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Highly-efficient minimization of network connectivity in
large-scale graphs

Anonymous Author(s)∗

ABSTRACT

Network connectivity minimization is a fundamental prob-
lem in controlling the spread of virus in Internet and fa-
cilitating information propagation in online social networks.
The problem aims to identify a budget number of key n-
odes whose removal would minimize the connectivity of a
network. However, the existing solutions heavily rely on the
number of edges, making it challenging to handle large and
densely connected social networks. In this study, we present
a fast algorithm that is independent of the number of edges.
To achieve this, we first introduce a surrogate matrix that
approximates the residual adjacency matrix with arbitrary
small predefined error. We then devise an efficient approach
for calculating the key nodes by optimizing the eigenvalues of
the surrogate matrix. Remarkably, the algorithm has a smal-
l time complexity of O(knr3), with r being a small tunable
number. Our algorithm thereby maintains a linear scalabili-
ty in terms of the number of nodes and is unaffected by the
number of edges. Hence, it has the capability to efficiently
handle large and dense social networks. At last, we evaluate
its performance against state-of-the-art techniques using di-
verse real-world datasets. The experimental results demon-
strate the superiority of our proposed method in terms of
both solution quality and computational efficiency.
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graphs. This is crucial to protect online social networks from
rumors and immunize Internet from computer viruses. Con-
sequently, our research agrees well with the track ‘Security
and privacy’ in the Web Conference 2024.

1 INTRODUCTION

The optimization of network connectivity assumes great sig-
nificance due to its capacity to delineate the structural prop-
erties of a complex network across a wide range of securi-
ty applications [1, 2]. For instance, when examining the dy-
namics of SIR/SIS epidemic spreading, the occurrence of a
SIR/SIS epidemic outbreak is typically contingent upon the
connectivity of the principal eigenvalue of the adjacency ma-
trix [3]. To mitigate such epidemics, it becomes imperative
to minimize connectivity by means of patient isolation and
the reduction of physical interactions between individuals.
In the realm of Internet networks, natural connectivity acts
as an evaluative metric for discerning network robustness [1].
Bolstering robustness requires the identification and preser-
vation of critical nodes/edges within these networks. Hence,
the optimization of network connectivity assumes pivotal im-
portance in the manipulation of a network’s dynamical func-
tion.

The optimization of network connectivity is commonly
achieved by identifying and manipulating a collection of im-
portant nodes and edges [4]. Given a budget number k, the
total number of potential node or edge sets is

(
n
k

)
(
(
m
k

)
for

edge sets), where n and m correspond to the numbers of
nodes and edges, respectively. As a result, the brute-force
algorithm demonstrates exponential complexity and is im-
practicable for large-scale networks. To address the expo-
nential time complexity, the most advanced methodologies
can be classified into three distinct categories: (i) Heuristic
algorithms[5]: These kinds of methods identify influential n-
odes based on various topological indices such as degree, be-
tweenness, and PageRank. Although they usually have low
time complexity, they cannot provide a guarantee regarding
the quality of the solutions. (ii) Greedy algorithms [1, 6]:
The algorithms select a candidate node at each step based
on the marginal gain in network connectivity that occurs af-
ter removing each node. Research has shown that numerous
connectivity functions adhere to the property of diminish-
ing returns, which ensures an approximation ratio of 1−1/e
for greedy algorithms [7, 8]. However, recalculating the mar-
ginal gain for every node at each step is computationally
expensive in large-scale networks. (iii) Optimization of sim-
plified objective functions [9, 10]: The algorithms optimize
some simplified objective functions to calculate the influen-
tial nodes. However, similar to heuristic algorithms, these
methods also lack a guarantee of solution quality.
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In this study, we present a novel algorithm aimed at opti-
mizing network connectivity in an efficient manner. In partic-
ular, the network connectivity can be efficiently represented
by the combination of eigenvalues of a network’s adjacency
matrix [4]. Hence, we focus on how to accelerate the calcu-
lation of eigenvalues of the adjacency matrix after node per-
turbation. The primary contributions of this research can
be summarized as follows: (a) Surrogate matrix. We intro-
duce a straightforward simple surrogate matrix that closely
mimics the eigenvalues of the complex perturbed adjacency
matrix. Through rigorous analysis, we prove that the eigen-
values of the surrogate matrix and the perturbed adjacency
matrix can be manipulated to predetermined small errors.
(b) A new algorithm. By leveraging the surrogate matrix,
we propose an expedient algorithm for optimizing node-level
network connectivity with an approximation ratio of 1−1/e.
Our algorithm offers two significant advantages when com-
pared to existing methods: (1) effectiveness, as it accounts
for the perturbation of multiple eigenvalues, enabling it to
effectively handle networks with small eigenvalue gaps; (2)
efficiency, characterized by linear time complexity relative
to the number of nodes. Notably, the time complexity of our
algorithm remains unaffected by the number of edges, there-
by ensuring scalability for large and dense networks. To the
best of our knowledge, our algorithm is the most efficient
solution for the connectivity minimization problem.

