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Abstract

Modern Transformer-based language models001
such as BERT are huge and expensive to de-002
ploy in practical applications. In environments003
such as commercial chatbot-as-a-service plat-004
forms that deploy many NLP models in parallel,005
less powerful models with a smaller number006
of parameters are often used to keep deploy-007
ment costs down. Also, in times of climate008
change and scarce resources, the deployment009
of many huge models is no longer adequate.010
This paper proposes the BERT+Adapter archi-011
tecture for hosting many models and saving012
considerable amounts of (GPU) memory. We013
further demonstrate the effectiveness of this ap-014
proach using the example of intent detection015
for dialog systems. Many task-specific adapters016
can share one large Transformer model with017
the adapter framework. To deploy 100 NLU018
models requires 1 GB of memory for the019
proposed BERT+Adapter architecture, com-020
pared to 41.78 GB for a BERT-only architec-021
ture. Also, we show that the training time of022
the BERT+Adapter architecture is on average023
14.43 times shorter than that of vanilla BERT.024
Furthermore, we demonstrate that the accuracy025
of BERT+Adapter on intent detection tasks is026
on par with a vanilla BERT architecture.027

1 Introduction028

Natural Language Understanding (NLU) is an es-029

sential component of dialog systems (DS). The030

NLU converts an unstructured user utterance into031

structured information: It comprises a) Intent De-032

tection (ID) where the dialog system classifies a033

user utterance into a predefined list of intents. The034

system can understand what the user wants to say035

based on this classification. The other part of NLU036

is b) slot filling / entity recognition (ER) in which037

the dialog system fills in specific slots that belong038

to an intent.039

Transformer-based models (Vaswani et al.) cur-040

rently show the best results in ID (Mehri and Eric,041

2021). Transformers models are very large, a stan- 042

dard BERT model (Devlin et al., 2019) for ID 043

on the HWU64 dataset (Liu et al., 2019) occu- 044

pies 417.75 MB of data in the Hugging Face im- 045

plementation (Wolf et al., 2020). Hosting these 046

large models is expensive and uses large amounts 047

of computational power which is no longer ade- 048

quate in times of climate change and scarce re- 049

sources (Strubell et al., 2019). Therefore, smaller 050

architectures were proposed such as DIET (Bunk 051

et al., 2020) or ConveRT (Henderson et al., 2020) 052

which use substantially less memory (63 MB for 053

DIET in our HWU64 example). While state-of-the- 054

art Transformer-based NLU models reach perfor- 055

mances up to 92% accuracy (Mehri and Eric, 2021), 056

practical NLU models show a weaker performance 057

of 86-89% (Liu et al., 2019). 058

In this paper, we apply adapters (Rebuffi et al., 059

2017; Houlsby et al., 2019) to ID. We use a general- 060

purpose pre-trained BERT model and introduce a 061

small number of additional parameters (5.87 MB 062

for our HWU64 example in the AdapterHub im- 063

plementation (Pfeiffer et al., 2020)). During train- 064

ing, we freeze the parameters of the original BERT 065

model and train only the additional parameters. Us- 066

ing this approach, we propose a resource-efficient 067

method to deploy multiple ID models: Instead of 068

deploying multiple BERT models, we only need 069

a single, shared BERT model and one adapter for 070

each downstream NLU application. The deploy- 071

ment of, for example, 100 ID models using this 072

new framework requires 1 GB (417.75 MB for the 073

BERT model + 100 × 5.87 MB for the adapters), 074

instead of 41.78 GB (100× 417.75 MB size of the 075

BERT model). 076

Adapters show their strength in environments 077

where many models are deployed in parallel. We 078

demonstrate our approach in two areas of appli- 079

cations. First, we propose its use in chatbot-as-a- 080

service platforms such as IBM Watson Assistant1, 081

1https://www.ibm.com/products/watson-assistant
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Google Dialogflow2, and SAP Conversational AI3.082

