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Abstract

The reliability of deep time series models is often compromised by their tendency
to rely on confounding factors, which may lead to incorrect outputs. Our newly
recorded, naturally confounded dataset named P2S from a real mechanical pro-
duction line emphasizes this. To avoid “Clever-Hans” moments in time series, i.e.,
to mitigate confounders, we introduce the method Right on Time (RioT). RioT
enables, for the first time, interactions with model explanations across both the time
and frequency domain. Feedback on explanations in both domains is used to steer
models away from the annotated confounding factors. Dual-domain interactions are
crucial to effectively address confounders in time series datasets. We empirically
demonstrate that RioT can effectively guide models away from the wrong reasons
in P2S as well as popular time series classification and forecasting datasets.

1 Introduction

Time series data is ubiquitous in today’s world. Everything measured over time generates time series,
e.g., energy load [14], sensor measurements in industrial machinery [19] or recordings of traffic
data [16]. Various neural models are often applied to handle complex time series data [24, 2]. As in
other domains, these can be subject to confounding factors ranging from simple noise or artifacts to
complex shortcut confounders [15]. Intuitively, a confounder, also called “Clever-Hans” moment, can
be a pattern in the data which is not relevant for the task, but correlates with it during model training.
A model can learn this confounder (cf. Fig. 1) and use it instead of the relevant features to, e.g.,
make a classification. A confounded model does not generalize well to data without the confounder,
which is problematic when employing models in practice [9]. For time series, confounders and
their mitigation have yet to receive attention, where existing works make specific assumptions about
settings and data [3].
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Figure 1: I: Explanations can reveal whether models rely on confounding factors in the input instead
of relevant features. With RioT, a human can provide feedback on the spatial and frequency domain
explanations for wrong reasons. This feedback is used to revise the model to not consider those
regions. II: After revising via RioT, the model focuses on the right reasons instead.

Model explanations play a crucial role in uncovering confounding factors, but they are not sufficient
to mitigate them. While an explanation can reveal that the model relies on incorrect factors, it does
not alter the model’s outcome. To change this, we introduce Right on Time (RioT), a new method
following the core ideas of explanatory interactive learning (XIL) [31], i.e., utilizing feedback on
explanations to mitigate confounders. RioT uses traditional explanation methods like Integrated
Gradients (IG) [30] to detect whether models focus on the right or the wrong time steps and utilizes
feedback on the latter to revise the model (Fig. 1, left). As confounding factors in time series data are
not limited to the time domain, RioT for the first time enables interaction with the frequency domain
to handle these confounders as well (Fig. 1, right).

With this work, we further introduce a new real-world, confounded dataset called PRODUCTION
PRESS SENSOR DATA (P2S). It consists of sensor measurements from an industrial high-speed press,
part of many important manufacturing processes in the sheet metal working industry. The sensor data
used to detect faulty production is naturally confounded and thus causes incorrect predictions after
training. P2S is the first time series dataset that contains explicitly annotated confounders, enabling
evaluation and comparison of confounder mitigation strategies on real data.

Altogether, we make the following contributions: (1) We show both on our newly introduced real-
world dataset P2S and on several other manually confounded datasets that SOTA neural networks on
time series classification and forecasting can be affected by confounders. (2) We introduce RioT to
mitigate confounders for time series data. The method can incorporate feedback not only on the time
domain but also on the frequency domain. (3) By incorporating explanations and feedback in the
frequency domain, we enable a new perspective on XIL, overcoming the important limitation that
confounders must be spatially separable.2

2 Related Work

Explanatory Interactive Learning (XIL). While not prevalent for time series data, there has been
some work on confounders and how to overcome them for other domains, primarily the image domain.
Most notable, there is explanatory interactive learning, which describes the general process of revising
a model’s decision process based on human feedback [31, 25]. Within XIL, the model’s explanations
are used to incorporate the feedback back to the model, thus revising its mistakes [8]. Several methods
apply the idea of XIL to image data. For example, Right for the Right Reasons (RRR) [23] and Right
for Better Reasons (RBR) [27] use human feedback as a penalty mask on model explanations. Instead
of penalizing wrong reasons, HINT [26] rewards the model for focusing on the correct part of the
input. Although various XIL methods are often employed to address confounders in image data, their
application to time series data remains unexplored. To bridge this gap, we introduce RioT, a method
that incorporates the core principles of XIL to the unique characteristics of time series data.

2https://github.com/ml-research/RioT
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Unconfounding Time Series. Next to approaches from interactive learning, there is also some other
work on unconfounding time series models. This line of work is generally based on causal analysis
of the time series model and data [7]. Methods like Time Series Deconfounder [3], SqeDec [11] or
LipCDE [4], perform estimations on the data while mitigating the effect of confounders in covariates
of the target variable. They generally mitigate the effect of the confounders through casual analysis
and specific assumptions about the data generation. On the other hand, in this work, we tackle
confounders within the target variate, and have no further assumption besides that the confounder is
visible in the explanations of the model, where these previous methods cannot easily be applied.

3 Right on Time (RioT)

The core intuition of Right on Time (RioT) is to utilize human feedback to steer a model away from
wrong reasons. It follows the general idea of XIL. We introduce RioT along the four steps of the XIL
typology [8] (cf. Fig. 2): In Select, instances for feedback and following model revision are selected.
Following previous XIL methods, we select all samples by default while not necessarily requiring
feedback for all of them. Afterwards, Explain covers how model explanations are generated, before
in Obtain, a human provides feedback on the selected instances. Lastly, in Revise, the feedback is
integrated into the model to overcome the confounders.

Explain Obtain Revise

Figure 2: Overview of RioT: Model explanations
e(x) and annotations a(x) are utilized in the Re-
vise step to update the model via the right-reason
loss LRR. RioT utilizes explanations and feedback
in the time and frequency domain.

Given is a dataset (X ,Y) and a model f(·) for
time series classification or forecasting. The
dataset consists of D many pairs of x and y.
Thereby, x ∈ X is a time series of length T ,
i.e., x ∈ RT . For K class classification, the
ground-truth output is y ∈ {1, . . . ,K} and for
forecasting, the ground-truth output is the fore-
casting window y ∈ RW of length W . In both
cases, the ground-truth output of the full dataset
is then Y . For a datapoint x, the model gener-
ates the output ŷ = f(x), where the dimensions
of ŷ are the same as of y for both tasks.