2 RELATED WORK

Our work touches on the network connectivity formalisms
and optimization algorithms that are summarized as follows:

Network connectivity formalisms. Investigating network
connectivity entails an examination of the degree to which
a network is interconnected [1, 11, 12], as exemplified by
various components such as graph diameter [13], cluster-
ing coefficient [14], and the presence of a giant componen-
t [15]. Conversely, from a dynamics standpoint, the focus
primarily resides on investigating the dissemination models
of SIS/SIR/SIRS [3], independent cascade failure [16], lin-
ear threshold model [17], and others [1]. Extensive research
has demonstrated that a considerable number of dynamics
are intricately tied to network connectivity, irrespective of
the specific dynamics under investigation, and are solely de-
pendent on the network’s topology [18]. Chen et al. [7] has
provided a comprehensive summary of connectivity metrics,
elucidating how different metrics can be unified through com-
binations of eigenvalues derived from the adjacency matrix
of a network.

Network connectivity minimization. The objective of net-
work connectivity minimization is to identify a subset of n-
odes/edges whose removal can significantly reduce connec-
tivity metrics. A commonly utilized metric for connectivity
assessment is the reciprocal of the largest eigenvalue of the
adjacency matrix or Laplacian matrix [19, 20]. Chen et al.
[21] addressed the problem of selecting optimal nodes and
edges to minimize the largest eigenvalue of the adjacency
matrix. Prakash et al. [22] employed self-similar selection

to propose an immunization approach for online networks.
Zhang et al. [20] focused on minimizing eigenvalues of the
nonbacktracking matrix through the manipulation of nodes
and edges. Chen et al. [4] systematically formalized the con-
nectivity minimization problem and introduced a fast QR-
decomposition method to optimize connectivity.

A closely related problem is influence maximization, which
aims to identify a subset of nodes that can maximize the
activation of nodes in the final graph state [9, 17, 23–25].
Morone and Makse [9] established a connection between in-
fluence maximization and immunization problems. More re-
cently, Fan et al. [10] introduced deep learning techniques
into influence maximization. As our paper diverges from the
focus of influence maximization, we limit the discussion of
its details.

Our study bears some similarity to the connectivity opti-
mization techniques discussed in refs. [4, 6]. In these refer-
ences, the employed algorithm exhibited a time complexity
of O(k(mr+nr3)) that depends on the number of edges, ren-
dering it computationally burdensome for dense networks. In
contrast, our approach proposes to optimize the surrogate
matrix. This stands in contrast to the adjacency matrix-
based approach outlined in refs. [4, 6]. To the best of our
knowledge, our algorithm is the fastest non-heuristic method
to optimize network connectivity.

3 PROBLEM DEFINITION

In this study, we adopt a standardized notation system to
enhance clarity and consistency in our mathematical frame-
work. Specifically, the inequality A < 0 implies that the ma-
trixA is negative definite, while the inequality A < B implies
that A − B is negative definite. Let G = (V, E) be a finite
undirected and unweighted graph of n nodes and m edges
without self-loops, with node set V = {1, 2, ..., n} and edge
set E = {(i, j)|i, j ∈ V}. The connections of nodes are repre-
sented by the adjacency matrix A = (aij)n×n with the entry
aij denoting the adjacency relation between nodes i and j.
If nodes i and j are linked to either by an edge e ∈ E with
unit weight, then aij = aji = 1. Otherwise, aij = aji = 0.
di is the degree of node i and dmax denotes the largest de-
gree. We suppose that the adjacency matrix A has n distinct
eigenvalues λ1 > λ2 > ... > λn (Λ(n) = diag{λ1, λ2, ..., λn})
with the corresponding eigenvectors v1,v2, ...,vn (U (n) =

[v1,v2, ...,vn]), A = U (n)Λ(n)U (n)T . The largest eigenvalue
of A is also denoted as λA (λA = λ1). When we find a bud-
get size k of influential nodes and remove the nodes from
the graph, we obtain the adjacency matrix A′ of the remain-
ing graph by setting zero for the rows and columns of A that
correspond to the removed nodes. The eigenvalues and eigen-
vectors of A′ are denoted as eigen-pair (λ′

i,v
′
i), i = 1, 2, ..., n.

