 191 0.11 1.11 040 439 032 290|127 2663 0.86 1459 034 488|125 2451 0.81 1430 035 444
‘Walker2dVelocityV 1 0.03 036 079 009 053 080 0.78 005 073 042|078 028 077 0.19 071 099|079 026 076 0.13 0.66 0.73
AntVelocity VO 094 0.00 090 095 0.77 0.00 095 0.60 090 0.84 | 093 1.41 0.96 293 096 540 | 093 1.40 0.96 2.56 0.95 4.89
AntVelocityV1 -1.01  0.00 097 081 0.89 000 098 033 098 175|099 094 099 085 092 3531099 088 099 071 092 342
Average 0.19 354 056 219 036 137 042 1.88 040 1.11 | 057 448 059 481 036 1.66 | 0.57 420 058 438 038 145

across four distinct scenarios: Button, Circle, Goal, and Push, with two tasks per scenario. On the
other hand, the velocity tasks cover five different robots—Ant, HalfCheetah, Hopper, Swimmer, and
Walker2d—with two tasks for each robot. Additional details can be found in Appendix

4.2 Competitive results

In this section, we present the overall performance of CoPDT and all baselines across the three
evaluation settings, and the results are summarized in Table m First, in the Single-constraint Multi-
budget setting, CPQ exhibits poor performance, primarily due to its limited capacity to handle
multi-budget datasets, which often include unsafe trajectories. In contrast, FISOR demonstrates
robust safety performance, highlighting the effectiveness of its hard constraint modeling. However,
both CPQ and FISOR fail to support adaptation to multiple budgets via a unified policy. On the other
hand, the Transformer-based method CDT, which leverages the DT architecture, successfully extends
the policy to handle multiple budgets simultaneously, achieving competitive reward performance.
Nevertheless, its reliance on manually specified RTGs hinders its adaptability, leading to suboptimal
safety outcomes due to conflicts between RTGs and CTGs. In comparison, our method, CoPDT,
demonstrates better safety performance than LSPC and comparable results to FISOR, while being
able to seamlessly adapt to multiple budgets using a unified policy, effectively resolving conflicts
between RTGs and CTGs.

Next, in the multi-constraint settings, MTCDT experiences further degradation in safety performance,
primarily due to its inability to distinguish between different constraints. In contrast, Prompt-
CDT, which incorporates additional expert trajectory segments for constraint identification, achieves
marginally better results, making safe decisions in a few more tasks compared to MTCDT. However,
the limited availability of cost signals in the expert trajectory segments restricts their informativeness,
leading to insufficient constraint-awareness and ultimately suboptimal performance. In contrast, our
method CoPDT delivers consistent and significant improvements in safety performance across both
single-budget and multi-budget settings, demonstrating the effectiveness of the constraint prioritized
prompt encoder in accurately identifying and adapting to a variety of task-specific constraints.
Detailed standard deviations are provided in Appendix [F.13]
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Figure 2: (a) Visualization of task PointButton. (b) The normalized rewards of CDT with different
initial RTGs and CTGs. (c) The real costs of CDT with different initial RTGs and CTGs. (d) The
safety performance of CoPDT and CDT across various budgets.

4.3 Visualization experiment

To reveal how our method CoPDT works, we here design visualization experiments to show the
inherent conflict between reward and cost, and assess whether the proposed CPRTG mechanism can
generate conflict-free RTGs that enable safe and adaptive decision-making under varying budget
constraints. Specifically, we first investigate the conflict between CTGs and RTGs objectives in DT
by analyzing CDT’s behavior under four different target rewards and four budgets in PointButton1
(Figure |Z| (a)). As illustrated in Figure |Z| (b) and (c), we observe that both the reward and cost of
the DT policy vary significantly with changes in the target reward. In contrast, the cost remains
relatively insensitive to changes in the target cost. This asymmetric behavior indicates a conflict
between reward and cost objectives, where the DT policy tends to prioritize reward, often at the
expense of safety. These findings indicate the necessity of generating suitable RTGs to achieve
safe decision-making under different budget constraints. To further quantitatively reveal how the
prioritization of CTGs influences safety, we compare the performance of CoPDT and CDT under
ten different budgets. As shown in Figure 2] (d), CoPDT consistently satisfies safety constraints
across all budgets, with cumulative cost decreasing in accordance with stricter budgets. In contrast,
CDT exhibits severe safety violations, especially under stricter budget constraints, illustrating that
CoPDT’s CPRTG can effectively generate reasonable RTGs based on the CTG, ensuring the higher
priority of CTG and enabling safe decision-making under multi-budget scenarios. More results can

be seen in Appendix [F.2} Appendix [F.6]

We design additional experi-
ments to further assess our Encoding Visualization Patch Encoding Comparison Prompt Quality Analysis
constraint prioritized prompt b Y |
encoder’s ability in constraint . e ‘ ) a

identification. First, we visu- . ",/2

alize the projection of the gen- - peitly }
erated prompt encodings, as - ¥ . 8. e - -
shown in Figure El (a), the en- @ ® ©

codings corresponding to dif-
ferent tasks are well-separated,
indicating strong task discrim-
inability. Next, to verify that the
constraint prioritized prompt en-
coder can effectively utilize cost signals for task identification, we conduct a visualization experiment
in the PointCircle environment. In this experiment, we first randomly generat 5,000 (s, a, ) samples
without including the cost c. Each of these samples is then encoded using both p, and p,,, followed
by dimensionality reduction. The visualization results are shown in Figure[3](b). As can be observed,
the encoded representations from p, and p,, exhibit clear differences, indicating that the cost label
c significantly influences the encoding process. This demonstrates that the constraint prioritized
prompt encoder effectively decouples the learned representations from the behavior policy. Finally,
we conduct a prompt quality analysis to assess the encoder’s robustness under varying prompt con-
ditions, comparing our encoder with a simple MLP encoder across four prompt qualities: Expert,
Mediuml, Medium2, and Random. Medium1 and Medium?2 correspond to prompts consisting of
unseen trajectories with high costs and low rewards. As shown in Figure 3] (c), our encoder maintains

Figure 3: (a) Visualization of prompt encodings. (b) Comparison
of safe patch encodings and unsafe patch encodings. (c) Prompt
quality analysis on costs.
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Figure 4: (a) Zero-shot generalization results. (b) Transfer rewards in HopperVelocity V2. (c) Transfer
costs in HopperVelocityV2. (d) Main ablation results.

more stable performance across these degraded prompt conditions, demonstrating its robustness even
under noisy or suboptimal inputs. Further details can be found in Appendix [F.6]and Appendix [F13]

4.4 Benefits of multi-task learning and ablations

Since CoPDT is trained in a multi-task setting, we here design experiments to validate its potential for
promoting knowledge sharing. Specifically, we first evaluate its zero-shot generalization to unseen
constraints (unseen velocity limits) across three robot types. As shown in Figure [ (a), we can
find that CoPDT outperforms Prompt-CDT in terms of average safety generalization, suggesting
that its learned task representations capture richer, and our design could cover more transferable
information for policy learning. However, a noticeable performance gap remains when compared
to policies trained directly on task-specific offline data, indicating the need for few-shot transfer
learning. To this end, we introduce 10 expert trajectories under a fixed budget of 10 as additional
transfer data and compare two fine-tuning methods—full fine-tuning (FFT) and LoRA (Hu et al.|
2022)—against learning from scratch. As shown in Figure 4] (b) and (c), regardless of the fine-tuning
method, multi-task pretraining significantly enhances the policy’s performance across both reward
and cost metrics, highlighting the effectiveness of CoPDT ’s multi-task learning in enabling efficient
adaptation to novel, yet related tasks. Additional transfer results are presented in Appendix [F7}

Finally, we conduct ablation studies on all selected OSRL tasks in the Multi-constraint Multi-budget
setting to evaluate the contributions of key components in CoPDT. The following variants are
considered: (1) W/o PE omits the constraint prioritized prompt encoder. (2) Simp PE replaces the
encoder with a simple MLP without separating safe and unsafe patches. (3) W/o CP removes the
CPRTG module. (4) W/o CD disables CTG-based g decay. (5) Small Model utilizes a DT backbone
with fewer parameters. As shown in Figure[d] (d), the extremely poor safety performance of W/o PE
highlights the necessity of effective constraint identification, while the higher safety violations in
Simp PE further underscore the effectiveness of our constraint prioritized prompt encoder design. The
performance degradation observed in W/o CP and W/o CD emphasizes the critical roles of the CPRTG
module and the CTG-based /3 decay mechanism in generating reliable RTGs that effectively balance
reward and safety. Finally, the drop in safety performance seen in the Small Model reinforces the
importance of model capacity, highlighting the necessity of using Transformers to ensure scalability.
Additional results can be found in Appendix [F.I0}Appendix [F.14}

5 Related work

Safe RL. Safe RL ensures policy deployment under safety constraints in addition to reward
maximization, which is often formulated as constrained optimization problems (Garcia & Fernandez,
2015;Wachi et al., [2024])), and typically solved using Lagrangian multiplier methods (Wachi et al.,
2024). These methods learn a cost value function and a parameterized multiplier, adjusting the
multiplier based on cumulative cost to enforce safety (Chow et al.l 2018 Stooke et al.| 2020; Tessler
et al.} 2019). However, they will involve unsafe real-world interactions during training, making them
impractical. To address this, recent work focuses on offline safe RL, learning safe policies from
pre-collected data to avoid unsafe exploration. These methods evaluate safety conservatively by
treating out-of-distribution (OOD) samples as unsafe (Le et al.,[2019; |Xu et al.| 2022a; Zheng et al.|
2024} Yao et al.,[2024)), thereby reducing extrapolation errors (Fujimoto et al., 2019).