3.1 Explain

Given a pair of input x and model output ŷ for time series classification, an explainer generates an
explanation ef (x) ∈ RT in the form of attributions to explain ŷ w.r.t. x. For an input element, large
attribution means a large influence on the output. In the remainder of the paper, we drop f from
the notation to declutter it, resulting in e(x). We use integrated gradients (IG) [30] as explainer, an
established gradient-based attribution method. However, we take the absolute value of the input to
make it more suitable for time series and model revision (Eq. 1, further details in App. A.2).

e(x) = |x− x̄| ·
∫ 1

0

∂f(x̃)

∂x̃

∣∣∣∣∣
x̃=x̄+α(x−x̄)

dα (1) e(x) =
1

W

W∑
i=1

e′i(x) (2)

Attributions for Forecasting. In a classification setting, attributions are generated by propagating
gradients back from the highest activated class to the inputs. However, there is no single model output
in time series forecasting. Instead, the model simultaneously generates one output for each timestep
of the forecasting window. Naively, one could use these W outputs and generate as many explanations
e′1(x), . . . e

′
W (x). This number of explanations would make it even harder for humans to interpret

the results, as the size of the explanation increases with W [20]. Therefore, we propose aggregating
the individual explanations by averaging in Eq. 2. Averaging attributions over the forecasting window
provides a simple yet robust aggregation of the explanations. Other means of combining them,
potentially even weighted based on distance of the forecast in the future are also imaginable.

Attributions in the Frequency Domain. Time series data is often given in the frequency rep-
resentation. Sometimes, this format is more intuitive for humans to understand than the spatial
representations. As a result, providing explanations in this domain is essential. [32] showed how
to obtain frequency attributions of the method Layerwise Relevance Propagation [1], even if the
model does not operate directly on the frequency domain. We transfer this idea to IG: for an input
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sample x, we generate attributions with IG, resulting in e(x) ∈ RT (Eq. 1 for classification or
Eq. 2 for forecasting). We then perform a Fourier transformation of e(x), resulting in the frequency
explanation ê(x) ∈ CT with Ê for the entire set.

3.2 Obtain

The next step of RioT is to obtain user feedback on confounding factors. For an input x, a user can
mark parts that are confounded, resulting in a feedback mask a(x) ∈ {0, 1}T . In this binary mask,
a 1 signals a potential confounder at this time step. Similarly, feedback can also be given on the
frequency explanation, marking which elements in the frequency domain are potential confounders.
The resulting feedback mask â(x) = (â(x)re, â(x)im) can be different for the real â(x)re ∈ {0, 1}T
and imaginary part â(x)im ∈ {0, 1}T . For the whole dataset, we then have spatial annotations A
and frequency annotations Â. As the annotated feedback masks have to come from human experts,
obtaining them can become costly. In many cases, however, confounders occur systematically and it
is therefore possible to apply the same annotation mask to multiple samples [25]. This can drastically
reduce the number of annotations required in practice.

3.3 Revise

The last step of RioT is integrating the feedback into the model. We apply the general idea of
using a loss-based model revision [25, 23, 29] based on the explanations and the annotation mask.
Given the input data (X ,Y), we define the original task (or right-answer) loss as LRA(X ,Y). This
loss measures the model performance and is the primary learning objective. To incorporate the
feedback, we further use the right-reason loss LRR(A,E). This loss aligns model explanations
E = {e(x)|x ∈ X} and user feedback A by penalizing the model for explanations in annotated areas.
To achieve model revision and good task performance, both losses are combined, where λ is a hyper-
parameter to balance both parts of the combined loss L(X ,Y, A,E) = LRA(X ,Y) + λLRR(A,E).
The combined loss simultaneously optimizes the primary training objective and feedback alignment.

Time Domain Feedback. Masking parts of the time domain can be used to mitigate spatially
locatable confounders. We use explanations E and annotations A in the spatial right-reason loss:

Lsp
RR(A,E) =

1

D

∑
x∈X

(e(x) ∗ a(x))2 (3)

As the explanations and the feedback masks are element-wise multiplied, this loss minimizes the
explanation values in marked input parts. This effectively trains the model to disregard the masked
parts of the input for its computation. Thus, using the loss in Eq. 3 as right-reason component for the
combined loss allows to effectively steer the model away from points or intervals in time.

Frequency Domain Feedback. However, if the confounder is not locatable in time, giving spatial
feedback cannot be used to revise the models’ behavior. Thus, we utilize frequency explanations Ê
and annotations Â in the frequency right-reason loss:

Lfr
RR(Â, Ê) =

1

D

∑
x∈X

(
(Re(ê(x)) ∗ âre(x))2 + (Im(ê(x)) ∗ âim(x))2

)
(4)

The Fourier transformation is invertible and differentiable, so we can backpropagate gradients to
parameters directly from this loss. Intuitively, the frequency right-reason loss causes the masked
frequency explanations of the model to be small while not affecting any specific point in time.
Depending on the problem at hand, it is possible to use RioT either in the spatial or frequency domain.
Moreover, it is also possible to combine feedback in both domains, thus including two right-reason
terms in the final loss. This results in two parameters λ1 and λ2 to balance the individual losses.

L(X ,Y, A,E) = LRA(X ,Y) + λ1Lsp
RR(A,E) + λ2Lfr

RR(Â, Ê) (5)

It is important to note that giving feedback in the frequency domain allows a new form of model
revision through XIL. Even if we effectively still apply masking in the frequency domain, the effect
in the original input domain is entirely different. Masking out a single frequency affects all time
points without preventing the model from looking at any of them. In general, having an invertible
transformation from the input domain to a different representation allows to give feedback more
flexible than before. The Fourier transformation is a prominent example but not the only possible
choice for this. Using other transformations like wavelets [10], is also possible.
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Table 1: Applying RioT mitigates confounders in time series classification (left) and forecasting
(right). Performance before and after applying RioT for spatial (Basesp) and frequency (Basefreq)
confounders separately. Unconfounded represents an ideal scenario without confounders.

Fault Detection (ACC ↑) Weather (MSE ↓)

Model FCN OFA PatchTST TiDE
Train Test Train Test Train Test Train Test

Unconf 0.99 ±0.00 0.99 ±0.00 1.00 ±0.00 0.98 ±0.02 0.26 ±0.03 0.08 ±0.01 0.25 ±0.02 0.03 ±0.00

Basesp 1.00 ±0.00 0.74 ±0.06 1.00 ±0.00 0.53 ±0.02 0.20 ±0.03 0.19 ±0.01 0.22 ±0.03 0.15 ±0.01

+ RioTsp 0.98 ±0.01 0.93 ±0.03 0.96 ±0.08 0.98 ±0.01 0.55 ±0.20 0.14 ±0.01 0.25 ±0.03 0.11 ±0.01

Basefreq 0.98 ±0.01 0.87 ±0.03 1.00 ±0.00 0.72 ±0.02 0.63 ±0.09 0.24 ±0.04 0.79 ±0.09 0.31 ±0.09

+ RioTfreq 0.94 ±0.00 0.90 ±0.03 0.96 ±0.02 0.98 ±0.02 0.96 ±0.02 0.17 ±0.00 1.12 ±0.36 0.22 ±0.01

4 Experimental Evaluations

Table 2: Applying RioT overcomes the con-
founder in P2S. Performance on confounded train
set and the unconfounded test set. FCN learns the
train confounder, resulting in a drop in test perfor-
mance. Applying RioT with partial feedback (2)
already yields good improvements, while adding
feedback on the full confounder area (4) is even
better. Unconfounded is the ideal scenario, specifi-
cally curated so that there is no confounder.