If we specify a matrix notation, λi(B) means the i-th largest
eigenvalue of B. Without specification, λi = λi(A), λ′

i =
λi(A

′).
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Definition of network connectivity[4, 6]: The network
connectivity is usually defined as

ζ(G) =
∑
π∈G

f(π), (1)

where π is a subgraph of G, f(·) is a nonnegative mapping
function f : π → R+, f(∅) = 0 for empty set; otherwise
f(π) > 0. ζ(G) actually means the aggregation of all sub-
graphs in the network. In a large number of real scenar-
ios, ζ(G) could be represented by a combination function

of eigenvalues of A, ζ(G) = F (Λ(r)), where F (Λ(r)) is a
function of the top-r eigenvalues of A. Choosing appropri-
ate function f(·) plays a crucial role in accurately emulating
diverse connectivity metrics such as path capacity, triangle
capacity, natural capacity, and others (See ref. [4]). In this
paper, we minimize the connectivity based on the optimiza-
tion of top-r eigenvalues. The problem could be formalized
as:

Problem 1(Connectivity minimization): Finding k
optimal nodes that, when removed, could minimize ζ(G\S).
Input: The adjacency matrix A of a network, a budget in-

teger k, and a connectivity measure ζ(G);
Output: A subset S of k nodes that minimize ζ(G\S).

Previous research [6] established the NP-hardness of the
connectivity minimization problem. Consequently, the wide-
ly employed approach is the greedy algorithm. At each step,
the greedy algorithm calculates the marginal gain of ζ(G)
for each node and chooses a candidate node that could min-
imize ζ(G). The current best implementation of the greedy
algorithm [4, 6] demonstrates a time complexity of O(k(mr+
nr3)) that depends on the number of edges and proves to be
impractical for dense networks. Consequently, to accelerate
the greedy algorithm, the central issue of the greedy algo-
rithm is to simplify the evaluation complexity of marginal
gains, which is the main concern of our paper.

4 THE PROPOSED ALGORITHM

In order to efficiently calculate the marginal gains of ζ(G)
for each node in the greedy algorithm, we first propose a
surrogate matrix to approximate λA′ and the surrogate ma-
trix has simplifier formalism than A. We then introduce a
fast algorithm to minimize the connectivity metric based on
the surrogate matrix.

4.1 The proposed surrogate matrix

Given a candidate node set S, we first define the surrogate
matrix as follows:

Definition 1 (Surrogate matrix): The surrogate ma-
trix is defined as A−D, where D represents a diagonal ma-
trix D = diag{c, c, 0, c..., 0}n×n, D(i, i) = c if node i ∈ S;
D(i, i) = 0 otherwise. c is a real positive number.

We highlight the relative ease in calculating the surrogate
matrix in comparison to the more complex process of obtain-
ing the residual adjacency matrix. Specifically, the residual
adjacency matrix is derived by assigning zeros to the rows
and columns corresponding to the nodes within the set S.

Figure 1: Schematic translation of the node removal
problem. Removing a set of nodes is equivalent to
the addition of negative self-loop edges.

On the other hand, the surrogate matrix is obtained through
the addition of a single self-loop edge for each node within
S (refer to Fig. 1).

We then provide an example to help understand the uti-
lization of the surrogate matrix. Let us consider the spread-
ing dynamics of an epidemic in an example network in Fig. 1,
and let us consider the SIS spreading model. Let ρi be the in-
fection probability of node i, ρi = 0 means susceptible state,
ρi = 1 means complete infection. Supposing that two nodes
labeled 8 and 12 (green) need to be immunized, we explore t-
wo strategies: (1) Removing the connections associated with
nodes 8 and 12 (Fig. 1(a)). (2) Considering the application
of negative feedback to these nodes using pinning control
techniques [26] (Fig. 1(b)), where the feedback is formally
defined as c(0 − ρi) (see ref. [26] for the pinning control de-
tails). Both approaches successfully achieve immunization of
the network (More details are shown in the Appendix A). In
this study, we employ the concept of thresholds to examine
the spreading dynamics of networks [3, 27]. For the first case,
where two nodes are removed, the threshold is denoted as λA′

[27]. In the second case, the threshold is characterized by the
largest eigenvalue λA−D of the matrix A−D, with D being
the feedback diagonal matrix [26, 28]. The diagonal elements
of matrix D indicate the feedback applied to the nodes. S-
ince both strategies prevent the two specified nodes 8 and
12 involved in the spreading dynamics, the two approaches
should share similar thresholds, i.e., λA′ ≈ λA−D. However,
this conjecture currently lacks rigorous analysis and we will
provide strict proofs in the following part.

Theorem 1: The eigenvalues of the surrogate matrix ap-
proximate the eigenvalues of A′ at c > λA,

λi(A
′) = λi(A−D) +O(c−1), i = 1, 2, ..., n− |S|. (2)

By appropriately tuning the parameter c, we can ensure
that the eigenvalues of A − D closely approximate those of
A′ with an arbitrarily small error. Additionally, as c → +∞,
the top−r eigenvalues of A − D coincide with those of A′.
Before proving Theorem 1, we first prove that the largest
eigenvalue of A−D and A′ satisfies Eq. 2.

Lemma 1: The largest eigenvalue λA′ of the residual net-

work has the upper and lower boundary λA−D − d2max
c−λA

≤
λA′ ≤ λA−D at c > λA. If c → +∞, λA′ = λA−D.