Transformers in RL. Transformers have shown impressive performance in complex sequential
tasks like large language models (Zhao et al., |2023)), inspiring their use in offline RL. DT (Chen et al.|
2021)), for example, employs a GPT-like Transformer (Achiam et al.,[2023) with historical sequences
and RTG tokens to predict optimal actions, breaking traditional RL paradigms and circumventing
extrapolation errors directly. Extensions such as MGDT (Lee et al.|[2022)) and Prompt-DT (Xu et al.}
2022c)) adapt DT to multi-task settings using visual inputs or expert trajectory prompts. For safe RL,
CDT (Liu et al.}2023)) introduces CTG tokens, while SDT (Guo et al.,[2024) uses signal temporal
logic tokens to encode richer safety information. However, these methods overlook the differing
priorities between RTG and safety tokens, leaving the trade-off between reward and safety constraints
unresolved, which motivates our work. More related work is discussed in Appendix

6 Final remarks

In this work, we propose CoPDT, a novel algorithm for learning adaptable, multi-task offline safe
policies within the DT architecture. CoPDT first introduces a constraint prioritized prompt encoder to
utilize sparse binary cost information for accurate task identification under different constraints. Then,
the CPRTG mechanism is designed to generate reasonable RTGs across varying budgets, effectively
resolving conflicts between CTGs and RTGs. Extensive experiments across diverse multi-task settings
demonstrate the superior adaptability and safety performance of CoPDT. Looking forward, scaling
policy capacity and training across broader task distributions and larger datasets present a promising
path toward enhancing knowledge transfer. Furthermore, achieving zero-cost exploration in safe RL
using large language models (Wang et al., 2024) and deploying safe RL in embodied robots (Liu
et al.,[2024a; [Feng et al.,|2025) are also highly promising future research directions.
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judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: The theoretical result and proofs are provided in Appendix [A]
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Detailed algorithms and hyperparameters are provided in Appendix [B|and
Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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* If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]
Justification: The data and code are provided in the supplementary material.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details
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Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Detailed algorithms and hyperparameters are provided in Appendix [B]and
Appendix [E]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: The standard deviation of the main experiment is provided in Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The time complexity analysis is provided in Appendix [F.1]
Guidelines:

» The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.
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9.

10.

11.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: We provide a discussion on societal impacts in Appendix [I]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

o If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited,
and the license and terms of use are explicitly mentioned and properly respected.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Additional interpretations of CPRTG from the perspective of offline RL

A fundamental challenge in offline RL lies in mitigating extrapolation errors that arise when the policy
encounters out-of-distribution (OOD) regions (Prudencio et al.,|2023)). While DT partially address
this issue by constraining policy learning to the support of the offline dataset through supervised
learning, they remain vulnerable to OOD generalization when RTG values are treated as also part
of the input state. In particular, RTG values that deviate from those observed in the offline data can
still induce distributional shift, leading to unsafe or suboptimal behavior. The CPRTG mechanism
addresses this by generating RTG targets that remain within the empirical support of the offline
dataset, thereby reducing extrapolation risk and enhancing safety. From this perspective, we can
make some theoretical analysis about the advantage of using CPRTG.

Lemma A.1. (Janner et al.||2019) Suppose we have two distributions p1 (z,y) = p1(2)p1(y|z) and
p2(x,y) = p2(x)p2(y|z). We can bound the total variation distance (TVD) of the joint as

Drv(pr(z, y)llp2(2,y)) < Drv(p1(2)[p2(2)) + Exnp, [Drv(pr(yl2)lp2(yl))].  (14)

Lemma A.2. (Janner et al| 2019) Suppose the expected TVD between two dynam-
ics distributions is bounded as max;E, (o) [Drv(p1(s'ls,a)l|p2(s]s,a))] < €m, and
maxg Dry(my(als)||m2(als)) < ex, where pt(s) is the state distribution of w1 under dynamics
p1(s’|s, a). Then the returns are bounded as:
2Rmax’7(€7r + Em) 2Rmax€7r
Im —n2| < 5 ,
(1=2) 1—v

where 1); is the expected reward return under 7; and p;, -y is the shared discount factor and R, is
the maximum possible reward.

(15)

The two Lemmas mentioned above, although both derived from MBPO (Janner et al., [2019)), do not
require any additional assumptions for the policy training process (such as being model-based or
online training). They only measure the performance of the policy during deployment. Therefore,
we can shift our perspective and treat the CTG and RTG distributions from offline data as the true
distributions given by the environment. In this context, the policy during deployment can be viewed
as being rolled out in a learned model of that environment. This environment model learns state
transitions accurately, but the CTG and RTG transitions are not perfectly accurate. According to
Lemma[A.2] we can conclude that as the CTG and RTG transitions become more aligned with their
true distributions, the return obtained by the policy in the learned model will more closely resemble
the return in the real environment, which means, in our case, the return during policy deployment will
be more similar to the return observed in the offline data. (Under the following theorem and proof,
we ignore the past trajectory 7_ g4 for simplification. After incorporating 7_ ¢, it can similarly be
regarded as part of the state. As a result, the proof remains unchanged—this modification simply
introduces 7_ g+ as an additional condition in all probability terms.)

Theorem A.3. Suppose the transition distribution of CTG given the next state dur-
ing deployment is p1(Cey1ls', s, Ry, Cy,a), and that induced from the offline dataset is
p2(Ciials', s, Ry, Cy,a).  The transition distribution of RTG given the next state and next
CTG during deployment is p1 (Rt+1|C’H_1,5 s, Ry, Cy, a), and that induced from the offline
dataset is ps (Rt+1|Ct+1, s’ s, Ry, Cy, a). Let the TVD between the CTG transition distribution
Dry(p1(Cii1]s, s, Ry, Ct, )||p2(Ct+1|s s, Ry, Cy, a)) be TV(C.t), and the TVD between the
RTG transition distribution DTV(pl(RtH\CtH,S s, Ry, Cy, )||p2(Rt+1|ét+1,s’7s,Rt,C't,a))be
TV(R,t). If
mtaXEszﬁ(s)7s'~p1(.\s7Rt7@t,a) [TV(C,1)] < ec, (16)

mta“xEswptl(s),s’Npl(-|s,I§’,t,C't,a),ét+1~p1(-\s/,s,ﬁ’,t,ét,a) [TV(R’ t)] < €r, an

then we have

2Rmax’7(€7r + €c + 6R> 2Rmax€7r
R~ R _ _ 18
m =72 (177)2 17’_)/ ) ( )
2v(er + €c + €R) 2¢
&< u J 19
Un —772+ (1_7)2 1_77 ( )
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where pt (s) is the state distribution of the learned DT policy in timestep t, p1(-|s, Ry, Cy, a) is the
dynamics transition distribution of the target task, n7*,n$ are the expected reward return and cost
return for the learned DT policy during deployment, and nit, nS is the expected reward return and
cost return for the behavior policy under the state, CTG, RTG transition induced from the dataset.

Proof. We view RTG R; and CTG C} from a different perspective, rather than the condition, but part
of the state. Then, we take the state, RTG and CTG transition distribution induced from the offline
dataset pa(s’, Re41, Cet1]$, Re, Ct, a) as the ground truth transition distribution, but the state, RTG
and CTG transition distribution during deployment as the environment model transition.

First, applying Bayes rule we have
Pi(s/, Rt+17 CA’t+1|8, Rt, Ctv a)
= pi(S/‘S, Rt7 éta a’)pi(ét-‘rl |8/7 S, Rt; éta a)pi(RH—l |ét+l) S/a S, Rt, éh a/)7 (20)

i = 1,2, and p1(s'|s, R, C,, a) = pa(s’]s, R, Cy, a) due to the same state transition distribution.
Therefore, apply Lemma[A.T| we can obtain

Drv(pi(s', Ry, Copals, Ry, C, a)||p2(s’, Resr, Crsals, Ry, Cy,a))
< Drv(pi(s'ls, R, Gy, a0)||p2(s'] s, Re, Ci, a))
+ By o (15,80, Co ) [Drv(p1(Rig1, Ciqals', s, Re, Co, a)|Ip2(Rigr, Coqals', s, Re, Cy, )]
SEg (s B Crra) [Drv(p1(Cii1ls’, s, By, Cr, a)||p2(Crins, s, Ry, Cy, a))

+ Eét+1~p1(»\sxs,}?t,ét,a) [DTV(pl(Rt+1 ‘ét+17 s'ys, Rm Ou (l)||P2(Rt+1 \C't+1, s'ys, Rm C'u a))]]

2D
Since
MaxE v (o) vmpy (s, i Gy [TV (O )] <€, (22)
m?XESNpi(5)75"“[)1(‘\S,Ruét,a%étHNm(‘|S’7S,Rméua) [TV(R’ t)] < R (23)
and thus
mtaXESpri(s) [DTV(P1(8/7 Rt+1; Ct+1\87 Rt, étva)||p2(5/7 Rt+1, C't+1\8, Ru ét,a))]
S MAXE i (6),50pn (s e, Coa) [TV (G )] (24)

+ m?“x Eswpi (5),s/~p1(-\S,Rt,ét,a),ét+1~p1('|S’7S,Rtyét1a) [TV(R’ t)}
< €c + €R.