P2S (ACC ↑) Train Test

FCNUnconfounded 0.97 ±0.01 0.95 ±0.01

FCNsp 0.99 ±0.01 0.66 ±0.14
FCNsp + RioTsp (2) 0.96 ±0.01 0.78 ±0.05
FCNsp + RioTsp (4) 0.95 ±0.01 0.82 ±0.06

Experimental Setup. We perform experiments
on several datasets from the UCR/UEA repos-
itory [6], including FAULT DETECTION and
SLEEP for classification and WEATHER for fore-
casting. In the evaluations, we compare several
models with and without RioT on confounded
versions of these datasets, as well as on the
newly introduced dataset P2S. More details can
be found in App. A.2.

Production Press Sensor Data (P2S). RioT
aims to mitigate confounders in time series data.
To assess our method, we need datasets with an-
notated real-world confounders. So far, there are
no such datasets available. To fill this gap, we
introduce PRODUCTION PRESS SENSOR DATA
(P2S)3, a dataset of sensor recordings with nat-
urally occurring confounders. The sensor data
comes from a high-speed press production line for metal parts, one of the sheet metal working
industry’s most economically significant processes. The task is to predict whether a run is defective
based on the sensor data. The recordings include different production speeds, which, although not
affecting part quality, influence process friction and applied forces. An expert identified regions in the
time series that vary with production speed, potentially distracting models from relevant classification
indicators, especially when no defect and normal runs of the same speed are in the training data.
Thus, the run’s speed is a confounder, challenging models to generalize beyond training. The default
P2S setting includes normal and defect runs of different speeds, with an unconfounded setting of runs
at the same speed. Further details on the dataset are available in App. B.

Confounders. To evaluate how well RioT can mitigate confounders in a more controlled setting, we
add spatial (sp) or frequency (freq) shortcuts to the datasets from the UCR and Darts repositories.
These create spurious correlations between patterns and class labels or forecasting signals in the
training data, but are absent in validation or test data. We generate an annotation mask based on the
confounder area or frequency to simulate human feedback. More details can be found in App. A.5.

4.1 Evaluations

Removing Confounders for Time Series Classification. We evaluate the effectiveness of RioT
(spatial: RioTsp, frequency: RioTfreq) in addressing confounders in classification tasks by comparing
balanced accuracy with and without RioT. As shown in Tab. 1 (left), without RioT, both FCN and
OFA overfit to shortcuts, achieving ≈100% training accuracy while having poor test performance.

3https://huggingface.co/datasets/AIML-TUDA/P2S
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Applying RioT significantly improves test performance for both models. In some cases, RioT even
reaches the performance of the ideal reference (unconfounded) scenario.

Removing Confounders for Time Series Forecasting. Confounders are not exclusive to time series
classification and can significantly impact other tasks, such as forecasting. In Tab. 1 (right), we outline
that the models overfit to the confounders, but applying RioT improves test MSE. Specifically, in the
frequency-confounded setting, the training data includes a recurring Dirac impulse as a distracting
confounder instead of previous shortcut confounders (cf. App. A.5 for details). RioTfreq alleviates
this distraction and improves the test performance significantly.

In Tab. 8, we further investigate RioT’s performance in handling both spatial and frequency con-
founders simultaneously. While models with RioT may not always match the ideal unconfounded
scenario, it consistently improves classification and forecasting results in these confounded settings.
Additional results on other datasets, models and feedback configurations are provided in App. A.6.

Figure 3: Applying RioT makes the
model ignore annotated confounder
areas. While FCN primarily focuses on
confounder areas, applying RioT with
partial feedback (middle) or full feed-
back (bottom) causes the model to ig-
nore the confounder and focus on the
remainder of the input.

Removing Confounders in the Real-World. So far, our
experiments have demonstrated the ability to counteract
confounders within controlled environments. However,
real-world scenarios often have more complex confounder
structures, as in our newly proposed dataset P2S. Fig. 3
(top) highlights that the model focuses specifically on the
two middle regions of a sample. With domain knowledge,
it’s clear that these regions shouldn’t affect the model’s
output. By applying RioT, we can redirect the model’s at-
tention away from these regions. New model explanations
highlight that the model still focuses on incorrect regions,
which can be mitigated by extending the annotated area.
In Tab. 2, the model performance in these settings is pre-
sented. Without RioT, the model cannot generalize to
data without the confounder. RioT with partial feedback
already improves the performance (2) and improves even
more with full feedback (4). This highlights the effective-
ness of RioT in real-world scenarios, even when not all
confounders are (initially) known.

Limitations. An important aspect of RioT is the feedback
provided in the Obtain step. Integrating human feedback
into the model is a key advantage of RioT, but can also be
a limitation. While we have shown that a small fraction of
annotated samples can be sufficient, and that annotations
can be applied for many samples, they are still necessary
for RioT. Additionally, like many other (explanatory) in-
teractive learning methods, RioT assumes correct human
feedback. Thus, considering repercussions of inaccurate
feedback when applying RioT in practice is important.

5 Conclusion

In this work, we present Right on Time a method to mitigate confounding factors in time series data
with the help of human feedback. By revising the model, RioT significantly diminishes the influence
of these factors, steering the model to align with the correct reasons. Using popular time series
models on several manually confounded datasets and the new and naturally confounded, real-world
dataset P2S showcases that they are indeed subject to confounders. Our results, however, demonstrate
that applying RioT to these models can mitigate confounders in the data. Furthermore, RioT is the
first method to incorporate feedback in both time and frequency domains to mitigate confounders
across both domains. Extending the application of RioT to multivariate time series represents a
logical next step. Additionally, applying RioTfreq to other modalities can offer there a more nuanced
approach to confounder mitigation. It should be noted that while our method shows potential in its
current iteration, interpreting attributions in time series data remains a general challenge.
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A Appendix

A.1 Impact Statement

Our research advances machine learning by enhancing the interpretability and reliability of time
series models, significantly impacting human interaction with AI systems. By developing Right on
Time (RioT), which guides models to focus on correct reasoning, we improve the transparency and
trust in machine learning decisions. While human feedback can provide many benefits, one has also
to be aware that it could be incorrect, and evaluate the consequences carefully.