3
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Proof: Without loss of generality, we suppose that the
node set S = {1 : k} and consider two cases.

Case 1: We rewrite matrix A using block matrix formalism
and construct the following quadratic form,

f1(

[
0
x

]
) =

[
0
x

]T
(A−D)

[
0
x

]
=

[
0
x

]T (
A11 − cI A12

A21 A22

)[
0
x

]
= xTA22x,

(3)

where A11 is the adjacency matrix within the nodes in S,
A22 actually represents the adjacency matrix of the residual
network, A22 = A′, and A12 = AT

21 is the adjacency matrix
between set S and the residual nodes.

Recalling that for arbitrary matrix Q and arbitrary vector

x, the Rayleigh entropy R(Q,x) = xTQx
xT x

has the property
λQ,min ≤ R(Q,x) ≤ λQ,max, where λQ,min and λQ,max are
the minimum and maximum eigenvalues of Q respectively.
If we set x as the eigenvector corresponding to the largest
eigenvalue of A22, we have

f1(

[
0
x

]
) = λA22x

Tx ≤ λA−D

[
0
x

]T [
0
x

]
. (4)

Hence, we arrive at λA22 ≤ λA−D.
Case 2: Supposing c > λA, we construct the following

quadratic form,

f2(

[
y
x

]
) =

[
y
x

]T
(A−D)

[
y
x

]
=

[
y
x

]T (
A11 − cI A12

A21 A22

)[
y
x

]
= yTA11y − cyTy + 2yTA12x+ xTA22x.

(5)

We focus on the terms,

− cyTy + 2yTA12x

= −c
∑
i

y2
i +

∑
1≤i≤k

∑
1≤j≤n−k

2A12(i, j)yixj

= −
∑

1≤i≤k

∑
1≤j≤n−k

A12(i, j)
2(

√
αc

dmax
yi −

√
dmax

αc
xj)

2

− c
∑

1≤i≤k

(1− α
∑

1≤j≤n−k

A12(i, j)

dmax
)y2

i

+
∑

1≤i≤k

∑
1≤j≤n−k

(A12(i, j)

√
dmax

αc
xj)

2

≤ −c
∑

1≤j≤n−k

(1− α)y2
j +

∑
1≤j≤n−k

d2max

αc
x2
j

= −c(1− α)yTy +
d2max

αc
xTx,

(6)

where α is a positive number. Hence, we have

f2(

[
y
x

]
) ≤ yT (A11 − c(1− α)I)y + xT (A22 +

d2max

αc
I)x

≤
[

y
x

]T
B

[
y
x

]
,

(7)

where B =

(
A11 − c(1− α)I 0

0 A22 +
d2max
αc

I

)
is a block

diagonal matrix. Since λA11 < λA, when we set c(1 − α) =

λA, we have A11 − c(1 − α)I < 0. If we set

[
y
x

]
as the

eigenvector corresponding to the largest eigenvalue of A−D,
we have

λA−D

[
y
x

]T [
y
x

]
≤
[

y
x

]T
B

[
y
x

]
. (8)

Based on the property of Rayleigh entropy, we can get

λA−D ≤ λB = max{λA11−λAI , λ
A22+

d2max
αc

I
}

= λA22 +
d2max

c− λA
.

(9)

Recalling that λA22 ≤ λA−D and Eq. 9, we have

λA−D − d2max

c− λA
≤ λA′ = λA22 ≤ λA−D. (10)

In Eq. 10, when c → +∞, λA′ = λA−D. Hence λA′ satisfies
the lemma. �

Next, we show that the other eigenvalues also satisfy The-
orem 1.

Lemma 2: The eigenvalues of A′ satisfies λi(A
′) = λi(A−

D) +O(c−1), i = 2, ..., n− |S|.
Proof: We first focus on the case i = 2. Let xi and yi

(|xi| = 1, |yi| = 1) be the eigenvectors corresponding to the
i-th largest eigenvalues of A′ and A−D respectively. Based

on Lemma 1, we have λA−λ1x1x
T
1 −D− d2max

c−λA
≤ λA′−λ1x1x

T
1
≤

λA−λ1x1x
T
1 −D. We concern the matrix[(A−D−λA−Dy1y

T
1 )+

(λA−Dy1y
T
1 − λ1x1x

T
1 )]. Note that for arbitrary vector v

(|vi| = 1), |vT (λA−Dy1y
T
1 − λ1x1x

T
1 )v| < 2|λ1 − λA−D|.

Since the largest eigenvalue of matrix (A−D− λA−Dy1y
T
1 )

is the second largest eigenvalue of A − D, we have λ2(A −
D) = λ1(A−D − λA−Dy1y

T
1 ) +O(|λ1 − λA−D|) and hence

λ2(A
′) = λ2(A−D) +O(c−1).

