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Abstract

In reward learning, it is helpful to be able to measure distances between reward
functions, for example to evaluate learned reward models. Using simple metrics
such as L2 distances is not ideal because reward functions that are equivalent
in terms of their optimal policies can nevertheless have high L2 distance. EPIC
[5] and DARD [19] are distances specifically designed for reward functions that
address this by being invariant under certain transformations that leave optimal
policies unchanged. However, EPIC and DARD are designed in an ad-hoc manner,
only consider a subset of relevant reward transformations, and suffer from serious
pathologies in some settings. In this paper, we define a general class of reward
function distance metrics, of which EPIC is a special case. This framework lets as
address all these issues with EPIC and DARD, and allows for the development of
reward function distance metrics in a more principled manner.

1 Introduction

Specifying a good reward function can be difficult, especially as reinforcement learning tasks become
more complex. In many cases, specifying a reward function by hand is in fact infeasible, so the
reward must be learned instead [12, 1, 4, 2, 20]. Of course, such learned reward functions can be
wrong, making evaluation of learned reward functions and of reward learning algorithms crucial. One
approach is to interpret reward models [14, 11, 7]. But another important tool to have for evaluation
are distance metrics between reward functions [5, 19]. For example, they can be used to benchmark
reward learning algorithms by comparing learned reward functions to the ground truth.

We could of course simply use the L2 distance between reward functions. But this is unsatisfactory,
because two reward functions can induce the exact same ordering of policies by expected returns
while having arbitrarily high L2 distance. For example, applying potential shaping [13] to a reward
function, or scaling by a positive constant, never changes its policy ordering. To deal with this,
existing metrics [5, 19] aim to be invariant to transformations which do not change the policy order,
so that rewards with the same policy order get zero distance. However, these existing metrics do not
consider all relevant transformations and suffer from other issues (see section 3).

Our contribution is to introduce a very general framework for distance metrics between reward
functions. This framework contains EPIC as a special case but also allows invariance to a wider range
of transformations. Additionally, this general setting lets us fix pathologies in EPIC and DARD that
we identify, and prove stronger regret bounds than the existing one. Our framework also highlights
that existing metrics have been chosen somewhat arbitrarily, and suggests certain natural design
choices, which existing metrics have not used.

Related work Our work builds on existing reward function distances, EPIC [5] and DARD [19],
which we discuss more in section 2. Also important for us are discussions of equivalence relations
between reward functions [3, 9, 16, 15] and in particular work on potential shaping [13, 8].

∗Equal contribution.
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Figure 1: Toy MDPs where the EPIC distance is unreasonably high or low because of a mismatch between
the canonicalization and coverage distribution. There are two states, A and B, with two actions in each state
(all deterministic). The numbers along transitions describe two reward functions (one in orange, one in green).
The canonicalization distribution is assumed to be uniform over all four transitions. The coverage distribution
is uniform over all but the dashed transition on the left, which has probability zero. EPIC distances become
arbitrarily bad as M → ∞.

2 Background

Equivalent reward transformations Scaling a reward function by any positive constant clearly
does not affect the ordering of policies by expected returns, under arbitrary transition dynamics.
Similarly, given any function Φ : S → R (a potential), we can shape a reward function R with
R′(s, a, s′) := R(s, a, s′)+γΦ(s′)−Φ(s). This is called potential shaping [13] and R again induces
the same policy ordering as R′. R and R′ can thus be considered equivalent in a very strong sense.
We get additional equivalence relations if we e.g. fix the transition dynamics, see appendix B.

Existing reward distance metrics EPIC [5] was the first distance metric invariant under potential
shaping and positive scaling. It uses a three-step process: Given two reward functions R1 and R2,
EPIC (1) applies a mapping C to both reward functions that is invariant under potential shaping, the
“canonicalization”, (2) normalizes C(R1) and C(R2) under a weighted L2 norm, and (3) takes a
weighted L2 distance between these canonicalized and normalized reward functions. We can write
this formally as

D(R1, R2) =

∥∥∥∥ C(R1)

∥C(R1)∥2
− C(R2)

∥C(R2)∥ 2

∥∥∥∥
2

. (1)

The L2 norms are weighted using a coverage distribution D over transitions. The canonicalization C
is defined as

CEPIC(R)(s, a, s′) := R(s, a, s′) + E [γR(s′, A, S′)−R(s,A, S′)− γR(S,A, S′)] , (2)

where the expectation is over S,A, S′ ∼ DS × DA × DS for some distribution DS over states
and DA over actions. If R1 and R2 are related by potential shaping, then C(R1) = C(R2), so
D(R1, R2) = 0.

More recently, DARD [19] aims to address an important limitation of EPIC, namely that the expec-
tation in eq. (2) treats the next state S′ as independent from S. This means EPIC cannot encode
much knowledge about transition dynamics into the distribution used for canonicalization. DARD
allows S′ to depend on S and is otherwise identical to EPIC except for a slight difference in the
canonicalization function C.

3 Limitations of existing distance metrics

As already mentioned, and as [19] point out, EPIC is limited by only allowing distributions for
canonicalization where S′ is independent of S. One subtlety is that the distribution D used to compute
norms in eq. (1) can be arbitrary and thus encode more information about the environment dynamics.
However, if D is chosen to be different from the canonicalization distribution DS × DA × DS ,
then the main theoretical result on EPIC, a certain regret bound [5], no longer holds. In fact, EPIC
can display pathological behavior in this setting, as we illustrate in fig. 1: EPIC distances can be
dominated by the effect of transitions that have probability zero under the coverage distribution, since
canonicalization takes them into account anyway. This can lead to EPIC distances arbitrarily close to
zero for very dissimilar reward functions, or arbitrarily close to one for equivalent reward functions.
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By making S′ depend on S in eq. (2), DARD can make the coverage and canonicalization distribution
the same while still encoding useful information about environment dynamics. However, DARD
in fact uses some transitions that are not sampled from the specified canonicalization distribution.
Because of that, the examples from fig. 1 apply to DARD without any modifications. Consequently,
the DARD paper does not include a regret bound, just like EPIC with differing coverage and
canonicalization distribution. An additional issue specific to DARD is that the canonicalized reward
function CDARD(R) is generally not in the same potential shaping equivalence class as R.