These systems offer chatbots as a service and there-083

fore host many DS and a large number of NLU084

models. This industry can save significant amounts085

of costs, resources, and energy using our approach.086

The second application area is modular dialog087

systems (MDS) (Nehring and Ahmed, 2021) in088

which a DS is composed of several sub-DS. Of-089

ten, each sub-DS uses its own NLU model and090

can benefit from the adapter approach’s resource091

savings.092

We perform experiments on three datasets to093

compare the performance of the BERT+Adapter094

model to a fully fine-tuned, vanilla BERT model.095

We determine the sizes of the models and show096

that for a large number of models, BERT+Adapter097

saves a significant amount of memory, compared to098

BERT and to the DIET (Bunk et al., 2020) model.099

The experiments show that the accuracy of ID of100

BERT+Adapter is comparable to BERT, despite the101

memory savings of BERT+Adapter. Also, we show102

that BERT+Adapter is trained considerably faster103

than BERT.104

We publish the source code to reproduce our105

experiments on GitHub4.106

2 Background107

2.1 Natural Language Understanding108

The recent increase in research on dialog systems109

was a catalyst for research in NLU. Systems like110

the Dual Intent and Entity Transformer (DIET)111

(Bunk et al., 2020) or the Dual Sentence Encoders112

(Henderson et al., 2020; Cer et al., 2018) focus on113

lightweight models. DIET model uses pre-trained114

word embeddings like BERT or ConveRT as dense115

features. It combines these features with character116

n-grams and passes them through a Transformer117

with two instead of the usual 12 encoder layers.118

Smaller models are competitive with large-scale119

models in terms of performance and are much120

faster in training and inference. Full-size Trans-121

former models are used for NLU also and achieve122

a stronger performance than the efficient architec-123

tures (Mehri et al., 2020; Mehri and Eric, 2021).124

2https://cloud.google.com/dialogflow
3https://cai.tools.sap
4GitHub link available with camera-ready version.

Until then, please download the source codes from
https://bit.ly/3ItjPd2

2.2 Adapters 125

Instead of replacing the original model for a smaller 126

one, adapters (Rebuffi et al., 2017; Houlsby et al., 127

2019) are a lightweight addition to Transformer 128

models. An adapter is a small set of parameters 129

inserted between the original model’s layers, usu- 130

ally a pre-trained transformer model. For a text 131

classification task as in our paper, the adapter also 132

adds a classification layer on top of the original 133

model. During training, the parameters of the orig- 134

inal Transformer model are frozen, and only the 135

parameters of the adapter are modified. The perfor- 136

mance measured in accuracy or F1-score is similar 137

to full fine-tuning on most tasks (Peters et al., 2019). 138

In dialog systems research, adapters were used for 139

the tasks dialog state tracking, response retrieval 140

(Hung et al., 2021) and neural end-to-end dialog 141

(Madotto et al., 2020), but the resource efficiency 142

was not investigated by these works. 143

2.3 Modular Dialog Systems 144

Dialog systems are often composed of multiple sub- 145

dialog systems in practical applications. Nehring 146

and Ahmed (2021) presented the modular dialog 147

system (MDS) architecture to combine several dia- 148

log systems into one. Each dialog system is called 149

a module and performs its NLU downstream task. 150

The module selection (MS) component selects the 151

appropriate module for each user utterance. MS 152

is a text classification task very similar to ID. The 153

deployment of large NLU models is also an issue 154

in MDS. A MDS with 5 modules uses 6 models 155

(5 × NLU and 1 × MS). Using our approach, one 156

can reduce the entire MDS’s memory requirements 157

considerably. 158

3 Experiments 159

3.1 Datasets 160

We use three datasets in our experiments. We com- 161

pute the performance metric of the NLU models 162

separately for each dataset. 163

The HWU64 dataset (Liu et al., 2019) is a dataset 164

for NLU. It contains 25k user utterances from the 165

domain of personal assistants, such as “set my 166

alarm to 07:30” or “play next song”. HWU64 167

spans 64 intents and 21 domains. NLU models 168

from Mehri and Eric (2021) were trained on the 169

DialoGLUE dataset (Mehri et al., 2020) which com- 170

prises several datasets, including HWU64. How- 171

ever, the DialoGLUE version of HWU64 contains 172
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only 11k user utterances5. For better comparability,173

