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Abstract

When aggregating information from conflicting
sources, one’s goal is to find the truth. Most
real-value truth discovery (TD) algorithms try to
achieve this goal by estimating the competence of
each source and then aggregating the conflicting
information by weighing each source’s answer pro-
portionally to her competence. However, each of
those algorithms requires more than a single source
for such estimation and usually does not consider
different estimation methods other than a weighted
mean. Therefore, in this work we formulate, prove,
and empirically test the conditions for an Empirical
Bayes Estimator (EBE) to dominate the weighted
mean aggregation. Our main result demonstrates
that EBE, under mild conditions, can be used as a
second step of any TD algorithm in order to reduce
the expected error.

1 INTRODUCTION

During the early 20-th century Sir Francis Galton, the 84
year old polymath, stumbled upon a prize winning contest
where approximately 800 people paid a small fee to try and
guess the weight of the presented live ox after it were to be
slaughtered and dressed [Galton, 1907]. While no one had
guessed the exact weight, Sir Francis noticed that the median
guess had a negligible error. This seminal demonstration of
"wisdom of the crowds" is an instructive example of truth
discovery.

In a typical instance of truth discovery a group of workers
answer questions that have correct yet unknown answers.
One such question could be, “What is the height of the
building in this image?” The workers who answer this ques-
tion could be ordinary people, trained volunteers, a panel of
experts, different computer algorithms, or a mix of all the
above; all of whom we refer to as workers. One problem is

that some workers are better than others in some tasks, and
some algorithms are better than others for different kinds of
data. For example, if we know that worker A, is usually bet-
ter at estimating buildings’ heights than worker B, we would
incorporate this fact into estimating the correct answer. For
example, one can assign a different weight to different work-
ers; in this example of the weighted mean method, it can
be decided that the opinion of worker A weighs the same as
the opinion of two workers. Like so, it can also be decided
that the opinion of worker B weighs less than the opinion
of a single worker, placing the weighted mean closer to the
opinion of worker A.

Aitkin [1935] provided a formal solution to the problem
of estimating the answer of a single numerical question,
answered by multiple heterogeneous workers: if we know
how competent each worker is, then is it optimal to weigh
the worker proportionally to her level of competence (we
will later explain these terms more formally). There are
numerous works on estimating workers’ competence which
we discuss in Section 6.

For a single worker answering multiple questions, it may
seem unlikely that there is any better solution than simply
following the worker’s answers. Yet, the Empirical Bayes
approach shows that a better solution indeed exists [Stein,
1956, Casella, 1985].

In this paper we address the following question:

Suppose we have multiple questions answered by
multiple heterogeneous workers. Can the Empirical
Bayes approach be exploited to improve upon existing
truth-discovery algorithms?

We explore this question both when workers’ competence
is known (in which case our baseline is Aitkin’s estimator);
and when the competence is estimated, using an arbitrary
unbiased estimator of the true answers as baseline.

In Section 2 we formally cover the background we discussed
above, that will be needed for the rest of the paper (in par-
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ticular BLUE and Empirical Bayes).

We then turn to answer the question above using a simple
principle: first aggregate workers’ answers, and then apply
an Empirical Bayes estimator on the outcome to improve it.

In the case of multiple workers with known competences
who answer multiple questions (Section 3), we prove that
our combined algorithm dominates the best linear unbiased
estimator of Aitkin [1935].

In the more general setting where workers’ competences
are unknown (Section 4), we combine the Empirical Bayes
estimator with an arbitrary (unbiased) truth discovery al-
gorithm, and characterize an exact condition under which
the combined algorithm improves upon the base algorithm.
These results may also be of interest outside the truth-
discovery domain, as an extension of the Empirical Bayes
method to situations where the variance is estimated.

In Section 5, we demonstrate the benefit of the Empirical
Bayes approach on synthetic and real datasets, by showing
how it improves upon various truth-discovery algorithms
from the literature that are used as a black-box, and discuss
the practical conditions for such improvement.

Finally, we compare our work to some related papers in the
truth discovery literature and discuss implications. Some
proofs can be found in the full version
http://arxiv.org/abs/2206.04816.

2 PRELIMINARIES

Throughout the paper, we assume a set of n workers provide
answers to m real-valued questions. The notation 1⃗ denotes
an m-length vector where all entries are ‘1’. For an m-
length vector v⃗, we denote its mean by v̄. An n×m matrix
is denoted by a bold uppercase letter (e.g. X).

2.1 MODEL AND NOTATION

Noise Model Unless mentioned otherwise, we assume
workers answers follow the additive white Gaussian (AWG)
noise model; see Diebold [1998]. Specifically, for a worker
with variance σ2, and a question whose true answer is µ,
the answer is a random variable sampled from the Normal
distribution N (µ, σ2). That is, workers with lower σ are
more accurate.

Observations The response of the i-th worker to the j-th
question is denoted by Xij ∼ N (µj , σ

2
i ); it is assumed that

the responses are independent. Our goal is to estimate the
m unknown ground truth (GT) answers µ⃗ = (µ1, .., µm),
We denote by σ⃗2 = (σ2

1 , . . . , σ
2
n) the vector of workers’

variances, where σ2
i is referred to as the inverse of the i-th

workers’ competences. It follows that competent workers
have low variance and vice versa. As a concrete example,

one can think about the observations as a crowd-sourcing
task where workers are presented with images of buildings
and are told to estimate their heights. The number of workers
is n and the number of building images is m. The quantity
Xij is the i-th worker estimate of building image j and we
wish to estimate the buildings’ true heights µ. The matrix of
all responses is denoted by X ∈ Rn×m (with no subscript),
the answers of n workers to the j-th question is denoted by
X⃗j = (X1j , . . . , Xnj) , and a dataset of a single worker as
X⃗ ∈ Rm and her variance is denoted by σ2.