For the case i > 2, we consider the matrix [A − D −∑i
t=1 λt,A−Dyty

T
t +(

∑i
t=1 λt,A−Dyty

T
t −

∑i
t=1 λtxtx

T
t )]. It-

eratively using the derivation of case 2 could arrive at lemma
2. �

4.2 Fast spectral calculation of the
surrogate matrix

The core issue of the greedy algorithm is to calculate the
eigenvalues of the residual adjacency matrix. Recognizing
the remarkable approximation between the eigenvalues of
A − D and those of the residual matrix A′, we introduce a

4
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time-efficient approach to calculate the eigenvalues of A−D
as a viable alternative to computing those of A′.

In the process of identifying a suitable candidate node
j, we construct a vector vn×1 that has only one nonzero
entry vj = 1. We then execute partial-QR decomposition

[U (r),v] = QR. Importantly, it should be noted that the

column vectors incorporated within U (r) are orthonormal,
we only need to orthogonalize v from U (r) as

u = v−
r∑

i=1

(vTU (r)(:, i))U (r)(:, i) = v−
r∑

i=1

U (r)(j, i)U (r)(:, i).

(11)
We can also calculate the magnitude of u as ||u|| =√

1−
∑

i U
(r)(j, i)2.

Then the partial-QR decomposition on [U (r),v] is

[U (r),v] = [U (r),u]

[
I r
0 ||u||

]
, (12)

where I is the identity matrix and r = U (r)(j, :)T . For the

partial-QR decomposition [U (r),v] = QR, Q = [U (r),u] and

R =

[
I r
0 ||u||

]
.

Theorem 2: Matrix A could be effectively approximated
by considering its top-r eigenvalues and their corresponding
eigenvectors, along with an accompanying error denoted as

E, i.e., A = U (r)Λ(r)U (r)T +E. When adding a new node j
to set S, the eigenvalues of modified matrix A−D are equal

to that of Z = R

[
Λ(r) 0
0 −c

]
RT .

Proof: Since A = U (r)Λ(r)U (r)T + E, we have

A−D = [U (r),v]

[
Λ(r) 0
0 −c

]
[U (r),v]T + E. (13)

The eigenvalues of A − D are determined by the first part
of the right-hand side of Eq. 13. Since [U (r),v] has the QR

decomposition formalism [U (r),v] = QR, we can arrive at

A−D = QR

[
Λ(r) 0
0 −c

]
RTQT + E. (14)

Let Z = R

[
Λ(r) 0
0 −c

]
RT , Z is a symmetric matrix and

could be decomposed as Z = UZΛZU
T
Z . Hence, we can arrive

at

A−D = QUZΛZU
T
ZQT + E. (15)

Since Q and UZ are orthonormal matrices, ΛZ and QUZ

actually mean the top eigenvalues and corresponding eigen-
vectors of A−D.�

Remark: Theorem 2 presents a practical approach for e-
valuating all the eigenvalues of the matrix A−D. Specifically,
explicitly calculating the λA−D possesses time complexity
O(n3). In contrast, the computation of the eigenvalues of
Z exhibits a time complexity of O(r3). Given the fact that
r ≪ n, it is evident that the calculation of Z is a notably
more efficient procedure.

4.3 The proposed Connectivity
Optimization Algorithm (COA)

In this section, we introduce the details of the connectivity
optimization method. The proposed algorithm is shown in
Algorithm 1. In Algorithm 1, we initialize the set S empty. In
lines 3-13, at each step, we first calculate the marginal gains
of ζ(·) for each node (lines 4–8) and then choose the best
node corresponding to the maximum marginal gain (line 9).
We then update the eigenvalues and eigenvectors of A − D
(lines 10–12).

Algorithm 1: Connectivity optimization algorithm
(COA)

1 Input: The adjacency matrix A, the budget size k, and
a connectivity measure ζ(·) = F (·)

2 Output: Node set S

1: Initialize S = ∅ and c as the largest degree of nodes.
2: Calculate top-r eigenvalues Λ(r) and eigenvectors U (r)

of A.
3: while count =1 to k do
4: while i /∈ S do
5: Calculate matrix R and Z that correspond to i.
6: Compute the whole eigenvalues ΛZ of Z.
7: I(i) = F (Λ(r))− F (ΛZ).
8: end while
9: Add j = argmaxjI(j) to S.

10: Calculate matrix R and Z that correspond to j.
11: Compute the eigen decomposition of Z = UZΛZU

T
Z .

12: Λ(r) = ΛZ
(r), U (r) = (QUZ)

(r).
13: A = A−D.
14: end while
15: return set S.