A.2 Implementation and Experimental Details

Adaption of Integrated Gradients (IG). A part of IG is a multiplication of the model gradient with
the input itself, improving the explanation’s quality [28]. However, this multiplication makes some
implicit assumptions about the input format. In particular, it assumes that there are no inputs with
negative values. Otherwise, multiplying the attribution score with a negative input would flip the
attribution’s sign, which is not desired. For images, this is unproblematic because they are always
equal to or larger than zero. In time series, negative values can occur and normalization to make them
all positive is not always suitable. To avoid this problem, we use only the input magnitude and not
the input sign to compute the IG attributions.

Computing Explanations. To compute explanations with Integrated Gradients, we followed the com-
mon practice of using a baseline of zeros. The standard approach worked well in our experiments, so
we did not explore other baseline choices in this work. For the implementation, we utilized the widely-
used Captum4 library, where we patched the captum._utils.gradient.compute_gradients
function to allow for the propagation of the gradient with respect to the input to be propagated back
into the parameters.

Metrics. In our evaluations, we compare the performance of models on confounded and uncon-
founded datasets with and without RioT. For classification, we report balanced (multiclass) accuracy
(ACC), and for forecasting the mean squared error (MSE). The corresponding mean absolute error
(MAE) results can be found in App. A.6. We report average and standard deviation over 5 runs.

Model Training and Hyperparameters. For time series classification, we use the FCN model [17],
with a slightly modified architecture for Sleep to achieve a better unconfounded performance (cf.
App. A.2). Additionally, we use the OFA model [34]. For forecasting, we use the recently introduced
TiDE model [5], PatchTST [21] and NBEATS [22] to highlight the applicability of our method to a
variety of model classes.

To find suitable parameters for model training, we performed a hyperparameter search over batch
size, learning rate, and the number of training epochs. We then used these parameters for all model
trainings and evaluations, with and without RioT. In addition, we selected suitable λ values for RioT
with a hyperparameter selection on the respective validation sets. The exact values for the model
training parameters and the λ values can be found in the provided code.

To avoid model overfitting on the forecasting datasets, we performed shifted sampling with a window
size of half the lookback window.

Code. For the experiments, we based our model implementations on the following repositories:

• FCN: https://github.com/qianlima-lab/time-series-ptms/blob/master/
model/tsm_model.py

• OFA: https://github.com/DAMO-DI-ML/NeurIPS2023-One-Fits-All/

• NBEATS: https://github.com/unit8co/darts/blob/master/darts/models/
forecasting/nbeats.py

• TiDE: https://github.com/unit8co/darts/blob/master/darts/models/
forecasting/tide_model.py

• PatchTST: https://github.com/awslabs/gluonts/tree/dev/src/gluonts/
torch/model/patch_tst

4https://github.com/pytorch/captum
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Figure 4: Illustration of the Hessian matrix with its respective sub-blocks. The mapping from x into
θ is highlighted in blue.

All experiments were executed using our Python 3.11 and PyTorch code, which is available in the
provided code. To ensure reproducibility and consistency, we utilized Docker. Configurations and
Python executables for all experiments are provided in the repository.

Hardware. To conduct our experiments, we utilized single GPUs from Nvidia DGX2 machines
equipped with A100-40G and A100-80G graphics processing units.

By maintaining a consistent hardware setup and a controlled software environment, we aimed to
ensure the reliability and reproducibility of our experimental results.

A.3 Datasets

We perform experiments on various datasets. For classification, we focus mainly on the UCR/UEA
repository [6], which holds a wide variety of datasets for this task. The data originates from different
domains, e.g., health records, industrial sensor data, and audio signals. We select univariate datasets
of a minimal size, resulting in FAULT DETECTION A, FORD A, FORD B, and SLEEP. We omit
experiments on the very small datasets of UCR, as these are generally less suited for deep learning
[13]. We use the splits provided by the UCR archive. For time series forecasting, we evaluate
on three popular datasets of the Darts repository [12]: ETTM1, ENERGY, and WEATHER with
70%/30% train/test splits. These datasets are sufficiently large, allowing us to investigate the impact
of confounding behavior in isolation without the risk of overfitting. We standardize all datasets as
suggested by [33], i.e., rescaling the distribution of values to zero mean and a standard deviation of
one.

A.4 Computational Costs of RioT

Training a model with RioT induces additional computational costs. The right-reason term requires
computations of additional gradients. Given a model fθ(x), parameterized by θ and input x, then
computing the right reason loss with a gradient-based explanation method requires the computation
of the mixed-partial derivative ∂2fθ(x)

∂θ∂x , as a gradient-based explanation includes the derivative
∂fθ(x)

∂x . While this mixed partial derivative is a second order derivative, this does not substantially
increase the computational costs of our method for two main reasons. First, we are never explicitly
materializing the Hessian matrix. Second, the second-order component of our loss can be formulated
as a Hessian-vector product:

∂L
∂θ

= g +
λ

2
Hθx(e(x)− a(x)) (6)

where g = ∂LRA

∂θ is the partial derivative of the right answer loss and if H is the full joint Hessian
matrix of the loss with respect to θ and x, then Hθx is the sub-block of this matrix mapping x into θ

(cf. Fig. 4), given by Hθx = ∂2fθ(x)
∂θ∂x . Hessian-vector products are known to be fast to compute [18],

enabling the right-reason loss computation to scale to large models and inputs.
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A.5 Details on Confounding Factors

In the datasets which are not P2S, we added synthetic confounders to evaluate the effectiveness of
confounders. In the following, we provide details on the nature of these confounders in the four
settings:

Classification Spatial. For classification datasets, spatial confounders are specific patterns for each
class. The pattern is added to every sample of that class in the training data, resulting in a spurious
correlation between the pattern and the class label. Specifically, we replace T time steps with a sine
wave according to:

confounder := sin(t · (2 + j)π)

while t ∈ {0, 1, . . . , T} and j represents the class index, simulating a spurious correlation between
the confounder and class index.

Classification Frequency. Similar to the spatial case, frequency confounders for classification are
specific patterns added to the entire series, altering all time steps by a small amount. The confounder
is represented as a sine wave and is applied additively to the full sequence (T = S):

confounder := sin(t · (2 + j)π) ·A
where A resembles the confounder amplitude.

Forecasting Spatial. For forecasting datasets, spatial confounders are shortcuts that act as the actual
solution to the forecasting problem. Periodically, data from the time series is copied back in time.
This “back-copy” is a shortcut for the forecast, as it resembles the time steps of the forecasting
window. Due to the windowed sampling from the time series, this shortcut occurs at every second
sample. The exact confounder formulation is outlined in the sketch below (Fig. 5), with an exemplary
lookback length of 9, forecasting horizon of 3 and window stride of 6. This results in a shortcut
confounder in samples 1 and 3 (marked red) and overlapping in sample 2 (marked orange).