Therefore, treat p; (s, Rt+l; CA'tH |3, Ry, Cy, a) as the state transition p;(s’|s, a) in Lemma we
further obtain

| R R| 2Rmax’)’(€ﬂ~ +ec + GR) 2Rmax€n

— 25
771 772 (1_7)2 1_7 ) ( )
2v(ex +€c +€r) 26
¢ _pll < ) 26
Finally, we have
2Rm x’Y(Gr +€ec + €R) 2Rmax€x
R R a
n=ny — - , Q27
e (1-7)? 1—7
2v(exr + €c + €R) €,
C<pt ) 28
e A 29
O

Theorem [A.3] provides an upper bound on the performance gap between the DT policy during
deployment and the offline data-driven behavior policy. This gap is primarily influenced by three
factors: €, €c, and €g. €, is mainly determined by the degree of optimization of the policy loss
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function, which is difficult to alter. As for e, we rely on the generalization ability of the Transformer
for the CTG to adapt to different safety thresholds, and thus, we do not wish to modify the initial
settings or update method of the CTG. Therefore, a natural approach to improving the lower bound
of policy performance is to reduce the value of €. In this context, the CPRTG generator in CoPDT

can be viewed as a neural network approximation of pa (R4 1|Cyy1, ', s, Ry, Cy, a), which helps to
lower e during deployment.

Future research could also explore addressing OOD CTG values, for instance, by mapping large
initial CTGs (those exceeding the maximum in the offline dataset) to the dataset’s maximum, thus
ensuring safety while further mitigating OOD-related extrapolation errors.

B Practical algorithms

In this part, we will offer the detailed algorithms of CoPDT in multi-constraint scenarios. As described
in the main paper, the workflow of CoPDT primarily includes four parts: g4 training, p. training,
policy training, and policy deployment. For g4 and p. = (ps, p..), we both use simple multi-layer
perceptron (MLP) networks, and additional prompt embeddings, environment IDs, and previous
K-step trajectories will be used as inputs for gg:

minEr 730, B s Gy (108 06(R1{Co st pe (), 7o), (29)

where 7_ g .4 is concatenated into a single vector, and is used to improve the accuracy of distribution
fitting and maintain consistency between the inputs of g4 and mg. For computational efficiency, we
adopt a lightweight MLP architecture here. However, a Transformer-based model, similar to the one
used in the DT policy, can also be employed to potentially enhance performance. Exploring such a
design remains an interesting direction for future research.

The use of ps and p,, in p. is similar to traditional context-based meta RL (Rakelly et al.,2019; |Li
et al.| 2021 |Yuan & Lu, [2022). Assume that the safe patch, classified using cost information, is
represented as { (s, a;, ;) };=,. For each sample (s;, a;, ;) within this patch, we first concatenate it
into a single vector x;. Then, x; is passed through the MLP neural network p, to obtain an output
vector z;. Consequently, we obtain T output vectors for the safe patch. Similarly, we can obtain
T, output vectors for the unsafe patch. By averaging these Ts + T}, output vectors, we obtain the
final prompt embedding z. During the training of p., the prompt embedding z is further input into
MLP networks fs, fr, and f. to attempt to predict the corresponding s’, r, and ¢ values based on
the given (s, a) information (fs, f., and f. are decoupled from the DT policy). The prediction is
then used to compute a regression loss, which allows gradients to be backpropagated into p, and
pu. The relationship between p. and f, f., f. is essentially that of the encoder and decoder in a
traditional autoencoder (Zhai et al., 2018)). They are trained jointly before DT training, but only the
frozen encoder (not updated with DT) is required for the DT policy training and deployment phase.

Detailed pseudo-codes for g, training, p, training, and policy training are provided in Algorithm I}
while the pseudo-codes for policy deployment are provided in Algorithm

C Distinguish constraints in unknown environments

In this section, we will introduce the task (constraint) identification method when the environment ID
is unknown. Based on the definition in Section[2.1] an environment is determined by its state space,
action space, and dynamics transition. Therefore, we need to infer the true environment ID based
on this information. First, we filter out potential candidate environments from the previously seen
environments based on the state space and action space dimensions of the unknown environment.
Then, we sequentially use the environment-specific encoders, environment-specific decoders, and the
inverse dynamics model from the candidate environments to test the given trajectory in the unknown
environment. Specifically, given the trajectory (s;, at, sg)thl, and the set {es ;, €44, ds.i, da i, gi}f»\il
of all N’ candidate environments, the objective is as follows:

L
T

min
(2

Z[(da,i(ea,i(at)) —ap)?+(ds,i(es,i(50)) —50) >+ (gies,i(5e), €s,i(s7)) —€asi(ar)?], (30)
=1
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Algorithm 1 CoPDT Training

Input: task set {7;}72,, environment set {£;}}\,, offline dataset for each task {D7; }}2,, DT
trajectory length K, hyperparameters Ap, A..
Initialize: constraint prioritized prompt encoder p., decoders fs, f, fc, state action encoders and
decoders for each environment {e ;, €4 4, ds i, da.i, gi}f\él, CPRTG generator ¢4, DT policy 7.
for step in environment-specific training steps do
for each environment &; do
Merge each task dataset in this environment to get the environment dataset D;.
Sample a batch {(s¢, at, s})}-
Update e, ; and d, ; with Equation (3).
Update e, ;, d, ; and g; with Equation ().
end for
end for
for step in prompt encoder training steps do
for each task 7 with its environment ID 7 do
Sample a batch {(7*, s, a4, s}, 74, ¢¢) } from D
Encode states sampled with e, ; and actions sampled with e ;.
Update pe, fs, fr, fo with Equation (6).
end for
end for
for step in policy training steps do
for each task 7 with its environment ID ¢ do
Sample a batch {(7*, 7_ .+, Ct, Ry, 8¢, at, ¢¢) } from Drp.
Update 7y with Equation (12).
Update g¢ with Equation (29).
end for
end for

N
Return {€;;, €a,i }io1, Pe, Gg» To-

Algorithm 2 CoPDT Deployment

Input: initial CTG C, environment ID 4, constraint prioritized prompt encoder p., state action
encoders e, ;, €4,;, CPRTG generator g4, DT policy 7y, expert trajectory 7*, DT trajectory length
K, hyperparameters X, Syart, Send-
Initialize: input sequence 7 = [].
Encode states and actions in 7* with e, ; and e ;.
Compute the prompt encoding z according to Equation (5).
for t=1,...,T do
Observe current state s;.
Compute 3; according to Equation (10).

Sample X values in distribution ¢4 (-|7[— K ], Cy, 81,2, i) and select the 3;-quantile of it as R,.

Sample action a; from mg (-|7[—K 1], Cy, Ry, 8¢, 2, i).
Step action ay in the task environment to get 7, ¢;.
Compute C’t+1 = ét — .
Append {C’t, Ry, sy, a;}toT.

end for
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(a) Navigation Tasks (b) Velocity Tasks

Figure 5: Tasks used in this paper. (a) Navigation Tasks based on Point and Car robots. (b) Velocity
Tasks based on Ant, HalfCheetah, Hopper, Walker2d, and Swimmer robots.

Table 2: Detailed velocity thresholds for new designed tasks.

Tasks Velocity Threshold
AntVelocity V2 2.52
HalfCheetahVelocity V2 3.05
HopperVelocity V2 0.56
SwimmerVelocity V2 0.18
Walker2dVelocity V2 2.00

where the first term is the action reconstruction loss, which aims to ensure consistency in the action
space; the second term is the state reconstruction loss, which aims to ensure consistency in the state
space; and the third term is the inverse dynamics error, which ensures consistency in the dynamics
transition. Once the environment ID is determined, we revert to the previous setup, where the
trajectory is passed through the environment-specific state encoder, environment-specific action
encoder, and the constraint prioritized prompt encoder to obtain the prompt encoding, which serves
as the basis for task identification.