A separate limitation of both EPIC and DARD is that they are only invariant under potential shaping
and positive linear scaling, and no other equivalence relations. But for e.g. fixed environment
dynamics, there are other transformations that leave optimal policies unchanged [16]. So given some
knowledge about the transition dynamics, like Wulfe et al. [19] assume, we would ideally like reward
distance metrics to be invariant to these additional transformations.

In the remainder of this paper, we introduce a much more general framework for reward distance
metrics, which addresses all of these limitations.

4 Generalized framework: EPIC-like distances

At a very high level, our framework uses the same three steps as EPIC and DARD: canonicalization,
normalization, and taking a distance. However, we significantly generalize every single one of these
steps. First, let us specify what we in general mean by “canonicalization”:
Definition 1. We say that R1 ∼PS R2 if R1 and R2 differ by potential shaping, and that R1 ∼S′R R2

if ES′∼τ(s,a)[R1(s, a, S
′)] = ES′∼τ(s,a)[R2(s, a, S

′)]. Given an equivalence relation ∼ between
reward functions, a function c : R → R is a canonicalization function for ∼ if and only if (1)
c(R1) = c(R2) ⇐⇒ R1 ∼ R2, and (2) c(R) ∼ R for all reward functions R ∈ R.

For now, we will only consider canonicalization for ∼PS or ∼S′R (or both), but other options are
considered in Appendix B. EPIC and DARD both canonicalize for ∼PS . However, note that DARD
violates (2), and so is not technically a canonicalization. We can canonicalize for ∼S′R using e.g.
c(R)(s, a, s′) = ES′∼τ(s,a)[R(s, a, S′)], and for both ∼PS and ∼S′R by combining this with e.g.
CEPIC. Note that we must know τ to canonicalize for ∼S′R, but that no knowledge of τ is needed to
canonicalize for ∼PS .

For normalization, EPIC and DARD use a weighted L2 norm. We generalize this too:
Definition 2. A function n : R → R is a normalization function if (1) n(R) = 0 ⇐⇒ R = 0, and
(2) n(α ·R) = α · n(R) for any α ≥ 0.

Note that any norm is a normalization function, though normalization functions are more general.

Finally, EPIC and DARD also use the L2 norm for the final step, measuring distances. We generalize
this to allow any function that bounds some norm. This gives us the class of reward function distance
metrics that we are considering:
Definition 3. An EPIC-like distance is a function d : R×R → R of the form

d(R1, R2) = m(s(R1), s(R2)) = m

(
c(R1)

n(c(R1))
,

c(R2)

n(c(R2))

)
(3)

where c is a canonicalization function, n is a normalization function, and m gives an upper bound for
some norm. That is, there is a norm p and a constant Km such that p(R1, R2) ≤ Km ·m(R1, R2)

for all R1, R2 ∈ Im(s). s(R) := c(R)
n(c(R)) is the corresponding standardization function.

Note that d is generally not a pseudo-metric, like EPIC, but does become a pseudo-metric if m is one.
In Appendix C, we discuss several examples of EPIC-like distances, including with canonicalization
functions for all equivalence relations analyzed by [16]. In Appendix F, we show that all EPIC-like
distances are topologically equivalent.

5 Regret Bound

Next, we show that any distance covered by Definition 3 induces a regret bound:
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Theorem 1. Let d be an EPIC-like distance, given by c, n, and m. Suppose the equivalence relation
∼ of c satisfies that, if R1 ∼ R2, then there is a k such that J1(π) = J2(π) + k for all π. Suppose
there is a constant Kn such that n(c(R)) ≤ Kn · n(R) for all R. Then there is a constant Kd such
that for any rewards R1, R2, and any policies π1, π2, if J2(π2) ≥ J2(π1) then

J1(π1)− J1(π2) ≤ Kd · n(R1) · d(R1, R2). (4)

This theorem establishes a bound on the regret that is incurred under reward R1 if a policy π1 is
improved to π2 under a different reward R2. Note that, as a special case, we could let πi be an
optimal policy under Ri; this way, we recover the regret bound proven by [5]. But Theorem 1 is more
general both in that it does not assume optimality, and in that it applies to any EPIC-like distance,
rather than only EPIC. The proof is given in the appendix.

Note that ∼PS always satisfies that, if R1 ∼PS R2, then there is a k such that J1(π) = J2(π) + k
for all π, whereas ∼S′R only satisfies this condition for the τ it is defined against.

6 How to pick a canonicalization function

To design an EPIC-like distance, we must choose a canonicalization function c, a normalization
function n, and the distance m. A reasonable default for m and n is e.g. a weighted L2-norm. In this
section, we discuss how to choose the canonicalization function, c.

We first need to decide which equivalence relation to canonicalize for. A reasonable desideratum
is that s(R) = s(R′) if and only if R and R′ induce the same policy ordering over some class of
environments.2 If we do not want to make any assumptions about the transition dynamics, then
potential shaping and positive scaling are the only transformations that preserve policy ordering [15].
This still holds for certain limited partial knowledge about transition dynamics [8]. If we do know the
transition dynamics then ∼S′R also preserves policy ordering, but no other transformations do [15].
The normalization step with n takes care of positive scaling. Therefore, our canonicalization function
c should always canonicalize with respect to ∼PS , and additionally with respect to ∼S′R if we know
the transition dynamics τ . Note that these are the optimal choices for both cases — there is no larger
equivalence class which would satisfy the conditions of Theorem 1.