Lemma 3: The time complexity of COA is O(knr3+mr),
among which the greedy iteration costs O(knr3).

proof: For the initialization, lines 1–2 calculate the top-
r eigenvalues and eigenvectors, which have time complexity
O(nr2 + mr). For lines 4–8, at each round, calculating the
connectivity drop of each node requires traversing all eigen-
values with complexity O(nr3), and choosing a candidate
node requires O(n) (lines 9). Lines 10–12 update the eigen-
values and eigenvectors after the removal of a node. Hence,
the overall time complexity is O(knr3 +mr). �

Lemma 4: The space complexity of the COA method is
O(nr +m).

proof: In the algorithm, we need O(m) for matrix A,
O(nr) for matrix U and Q, O(r2) for R and Z. Hence, the
total space complexity is O(nr +m).�

Lemma 5: The COA algorithm could arrive at (1− 1/e)
approximation ratio at arbitrary small error.

Proof: Based on Theorem 1, λA′ = λA−D + O(c−1). For
arbitrary small error ε, if we set c = λA +O(1/ε), the eigen-
value difference between A−D and A′ is O(ε). Based on the
diminishing return property of the objective function ζ(·)
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[4, 21], the greedy algorithm has (1 − 1/e) approximation
ratio at arbitrary small error ε. Hence, we have Lemma 5.�

Parameter determination: Our algorithm COA (in Al-
gorithm 2) has two parameters r and c. For the determina-
tion of parameter r, previous investigations have consistent-
ly demonstrated that the number of prominent eigenvalues
of real networks aligns with the number of the communities
[29, 30]. Given this, we use the modularity-based method [31]
to detect communities and determine r. In practical applica-
tions, it is often feasible to set r to a considerably smaller
value than the actual number of communities, thereby op-
timizing time efficiency. For instance, experimental results
have verified that even with r = 100, an error rate lower
than 1% can be achieved. For the determination of param-
eter c, larger c yields a diminished level of approximation
error in the surrogate matrix. In the experiments, we could
set c = 2dmax that is empirically enough to have high so-
lution quality. Moreover, empirical evidence has indicated
that smaller values of c contribute to achieving higher pre-
cision. Significantly, the experimental results affirm that the
approximation error between the eigenvalues of A − D and
A′ is consistently below 1%.

5 EXPERIMENT

Here, we are interested in the performance of real data. Our
experiments run on a computer with 4 2.4GHz Intel(R) i7
CPUs, 128GB memory, and 64bit Ubuntu 20.04.

5.1 Experimental setup

Datasets. We perform experiments on six different social
networks 1: (1) BitcoinSocial: A user trust/distrust network
from the Bitcoin OTC platform with 5875 nodes and 21489
edges. (2) Hamstersterfriends: A social network containing
friendships between users of the website Hamsterster with
1788 nodes and 12476 edges. (3) Twitter: A network rep-
resenting user-user following information on Twitter with
22322 nodes and 31823 edges. (4) Facebook: The friendship
of Facebook users with 63392 nodes and 816831 edges. (5)
Epinions: The social network of the online product rating site
Epinions with 119130 nodes and 704267 edges. (6) Flixster:
The social network of Flixster, an online movie rating site
with 2523386 nodes and 7918801 edges. All these networks
are treated as undirected and unweighted.

Comparing methods. We compare our algorithm with
seven state-of-the-art methods. (1) Degree: Nodes are ranked
by their degree. (2) K-shell [32]: The method is based on the
K-shell decomposition of the network. (3) PageRank [33]:
The PageRank scores of nodes are calculated by the recur-
sive PageRank equation. (4) Eigenvector [34]: The impor-
tance of a node is characterized by the entry of the princi-
pal eigenvector. (5) Netshield [21]: It is a method aiming at
minimizing the largest eigenvalue of the adjacency matrix.
(6) Contain [4]: The method optimizes the connectivity of
a network based on top-r eigenvalues. (7) Finder [10]: It is
a method based on reinforcement learning. (8) Brute force

1Konect Data Collection, Http://konect.cc/networks/

(Exact) method. It costs more than 24 hours in networks
with millions of nodes. Hence, we omit its connectivity per-
formance and only discuss its time consumption.

Parameter settings. The PageRank method has a pa-
rameter to tune the probability of teleportation, which is
tuned to the optimal performance. For other parameters, we
set c = 2dmax and r as the number of communities unless
otherwise stated. In the experiments, we also investigate the
influence of c and r on the results. See the code on http-
s://anonymous.4open.science/ r/connectivityoptimization-0DE2
.

Evaluation Metrics. We use two connectivity metrics:
the largest eigenvalue λ′

1 of the residual networks and the
size of triangles in the residual networks [4, 35]. If different
methods have similar performance, we compare their time
consumption and smaller time consumption is better.

5.2 Experiment results

In the experiments, the performance of the COA algorithm
was assessed from three distinct viewpoints: solution quality,
time consumption, and parameter sensitivity.

Solution quality. The proposed COA method is initial-
ly compared with baseline methods using two connectivity
metrics, namely the largest eigenvalue λ′

1 and the number
of triangles. It is worth noting that smaller values of these
connectivity metrics indicate superior performance.