D Detailed description of the tasks and baselines

D.1 Tasks and Datasets

All pretraining tasks used in this paper are derived from the Safety-Gymnasium’s Navigation Tasks
and Velocity Tasks. In the Navigation Tasks, there are two different types of robots: Point and Car,
which we need to control to navigate through the environment and earn rewards by reaching target
points, pressing the correct buttons, or moving in designated directions. Different tasks also have
varying costs, such as avoiding collisions with specific targets, preventing incorrect button presses,
and staying within designated boundaries.

The Velocity Tasks are built on traditional MuJoCo (Todorov et al., 2012) simulations, requiring
robots such as Ant, HalfCheetah, Swimmer, and Walker2d to move, where higher speeds result in
higher rewards. However, each robot has specific safety velocity thresholds for different tasks, and
exceeding these thresholds leads to unsafe states. For detailed descriptions of each task, refer to the
original Safety-Gymnasium paper (Ji et al.,[2023). Besides the mentioned tasks, we designed five
new Velocity tasks for task transfer, which differ from previous ones only in their velocity thresholds,
as detailed in Table[2l

The offline datasets used for each task are sourced from OSRL (L1u et al.| 2024b). Specifically, the
datasets for the VelocityV0 and Velocity V2 tasks were additionally collected using OSRL’s original
data collection methods.

D.2 Baselines

We provide a more detailed introduction to the baselines of the experiment in this section.
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* CPQ is a CMDP-based offline safe RL algorithm built upon the classic offline RL method
CQL (Kumar et al.l [2020). It incorporates the conservative regularization operator from
CQL into the cost critic, treating out-of-distribution samples as unsafe. Unlike traditional
methods that use Lagrangian multipliers for policy updates, CPQ directly truncates the
reward critic to O for unsafe state-action pairs, preventing unsafe policy execution. This
algorithm has become one of the most common baselines in offline safe algorithms and is
considered state-of-the-art in CMDP-based offline safe algorithms.

e CDT is the previous SOTA algorithm under sequence modeling for offline safe RL. After
incorporating CTG into DT, CDT also seeks to address the conflict between safety constraints
and reward maximization. To tackle this issue, CDT proposes a data augmentation approach,
where reward returns for certain safe but low-reward trajectories in the offline dataset are
re-labeled with higher values. However, the effectiveness of this data augmentation method
is still limited by the amount of augmented data and does not fundamentally resolve the
underlying issue. In our experiments, all CDT-based methods utilize manually specified
initial RTG values for different constraints and budgets, as provided by the original OSRL
implementation (authored by the same team behind CDT)

» FISOR is the SOTA offline safe RL algorithm based on hard constraint modeling. Similar to
other algorithms under hard constraints|Yu et al.| (2022);|Ganai et al.|(2023), it first divides the
state space into feasible and infeasible regions. It then uses the IQL |Kostrikov et al.[(2022)
algorithm to learn feasible value functions for offline feasible region identification. Next,
FISOR sets distinct learning objectives for the feasible and infeasible regions. In the feasible
region, it aims to maximize the reward while ensuring feasibility, while in the infeasible
region, it focuses on minimizing constraint violations. Finally, FISOR employs a diffusion
model to represent and learn the policy. In the experiments, although the policy learning
of FISOR is independent of the safety thresholds, operating under a fully hard-constrained
setting, all cost results are still normalized using four safety thresholds: [10, 20, 40, 80].

* LSPC is a recently proposed hard-constrained offline safe RL algorithm. Similar to FISOR,
it employs IQL to learn feasible value functions. Once the feasible value functions are
obtained, it minimizes the feasible value as a weighting to train the decoder of a CVAE. The
trained CVAE decoder can then be regarded as a policy that minimizes safety violations,
referred to as LSPC-S. Furthermore, an additional policy 7(z|s) is trained to generate
the latent encoding input z for the CVAE decoder, where 7 is optimized to maximize the
expected reward. Finally, a hyperparameter is introduced to control the optimization strength
of 7, balancing safety satisfaction and reward maximization. This variant is referred to as
LSPC-O. In experiments, we adopt LSPC-O, which provides a balanced trade-off between
safety and reward, as the baseline, and evaluate it using the same protocol as FISOR.

* MTCDT is a straightforward multi-task extension of CDT. It addresses the varying state and
action dimensions in cross-environment tasks by utilizing distinct input and output heads for
each environment. Additionally, MTCDT attempts to identify different tasks based solely
on the sequential inputs of DT for multi-task decision-making.

* Prompt-CDT is also a multi-task extension of CDT. Building on MTCDT, Prompt-CDT
utilizes additional expert trajectory segments as prompts to assist in task identification.

E Hyperparameters

The training and deployment of CoPDT both involve the selection of hyperparameters. To ensure
reproducibility, this section outlines the specific hyperparameters used in our experiments. CoPDT is
implemented based on CDT within the OSRL framework, and the default parameters are retained for
any hyperparameters not explicitly mentioned in Table
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Table 3: Hyperparameter choices of CoPDT.

‘ Hyperparameter Value
state encode dim 32
action encode dim 2
environment-specific encoders all network hidden layers [128, 128, 128]
update steps 100000
batch size 2048
learning rate 0.0001
prompt encode dim 16
all encoder hidden layers [256, 256, 256]
4 all decoder hidden layers [128,128]
prompt encoder pe update steps 100000
batch size 2048
learning rate 0.0001
environment-specific state input head output dim 64
environment-specific state input head hidden layers [128, 128, 128]
generator hidden layers 1024, 256, 128
RTG generator g, update steps [ 100000 ]
batch size 2048
learning rate 0.0001
DT embedding dim 512
DT num layers 3
DT num heads 8
DT sequence len 20
environment-specific state input head output dim 64

policy learning and deployment

environment-specific state input head hidden layers

environment-specific action input head output dim
environment-specific action input head hidden layers

environment-specific action output head input dim

(128,128, 128]
32

(128,128, 128]
32

environment-specific action output head hidden layers | [128,128,128]
update steps 200000
batch size 1024
learning rate 0.0001
An 0.1
Ae 0.02
Bstun 099
5end 0.8
X 1000
Table 4: Time complexity comparison.
CoPDT (Single-constraint) CDT CoPDT (Multi-constraint) MTCDT Prompt-CDT
Prompt Encoder Training \ \ 1.330h \ \
DT Policy Training 15.734 h 15.737h 19.584 h 19.288 h 33.008 h
CPRTG Generator Training 0.250 h \ 1.404 h \ \
Deployment 0.012 s/step 0.008 s/step 0.017 s/step 0.008 s/step 0.014 s/step

F More experimental results

F.1 Time complexity analysis

Time complexity during policy training and deployment is a critical issue in real-world applications.
Therefore, in this section, we provide the analysis of CoPDT’s time complexity. Due to the use of
neural networks, it is not feasible to provide a quantitative analysis. Instead, we first compare CoPDT
qualitatively with other baseline algorithms and present the specific results through actual data.

*https://github.com/liuzuxin/OSRL
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Figure 6: Performance of CoPDT and CDT under various safety thresholds. Target costs and real
costs are normalized by 10.

First, during the training process in the Single-constraint setting (no need for constraint identification),
the policy training for CoPDT and CDT is identical, with the only difference being in the CPRTG
generator’s training. Since we use a traditional MLP neural network in the CPRTG, its computational
complexity is much lower than that of the large Transformer networks used in policy training,
resulting in minimal additional overhead for CoPDT during training. In the Multi-constraint setting,
CoPDT, compared to MTCDT and Prompt-CDT, involves not only the CPRTG generator but also the
training of the prompt encoder. This training includes both environment-specific encoder training
and constraint prioritized prompt encoder training. Similar to CPRTG training, the prompt encoder
training only involves MLP networks, so it does not introduce significant additional overhead. The
specific data is shown in Table d In the Single-constraint scenario, we use the training of a fixed
task as the result, and in the Multi-constraint scenario, we report the average training time per task
(constraint). During deployment, both Single-constraint and Multi-constraint scenarios use the same
task for testing. All experiments were conducted on a single NVIDIA GeForce RTX 4090, and
fairness was ensured even in the presence of CPU resource contention. The results in the table
align with our earlier analysis, showing that the primary overhead during training comes from policy
training, with the additional MLP network training overhead being minimal. In contrast, Prompt-CDT
incurs higher training overhead due to the use of sequence-based prompts.

In the policy deployment process, the additional time complexity for CoPDT mainly arises from
the use of the CPRTG generator. By observing the last row of Table ] we can see that in the
Single-constraint setting, the use of the CPRTG generator does introduce some extra overhead. In the
Multi-constraint setting, the additional overhead increases, as the use of prompts adds computational
complexity both during policy inference and in the CPRTG generator, but the additional overhead is
still within an acceptable range (smaller than 0.01 second) for real-world deployment. Further analysis
of the additional time complexity introduced by the CPRTG generator is provided in Appendix [F.10]

F.2 More results on multi-budget decision making

In this section, we provide more results on the adaptation capability of CoPDT and CDT to different
safety thresholds, as shown in Figure[6] It is shown that CoPDT is able to effectively adapt under
any safety threshold, ensuring the safety performance of the policy. At the same time, both its cost
and reward exhibit a clear increasing trend as the safety threshold rises. Although CDT shows some
advantages in terms of reward, it clearly lags behind in terms of safety. In three of the environments,
it fails to demonstrate adaptability to different safety thresholds, resulting in poor safety performance
when the safety threshold is low. These experimental results validate the strong adaptation capability
of CoPDT across different safety thresholds.