After deciding on an equivalence class, we need to pick a specific canonicalization function. One
approach is to pick a canonicalization which makes the regret bound from Theorem 1 as low
as possible. As we discuss in appendix E, the constant Kd in eq. (4) is proportional to Kn :=

supR
n(c(R))
n(R) . The best value we can achieve is Kn = 1, since c(c(R)) = c(R). So it makes sense

to pick a minimal canonicalization c that achieves this bound if possible, i.e. n(c(R)) ≤ n(R) for all
R ∈ R. As we show in Appendix B, a minimal canonicalization always exists if n is continuous.

Minimal canonicalization functions are not always unique, but do turn out to be unique in many
important cases. For example, if n is the L2-norm, then there is a unique minimal canonicalization
for potential shaping, which can be interpreted as the unique “divergence-free” reward function
in its equivalence class[8]. Note that EPIC does not use this minimal canonicalization function.
On the other hand, EPIC’s canonicalization function is cheaper to compute than divergence-free
canonicalization (which requires solving a linear problem). We hope future work will find choices
that are as easy to compute as the EPIC canonicalization but as principled as the minimal one.

7 Conclusion

We have defined a general framework for reward function distance metrics that are invariant under
certain equivalence relations. For metrics in this framework, we generalized the regret bound from
Gleave et al. [5]. We also gave many examples for possible instantiations of this framework. Which
of these many distance metrics should be used in practice is a question that future work will need to
investigate empirically. Our contribution is to show that many viable alternatives for existing metrics
exist and even have important advantages. We thus highlight the need for such future investigations
and provide a framework in which they can take place.

2Note that d(R,R′) = 0 ⇐⇒ s(R) = s(R′) if m is a metric.
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A Relation to existential risk reduction

It seems likely that we will at some point in the foreseeable future develop AI systems that would in
principle be able to disempower humanity, if they chose to. This means we need to ensure that AI
systems are aligned with our goals, in order to avoid an existential catastrophe from conflict with
misaligned AI.

Reward learning is currently the leading approach for aligning AI systems with complex human
goals, rather than simplistic objectives that would be unsafe to optimize. Although more sophisticated
approaches may be required to align sufficiently advanced AI systems, many proposals for these still
require reward learning as a subcomponent [10, 6, 18].

An important obstacle to alignment, including to the reward learning approach, is Goodhart’s
law. Although optimizing a (learned) proxy reward function will at first improve outcomes to our
actual preferences, at some point further optimization of the proxy will lead to worse outcomes.
Current reward models are often not sufficiently good proxies to withstand even moderately strong
optimization pressure. For example, KL penalties have to be used when fine-tuning language models
using RL, in order to avoid reward hacking [17].

In order to develop more robust reward models, which can be optimized safely to a larger extent, good
evaluation of reward learning algorithms is crucial. As argued by Gleave et al. [5], simply evaluating
the performance policies optimized using the learned reward models has numerous drawbacks.
Using reward distance metrics instead can give a more reliable evaluation criteria. Although EPIC
and DARD provide a good starting point as reward distance metrics, there is probably room for
improvement, given how new this subfield is. From the perspective of Goodhart’s law, an especially
important aspect is the regret bound, which we significantly generalize compared to the one given
in the EPIC paper. We hope that the framework we introduce will lead to a more comprehensive
study of reward distance metrics, and ultimately to better evaluation of learned reward models and of
reward learning algorithms.

B Generalized Canonicalization Functions

In the main paper, we have mainly used canonicalization functions that remove potential shaping
by mapping all reward functions that differ by potential shaping to a single representative in their
equivalence class. In this section, we will show how to canonicalize even broader equivalence classes,
and thereby achieve even tighter regret bounds.

If two reward functions R1 and R2 induce the same ordering of policies, then they should be
considered equivalent, and have d(R1, R2) = 0. Moreover, it has been shown that R1 and R2 induce
the same ordering of policies for all transition functions τ if and only if R1 and R2 differ by potential
shaping and positive linear scaling (see Skalse and Abate [15]). We therefore use a canonicalization
function c to remove potential shaping, and a normalisation function n to remove positive scaling.
This ensures that s(R1) = s(R2) if and only if R1 and R2 are equivalent for all τ .

If we do not wish to make any assumptions about τ , then this is the best we can do. That is, if R1

and R2 do not differ by potential shaping and positive linear scaling, then there is some τ for which
they induce different policy orderings. However, can we do better than this if we know τ? The
answer is yes; if ES′∼τ(s,a)[R1(s, a, S

′)] = ES′∼τ(s,a)[R2(s, a, S
′)], then R1 and R2 induce the

same ordering of policies under τ . Following Skalse et al. [16], we refer to this as S′-redistribution.
We can canonicalize for S′-redistribution using e.g. c(R)(s, a, s′) = ES′∼τ(s,a)[R(s, a, S′)]. Is it
possible to do even better than this? The answer is no:

Proposition 1. Two reward functions R1 and R2 induce the same ordering of policies if and only if
they differ by potential shaping, S′-redistribution, and positive linear scaling.

Proof. See Skalse and Abate [15].