1. Sample Lookback Horizon

Unconfounded: 0 1 2 3 4 5 6 7 8 9 10 11

Confounded: 9 10 11 3 4 5 6 7 8 9 10 11

Feedback: 1 1 1 0 0 0 0 0 0

2. Sample

Unconfounded: 6 7 8 9 10 11 12 13 14 15 16 17

Confounded: 6 7 8 9 10 11 21 22 23 15 16 17

Feedback: 0 0 0 0 0 0 0 0 0

3. Sample

Unconfounded: 12 13 14 15 16 17 18 19 20 21 22 23

Confounded: 21 22 23 15 16 17 18 19 20 21 22 23

Feedback: 1 1 1 0 0 0 0 0 0

Confounder: Overlapping Confounder:

Figure 5: Schematic overview of how the time series were confounded in the spatial forecasting
experiments

Forecasting Frequency. This setting differs from the previous shortcut confounders. The frequency
confounder for forecasting is a recurring Dirac impulse with a certain frequency, added every k

12



time steps over the entire sequence (of length S), including the forecasting windows. This impulse
is present throughout all of the training data, distracting the model from the real forecast. The
confounder is present at all time steps: i ∈ {n · k|n ∈ N ∧ n · k ≤ S} with a strength of A:

confounder := A ·∆i

In conclusion, confounders are only present in the training data, not validation or test data. We
generate an annotation mask based on the confounder area or frequency to simulate human feedback.
This mask is applied to all confounded samples except in our feedback scaling experiment.

A.6 Additional Experimental Results

This section provides further insights into our experiments, covering both forecasting and classification
tasks. Specifically, it showcases performance through various metrics such as MAE, MSE, and
accuracy, while also exploring different feedback configurations and the impact of invalid feedback.

Table 3: Applying RioT mitigates confounders in time series classification. Performance before
and after applying RioT for spatial (SP Conf) and frequency (Freq Conf) confounders separately.
Unconfounded represents the ideal scenario where the model is not affected by any confounder.

Model Config (ACC ↑) Fault Detection A FordA FordB Sleep
Train Test Train Test Train Test Train Test

FCN Unconfounded 0.99 ±0.00 0.99 ±0.00 0.92 ±0.01 0.91 ±0.00 0.93 ±0.00 0.76 ±0.01 0.68 ±0.00 0.62 ±0.00

Basesp 1.00 ±0.00 0.74 ±0.06 1.00 ±0.00 0.71 ±0.08 1.00 ±0.00 0.63 ±0.03 1.00 ±0.00 0.10 ±0.03
+ RioTsp 0.98 ±0.01 • 0.93 ±0.03 0.99 ±0.01 • 0.84 ±0.02 0.99 ±0.00 • 0.68 ±0.02 0.60 ±0.06 • 0.54 ±0.05

Basefreq 0.98 ±0.01 0.87 ±0.03 0.98 ±0.00 0.73 ±0.01 0.99 ±0.01 0.60 ±0.01 0.98 ±0.00 0.27 ±0.02
+ RioTfreq 0.94 ±0.00 • 0.90 ±0.03 0.83 ±0.02 • 0.83 ±0.02 0.94 ±0.00 • 0.65 ±0.01 0.67 ±0.05 • 0.45 ±0.07

OFA Unconfounded 1.00 ±0.00 0.98 ±0.02 0.92 ±0.01 0.87 ±0.04 0.95 ±0.01 0.70 ±0.04 0.69 ±0.00 0.64 ±0.01

Basesp 1.00 ±0.00 0.53 ±0.02 1.00 ±0.00 0.50 ±0.00 1.00 ±0.00 0.52 ±0.01 1.00 ±0.00 0.21 ±0.05
+ RioTsp 0.96 ±0.08 • 0.98 ±0.01 0.92 ±0.03 • 0.85 ±0.02 0.94 ±0.01 • 0.65 ±0.04 0.52 ±0.22 • 0.58 ±0.05

Basefreq 1.00 ±0.00 0.72 ±0.02 1.00 ±0.00 0.65 ±0.01 1.00 ±0.00 0.56 ±0.02 0.99 ±0.00 0.24 ±0.03
+ RioTfreq 0.96 ±0.02 • 0.98 ±0.02 0.78 ±0.04 • 0.85 ±0.04 1.00 ±0.00 • 0.64 ±0.03 0.50 ±0.16 • 0.49 ±0.04

Table 4: RioT can successfully overcome confounders in time series forecasting. MSE values
(MAE values cf. Tab. 5) on the confounded training set and the unconfounded test set with Uncon-
founded being the ideal scenario where the model is not affected by any confounder.

Model Config (MSE ↓) ETTM1 Energy Weather
Train Test Train Test Train Test

NBEATS Unconfounded 0.30 ±0.02 0.47 ±0.02 0.34 ±0.03 0.26 ±0.02 0.08 ±0.01 0.03 ±0.01

Basesp 0.24 ±0.01 0.55 ±0.01 0.33 ±0.03 0.94 ±0.02 0.09 ±0.01 0.16 ±0.04
+ RioTsp 0.30 ±0.01 • 0.50 ±0.01 0.45 ±0.03 • 0.58 ±0.01 0.11 ±0.01 • 0.09 ±0.02

Basefreq 0.30 ±0.02 0.46 ±0.01 0.33 ±0.04 0.36 ±0.04 0.11 ±0.02 0.32 ±0.09
+ RioTfreq 0.31 ±0.02 • 0.45 ±0.01 0.33 ±0.04 • 0.34 ±0.04 0.81 ±0.48 • 0.17 ±0.01

PatchTST Unconfounded 0.46 ±0.03 0.47 ±0.01 0.26 ±0.01 0.23 ±0.00 0.26 ±0.03 0.08 ±0.01

Basesp 0.40 ±0.02 0.55 ±0.01 0.29 ±0.01 0.96 ±0.03 0.20 ±0.03 0.19 ±0.01
+ RioTsp 0.40 ±0.03 • 0.53 ±0.01 0.44 ±0.00 • 0.45 ±0.01 0.55 ±0.20 • 0.14 ±0.01

Basefreq 0.45 ±0.03 0.91 ±0.16 0.04 ±0.00 0.53 ±0.05 0.63 ±0.09 0.24 ±0.04
+ RioTfreq 0.91 ±0.07 • 0.66 ±0.04 2.45 ±4.59 • 0.38 ±0.06 0.96 ±0.02 • 0.17 ±0.00

TiDE Unconfounded 0.27 ±0.01 0.47 ±0.01 0.27 ±0.01 0.26 ±0.02 0.25 ±0.02 0.03 ±0.00

Basesp 0.22 ±0.01 0.54 ±0.03 0.28 ±0.01 1.19 ±0.03 0.22 ±0.03 0.15 ±0.01
+ RioTsp 0.23 ±0.01 • 0.48 ±0.01 0.53 ±0.02 • 0.52 ±0.02 0.25 ±0.03 • 0.11 ±0.01

Basefreq 0.06 ±0.01 0.69 ±0.08 0.07 ±0.01 0.34 ±0.08 0.79 ±0.09 0.31 ±0.09
+ RioTfreq 0.07 ±0.01 • 0.49 ±0.07 0.07 ±0.01 • 0.21 ±0.02 1.12 ±0.36 • 0.22 ±0.01

Feedback Generalization. Tab. 7 and Tab. 6 detail provided feedback percentages for forecasting
and classification across all datasets, respectively. These tables report the performance of the
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Table 5: RioT can successfully overcome confounders in time series forecasting. MAE values
on the confounded training set and the unconfounded test set with Unconfounded being the ideal
scenario where the model is not affected by any confounder.