F.3 Deployment phase conservatism adjustment with different Se,q
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Based on the previous analysis, the conservatism Bend
of CoPDT can be flexibly adjusted by modifying .
Bend. To further explore this adaptability, we intro- Figure 7: Parameter sensitivity study on Sena.
duce a new experimental setting within the Single-
Constraint Multi-Budget setting, referred to as Oracle.
In this setting, algorithms are allowed to fine-tune hyperparameters for each task with different con-
straints and even across varying budgets within the same constraint to achieve optimal performance.
The following algorithms are evaluated under this setting: (1) BC-Safe: For each constraint and
budget, trajectories from the offline dataset that satisfy the corresponding budget are filtered, and
behavior cloning is performed based on the filtered safe trajectories. (2) FISOR: Separate reverse-
expectile 7 values are used for tasks with different constraints. (3) CoPDT: Different [nq values are
applied across tasks with varying constraints.
The experimental results, summarized in Table 5] highlight the strengths and weaknesses of the three
algorithms. BC-Safe demonstrates superior average performance but satisfies the safety constraints in
the fewest number of tasks. FISOR, on the other hand, ensures compliance with safety constraints
across all tasks but shows limited ability to optimize rewards under safety conditions. CoPDT strikes
a balance: while it fails to meet safety constraints in a small number of tasks, it exhibits strong reward
optimization capabilities under safety constraints, offering greater flexibility. Additionally, a unique
advantage of CoPDT over the other two algorithms lies in its ability to adjust conservatism during

the deployment phase. Unlike BC-Safe and FISOR, CoPDT allows for adjustments to B.,q without
requiring policy retraining, enabling efficient and flexible tuning.

F.4 Analysis on stitching ability

In this section, we compare the stitching ability of CoPDT and CDT. Specifically, we construct
a challenging test setting by removing all trajectories with cumulative cost < 10 from the offline
datasets of eight Point tasks, and evaluate the policies under a safety budget of 10. As shown in
Table[6] CDT fails to learn safe policies in this setting, exhibiting significant safety violations due to
the lack of safe trajectories in the offline data. In contrast, CoPDT successfully learns safety-satisfying
policies in more than half of the tasks. These results demonstrate that the CPRTG module in CoPDT
enables effective trajectory stitching beyond simple behavior cloning, facilitating safe decision even
in the absence of directly safe trajectories.

F.5 Visualization of CPRTGs

In this section, we visualize how Rt changes in response to variations in C’t and ﬂt, as shown in
Figure 8] The results indicate that R, increases significantly with higher values of C; and also rises
notably as (; increases. This confirms the rationale behind modeling RTG under CTG conditions
and applying decay to [3;, allowing the policy to gradually adjust its conservatism based on potential
future safety violations.

F.6 Visualization of prompt encodings

In this section, we additionally explored the encoding process and properties of the constraint priori-
tized prompt encoder. First, we visualized the state distributions after encoding each environment’s
state separately using the environment-specific state encoder (Figure[9(a)). The results reveal clear
separations between different environments, though tasks within the same environment remain in-
distinguishable. Next, we visualized the results after applying the prompt encoder (Figure 0(b)). At
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Table 5: Overall performance in the Oracle setting.

Oracle
Task BC-Safe FISOR CoPDT
T cl T cl rT cl
PointButton1 0.04 074 -0.01 0.28 0.09 0.91
PointButton2 0.15 1.75 0.05 043 0.08 0.92
PointCirclel 038 016 0.05 0.06 054 0.62
PointCircle2 045 099 020 0.00 0.61 0.98
PointGoall 038 053 0.03 0.01 051 0.87
PointGoal2 029 1.13 0.05 0.08 0.29 091
PointPush1 013 0.67 031 089 019 0.88
PointPush2 0.13  1.05 009 029 013 0.63
CarButtonl 0.07 0.87 -0.02 0.78 0.07 0.74
CarButton2 -0.03 125 0.02 040 -0.02 0.8
CarCirclel 029 1.66 021 024 049 296
CarCircle2 051 517 040 042 028 0.98
CarGoall 028 039 043 072 039 0.75
CarGoal2 0.14 057 0.07 027 0.19 0381
CarPush1 015 045 025 043 0.28 0.96
CarPush2 0.05 063 0.13 0.59 0.09 0.88
SwimmerVelocity VO 052 0.08 -0.04 031 0.62 098
SwimmerVelocityV1 0.50 0.63 -0.04 0.14 044 087
HopperVelocity V0 050 0.25 030 023 018 0.52
HopperVelocity V1 042 065 016 086 0.18 0.86
HalfCheetahVelocityV0 | 0.92 1.11  0.89 0.00 0.67 0.38
HalfCheetahVelocityV1 | 0.89 0.75 0.89 0.00 0.84 1.00
Walker2dVelocity VO 024 145 005 012 032 290
Walker2dVelocity V1 0.79 0.01 053 080 0.78 0.12
AntVelocityVO0 086 061 077 0.00 090 0.84
AntVelocity V1 096 038 089 0.00 097 158
Average 0.39 092 025 032 039 099

Table 6: Stitching ability analysis results.

CDT CoPDT
Task
rT cl T cl
PointButton1 0.01 0.88
PointButton2
PointCirclel | 0.53 091 0.51 0.61
PointCircle2
PointGoall 0.25 0.98
PointGoal2
PointPushl 0.13 0.90
PointPush2 0.09 0.87
Average 0.51 6.65 023 1.08

this stage, tasks within the same environment are also successfully differentiated, confirming the
effectiveness of our design and loss function selection.

Next, we aim to further explore the properties of the constraint prioritized prompt encoder, specifically
whether it focuses more on differences in state-action distribution driven by varying cost information,
rather than on the state-action distribution itself. To test this, we specifically selected tasks where the
cost function significantly affects the state-action distribution (e.g., PointCircle1 and PointCircle2).
Using the policy of PointCirclel, we collected data in both tasks to ensure consistency in state-action
distribution for the prompts. The results, as shown in Figure and Figure 0(d)] reveal that the
constraint prioritized prompt encoder effectively distinguishes tasks based on cost information, while
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Figure 9: Different visualization results. (a) Visualization of state encodings after using the
environment-specific state encoders. (b) Visualization of prompt encodings of the constraint priori-
tized prompt encoder using expert trajectories as prompts. (¢) Visualization of prompt encodings of
the constraint prioritized prompt encoder using trajectories collected by a same behavior policy for
PointCirclel and PointCircle2. (d) Visualization of prompt encodings of the simple MLP encoder
using trajectories collected by a same behavior policy for PointCircle1 and PointCircle2.

the traditional MLP encoder suffers from task confusion due to the similar state-action distribution.
This highlights the robust cost information extraction ability of the constraint prioritized prompt
encoder.

F.7 More policy transfer results

In this section, we first provide transfer results in more tasks, as shown in Figure@[ In four out of the
five tasks, although the CoPDT pretrained model can’t guarantee zero-shot safety, fine-tuning with
FFT or LoRA shows clear advantages in both safety performance and reward compared to training
from scratch. In one environment, the pretrained model ensures zero-shot safety, but fine-tuning
results in a performance drop, likely due to insufficient trajectory coverage. Comparing FFT and
LoRA, both perform similarly, possibly due to the relatively small model size, with LoRA offering
lower fine-tuning overhead. Based on the above results, it can be found that the pretraining of CoPDT
can effectively improve the policy’s adaptation ability in new tasks, enhancing applicability.

Then, to demonstrate that our prompt encoder design can include more effective information than
directly inputting sequence prompts during task transfer, we compare the results with Prompt-CDT
under two fine-tuning methods: FFT and LoRA. Additionally, we introduce a new environment,
AntCircle, which has a lower similarity to the pretraining task. In AntCircle, the state space, action
space, and dynamics transition are consistent with AntVelocity, but both the reward function and cost
function undergo significant changes. The reward function is modified to represent the speed at which
the Ant robot moves along a circle, while the cost function now penalizes the robot’s x-coordinate
rather than its speed. The results are shown in Figure [T T] First, by observing the results in similar
tasks, we see that Prompt-CDT’s multitask pretraining also provides a certain level of improvement in
task transfer in environments other than HalfCheetah. However, compared to CoPDT, Prompt-CDT
still exhibits inferior task transfer performance. In HalfCheetah, it leads to a significantly higher
violation of safety constraints. In Hopper, FFT shows a noticeable drop in performance, while LoRA
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Figure 11: Transfer comparison with Prompt-CDT and transfer results in a dissimilar task.

causes instability in safety. This clearly indicates that CoPDT’s use of the prompt encoder provides
more effective information for knowledge transfer than directly using sequence prompts.