This means that if we use a canonicalization function c that removes potential shaping and S′-
redistribution, and a normalisation function n that removes positive scaling, then s(R1) = s(R2)
if and only if R1 and R2 are equivalent under τ . In other words, if we do not know τ , then the
best we can do is to canonicalize for potential shaping, and normalise for positive scaling, and if
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we know τ , then the best we can do is to additionally canonicalize for S′-redistribution. However,
if we have partial knowledge of τ , then there may be more we can do. For example, if we know
that all transitions in some set X are impossible under τ , then we could set R(s, a, s′) = 0 for all
(s, a, s′) ∈ X . This calls for a more general definition of canonicalization functions:
Definition 4. An environment E consists of a transition function τ and initial state distribution µ0.
Say that R1 ∼ R2 in E = (τ, µ0) if there is a constant k such that J1(π) = J2(π) + k for all π,
where J1 and J2 are evaluated under τ and µ0. We say that c : R → R is a canonicalization function
for E if c(R1) = c(R2) implies R1 ∼ R2 in E, and R ∼ c(R) in E. Moreover, we say that c is a
canonicalization function for a set of environments X if it is a canonicalization function for each
environment in X .

This definition allows for canonicalization functions that take into account as much information about
τ as possible. Canonicalizing larger sets of reward functions can make the resulting regret bound
tighter, but it will also make it applicable in fewer environments.

Next, the equivalence classes we have discussed can be canonicalized with a linear transformation:
Proposition 2. There exists a linear canonicalization function for potential shaping, S′-redistribution,
and impossible transitions.

Proof. The obvious way to canonicalise impossible transitions X is to set

c(R)(s, a, s′) = 0 for ⟨s, a, s′⟩ ∈ X.

This is a linear transformation. The obvious way to canonicalize for S′-redistribution is to set

c(R)(s, a, s′) = ES′∼τ(s,a)[R(s, a, S′)].

This is also a linear transformation. Finally, the canonicalization function CEPIC used by EPIC is an
example of a linear function that canonicalizes for potential shaping.

Our proofs will not require that c is linear, but it is good to know that a linear c exists. We next
introduce a notion of “minimal” canonicalization functions. This is motivated by the following:
Proposition 3. If n is continuous, and if S is an affine subspace of R, then there is an RS ∈ S such
that n(RS) ≤ n(R) for all R ∈ S.

Proof. Let N ⊆ R be the unit ball of n. If n is continuous then there is a unique smallest value c ∈ R
such that c ·N intersects S. Any reward function RS in this intersection satisfies n(RS) ≤ n(R) for
all R ∈ S.

Note that RS may not be unique! Note also that if n is a norm then n is continuous, since R is
finite-dimensional. Next, note that for any canonicalisation function c for one of the equivalence
classes we have discussed, and any reward function R, the set of all reward functions R′ such
that c(R′) = c(R) forms an affine space. Proposition 3 thus implies that we, given a continuous
normalisation function n, can define a (not necessarily unique) canonicalisation function c which
sends each R to (one of) the smallest reward functions (as measured by n) in its equivalence class.
Definition 5. Given a normalisation function n, a canonicalisation function c is minimal if n(c(R)) ≤
n(R′) for all R′ such that c(R) = c(R′).

Note that Proposition 3 implies that there always exists a minimal canonicalisation function for any
continuous n. Note also that this function may or may not be unique; for example, it is unique if n is
the L2-norm, but not if it is the L∞-norm.

C Examples

In this section, we give a few examples of EPIC-like distances. Our first example is of course EPIC,
whose canonicalisation function c is CEPIC, whose normalisation function n is the D-weighted L2

norm, and whose m is also the D-weighted L2 norm. Next, our definition of an EPIC-like distance
allows each of these parts to be changed. For example, we could normalise using the L1 norm, or the
L∞ norm, and so on.

7



There are also many choices for the canonicalisation function. For example, we can generalize EPIC
by shaping with the value function of an arbitrary policy π under arbitrary transition dynamics τ :
c(R)(s, a, s′) = R(s, a, s′) + γvπ(s′) − vπ(s). EPIC is the special case where π(a|s) = DA(a)
and τ(s′|s, a) = DS(s

′). So just like DARD, this is a strict generalization of EPIC, but it avoids the
pathologies of DARD discussed in section 3.

To formalize this example, we can define the outflow of a reward function as out(R) : S → S with

out(R)(s) :=
∑
a,s′

D(s, a, s′)R(s, a, s′) (5)

for a coverage distribution D. Following Jenner et al. [8], we will also write

grad(Φ)(s, a, s′) := γΦ(s′)− Φ(s) (6)

for the potential shaping term. We then have the following result:
Proposition 4. Let D be any distribution over transitions, R a reward function, and γ < 1. Then
there is a unique potential Φ such that out(R + gradΦ) = 0 and Φ(s) = 0 for all s for which the
marginal probability is zero:

∑
a,s′ D(s, a, s′) = 0.

Proof. Writing out the condition out(R+ gradΦ) = 0 explicitly, we get∑
a,s′

D(s, a, s′)(R(s, a, s′) + γΦ(s′)− Φ(s)) = 0 . (7)

We can rearrange this slightly to obtain

Φ(s)
∑
a,s′

D(s, a, s′) =
∑
a,s′

D(s, a, s′)(R(s, a, s′) + γΦ(s′)) . (8)

As a sidenote to provide intuition, note what happens if
∑

a,s′ D(s, a, s′) > 0 for all states s: we can
divide by this and get

Φ(s) =
∑
a,s′

D(a, s′|s)(R(s, a, s′) + γΦ(s′)) , (9)

which is precisely the Bellman equation for the value function vπ if we factorize D(a, s′|s) =:
π(a|s)p(s′|a, s) (which is always uniquely possible). So the unique potential Φ that makes R+gradΦ
outflow-free would then be simply the value function.

Intuitively, if
∑

a,s′ D(s, a, s′) = 0 for some state s, then we’re missing the information necessary to
compute the value of s, and Φ(s) thus becomes arbitrary. By fixing the potential of these states to
zero, we recover a unique solution. This is similar to setting the value of terminal states to zero for
solving the Bellman equation. The remainder of the proof essentially formalizes this idea.

We interpret the potential Φ as a vector in Rn, where n is the number of states. Without loss of
generality, we order the states S = {s1, . . . , sn} such that D(si) > 0 for i ≤ m and D(si) = 0 for
i > m (where m is the number of states with non-zero marginal).