Model Config (MAE ↓) ETTM1 Energy Weather
Train Test Train Test Train Test

NBEATS Unconfounded 0.39 ±0.01 0.48 ±0.01 0.44 ±0.02 0.38 ±0.01 0.21 ±0.01 0.12 ±0.01

Basesp 0.34 ±0.01 0.54 ±0.01 0.44 ±0.03 0.77 ±0.01 0.21 ±0.01 0.30 ±0.04
+ RioTsp 0.40 ±0.01 • 0.52 ±0.01 0.53 ±0.02 • 0.62 ±0.01 0.23 ±0.01 • 0.22 ±0.01

Basefreq 0.39 ±0.01 0.47 ±0.01 0.45 ±0.03 0.45 ±0.03 0.21 ±0.03 0.45 ±0.06
+ RioTfreq 0.40 ±0.01 • 0.47 ±0.01 0.45 ±0.03 • 0.44 ±0.02 0.59 ±0.22 • 0.39 ±0.01

PatchTST Unconfounded 0.50 ±0.01 0.49 ±0.01 0.39 ±0.00 0.38 ±0.01 0.38 ±0.03 0.18 ±0.00

Basesp 0.46 ±0.00 0.53 ±0.01 0.41 ±0.00 0.78 ±0.01 0.32 ±0.04 0.33 ±0.00
+ RioTsp 0.46 ±0.01 • 0.52 ±0.01 0.51 ±0.00 • 0.53 ±0.01 0.54 ±0.12 • 0.28 ±0.00

Basefreq 0.53 ±0.01 0.81 ±0.07 0.15 ±0.00 0.64 ±0.03 0.58 ±0.03 0.41 ±0.05
+ RioTfreq 0.92 ±0.05 • 0.80 ±0.02 0.97 ±0.86 • 0.57 ±0.02 0.65 ±0.01 • 0.40 ±0.01

TiDE Unconfounded 0.36 ±0.01 0.48 ±0.01 0.40 ±0.01 0.38 ±0.02 0.36 ±0.02 0.13 ±0.00

Basesp 0.32 ±0.01 0.54 ±0.01 0.40 ±0.01 0.85 ±0.01 0.32 ±0.03 0.29 ±0.01
+ RioTsp 0.34 ±0.01 • 0.51 ±0.01 0.57 ±0.01 • 0.58 ±0.01 0.35 ±0.03 • 0.24 ±0.01

Basefreq 0.18 ±0.01 0.74 ±0.06 0.18 ±0.01 0.53 ±0.07 0.65 ±0.05 0.49 ±0.09
+ RioTfreq 0.19 ±0.01 • 0.60 ±0.05 0.18 ±0.01 • 0.40 ±0.03 0.79 ±0.16 • 0.41 ±0.02

Table 6: Feedback percentage for forecasting across all datasets, reported for the TiDE model.
Corresponding to (test) results shown in Fig. 6, a higher percentage indicates more feedback, lower is
better.

Metric Feedback ETTM1 Energy Weather
Spatial Freq Spatial Freq Spatial Freq

MAE (↓) 0% 0.54 ±0.01 0.74 ±0.06 0.85 ±0.01 0.53 ±0.07 0.29 ±0.01 0.49 ±0.09
5% 0.52 ±0.00 0.63 ±0.03 0.62 ±0.01 0.40 ± 0.02 0.28 ±0.01 0.43 ±0.03
10% 0.52 ±0.00 0.63 ±0.03 0.61 ±0.01 0.40 ± 0.02 0.27 ±0.01 0.43 ±0.03
25% 0.52 ±0.00 0.63 ±0.03 0.58 ±0.01 0.41 ±0.01 0.25 ±0.01 0.43 ±0.04
50% 0.52 ±0.00 0.63 ±0.03 0.57 ± 0.01 0.41 ±0.01 0.24 ± 0.01 0.44 ±0.05
75% 0.52 ±0.01 0.63 ±0.03 0.57 ± 0.01 0.41 ±0.01 0.24 ± 0.01 0.45 ±0.06
100% 0.51 ± 0.01 0.60 ± 0.05 0.58 ±0.01 0.40 ± 0.03 0.24 ± 0.01 0.41 ± 0.02

MSE (↓) 0% 0.54 ±0.03 0.69 ±0.08 1.19 ±0.03 0.34 ±0.08 0.15 ±0.01 0.31 ±0.09
5% 0.54 ±0.01 0.52 ±0.03 0.60 ±0.02 0.20 ± 0.01 0.14 ±0.01 0.24 ±0.02
10% 0.53 ±0.01 0.52 ±0.03 0.57 ±0.02 0.20 ± 0.01 0.14 ±0.01 0.24 ±0.02
25% 0.53 ±0.01 0.52 ±0.03 0.53 ±0.02 0.22 ±0.01 0.11 ± 0.01 0.24 ±0.03
50% 0.53 ±0.01 0.52 ±0.03 0.51 ± 0.02 0.22 ±0.01 0.11 ± 0.01 0.25 ±0.04
75% 0.52 ±0.01 0.51 ±0.03 0.52 ±0.02 0.22 ±0.01 0.11 ± 0.01 0.26 ±0.05
100% 0.48 ± 0.01 0.49 ± 0.07 0.52 ±0.02 0.21 ±0.02 0.11 ± 0.01 0.22 ± 0.01
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Figure 6: RioT uses feedback efficiently. Even
with feedback on only a small percentage of the
data, RioT can overcome confounders.

TIDE and FCN models, highlighting how differ-
ent levels of feedback impact model outcomes
on various datasets. Tab. 6 focuses on MAE and
MSE for forecasting, while Tab. 7 presents ACC
for classification.

As human feedback is an essential aspect of
RioT, we investigate the required annotations
and the potential to generalize annotations
across samples. Our findings indicate that not
every sample needs annotation. Fig. 6 shows
that we can significantly reduce the amount of
annotated data for classification and forecasting
(cf. App. Tab. 7 and Tab. 6 for results on the
other datasets). Even minimal feedback, such as
annotating just 5% of the samples, substantially
improves performance compared to no feedback.
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Table 7: Feedback percentage for classification across all datasets, reported for the FCN model.
Corresponding to results shown in Fig. 6, a higher percentage indicates more feedback, higher is
better.