Figure 2 visually demonstrates that our COA method con-
sistently achieves the smallest value for λ′

1 across the test-
ed networks. Consequently, the proposed COA outperforms
the existing methods. The performance of classical heuris-
tic methods, such as Degree, K-shell, PageRank, Eigenvector,
and Finder, exhibits fluctuations across different networks,
failing to guarantee solution quality. It is worth noting that
our method attains nearly equivalent performance to Con-
tain. However, Contain explicitly computes the top-r eigen-
values of the adjacency matrices of the residual networks, re-
quiring the manipulation of all edges connected to the nodes
in the influential set S, resulting in increased time consump-
tion. In contrast, our COA adopts a simple surrogate matrix
A−D to mitigate the time complexity.

Figure 3 shows the triangle numbers of different methods.
We observe that our method has the largest drop of the
triangle number, revealing the effectiveness of our method.
The number of triangles agrees well with that of the largest
eigenvalue λ′

1 in Fig. 3. The results also demonstrate that
our method outperforms the existing methods.

Time complexity result. We conducted a time con-
sumption comparison between the COA method, Contain,
and the brute force methods (refer to Fig. 4). This compar-
ison is justified as only these three methods are reliant on
the calculation of top-r eigenvalues.

Figure 4 illustrates the time consumption analysis of our
COA algorithm compared to Contain and the brute force
methods across various networks. The results confirm the effi-
ciency of COA, as it consistently exhibits the lowest time con-
sumption. Notably, the time consumption of COA increases
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Figure 2: The comparison of largest eigenvalues λ′
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1 is better. (a) BitcoinSocial.
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0 50 100 150
0.0

0.5

1.0

0 20 40 60
0.0

0.5

1.0

0 100 200
0.0

0.5

1.0

0 500 1000
0.0

0.5

1.0

0 500 1000
0.0

0.5

1.0

0 500 1000
0.0

0.5

1.0

(a)

 

 

(b) (c)

 

(d)

 

(e)

 

(f)

 

 Degree      K-shell   PageRank   Eigenvector  Netshield   Contain    Finder     COA
k

N
um

be
r o

f t
ria

ng
le

s

Figure 3: The comparison of triangle numbers of different methods. Smaller triangle number is better. (a)
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gradually with the parameter k, owing to the algorithm’s
iteration (lines 4-8 in Algorithm 2), which has a linear rela-
tionship with the number of nodes and is independent of the
number of edges. In contrast, the time complexities of Con-
tain and the brute force methods rely on the number of edges,
resulting in a higher time consumption overall compared to
COA. Consequently, COA outperforms the other methods in
terms of time consumption. It is worth mentioning that in

certain networks (Figures 4(a)-(b)), Contain exhibits higher
time consumption than the brute force method. This discrep-
ancy can be attributed to the intricate connections within
these networks and the varying time consumption involved
in the spectral decomposition of parameter Z (line 6 in Al-
gorithm 2) within these smaller networks. However, for larg-
er networks (Figures 4(c)-(f)), Contain consistently displays
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sterfriends. (c) Twitter. (d) FacebookWOSN. (e) Epinions. (f) Flixster.

lower time consumption than the brute force method, align-
ing with previous findings in the literature.

Parameter sensitivity. There are two parameters, r and
c, associated with COA approach. First, we validate the im-
pact of r on the connectivity performance. We employ the
COA algorithm to identify influential nodes under various
values of r and subsequently evaluate λ′

1 of the residual net-
work A′, as demonstrated in Fig. 5(a). The findings exhibited
in Fig. 5(a) demonstrate that with an increase in the value
of r, the achieved λ′

1 on the BitcoinSocial network decreases,
indicating improved performance. Through extensive exper-
imentation, we discover that a value of r = 50 yields highly
satisfactory results, with errors less than 2%. Moreover, sim-
ilar trends are observed in the other networks and we omit
them due to space constraints.

To analyze the impact of parameter c on the approxima-
tion error between the largest eigenvalue of A−D and A′, we
present the results in Figure 5(b). The figure demonstrates
that as c increases, λA−D rapidly converges to λ′

1 in the Bit-
coinSocial network. Notably, when c = 10λA, the disparity
between the largest eigenvalues of A−D and A′ is less than
2%, providing empirical evidence for the effectiveness of The-
orem 1. The results are similar for the other four networks,
we omit four networks due to space limitation.

6 CONCLUSION

In this paper, we study the problem of how to efficiently
minimize network connectivity. Initially, we propose a sim-
ple surrogate matrix as an approximation for the complex
residual adjacency matrix. Through rigorous proof, we es-
tablish that the top-r eigenvalues of the surrogate matrix
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Figure 5: Parameter sensitivity results. (a) Influence
of r on λ′

1 on BitcoinSocial network. (b) Influence of
r on λ′

1 on BitcoinSocial network.

closely resemble those of the residual networks, with neg-
ligible predefined errors. To optimize network connectivity,
we subsequently devise a rapid algorithm that calculates the
top-r eigenvalues of the residual networks and selects the op-
timal node-set. Notably, our algorithm boasts a small time
complexity of O(knr3), which remains invariant to the num-
ber of edges. Consequently, it demonstrates scalability for
large and dense networks. Experimental results validate the
superior performance of our algorithm compared to existing
methods, thereby validating our theoretical analysis.