We then additionally define the expected reward vector R+ ∈ Rm as

R+
s :=

∑
a,s′

D(a, s′|s)R(s, a, s′) (10)

for s ∈ {s1, . . . , sm}, and the transition matrix P ∈ Rm×n as

Pss′ :=
∑
a

D(s′, a|s) . (11)

Finally, we split up Φ and P into two parts at the index m:

Φ =

(
Φ+

Φ0

)
(12)

and
P =

(
P+ P 0

)
. (13)
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So e.g. Φ+ is the potential of all states s with D(s) > 0.

Note that the outflow condition eq. (8) above always holds for states with D(s) = 0. So a potential
Φ+ leads to an outflow-free reward if and only if eq. (8) holds for s ∈ {s1, . . . , sm}. We can write
these m linear equations in the n unknowns Φ in matrix form as follows:

Φ+ = R+ + γPΦ = R+ + γ(P+Φ+ + P 0Φ0) . (14)

Here we made use of the fact that for these m equations, we can divide by D(s), as discussed above.
We now rearrange this as

(I − γP+)Φ+ = R+ + γP 0Φ0 . (15)

Now note that each row in P+ sums to at most one (since each row in P sums to exactly one). This
means that all eigenvalues of P+ have absolute value at most one, i.e. we have ρ(P+) ≤ 1 for the
spectral radius of P+. Thus, ρ(γP+) ≤ γ < 1, so I − γP+ is invertible (with the inverse given by a
Neumann series). This means that for any choice of Φ0, there is a unique solution for Φ+ to satisfy
the outflow condition.

The corresponding canonicalization is then c(R) := R + gradΦ. As mentioned in the proof, the
potential Φ that is used to obtain c(R) from R can be interpreted as the value function vπ of a
policy and transition dynamics implicitly defined by D. This is also the reason that a unique c(R)
exists—this is equivalent to saying that the Bellman equation for the value function of a policy
always has a unique solution. Setting Φ to zero for states with zero marginal probability is somewhat
arbitrary: for any choice of potential on these states, there is exactly one way to fill in the remaining
potential to make the reward outflow-free. Zero is merely the simplest choice. The condition γ < 1
could also be replaced with a suitable condition on the canonicalization distribution, similar to how
the Bellman equation can be uniquely solved if either γ < 1 or if all trajectories end in an absorbing
state with probability one.

We can assume without much of a restriction that all marginal probabilities are non-zero (otherwise,
we could simply remove the zero-probability states altogether). Then proposition 4 simplifies:

Corollary 1. Assume that
∑

a,s′ D(s, a, s′) > 0 for all states s. Then every potential shaping
equivalence class of reward functions has exactly one outflow-free representative.

As already mentioned in the main paper, another example of a canonicalization function for potential
shaping is divergence-free canonicalization [8].

[16] also discuss constant shifts (a special case of potential shaping) and masks of invalid transitions.
These are similarly easy to canonicalize, for example using C(R) := R−minR for constant shift,
and by setting rewards of invalid transitions to zero for masking.

As a slightly more complex example, consider monotonic transformations of reward functions,
i.e. R1 ∼ R2 if R1(x) ≤ R1(x

′) ⇐⇒ R2(x) ≤ R2(x
′) for any transitions x, x′. One way to

canonicalize this equivalence relation is to set C(R)(x) := # {x̃ |R(x̃ ≤ R(x)}. This discards the
exact magnitudes of rewards and picks a reasonable canonical representation of their ordering.

We can also canonicalize the final equivalence relation discussed by Skalse et al. [16]: R1 and
R2 are related by an optimality-preserving transformation for given transition dynamics and initial
state distribution if and only if they both induce the same optimal policy set. Note that this is the
case precisely when the optimal Q-functions of both rewards have the same maximizing actions in
each state. So to canonicalize a reward function R, we can first canonicalize its optimal Q-function
Q⋆(s, ·) for each state s, e.g. by setting it to 1 for optimal actions and 0 for non-optimal ones. This
canonicalized optimal Q-function specifies a reward up to S′-redistribution [16, Theorem 3.1], so
we can use the canonicalization for S′-redistribution from above to obtain a canonicalized reward
function.

An important note is that the regret bound does not apply to canonicalization of monotonic and
optimality-preserving transformations, since these can affect returns in other ways than just by adding
a constant. Distances using these canonicalizations should thus only be used in applications where
no regret bound is needed. In exchange, these canonicalizations can recognize even more reward
functions as equivalent, which may be desirable in some cases.

9



C.1 Interesting choices of m

It is possible to get quite creative with the choice of m. Consider:

Definition 6. Given a linear canonicalisation function c, let the angle-based metric ANGc be

ANGc(R1, R2) = ang(c(R1), c(R2)),

where ang : Rn × Rn → [0, π] is the function that returns the angle between non-zero vectors. For
the zero vector, let ang(⃗0, 0⃗) = 0 and ang(⃗0, R) = π/3 for R ̸= 0⃗.

It may not be immediately obvious why ANGc is an EPIC-like distance. To see this, first note
that ANGc is unaffected by the scale of R1 and R2. We may therefore equivalently express it as
ang(s(R1), s(R2)), where s canonicalises using c and normalises using the L2 norm. Next, note that
we now have that L2(R1, R2) = 2 sin(ang(R1, R2)/2) for all R1, R2 ∈ Im(s). This means that
ang bounds L2 (using Km = 1), and so ANGc is an EPIC-like distance. Next, let us give another
example of a “creative” choice of m:

Definition 7. Let s be a standardisation function, and let D be a distribution over (S×A×S)⋆ that
gives support to all possible transitions. Then the sample-based distance measure SAMs,D is

SAMs,D(R1, R2) = Eξ∼D|GS
1 (ξ)−GS

2 (ξ)|.