we refer to this dataset as HWU64-DialoGLUE and174

compute the performance metrics of our models175

for HWU64 and HWU-DialoGLUE.176

Another dataset for ID is CLINC150 (Larson177

et al., 2019). It contains 20k user utterances span-178

ning 150 intents and ten domains. CLINC150 also179

includes out-of-scope utterances that do not belong180

to any intents, but are not used in our experiment.181

The original version and the DialoGLUE version182

of CLINC150 are identical.183

In both datasets, each utterance has exactly one184

intent label. We split the datasets into train, valid,185

and test partitions. In CLINC150 and HWU64-186

DialoGLUE, we reuse the train / valid / test split187

given by DialoGLUE. In HWU64, we split the data188

into 80% train, 10% valid and 10% test.189

3.2 Models190

We conduct our experiments on two models. The191

BERT model is the standard BERT architecture192

(Devlin et al., 2019) with a sequence classification193

head. The output layer consists of one neuron for194

each target label. We use the implementation of195

the Hugging Face transformers library (Wolf et al.,196

2020).197

For the BERT+Adapter model, we use the im-198

plementation from Pfeiffer et al. (2021).199

Further, we compare our models to other models200

for ID. Mehri et al. (2020) used a BERT model sim-201

ilar to ours for NLU. Further, Mehri et al. (2020)202

proposed ConvBERT, a BERT model that is pre-203

trained on conversational text instead of on general-204

purpose text. The best performing model is, to the205

best of our knowledge, a ConvBERT model with206

additional observers and examples (Mehri and Eric,207

2021). Observers are tokens that are not attended208

to and are an alternative to the [CLS] token as209

a semantic representation of utterances examples210

(Mehri and Eric, 2021). Example-driven training211

improves the prediction step by assigning inputs212

with similar semantic meanings a similar represen-213

tation in the semantic space examples (Mehri and214

Eric, 2021).215

3.3 Experimental setup216

We measure the quality of ID using accuracy, in line217

with Mehri and Eric (2021); Mehri et al. (2020);218

Casanueva et al. (2020); Henderson et al. (2020);219

5We contacted the author, and he confirmed that this is a
bug.

Bunk et al. (2020), in both the modular and the non- 220

modular scenario. The non-modular scenario is the 221

standard ID setting in which a single DS processes 222

the whole dataset. In the modular scenario, we 223

split the dataset into multiple parts which we use 224

to generate modules in a MDS. We split the dataset 225

along the domains instead of the intents, i.e. all 226

intents of one domain belong to a single module. 227

We generated MDS with three and ten modules. 228

We use the same model architecture for ID and 229

MS for the modular experiments. MS models are 230

trained on the same training sets as the ID models, 231

but they use the domain labels as target labels. Fur- 232

ther, we perform a grid search to find optimal hy- 233

perparameters for learning rate and training batch 234

size using the HWU64-DialoGLUE dataset. The 235

grid search determined a learning rate of 10−5 for 236

BERT and 10−3 for BERT+Adapter and a batch 237

size of 256. We also apply the optimal hyperparam- 238

eters obtained on this dataset to the experiments 239

on the other datasets. To determine the number of 240

training epochs, we measure the accuracy of ID 241

on the validation set after each training epoch and 242

stop training as soon as the validation accuracy in- 243

creases by less than 0.2% compared to the last run. 244

In order to measure the models’ sizes, we serialized 245

them to disk and measured their size in MB. 246

We train and evaluate the models and measure 247

the execution time on the HWU64-DialoGLUE 248

dataset. First, we measure the training and infer- 249

ence duration 6. Then, we calculate how many sam- 250

ples are processed per second (SPS). SPS makes 251

it easier to compare the training duration of differ- 252

ently sized datasets to each other. We repeat this 253

process ten times and average the resulting dura- 254

tions. All experiments were run on a machine with 255

an RTX6000 graphics card. 256

4 Results 257

4.1 Model size 258

While BERT requires 417.75 MB and DIET 63.00 259

MB for an ID model trained on the HWU64 dataset 260

with 64 intent labels, an adapter only needs 5.87 261

MB of memory. Figure 1 shows how the frame- 262

works scale in terms of memory when the number 263

of models grows. DIET has the smallest mem- 264

ory requirements when deploying a single model, 265

BERT is considerably higher, and BERT+Adapter 266

6We measured the time for processing samples only, ex-
cluding other components of training and inference, such as
initially loading a model from disk to memory.
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Model Dataset SPS train SPS inference
BERT CLINC150 8.67 (0.06) 792.17 (5.10)
BERT HWU64 8.20 (0.06) 777.59 (20.45)
BERT HWU64-DialoGLUE 16.44 (0.10) 791.26 (6.45)
average BERT 11.10 787.01

BERT+Adapter CLINC150 132.35 (0.52) 752.39 (7.15)
BERT+Adapter HWU64 138.96 (1.21) 750.19 (19.59)
BERT+Adapter HWU64-DialoGLUE 209.28 (1.21) 762.72 (4.40)
average BERT+Adapter 160.20 755.10

Table 1: Processing speed of the different models and dataset in samples per second (SPS). The first number is the
mean SPS over ten runs, the second number in brackets is the standard deviation over the ten runs. The table lists
the average SPS for each model over all datasets.

is slightly higher than BERT. However, when267

the number of modules grows, the vanilla BERT268

setup does not scale well. While the slopes of269

both BERT+Adapter and Rasa are much smaller,270

BERT+Adapter outperforms Rasa after seven mod-271

ules.272
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Figure 1: Comparison of the total amounts of memory
needed to store the respective framework in GB.