Next, by observing the results in dissimilar tasks, we find that even in scenarios with low task
similarity, CoPDT’s pretraining still provides some performance improvement compared to learning
from scratch. However, due to the limited amount of transferable knowledge, this improvement is
less significant than in similar tasks. In contrast, Prompt-CDT’s pretraining results in a noticeable
decline in safety performance. This indicates that the sequential prompts used in Prompt-CDT do not
always bring additional information gain and may sometimes interfere with the extraction of effective
information. Furthermore, these results suggest that in low-similarity scenarios, few-shot adaptation
may not always yield stable results, and using larger datasets for training might be a better alternative.

Additionally, increasing the diversity of tasks during pretraining is an effective way to enhance the
policy’s transferability.

Finally, we further evaluated transfer performance on two unseen robots, Ball and Drone, using 10
expert trajectories with a safety budget of 10. Due to the differences in state and action spaces, we
first trained new environment-specific encoders for these four tasks, followed by fine-tuning the rest
of the CoPDT architecture. As shown in Figure[I2} although the parameter-efficient LoRA fine-tuning
method performs suboptimally, FFT consistently outperforms training from scratch across all tasks
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Figure 12: The transfer results of CoPDT to unseen robots.

in terms of safe decision-making. These results further validate that CoPDT’s multi-task learning
framework enables effective knowledge transfer to unseen tasks under limited data.

F.8 Discussion on zero-shot constraint generalization

This section gives the detailed generalization results in Figure ] (a) of the main paper, as shown in
Table[/| The results reveal that while CoPDT demonstrates better zero-shot performance compared
to Prompt-CDT, it still exhibits substantial safety violations, making it unsuitable for zero-shot
deployment. We attribute this primarily to the insufficient number of similar tasks encountered during
multi-task training, which fails to support the emergence of robust zero-shot generalization. This
finding suggests that in typical decision-making scenarios with limited tasks and data, task transfer
remains a more practical and reliable approach than relying on policy generalization for unseen tasks.

Table 7: Zero-shot generalization to tasks with unseen constraints.

CoPDT Prompt-CDT
Task
reward cost reward  cost
AntV2 0.99 2.18 1.10 5.16
HalfCheetahV2 1.02 0.01 1.15 7.74
HopperV2 0.52 9.96 0.70 16.14

To further support our hypothesis that pretraining on a broader range of similar tasks can enhance
the zero-shot generalization capability of the learned policy, we conduct an additional experiment
in which policies are trained under a larger number of velocity thresholds (from 2 to 6) in the
AntVelocity and HopperVelocity tasks. Specifically, in the 2-threshold setting, the thresholds are
[2.57, 2.62] for Ant and [0.37, 0.74] for Hopper. In the 6-threshold setting, we use [2.42, 2.47,
2.55,2.57, 2.62, 2.67] for Ant and [0.37, 0.42, 0.52, 0.62, 0.67, 0.74] for Hopper. For evaluation,
beyond the original zero-shot generalization tasks (AntV2 with threshold 2.52 and HopperV2 with
threshold 0.56), we further design two additional zero-shot generalization tasks: AntV7 (threshold
2.4) and HopperV7 (threshold 0.35). Notably, the V2 tasks correspond to interpolation generalization
settings, while the V7 tasks represent extrapolation settings. All results are obtained under a budget
of 10, and evaluated using 3 random seeds. The experimental results are shown in Table[8] It can be
observed that when CoPDT is pre-trained on a larger number of similar tasks—similar to the setup in
meta-RL—the model exhibits significant improvements in safety performance on both interpolation
(V2) and extrapolation (V7) generalization tasks. The improvement is particularly notable in the
Hopper environment, which may be attributed to the large threshold gap between the original two
Hopper tasks, making pre-training on only two tasks insufficient. These results support the claim that
our constraint prioritized prompt encoder not only captures task-specific memory but also possesses a
certain degree of generalization capability to unseen constraints.
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Table 8: Zero-shot generalization results with more similar training tasks.

Task CoPDT (2 similar tasks) CoPDT (6 similar tasks)
rT cl rT cl
AntV2 0.99 2.18 0.98 1.56
AntV7 0.99 3.28 0.96 2.34
HopperV2 | 0.52 9.96 0.48 0.04
HopperV7 | 0.24 21.68 0.43 4.57
Average 0.69 9.28 0.71 2.13

Table 9: Comparison results of coupled and decoupled prompt encoder training.

Multi-constraint Multi-budget

Task CoPDT coupled CoPDT decoupled
T cl rT cl
PointButton1 0.03 0.39 0.04 0.55
PointButton2 0.08 0.98
PointCirclel 0.50 0.54
PointCircle2 0.51 0.58
PointGoall 0.24 0.35 0.24 0.30
PointGoal2 0.26 0.66
PointPush1 0.14 0.57 0.12 0.69
PointPush2 0.09 0.54 0.11 0.83
CarButton1 0.05 0.87 0.04 0.89
CarButton2 -0.02 0.80 -0.02 0.94
CarCirclel
CarCircle2
CarGoall 0.20 0.39 0.22 0.32
CarGoal2 0.15 0.98 0.13 0.91
CarPushl 0.17 0.31 0.18 0.48
CarPush2 0.06 0.85 0.06 0.62

SwimmerVelocity VO 0.68 0.82 0.69 0.84
SwimmerVelocityV1 0.59 0.59 0.61 0.74
HopperVelocity VO
HopperVelocity V1
HalfCheetahVelocityVO | 0.66 0.18 0.70 0.36
HalfCheetah Velocity V1

Walker2dVelocity VO
Walker2d Velocity V1 0.66 0.73
AntVelocityVO0
AntVelocityV1
Average 0.37 1.46 0.38 1.45

F.9 Discussion on coupled or decoupled prompt encoder training

In context-based multi-task RL, whether the prompt encoder should be trained jointly (coupled) with
the policy remains an open research question. Coupled training allows for richer parameter updates
and potentially more accurate adaptation, while decoupled training better preserves the desirable
properties obtained during pretraining. To investigate this, we conduct experiments comparing the
coupled and decoupled training of the prompt encoder within CoPDT. As shown in Table[9] coupling
the prompt encoder with policy optimization does not yield significant performance gains. This
suggests that, in our setting, the simpler decoupled training scheme is already sufficient. Nevertheless,
the broader question of whether and when prompt encoders should be coupled with policy training
warrants further investigation.
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F.10 Ablation on CPRTG sample number X

In this section, we first conducted an ablation study on different choices of the CPRTG sample number
X to investigate the impact of this hyperparameter on policy performance. The results are shown in
Figure[I3(a)] It can be observed that as X increases from 100 to 2000, there is almost no significant
change in the policy’s reward, but a noticeable reduction in the policy’s cost. This result confirms
that as the CPRTG sample number increases, the sampled values are closer to the desired quantile
points, leading to better performance and a certain improvement in safety.

Additionally, we performed a further analysis of the time complexity of the CPRTG generation
process in CoPDT, with the results presented in Figure [I3(b)] From the figure, we can draw two
conclusions. First, when CPRTG is used, the time consumption does indeed increase compared to
not using CPRTG, indicating that the CPRTG generation process introduces additional computational
overhead. Second, when X increases from 100 to 2000, the time overhead remains almost unchanged,
suggesting that the additional cost brought by CPRTG mainly comes from the inference of the CPRTG
generator’s neural network, rather than the sampling of quantile points. Therefore, in practice, we can
increase X as much as possible to achieve better policy performance without introducing significant
additional computational costs.

F.11 Discussion and ablation on inverse dynamics model g

In Section[3.T} we introduced an additional inverse dynamics model g to compute the inverse dynamics
error for training the environment-specific state encoders. The primary motivation for using this
model is to address tasks with identical state and action spaces but different dynamics transitions.
While such tasks have not appeared in our main experiments, they are still quite common (Nagabandi
let al,[2019; [Eysenbach et all 2021} [Zhang et al.,[2024). In these cases, the inverse dynamics error
based on the inverse dynamics model can effectively produce different state representations during
the environment-specific state encoder learning phase, thereby reducing the learning difficulty for the
constraint prioritized prompt encoder. Moreover, as described in Appendix [C} when the environment
ID is unknown, the inverse dynamics error based on the inverse dynamics model becomes the core
method for distinguishing these tasks, making it an essential component. We also conducted an
additional ablation study to ensure that the use of the inverse dynamics model does not negatively
impact the policy performance, with results shown in Figure[T3(c)] which aligns with our expectations.

F.12 Ablation on LoRA rank

In LoRA, performance is mainly influenced by the LoRA rank r and the LoRA « 2022).
Following standard practice, we set « to twice the value of r and conducted experiments on task
transfer with various  values. The results, shown in Figure[T4] indicate that performance generally
improves as 7 increases, except in the HalfCheetah task, where an anomaly occurred, consistent
with previous findings. These results suggest that when the model has relatively few parameters,
increasing the number of fine-tuned parameters positively impacts performance.
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Figure 14: Ablation on different LoORA ranks.