Here m is implicitly given by the L1-norm, weighted by the discounted cumulative probability with
which D visits each transition. In other words, W (s, a, s′) =

∑∞
t=0 γ

tPξ∼D(st, at, st+1 = s, a, s′).
If we are only concerned with a single transition function τ , then D could be the trajectory distribution
of any policy that visits all reachable transitions with positive probability. If we are concerned with
all transition functions, then D must give positive support to all transitions (though not necessarily
at every time step). Note that we do not need to assume that D corresponds to a policy; it could be
non-stationary, give support to impossible transitions, or even support trajectories that do not form a
path, etc. We will give one final example of a creative EPIC-like distance:

Definition 8. Given a fixed τ, µ0, and γ, let s be the standardisation function that normalises
using n(R) = maxπ J(π) − minπ J(π), and canonicalizes with a function c that ensures that
minπ J(π) = 0. Then the continuous order-based distance measure CORD is given by

CORD(R1, R2) = max
π

|Js
1 (π)− Js

2 (π)|.

CORD can be seen as a continuous measure of the extent to which the policy orderings of R1 and R2

differ. If J is normalised to [0, 1], then Js(π) can be seen as an index corresponding to π’s place in
the ordering. CORD then gives the maximal value by which the index of any policy differs between
R1 and R2. To see that CORD is EPIC-like, note that if π is a policy that visits every transition with
positive probability, then p(R1, R2) = |J1(π)− J2(π)| is a norm (equivalent to a weighted L1-norm,
and ignoring the transitions that are impossible under τ ), and that p ≤ m.

D Regret Bound Proofs

First, we will establish a few general lemmas that concern how we can bound the regret between
different reward functions in various ways. To start with, note that the difference in reward obtained
by some particular policy π under two different reward functions (under arbitrary transition dynamics)
can be bounded in terms of the L∞-distance between those reward functions.

Lemma 1. For any reward functions R1 and R2, and any policy π, we have

|J1(π)− J2(π)| ≤
(

1

1− γ

)
L∞(R1, R2).
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Proof.

|J1(π)− J2(π)| = |Eξ∼π[

∞∑
t=0

γtR1(st, at, st+1)]− Eξ∼π[

∞∑
t=0

γtR2(st, at, st+1)]|

=

∞∑
t=0

γtEξ∼π[|R1(st, at, st+1)−R2(st, at, st+1)|]

≤
∞∑
t=0

γtL∞(R1, R2) =

(
1

1− γ

)
L∞(R1, R2).

This is the tightest bound possible, if all we know about R1 and R2 is their L∞-distance. However,
we could compute an even tighter bound, if we examine R1 and R2 more closely (e.g., by tracing the
maximal difference between them along any path through S and A). Nonetheless, this bound will be
sufficient for our purposes. We next show that there is a similar bound for any norm.
Lemma 2. If p is a norm then there is a constant Kp such that |J1(π)− J2(π)| ≤ Kp · p(R1, R2).

Proof. If p and q are norms on a finite-dimensional vector space, then there are constants k and K
such that

k · p(x) ≤ q(x) ≤ K · p(x).
Since S and A are finite, R is a finite-dimensional vector space. This means that there is a constant
K such that L∞(R1, R2) ≤ K · p(R1, R2). Together with Lemma 1, this implies that

|J1(π)− J2(π)| ≤
(

1

1− γ

)
·K ·m(R1, R2).

Letting Kp =
(

K
1−γ

)
completes the proof.

Next, we derive a lemma that allows us to go from bounds of this form to regret bounds.
Lemma 3. Let R1 and R2 be reward functions, and π1 and π2 be policies. If |J1(π)− J2(π)| ≤ U
for π ∈ {π1, π2}, and if J2(π2) ≥ J2(π1), then we have that

J1(π1)− J1(π2) ≤ 2 · U.

Proof. First note that U must be non-negative. Next, note that if J1(π1) < J1(π2) then J1(π1) −
J1(π2) ≤ 0, and so the lemma holds. Now consider the case when J1(π1) ≥ J1(π2):

J1(π1)− J1(π2) = J1(π1)− J2(π2) + J2(π2)− J1(π2)

≤ |J1(π1)− J2(π2)|+ |J2(π2)− J1(π2)|

Our assumptions imply that |J2(π2)− J1(π2)| ≤ U . We will next show that |J1(π1)− J2(π2)| ≤ U
as well. Our assumptions imply that

|J1(π1)− J2(π1)| ≤ U

=⇒ J2(π1) ≥ J1(π1)− U

=⇒ J2(π2) ≥ J1(π1)− U

Here the last implication uses the fact that J2(π2) ≥ J2(π1). A symmetric argument also shows that
J1(π1) ≥ J2(π2) − U (recall that we assume that J1(π1) ≥ J1(π2)). Together, this implies that
|J1(π1)− J2(π2)| ≤ U . We have thus shown that if J1(π1) ≥ J1(π2) then

|J1(π1)− J2(π2)|+ |J2(π2)− J1(π2)| ≤ 2 · U,
and so the lemma holds. This completes the proof.

This lemma establishes a bound on the regret that is incurred under reward R1 if a policy π1 is
optimised to π2 under a different reward R2, making no assumptions about how much optimisation is
performed. Here U could come from Lemma 1 or 2, or it could be derived in some other way.
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D.1 Removing Standardisation

Let us now briefly recall our strategy for constructing reward distance functions. We have seen that if
p is a norm (or gives an upper bound for a norm) then p(R1, R2) gives a regret bound for R1 and
R2 that holds in all environments. Moreover, since distinct reward functions can be equivalent in
various classes of environments, we can improve on the bound provided by p(R1, R2) by creating
a standardisation function s, which maps all reward functions in the same equivalence class to a
single representative, and then measure the distance p(s(R1), s(R2)). This gives us a regret bound
for s(R1) and s(R2). To give a full regret bound, we additionally need a way to bound the regret of
R1 and R2 in terms of the regret of s(R1) and s(R2). We will now discuss this issue.