Feedback Fault Detection A (ACC ↑) FordA (ACC ↑) FordB (ACC ↑) Sleep (ACC ↑)
Spatial Freq Spatial Freq Spatial Freq Spatial Freq

0% 0.74 ±0.06 0.87 ±0.03 0.71 ±0.08 0.73 ±0.01 0.63 ±0.03 0.60 ±0.01 0.10 ±0.03 0.27 ±0.02
5% 0.88 ±0.00 0.88 ±0.01 0.81 ±0.03 0.80 ±0.03 0.66 ±0.03 0.66 ± 0.02 0.53 ±0.03 0.49 ± 0.00
10% 0.89 ±0.02 0.89 ±0.01 0.82 ±0.04 0.79 ±0.02 0.66 ±0.03 0.64 ±0.03 0.48 ±0.09 0.48 ±0.02
25% 0.92 ±0.01 0.89 ±0.01 0.83 ±0.02 0.78 ±0.01 0.67 ±0.02 0.65 ±0.01 0.49 ±0.08 0.42 ±0.08
50% 0.95 ± 0.01 0.88 ±0.01 0.82 ±0.03 0.81 ±0.05 0.67 ±0.02 0.65 ±0.00 0.55 ± 0.03 0.44 ±0.07
75% 0.95 ± 0.01 0.88 ±0.01 0.81 ±0.03 0.80 ±0.04 0.65 ±0.03 0.64 ±0.00 0.54 ±0.04 0.44 ±0.07
100% 0.93 ±0.03 0.90 ± 0.03 0.84 ± 0.02 0.83 ± 0.02 0.68 ± 0.02 0.65 ±0.01 0.54 ±0.05 0.45 ±0.07

Furthermore, the results on P2S highlights that annotations can be generalized across multiple sam-
ples. Once the confounder on P2S has been identified on a couple of samples, the expert annotations
can be used on full dataset. The systematic nature of shortcut confounders suggest that generalizing
annotations is an effective possibility to obtain feedback efficiently. While RioT does rely on human
annotations, these findings highlight that it can work without extensive manual human interactions,
and that obtained annotations can be utilized efficiently.

Sensitivity of RioT Regarding Invalid Feedback. We evaluated RioT’s sensitivity to
increasing amounts of invalid feedback for classification and forecasting in both the fre-
quency and spatial domains. Instead of having annotations at the confounding area,
the feedback instead marks random time steps (frequency components) as confounded.
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Figure 7: RioT is robust against invalid feed-
back. Results on Fault Detection A and Energy
with increasing amounts of invalid feedback.

Fig. 7 outlines the results of this experiment.
We observe that our method is relatively robust
against invalid feedback. Notably, with 10%
invalid feedback, there is minimal degradation
in all evaluated scenarios, which should be a
reasonable threshold for real-world tasks. In
some scenarios (e.g. forecasting with spatial
confounders), RioT can still provide substantial
improvement even under high feedback noise.
The difference in robustness can potentially be
attributed to the different behavior of the models
as well as dataset and confounder differences.
Overall, the experiment indicates that RioT is
generally robust against smaller amounts of in-
valid feedback, which even improves the usabil-
ity of this method in practice.

Removing Confounders for Time Series Fore-
casting. Tab. 5 reports the MAE results for our
forecasting experiment across different models, datasets and configurations. It emphasizes how
well each model performs on both the confounded training set and after applying RioT, with the
Unconfounded configuration representing the ideal scenario unaffected by confounders.

Removing Multiple Confounders at Once. In the previous experiments, we illustrated that RioT
is suitable for addressing individual confounding factors, whether spatial or frequency-based. Real-
world time series data, however, often present a blend of multiple confounding factors that simultane-
ously may influence model performance.

We thus investigate the impact of applying RioT to both spatial and frequency confounders simultane-
ously (cf. Tab. 8), exemplary using FCN and TiDE. When Sleep is confounded in both domains, FCN
without RioT overfits and fails to generalize. Addressing only one confounder does not mitigate the
effects, as the model adapts to the other. However, combining feedback for both domains (RioTfreq,sp)
significantly improves test performance, matching the frequency-confounded scenario (cf. Tab. 3).
Tab. 8 (bottom) shows the impact of multiple confounders on the Energy dataset for forecasting. When
faced with both spatial shortcut and noise confounders, the model overfits, indicated by lower training
MSE. While applying either spatial or frequency feedback individually already shows some effect,
utilizing both types of feedback simultaneously (RioTfreq,sp) results in the largest improvements, as
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Table 8: RioT can combine spatial and frequency feedback. If the data is confounded in the
time and frequency domain, RioT can combine feedback on both domains to mitigate confounders,
superior to feedback on only one domain. Unconfounded represents the ideal scenario when the
model is not affected by any confounder.

Sleep (Classification ACC ↑) Train Test

FCNUnconfounded 0.68 ±0.00 0.62 ±0.00

FCNfreq,sp 1.00 ±0.00 0.10 ±0.04
FCNfreq,sp + RioTsp 0.94 ±0.00 0.24 ±0.02
FCNfreq,sp + RioTfreq 1.00 ±0.00 0.04 ±0.00
FCNfreq,sp + RioTfreq,sp 0.47 ±0.00 • 0.48 ±0.03

Energy (Forecasting MSE ↓) Train Test

TiDEUnconfounded 0.28 ±0.01 0.26 ±0.02

TiDEfreq,sp 0.16 ±0.01 0.74 ±0.02
TiDEfreq,sp + RioTsp 0.20 ±0.01 0.61 ±0.02
TiDEfreq,sp + RioTfreq 0.22 ±0.01 0.55 ±0.02
TiDEfreq,sp + RioTfreq,sp 0.25 ±0.01 • 0.47 ±0.01

Energy (Forecasting MAE ↓) Train Test

TiDEUnconfounded 0.40 ±0.01 0.38 ±0.02

TiDEfreq,sp 0.30 ±0.01 0.70 ±0.02
TiDEfreq,sp + RioTsp 0.34 ±0.01 0.64 ±0.01
TiDEfreq,sp + RioTfreq 0.36 ±0.01 0.60 ±0.01
TiDEfreq,sp + RioTfreq,sp 0.39 ±0.01 • 0.55 ±0.01

both confounders are addressed. The performance gap between RioTfreq,sp and the non-confounded
model is more pronounced than in single confounder cases (cf. Tab. 4), suggesting a compounded
challenge. Optimizing the deconfounding process in highly complex data environments thus remains
an important challenge.