The primary focus of our study concerns the resolution of
the largest eigenvalue and the number of triangles. As part
of future work, we aim to explore alternative approaches for
connectivity optimization.
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A APPENDIX A: MOTIVATION
DETAILS

In this part, we only brief the SIS model and pinning control
of the SIS model, and provide some outline of the critical
thresholds of the dynamics. For proof details, please refer to
refs. [26, 29, 36, 37].

SIS model. Considering the susceptible-infected-susceptible
(SIS) spreading model [38] in a network G(N,E) denoted by
an adjacency matrix A = (aij)N×N . Let ρi(t) represent the
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infection probability of node i at time t. The general dynam-
ics of each node could be written as [36, 38]

∂ρi(t)

∂t
= −ρi(t) + β[1− ρi(t)]

∑
j∈Ni

ρj(t), (16)

where Ni is the neighboring set of node i.
Here, we utilize a convenient approach to calculate the

threshold of the network. When protecting a network, we
usually desire controlling the state of all nodes onto the
susceptible state, ρi(t) ≈ 0, i = 1, 2, ..., N . When all the
ρi(t) → 0, the high-order terms ρi(t) ·ρj(t) of the right hand
side (r.h.s) of Eq. 16 is much smaller than the terms ρi(t)
and ρj(t). Thus, we neglect the influence of the high-order
terms ρi(t) · ρj(t) of the r.h.s of Eq. 16 and obtain

∂ρi(t)

∂t
= −ρi(t) + β

∑
j∈Ni

ρj(t). (17)

Equation 17 could be written in matrix formalism,

∂ρ(t)

∂t
= (βA− I)ρ(t), (18)

where ρ(t) = [ρ1(t), ρ2(t), ..., ρN (t)]T . Equation 18 is a linear
dynamical system. According to the controllability principle
[39], ρ(t) could be controlled onto ρ(t) = 0 when the largest
eigenvalue of (βA− I) is negative that is

βc =
1

λ1
, (19)

where λ1 is the largest eigenvalue of A. The critical threshold
of Eq. 19 could be characterized the reciprocal of its largest
eigenvalue.

When we remove the nodes in S, only the nodes in the
residual network follows the above equation. Hence, the crit-
ical threshold of the residual network is characterized by λ′

1.
More strict derivation of Eq. 19 could also be found in ref.

[37].
Pinning control. We design negative feedback for the

chosen influential nodes. Without loss of generality, we sup-
pose S = {1 : k} and modified SIS dynamics for the nodes
in S is

∂ρi(t)

∂t
= −ρi(t) + β[1− ρi(t)]

∑
j∈Ni

ρj(t) + c[0− ρi(t)], (20)

where the last term of the r.h.s of Eq. 20 represents feedback.
The feedback is inclined to control the ρi(t) to 0.

For the nodes in S, when the dynamics arrive at station-

ary state, ∂ρi(t)
∂t

= 0, we have ρi(t) =
β
∑

j∈Ni
ρj(t)

c+1+β
∑

j∈Ni
ρj(t)

. S-

ince ρi(t) ∈ [0, 1] and
∑

j∈Ni
ρj(t) < dmax, we have ρi(t) <

βdmax
c+1+βdmax

. When c → +∞, ρi(t) → 0. When c is large,

the nodes in S are rarely influenced by its neighbors, the
following equation 22 has similar stationary state with Eq.
20. We note that the second terms of the r.h.s of Eq. 21 and
Eq. 20 influence the dynamics little, because when c → +∞,
ρi(t) → 0 in Eq. 21.

∂ρi(t)

∂t
= −ρi(t) + β

∑
j∈Ni

ρj(t) + c[0− ρi(t)]. (21)

The dynamics of the other nodes still follows Eq. 17. Hence,
the dynamics of the whole nodes could be modeled as

∂ρ(t)

∂t
= (βA−D − I)ρ(t). (22)

ρ(t) could be controlled onto ρ(t) = 0 when the largest eigen-
value of (βA − D − I) is negative that is βc = 1

λ1,βA−D
. If

we set c′ = D/β and D′ = D/β, βc = 1
λ1,A−D′

. Hence, the

critical threshold of the residual network is characterized by
λ1,A−D′ .

Combining the analysis of SIS and pinning control models,
we shows that the critical threshold of the residual network
could be characterized by λ′

1 and λ1,A−D′ respectively. The
two formalisms should be equivalent. Here, we only outline
the SIS and pinning control, which provides intuition to con-
jecture that A−D has similar eigenvalues of A′. See Theorem
1 for the strict proof.
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