Some care is required when we perform both canonicalisation and normalisation. The reason for this
is that the canonicalisation c might (and typically will) change the n-size of the reward vector. We
therefore need to bound n(c(R)) in terms of n(R). When we have such a bound, we can derive a
regret bound with the following strategy:
Lemma 4. If there is a Kn such that n(c(R)) ≤ Kn · n(R) for all R, and the equivalence relation
∼ of c satisfies that if R1 ∼ R2 then there is a k such that J1(π) = J2(π) + k for all π, then for any
reward R and any policies π, π′, we have that

JS(π)− JS(π′) ≤ U =⇒ J(π)− J(π′) ≤ Kn · n(R) · U.

Proof. First recall that s(R) =
(

c(R)
n(c(R))

)
. This means that

JS(π) =

(
1

n(c(R))

)
(J(π) + k),

which further implies that

JS(π)− JS(π′) =

(
1

n(c(R))

)
(J(π)− J(π′))

since the k-terms cancel out. By rearranging, we get that

J(π)− J(π′) = n(c(R))(JS(π)− JS(π′)).

Since n(c(R)) ≤ Kn · n(R), and since JS(π)− JS(π′) ≤ U , this implies that

J(π)− J(π′) ≤ Kn · n(R) · U.
This completes the proof.

This now raises the question; when can we be sure that such a Kn exists? Again, we will show that
this exists under very general conditions. We begin by showing that it is sufficient for c to be linear
and n to be continuous.
Lemma 5. If a canonicalisation function c is linear, and a normalisation function n is continuous,
then there is a Kn such that n(c(R)) ≤ Kn · n(R).

Proof. We begin by noting that if c is linear, then for any positive α ∈ R,

n(c(α ·R))

n(α ·R)
=

(α
α

) n(c(R))

n(R)
=

n(c(R))

n(R)
,

since n is absolutely homogeneous. The maximal value of n(c(R))
n(R) must therefore occur on the unit

ball in n. Next, since the unit ball of n is a compact set, and since n(c(R))
n(R) is continuous, the extreme

value theorem implies that n(c(R))
n(R) must take on some maximal value K on this domain. This implies

that there is a K such that n(c(R)) ≤ Kn · n(R) for all R.

This is sufficient to ensure that such a constant Kn exists in all cases we are concerned with. It is also
worth noting that there are other ways to get a bound on n(c(R)) in terms of n(R). For example, if
we know τ , µ0, and γ, and use the normalisation function

n(R) = max
π

J(π)−min
π

J(π),
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then n(c(R)) = n(R) for all valid canonicalisation functions. Therefore, in that case we have that
Kn = 1 for any choice of c (linear or not). Also note that if c is a minimal canonicalisaton for n, then
n(c(R)) ≤ n(R). Therefore, in these cases we also get a bound with Kn = 1. Again, recall that a
minimal canonicalisation function always exists for any continuous n.

D.2 Full Regret Bound

We now have all the pieces necessary to prove the regret bound.

Theorem 2. Let d be an EPIC-like distance, given by c, n, and m. Suppose the equivalence relation
∼ of c satisfies that, if R1 ∼ R2, then there is a k such that J1(π) = J2(π) + k for all π. Suppose
there is a constant Kn such that n(c(R)) ≤ Kn · n(R) for all R. Then there is a constant Kd such
that for any rewards R1, R2, and any policies π1, π2, if J2(π2) ≥ J2(π1) then

J1(π1)− J1(π2) ≤ Kd · n(R1) · d(R1, R2).

Proof. Recall that d(R1, R2) = m(s(R1), s(R2)). We will begin by establishing a regret bound in
terms of the standardised reward functions s(R1) and s(R2), and then translate this into a regret
bound in terms of R1 and R2. To do this, first recall that m bounds some norm p. Since p is a norm,
we can apply Lemma 2 to conclude that there is a constant Kp such that for any π,

|JS
1 (π)− JS

2 (π)| ≤ Kp · p(s(R1), s(R2)).

Recall that p(R1, R2) ≤ Km ·m(R1, R2) for some constant Km. Therefore,

Kp · p(s(R1), s(R2)) ≤ Kp ·Km ·m(s(R1), s(R2))

= Kmp · d(R1, R2)

where Kmp = Kp ·Km. We have thus established that

|JS
1 (π)− JS

2 (π)| ≤ Kmp · d(R1, R2)

for any π. Next, note that if J2(π2) ≥ J2(π1) then JS
2 (π2) ≥ JS

2 (π1). We can therefore apply
Lemma 3 and conclude that

JS
1 (π1)− JS

1 (π2) ≤ 2 ·Kmp · d(R1, R2).

We have assumed that there is a constant Kn such that n(c(R)) ≤ Kn · n(R) for all R. We can
therefore apply Lemma 4, and conclude that

J1(π)− J2(π) ≤ Kn · n(R1) · 2 ·Kmp · d(R1, R2).

Setting Kd = 2 ·Kn ·Kmp completes the proof.

E Concrete regret bound constants

Theorem 2 assumes existence of a suitable constant Kn and shows existence of another constant
Kp. The specific values of these constants depend on the details of the distance we are using. In this
section, we give specific bounds for a few of the examples we have seen.

From the proof of theorem 2, we can see that Kd comes from three constants: Kd = 2 ·Kn ·Km ·Kp.
Typically, m will itself be a norm, in which case we can set p = m and get Km = 1. As we can see
from the proof of lemma 2, Kp = K

1−γ , where K is chosen such that L∞(R1, R2) ≤ K ·m(R1, R2).