B Confounded Dataset from a High-speed Progressive Tool

The presence of confounders is a common challenge in practical settings, affecting models in
diverse ways. As the research community strives to identify and mitigate these issues, it becomes
imperative to test our methodologies on datasets that mirror the complexities encountered in actual
applications. However, for the time domain, datasets with explicitly labeled confounders are not
present, highlighting the challenge of assessing model performance against the complex nature of
practical confounding factors.

To bridge this gap, we introduce P2S, a dataset that represents a significant step forward by featuring
explicitly identified confounders. This dataset originates from experimental work on a production line
for deep-drawn sheet metal parts, employing a progressive die on a high-speed press. The sections
below detail the experimental approach and the process of data collection.

B.1 Real-World setting

The production of parts in multiple progressive forming stages using stamping, deep drawing and
bending operations with progressive dies is generally one of the most economically significant
manufacturing processes in the sheet metal working industry and enables the production of complex
parts on short process routes with consistent quality. For the tests, a four-stage progressive die was
used on a Bruderer BSTA 810-145 high-speed press with varied stroke speed. The strip material
to be processed is fed into the progressive die by a BSV300 servo feed unit, linked to the cycle of
the press, in the stroke movement while the tools are not engaged. The part to be produced remains
permanently connected to the sheet strip throughout the entire production run. The stroke height
of the tool is 63 mm and the material feed per stroke is 60 mm. The experimental setup with the
progressive die set up on the high-speed press is shown in Fig. 8.
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Figure 8: Experimental setup with high-speed press and tool as well as trigger for stroke-by-stroke
recording of the data

The four stages include a pilot punching stage, a round stamping stage, deep drawing and a cut-out
stage. In the first stage, a 3 mm hole is punched in the metal strip. This hole is used by guide pins in
the subsequent stages to position the metal strip. During the stroke movement, the pilot pin always
engages in the pilot hole first, thus ensuring the positioning accuracy of the components. In the
subsequent stage, a circular blank is cut into the sheet metal strip. This is necessary so that the part
can be deep-drawn directly from the sheet metal strip. This is a round geometry that forms small
arms in the subsequent deep-drawing step that hold the component on the metal strip. In the final
stage, the component is then separated from the sheet metal strip and the process cycle is completed.
The respective process steps are performed simultaneously so that each stage carries out its respective
process with each stroke and therefore a part is produced with each stroke. Fig. 9 shows the upper
tool unfolded and the forming stages associated with the respective steps on the continuous sheet
metal strip.

B.2 Data collection

An indirect piezoelectric force sensor (Kistler 9240A) was integrated into the upper mould mounting
plate of the deep-drawing stage for data acquisition. The sensor is located directly above the punch
and records not only the indirect process force but also the blank holder forces which are applied by
spring assemblies between the upper mounting plate and the blank holder plate. The data is recorded
at a sampling frequency of 25 kHz. The material used is DC04 with a width of 50 mm and a thickness
of 0.5 mm. The voltage signals from the sensors are digitised using a "CompactRIO" (NI cRIO 9047)
with integrated NI 9215 measuring module (analogue voltage input ± 10 V). Data recording is started
via an inductive proximity switch when the press ram passes below a defined stroke height during the
stroke movement and is stopped again as it passes the inductive proximity switch during the return
stroke movement. Due to the varying process speed caused by the stroke speeds that have been set,
the recorded time series have a different number of data points. Further, there are slight variations in
the length of the time series withing one experiment. For this reason, all time series are interpolated
to a length of 4096 data points and we discard any time series that deviate considerably from the
mean length of a run (i.e., threshold of 3). A total of 12 series of experiments, shown in Tab. 9, were
carried out with production rates from 80 to 225 spm. To simulate a defect, the spring hardness of
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Figure 9: Upper tool unfolded and the forming stages associated with the respective steps on the
passing sheet metal strip as well as the positions of the piezoelectric force sensors.

the blank holder was manipulated in the test series that were marked as defect. The manipulated
experiments result in the component bursting and tearing during production. In a real production
environment, this would lead directly to the parts being rejected.

B.3 Data characteristics

Fig. 10 shows the progression of the time series recorded with the indirect force sensor. The force
curve characterises the process cycle during a press stroke. The measurement is started by the trigger
which is activated by the ram moving downwards. The downholer plates touch down at point A
and press the strip material onto the die. Between point A and point B, the downholder springs are
compressed, causing the applied force to increase linearly. The deep drawing process begins at point
B. At point C, the press reaches its bottom dead centre and the reverse stroke begins so that the punch
moves out of the material again. At point D, the deep-drawing punch is released from the material
and now the hold-down springs relax linearly up to point E. At point E, the downholder plate lifts off
again, the component is fed to the next process step and the process is complete.

B.4 Confounders

The presented dataset P2S is confounded by the speed with which the progressive tool is operated.
The higher the stroke rate of the press, the more friction is occurring and the higher is the impact of the
downholder plate. The differences can be observed in Fig. 11. Since we are aware of these physics-
based confounders, we are able to annotate them in our dataset. As the process speed increases,
the friction that occurs between the die and the material in the deep-drawing stage changes, as the
frictional force is dependent on the frictional speed. This is particularly evident in the present case,
as deep-drawing oils, which can optimize the friction condition, were not used in the experiments.
The affected area from friction of the punch are in 1380 to 1600 (start of deep drawing) and 2080
to 2500 (end of deep drawing). In addition, the impulse of the downholder plate affecting the die
increases due to the increased process dynamics. If the process speed is increased, the process force
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Figure 10: Force curve for one stroke. A) set down downholder plate B) start of deep drawing C)
bottom dead centre D) deep drawing process completed E) downholder plates lift off F) measurement
stops.
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Figure 11: Samples of P2S with normal (left) and defect (right) setting at 80 and 225 strokes per
minute. Areas that vary depending on the stroke rate and are considered confounding and marked red.

also increases in the ranges of the time series from 800 to 950 (downholder plate sets down) and 3250
to 3550 (downholder plate lifts).

In the experiment setting of Tab. 2, the training data set is selected in such a way that the stroke
rate correlates with the class label, i.e., there are only normal experiments with small stroke rates
and defect ones with high stroke rate. Experiment 1, 2, 3, 10, 11, 12 are the training data and the
remaining experiments are the test data. To get a unconfounded setting where the model is not
affected by any confounder, we use normal and defect experiments with the same speed in training
and respectively test data. This results in experiments 1, 3, 5, 7, 9, 11 in the training set and the
remaining in the test set.

Table 9: Overview of conducted runs on the high-speed press with normal and defect states at different
stroke rates.

Experiment # State Stroke Rate Samples

1 Normal 80 193
2 Normal 100 193
3 Normal 150 189
4 Normal 175 198
5 Normal 200 194
6 Normal 225 188
7 Defect 80 149
8 Defect 100 193
9 Defect 150 188
10 Defect 175 196
11 Defect 200 193
12 Defect 225 190

Total 2264
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