4.2 Training and interference time273

Table 1 shows SPS, the number of samples274

processed per second during training and infer-275

ence. BERT+Adapter trains considerably faster.276

BERT+Adapter is slightly faster at inference.277

4.3 Quality of intent detection278

Table 2 shows the accuracy values of various mod-279

els for the task of intent detection in both the non-280

modular scenario (number of modules 1) and the281

modular scenario (number of modules 3 and 10).282

Mehri and Eric (2021) achieve the best results283

across both HWU64-DialoGLUE and CLINC150. 284

We list two results of BERT models, one from our 285

experiments and one from Mehri et al. (2020). We 286

conclude that this difference is due to different hy- 287

perparameters used during training. 288

BERT+Adapter achieves higher scores than 289

BERT in our implementation and similar results to 290

BERT in the implementation of Mehri and Eric 291

(2021). Moreover, in the modular setting, the 292

BERT+Adapter model shows a better performance 293

than the BERT model. 294

5 Discussion 295

The model sizes (section 4.1) show that the DIET 296

architecture is most resource-efficient for the de- 297

ployment of fewer than five models. On the other 298

hand, when the number of models is above six, the 299

BERT+Adapter architecture is more efficient. In 300

addition, the memory saving increases when more 301

models are deployed which is particularly impor- 302

tant for chatbot-as-a-service platforms. 303

SPS improves significantly for training and 304

slightly for inference. We hypothesize that the 305

difference in training time results from the substan- 306

tially smaller number of parameters that have to 307

be trained in BERT+Adapter, compared to vanilla 308

BERT. Shorter training times are generally favor- 309

able. In the chatbot-as-a-service scenario, a shorter 310

training time is helpful for the designer of the DS, 311

because he does not have to wait for training and 312

has a better user experience. 313

The experiment shows that the accuracy of ID of 314

BERT+Adapter is comparable to the performance 315

of a BERT model. Still, both models do not meet 316

the state of the art. We leave it for future research 317

to find out if the ConvBERT+ model is compatible 318
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Num. Model HWU64 HWU64- CLINC150
Modules DialoGLUE
1 BERT 87.65% 85.50% 91.00%

BERT+Adapter 89.60% 89.03% 93.04%
BERT (Mehri et al., 2020) - 89.97% 95.93%
ConvBERT (Mehri et al., 2020) - 90.43% 97.07%
ConvBERT+ (Mehri and Eric, 2021) - 93.03% 97.31%

3 BERT 84.94% 83.92% 88.80%
BERT+Adapter 89.04% 86.25% 91.00%

10 BERT 83.07% 80.67% 88.00%
BERT+Adapter 88.80% 83.55% 93.31%

Table 2: Accuracy values as percentage of different models, datasets and number of modules. Number of modules=1
is the non-modular scenario. The best performing values are highlighted in bold.

with adapters while still performing just as well.319

6 Practical considerations on the320

deployment of NLU models with321

adapters322

Regarding the deployment of NLU models with323

adapters in a real-world settings, we assume a324

scenario in which a company offers many user-325

generated chatbots that are all different from each326

other in their training data and use case and poten-327

tially even come in many languages.328

To host 10 languages with 100 chatbots each,329

we would count 10 × Size BERT + 10 × 100 ×330

Size of Adapter ≈ 11GB. 11 GB fit in the memory331

of a single commercial GPU. The server that hosts332

the 1000 NLU models would run at all times, keep-333

ing the models in memory. In the case of heavy334

usage, one can horizontally scale out this architec-335

ture across several GPUs or several servers.336

One downside of our architecture is security and337

multi-tenant considerations. In multi-tenant envi-338

ronments, it is often a requirement to separate the339

data of different clients in the architecture, such340

that data of different clients never get mixed in the341

same pipeline. The sharing approach suggested342

in this paper would require a separate pre-trained343

BERT model for each tenant and language in the344

multi-tenant environment, decreasing resource sav-345

ings.346

7 Conclusion and Future Work347

We examined if the BERT+Adapter architecture is348

favorable for deploying NLP models compared to349

BERT and DIET. BERT+Adapter can save a consid-350

erable amount of memory compared to BERT and351

DIET. Also, BERT+Adapter is considerably faster 352

than BERT. The accuracy of ID of BERT+Adapter 353

is still comparable to vanilla BERT. 354

To the best of our knowledge, our work is the 355

first to point out that adapters can host many NLU 356

models more efficiently. We believe that this ap- 357

proach should be applicable in any environment 358

that hosts multiple pre-trained models. It is espe- 359

cially useful in environments with a skewed usage 360

scheme, meaning that only a few models are used 361

often, and many models are used rarely, such as 362

a chatbots-as-a-service environment. Further, we 363

believe it is applicable in many settings where users 364

can generate and fine-tune their models, e.g. named 365

entity recognition as a service with user-generated 366

content. Finally, adapters are not limited to mod- 367

els with the same task. They can also be used in 368

environments where models for different tasks are 369

deployed (Houlsby et al., 2019), e.g. one adapter 370

for Named Entity Recognition and another adapter 371

for Sentiment Analysis that share the same pre- 372

trained Transformer model. 373
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