If m is the L∞ norm, we can simply use K = 1. Gleave et al. [5, Lemma A.11] show that for m a
D-weighted L1 norm, we need KD(s, a, s′) ≥ 2Dπ,t(s, a, s

′) for all time steps t and policies π for
which we want the regret bound to hold. At the very least, we can achieve K = 2|S||A||S| with a
uniform distribution D. For a D-weighted L2 norm, the same K can be used as long as we normalize
D, due to Hölder’s inequality.

In summary, we get:

• Kd = 2Kn

1−γ for an L∞ norm
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• Kd = 4Kn·K
1−γ with KD(s, a, s′) ≥ Dπ,t(s, a, s

′) for a D-weighted L1 or L2 norm, with D
some probability distribution over transitions.

Now let us discuss the existence of Kn. This will depend on the choice of n and of the canonicalization
function c. We will focus on n being a D-weighted L2 norm, since this is what EPIC uses. We then
get the following results:
Proposition 5. Let n be a D-weighted L2 norm. Then we have n(c(R)) ≤ Kn · n(R) with

1. Kn = 4 for c = CEPIC

2. Kn = 1 for divergence-free canonicalization

3. Kn =
(
1 + 1+γ

1−γ

)
for shaping with a value function (outflow-free canonicalization)

This assumes in each case that the distribution used for canonicalization is also D. For value-based
shaping and divergence-free canonicalization, this is always a valid choice, while for EPIC, it only
works if D has independent state, action, and next state. If a different distribution is used for
canonicalization than for computing n, we get additional factors in Kn, which become infinite if
the two distributions have different support. In terms of regret bounds, it is thus best to choose both
distributions to be the same.

Proof. For EPIC, this claim corresponds to Lemma A.12 in Gleave et al. [5].

For divergence-free canonicalization, Kn = 1 suffices because c picks the representative with
minimal L2 norm in its equivalence class, so in particular ∥c(R)∥2 ≤ ∥R∥2.

Finally, write Cout(R) = R + gradΦ and use the notation for Φ+, P+, and R+ introduced in the
proof of proposition 4. Then,

∥Cout(R)∥ ≤ ∥R∥+ ∥gradΦ∥ ≤ ∥R∥+ (1 + γ)∥Φ∥ . (16)

A word on ∥Φ∥: we can either interpret Φ as a function on transitions, which happens to only depend
on s (not a or s′), or we can interpret it as a vector in Rn, as in the proof of proposition 4, in which
case we use the marginal of D to compute the norm. Crucially, the norm is the same in both cases.

As discussed in the proof of proposition 4, Φ can be split into Φ+ and Φ0, but the latter was defined
to be zero there, so we get ∥Φ∥ = ∥Φ+∥. Φ+ is explicitly given by

Φ+ = (I − γP+)−1R+ . (17)

We can write the inverse as a Neumann series,

(I − γP+)−1 =

∞∑
k=0

(γP+)k , (18)

which lets us bound its operator norm as∥∥(I − γP+)−1
∥∥ ≤

∞∑
k=0

∥∥(γP+)k
∥∥

≤
∞∑
k=0

γk
∥∥P+

∥∥k
≤

∞∑
k=0

γk

=
1

1− γ
.

(19)

Here, we used first the triangle inequality, then the submultiplicativity of the operator norm, and
finally the fact that the operator norm of P+ is at most 1.

If we combine this bound on the operator norm with eq. (17), we get∥∥Φ+
∥∥ ≤ 1

1− γ

∥∥R+
∥∥ ≤ 1

1− γ
∥R∥ . (20)
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There is a slight subtlety here: ∥R+∥ is a norm on states, and ∥R∥ on transitions. We made use of

∥∥R+
∥∥2 =

∑
s

D(s)

∑
a,s′

D(a, s′|s)R(s, a, s′)

2

≤
∑
s

D(s)
∑
a,s′

D(a, s′|s)R(s, a, s′)2

= ∥R∥2 .

(21)

Putting everything together, we get

∥c(R)∥ ≤ ∥R∥+ (1 + γ)∥Φ∥ ≤ ∥R∥+ 1 + γ

1− γ
∥R∥ . (22)

F Topological Equivalence Proof

Definition 3 specifies a very diverse class of distance metrics. A natural question is then just how
much these distance metrics can vary. In this section, we will partially answer this question, and
show that all EPIC-like distances are equivalent in a certain sense.
Theorem 3. If d1 and d2 are continuous EPIC-like distances which canonicalize the same equivalence
classes, then there exist positive L,U ∈ R>0 such that for all R1, R2,

L · d1(R1, R2) ≤ d2(R1, R2) ≤ U · d1(R1, R2).

Proof. Let s be an arbitrary continuous standardisation function, which canonicalises for the same
equivalence classes as d1 and d2. For example, s could correspond to s1’s canonicalisation, and
normalisation with L2. Next, consider the function f(R1, R2) = d2(R1,R2)

d1(R1,R2)
for R1 ̸= R2, and 0

otherwise. If d1 and d2 are continuous, then so is f . Note that if m2 gives a linear upper bound for
some norm then d2(R1, R2) ̸= 0 whenever R1 ̸= R2, for all R1, R2 ∈ Im(s). Moreover, if s is
continuous then Im(s)× Im(s) is a compact space. This means that we can apply the extreme value
theorem, and conclude that f takes on a maximal value U and a minimal value L on Im(s)× Im(s).
Multiplying all sides by d1(R1, R2) completes the proof.

This shows that all EPIC-like distances are topologically equivalent. Therefore, while some EPIC-like
distances might induce tighter regret bounds, or be easier or faster to compute, etc, they are ultimately
broadly similar, at least in that they induce the same topology on R.
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