Table 10: Detailed results of the prompt quality analysis done in the Multi-constraint Multi-budget
setting. The red results indicate results that are significantly affected by changes in prompt quality.

CoPDT CoPDT Simple PE Prompt-CDT
Task Expert Mediuml  Medium2 Random Expert Mediuml Medium2 Random Expert Mediuml ~ Medium2 Random
Moo o e o e ot e | e ot el o o el | e o e i o el
PointButton| 0.04 055 005 048 005 069 008 068 | 002 0.60 003 053 004 050 003 048
PointButton2 0.08 098 004 093 007 087 0.00 068 002 0.69 000 0.64 046 506
PoinCircle] 051 099 049 099 | 053 086 053 082 053 085 055 087 054 084 050 094 052 088
PointCircle2 0.51 2.76 0.51 2.03 0.63 3.61
PointGoall 024 030 025 034 024 031 024 037 | 026 036 025 040 026 032 023 034
PointGoal2 026 0.66 023 072 022 059 025 095 | 022 077 022 057 023 074 020 0.69
PointPushl 012 069 0.4 074 016 061 013 043 | 012 056 011 061 002 051 013 043
PointPush2 011 083 0.2 073 010 079 010 061 | 0.11 080 010 056 0.1 073 010 082
CarButton1 0.04 089 004 068 004 064 000 096 | 0.04 067 004 072 003 081 003 070
CarButton2 002 094 002 088 0.00 099 001 091
CarCircle]
CarCircle2 050 4.92 031 095 041 319 058 6.65
CarGoall 022 032 024 032 024 036 020 027 | 021 034 020 028 021 036 020 038
CarGoal2 013 091 013 072 017 1.00 014 094 017 094 016 088 018 092
CarPushl 0.18 048 017 045 0.7 042 012 053 | 018 035 006 071 017 060 012 037 [025 093 025 087 025 099 022 155
CarPush2 0.06 0.62 003 046 005 059 003 089 | 0.05 061 006 075 011 263 005 277
SwimmerVelocityVO | 0.69  0.84  0.69 0.83 0.69 082 067 10.14 060 231 (072 075 072 076 072 077 075 1565
SwimmerVelocityVl | 0.61 074 056 038 057 030 057 061 | 059 074 057 070 057 051 0.66 068 062 046 063 049 062 032
HopperVelocity VO 043 5.63 038 6.89 093 1886 1.00 18.04
HopperVelocityV1 072 694 072 683 071 057
HalfCheetahVelocityVO | 0.70 036  0.68 0.54 069 398 075 573 [ 070 038 082 1029 099 2897 098 25.89
HalfCheetahVelocityV 1 063 050 062 059 0.67 026 | 0.8 049 080 024 086 061 087 055 [095 041 095 042 095 046 096 045
Walker2dVelocity VO 047 9.97 074 13.00 107 1813 122 2391
Walker2dVelocityVl | 0.66 073 0.64 0.72 072 059 069 072 071 069 076 0.3 073 011 074 013 068 0.5
AntVelocity VO
AntVelocityV1 103 541 [099 071 099 076 099 074 102 129
Average 038 145 037 141 035 1.63 035 2.37 039 160 038 1.88 040 273 039 3.19 [ 058 438 058 495 060 483 060 531

F.13 Detailed prompt quality analysis results

In this section, we evaluate the impact of prompt quality on the performance of CoPDT, CoPDT
Simple PE, and Prompt-CDT. Specifically, CoPDT Simple PE replaces the constraint prioritized
prompt encoder in CoPDT with a standard MLP encoder. We consider four categories of prompt
quality: Expert (in-distribution expert trajectories seen during prompt encoder training), Medium1
(unseen trajectories with severe safety violations), Medium?2 (unseen trajectories with significantly
lower reward performance), and Random (trajectories collected from a random policy). As shown
in Table[I0] while all methods are affected by prompt quality to some extent, COPDT demonstrates
substantially greater robustness. This highlights the superior generalization capability of the constraint
prioritized prompt encoder in handling unseen prompts.
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Table 11: Detailed results of the ablation studies done in the Multi-constraint Multi-budget setting.

Task Ours (MT) W/o CP Det CP W/o CD W/o PE Simp PE Small DT

T cl T cl T cl T cl T cl T cl T cl

PointButton1 004 055 049 394 003 062 009 1.14 008 094 0.02 0.60 0.07 0.73
PointButton2 0.08 098 032 331 003 095 0.1 141 007 101 010 121 0.1 1.19
PointCirclel 055 1.09 057 093 052 1.05 055 105 048 070 0.53 0.86 0.53 0.71
PointCircle2 057 175 0.60 192 055 1.85 057 1.8 057 259 055 151 0353 1.46
PointGoal 024 030 062 144 020 035 033 053 022 032 026 036 0.28 048
PointGoal2 026 0.66 049 233 023 0.63 030 089 022 079 022 077 027 099
PointPushl 012 069 025 140 010 057 017 07 013 052 012 0.56 0.17 0.69
PointPush2 011 083 0.5 125 010 0.78 010 094 011 077 011 0.80 0.14 1.20
CarButton1 004 089 023 470 0.02 066 007 077 002 065 0.04 0.67 0.02 0.60
CarButton2 -0.02 094 0.17 477 -0.02 077 -0.05 156 001 1.07 -001 105 -0.04 1.14
CarCirclel 050 289 0.52 410 049 287 050 3.17 042 244 051 327 056 453
CarCircle2 034 1.67 055 461 031 140 035 205 046 406 032 137 038 241
CarGoall 022 032 050 132 019 029 024 037 019 028 021 034 026 045
CarGoal2 013 091 032 183 015 094 020 101 015 076 0.14 094 0.19 1.06
CarPushl 018 048 024 073 0.16 043 020 045 017 033 0.18 035 0.19 038
CarPush2 006 062 0.16 225 0.04 046 007 1.15 004 054 0.05 0.61 0.06 081
SwimmerVelocity VO 069 084 0.72 0.72 053 0.64 072 082 067 579 070 193 067 312
Swimmer Velocity V1 061 074 0.66 0.65 043 138 066 069 056 051 059 074 0.56 0.76
HopperVelocity VO 057 428 0.83 231 041 377 060 413 055 269 055 325 037 185
HopperVelocityV1 027 1.09 064 353 023 096 037 160 044 052 028 143 0.6 208
HalfCheetahVelocityVO | 0.70 0.36 095 0.78 0.67 031 076 040 075 1377 0.7 038 078 0.17
HalfCheetahVelocityV1 | 0.75 122 095 027 073 106 080 1.13 073 0.65 088 049 0.67 0.69
Walker2dVelocity VO 035 444 028 247 036 451 036 449 144 2745 040 557 036 4.64
Walker2dVelocity V1 066 073 0.74 0.09 0.66 072 0.67 072 069 071 0.72 0.59 058 228
AntVelocity V0 095 489 094 1.65 096 501 096 499 085 7.02 098 845 0.99 10.13
AntVelocityV1 092 342 098 0.71 0091 380 095 3.13 092 524 096 3.44 0.96 3.29
Average 038 145 053 208 035 142 041 158 042 316 039 1.60 038 1.84

F.14 Detailed main ablation results

In this section, we also provide the detailed results of the ablation studies, as shown in Table @
Here, we provide an additional baseline Det CP, which models g4 deterministically. The results
show that Det CP achieves improved safety performance, but this comes at the cost of lower reward
performance. Moreover, due to its deterministic nature, Det CP is unable to adjust conservatism
through Bend, lacking flexibility.

F.15 Standard deviation of the main results

In this section, we present the standard deviation of CoPDT and various baselines three different
random seeds, as shown in Table @ The results demonstrate that CoPDT consistently achieves
significantly lower standard deviation compared to other baselines, indicating its superior stability.

G More details about related work

Safe RL  Safe RL is a kind of machine learning approach aimed at learning policies that maximize
cumulative rewards while adhering to additional predefined safety constraints (Gu et al.,2022). Safe
RL algorithms are broadly divided into two categories: safe exploration and safe optimization (Garcia
& Fernandez, [2015). Safe exploration algorithms do not focus on directly optimizing the policy.
Instead, they aim to modify the policy’s behavior through additional mechanisms to prevent violations
of safety constraints. A typical example of these algorithms is shielding-based methods (Alshiekh
et al., 2018 |Cheng et all, 2019} [Xiao et al., |2023)), which construct or learn logical structures
known as "shields" or "barriers" that ensure the actions taken in a given state comply with the
safety constraints. However, the decoupling from policy learning of safe exploration methods results
in lower learning efficiency, leading to a growing focus on safe optimization algorithms. Safe
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Table 12: Detailed standard deviation results of the main experiment. All results are computed using
three different random seeds. For experiments involving multiple budgets, the reported standard
deviation is averaged across all budgets.

Single-constraint Multi-budget Multi-constraint Single-budget Multi-constraint Multi-budget

Task CPQ CDT FISOR CoPDT MTCDT Prompt-CDT CoPDT MTCDT Prompt-CDT CoPDT
r_std c_std rstd c_std rstd c_std r_std c_std | r_std c_std r_std c_std r_std c_std | r_std c_std r_std c_std r_std c_std
PointButton1 005 030 003 048 003 132 001 026|007 103 001 097 003 022006 L1 003 093 004 027
PointButton2 005 123 004 082 003 110 004 049 [ 007 020 001 080 006 034|007 078 004 09 005 033
PointCirclel 0.3 1.03 001 021 008 473 001 031 (00l 015 000 022 001 027|002 013 001 018 001 020
PointCircle2 024 519 001 017 004 491 001 012 |00l 047 001 021 003 081 |00l 029 002 051 003 059
PointGoal | 0.10 020 002 0.5 001 156 003 008 [ 005 024 002 023 004 015|006 029 003 038 004 012
PointGoal2 0.14 140 005 044 006 1.04 001 005 | 004 049 004 041 003 005|004 052 004 087 002 020
PointPushl 006 077 003 025 005 074 001 015|002 030 003 025 002 020|002 018 002 041 003 0.12
PointPush2 008 077 003 032 004 087 001 059 [ 003 066 005 040 001 050 | 004 062 006 044 001 030
CarButtonl 006 213 003 046 005 0.2 000 027 [ 003 054 007 047 002 029 | 005 115 005 098 001 024
CarButton2 0.10 194 005 053 001 034 001 039 005 060 002 027 002 037|004 115 005 08 001 032
CarCirclel 009 238 004 065 003 430 005 1.09 [001 022 003 057 000 013|001 028 002 078 002 019
CarCircle2 004 099 002 068 003 428 002 023|001 069 001 077 004 015|002 069 003 115 002 029
CarGoall 004 039 003 026 003 057 004 004|004 030 005 043 005 003|003 037 005 052 005 010
CarGoal2 007 1.60 0.04 057 003 033 004 013|006 051 004 045 001 011 | 006 051 004 047 003 025
CarPushl 0.16 497 002 021 002 046 002 007 [ 001 056 003 017 002 034|002 031 002 024 001 038
CarPush2 007 206 003 082 005 071 001 0.1 [002 052 004 047 001 036|003 067 004 030 003 040
SwimmerVelocityVO | 0.07 072 001 033 001 017 003 0.8 | 002 229 0.00 006 001 004 | 002 307 000 006 001 006
SwimmerVelocityV1 009 1.02 002 029 003 020 009 0.2 002 020 001 039 002 020|001 016 001 036 003 022
HopperVelocity VO 005 159 005 0.1 013 044 004 045 | 023 833 005 235 009 332|020 817 003 266 011 224
HopperVelocityV1 0.14 205 004 139 008 065 003 0.5 |00l 153 006 532 001 026|004 146 007 317 009 029
HalfCheetahVelocityV0 | 0.34 1.55 0.0l 037 0.00 0.00 0.2 0.04 | 0.14 1249 001 088 016 056 | 0.13 13.14 001 491 008 027
HalfCheetahVelocityV1 | 021  1.56  0.00 0.15 0.00 0.00 0.7 0.0 [ 003 065 002 033 009 027|004 075 002 036 008 044
Walker2dVelocityVO | 0.03 046 003 059 003 079 002 075|038 823 042 943 001 010 | 037 927 038 828 002 047
Walker2dVelocityV1 002 025 001 006 012 059 002 007 |00l 020 003 020 007 061 |00l 023 006 013 005 039
AntVelocity VO 0.00 000 000 009 001 000 001 0.4 000 002 000 051 002 197|000 007 001 043 002 159
AntVelocityV1 0.00 000 001 0.3 001 000 001 069 [000 012 000 006 004 125|000 011 001 012 005 039
Average 009 141 003 041 004 116 002 027 | 0.05 1.60 004 102 004 050 | 0.05 175 004 1.17 004 042

optimization algorithms typically model the problem as a CMDP, with Lagrangian multiplier-based
algorithms being the mainstream solution, as discussed in the main paper. Other than Lagrangian
multiplier-based algorithms, trust region methods are among the most prevalent approaches in safe
optimization. They attempt to keep policies within a safe trust region during updates via low-order
Taylor expansions (Achiam et al., [2017) or variational inference (Liu et al., [2022). Due to their
robust learning process, trust region methods are also further applied to multi-agent scenarios (Gu
et al., 2023)). However, their on-policy nature results in lower data efficiency. In response, recent
works have increasingly focused on off-policy safe optimization. CAL (Wu et al., 2024)) improves
the optimization of Lagrange multipliers using the augmented Lagrangian method and enhances
the conservatism of the cost function learned off-policy via the use of upper confidence bound.
Meanwhile, SafeDreamer (Huang et al.| 2024)) increases data efficiency by learning an environment
model and using model rollouts for data augmentation. Recently, more attention has been directed
toward safety-conditioned RL. CCPO (Yao et al., 2023) effectively adapts to different safety thresholds
in an online algorithm by incorporating the safety threshold into the input of CVPO. On the other
hand, SDT (Guo et al.|[2024) attempts to integrate safety prior knowledge expressed through temporal
logic into the input of DT, further enhancing the policy’s safety performance while adapting to various
temporal logic safety constraints. This provides a fresh perspective for the practical application of
safety RL. With the growing body of research on safe RL, these algorithms have found increasing
applications in various fields. Notable examples include ensuring the safety of vehicles in autonomous
driving (Kiran et al.,|2021)) and safeguarding robots in industrial settings (Brunke et al., 2022]).

Offline RL.  Offline RL trains policies using pre-collected datasets, avoiding real-world trial and
error, which is critical for deploying RL in practical settings. Its primary challenge is addressing
the extrapolation errors (Prudencio et al., 2023). Methods like BCQ (Fujimoto et al.l 2019) and
CQL (Kumar et al.,[2020) tackle this by constraining actions to those seen in the offline data or by
penalizing unseen actions. Others, such as MOReL (Kidambi et al.| 2020) and MOPO (Yu et al.,
2020), learn the environment models from the offline data and utilize these models with uncertainty
estimates to avoid OOD regions with low model accuracy. However, these methods only focus on
reducing extrapolation errors, without addressing the challenge of generalizing in OOD areas. To
tackle this limitation, MOREC (Luo et al.l 2024) employs adversarial learning in the model learning
process, improving model generalization abilities.
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Meta R Meta RL is similar to multi-task RL, with both involving multi-task training. However,
Meta RL does not receive additional expert trajectories as prompts during testing. Instead, it must
collect data in the unknown environment to generate prompts. Additionally, it focuses on training
across large-scale similar tasks for generalization to new ones (Zhu et al.,2023). PEARL (Rakelly
et al.l |2019) uses a probabilistic encoder to facilitate task identification and employs Thompson
sampling for data collection in new environments. Other works, like FOCAL (Li et al.l 2021) and
CORRO (Yuan & Lu, 2022), focus on designing contrastive loss functions for the encoder, improving
task encoding robustness. COSTA (Guan et al.,|2024) first considers safety in meta RL, designing a
cost-based contrastive loss and a safety-aware data collection framework, improving policy safety in
both task identification and deployment.

H Discussion on limitations

CoPDT does indeed have some limitations. Firstly, CoPDT does not exhibit strong generalization
capabilities, which is actually anticipated. One reason is that in our multi-task training, we did not
select a large set of similar tasks (such as numerous variations of velocity) but rather chose a variety
of tasks with significant differences. We believe this scenario is more common in practice. In contrast,
past meta-RL methods, which emphasize generalization, typically demonstrate limited generalization
ability only when trained on a large number (dozens or even hundreds) of similar tasks. Another
reason is that generalizing to unseen safety constraints has limited practical value. Safety constraints
are stringent, and in real-world applications, there is often a preference for retraining or fine-tuning
a model to obtain a safer policy rather than relying on an unprovable generalized policy. Secondly,
CoPDT may introduce larger errors in RTG modeling for tasks with larger and more diverse reward
distributions (e.g., velocity tasks), leading to a drop in performance compared to tasks with smaller
and more concentrated reward distributions (e.g., point, car tasks). Therefore, further research into
how to model RTG effectively for tasks with wide-ranging reward distributions is needed. Finally,
CoPDT uses different input-output heads for tasks in different environments. As a result, when
fine-tuning in unseen environments, it requires the re-initialization of additional input-output heads,
which may reduce the efficiency of knowledge transfer. Thus, how to facilitate knowledge sharing
and transfer across tasks in different environments (with different state action spaces, and transition
functions) remains an important avenue for future research.

I Broader societal impacts

The goal of the work presented in this paper is to advance the development of sequence modeling-
based methods in offline safe RL. These methods, built on the Transformer, are intended to more
effectively scale to multi-task scenarios and beyond, laying a foundation for future research on scaling
policies in RL and safe RL. In the future, our approach holds promise for broader application across a
variety of decision-making scenarios involving budget constraints. Meanwhile, we believe our work
does not pose any foreseeable negative societal impacts.
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