We denote by Pµ⃗,σ⃗ the distribution of X under the param-
eters µ, σ, where µ⃗ ∈ Rm, σ⃗ ∈ Rn+, i.e, X ∼ Pµ⃗,σ⃗ (and
Pµ⃗,σ⃗ follows the AWG model unless stated otherwise) . We
denote by Eµ⃗,σ⃗[· ] and V arµ⃗,σ⃗[· ] the expected value and
variance of the term in brackets, respectively, for given pa-
rameters. That is, Eµ⃗,σ⃗[·] is a shorthand for EX∼Pµ⃗,σ⃗ [·] and
likewise for the variance.

Algorithms A truth discovery algorithm is a function
A : Rn×m → Rm, mapping an observation matrix to a
vector of estimated answers.1 An algorithm may also take
additional information as input. In particular, a variance-
based algorithm (denoted by Aσ) is assumed to have access
to the true variance of each worker.

Evaluation Given a truth discovery algorithm, we are
interested in how far A(X) is from the true answers µ⃗ ∈
Rm, in expectation.

Formally, we denote by L(µ̂, µ⃗) the loss of estimation µ̂ ∈
Rm. Throughout this work, the loss function L is the square
euclidean norm, i.e, L(µ̂, µ⃗) := ∥µ̂− µ⃗∥22. We then measure
the loss of A on a particular input as L(A(X), µ⃗).

Because the observations X are random, we will use the
expected loss. Formally, the risk of Algorithm A (given
parameters µ⃗, σ⃗) is

Rµ⃗,σ⃗(A) := Eµ⃗,σ⃗[L(A(X), µ⃗)].

Our goal then is to find some algorithm A with low risk, i.e,
to minimizeRµ⃗,σ⃗(A) for every µ⃗ and σ⃗.

2.2 THE BEST LINEAR UNBIASED ESTIMATOR
(BLUE)

Recall that an estimator of a parameter is:

• unbiased if its expected value equals the estimated
term;

• linear if it is a linear function of the observations.

1This is sometimes called an estimator but since we consider
various types of estimators in this work, we use the term truth
discovery algorithm to avoid confusion.
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Xij 1 2 3 4 σ2
i

1 20 2 3 4 93.5
2 10 11 18 14 11
3 8 11 23 19 34.5
4 6 13 7 3 56.5

GT 10 9 12 16 L
AVG 11 9.25 12.75 10 9.41

AσB 9.85 10.6 16.6 12.95 8.22
EBBLUEσ 10.25 10.82 15.5 12.65 6.68

Table 1: An example of a data set, Xij is the i-th worker response for the j-th question. σ2
i is

the calculated variance of the i-th worker relative to the ground truth (GT), L is the loss of each
estimator

We denote by ∆LUE the set of all linear unbiased estimators
Aσ, i.e. all linear unbiased truth discovery algorithms that
also have access to workers’ variance.

Consider the following estimator/algorithm:

Aσ
B(X⃗j) :=

( n∑
i=1

1

σ2
i

)−1
n∑
i=1

Xij

σ2
i

.

and Aσ
B(X) := (Aσ

B(X⃗j))j≤m. It can be easily shown that
Aσ
B is an unbiased estimator i.e Eµ⃗,σ⃗[Aσ

B(X)] = µ⃗.

Theorem 2.1 ([Aitkin, 1935]). Under the AWG model,
Rµ⃗,σ⃗(Aσ) ≥ Rµ⃗,σ⃗(Aσ

B), for all Aσ ∈ ∆LUE , µ⃗ ∈
Rm, σ⃗ ∈ Rn+.

In words, the theorem of Aitkin [1935] shows that the in-
verse variance weighing of the observations is the best linear
unbiased estimator (BLUE) for µ⃗ under the square loss func-
tion. In particular, the BLUE uses the input on each question
separately, and thus the risk is independent of the number of
questions m. As per our buildings’ heights example, if we
know how competent each worker is (at estimating build-
ings’ heights from images), the best unbiased linear way
of estimating the real height is a weighted average of the
workers’ answers, where the weight of worker i is 1/σ2

i .

Table 1 is an example for a dataset, where workers’ vari-
ances are known and the loss for this particular instance is
compared between different estimators.

2.3 THE EMPIRICAL BAYES ESTIMATOR (EBE)

In a seminal paper, Stein [1956] introduced an estimator
that dominates BLUE in a simple estimation problem of
a normal distribution. In the current setting, in the case of
a single worker estimating multiple questions, Stein’s re-
sult implies that estimating the true answers using the input
of the worker directly, is dominated by another estimator,
which is rather surprising. Consequently, different varia-
tions of Stein’s estimator and its derivation from empirical
Bayesian statistics perspective are introduced by Efron and
Morris [1973]. Here we focus on one such version.
To define the estimator, we consider a setting of a single
worker with responses X⃗ = (X1, . . . , Xm), following a

single-worker AWG model. That is, X1, . . . , Xm are inde-
pendent with Xj ∼ N (µj , σ

2), j = 1, . . . ,m.

A modifying estimator is a function ϕ : Rm × R+ → Rm,
which can ‘modify’ a vector of responses. The estimator
can also accept an additional parameter, which we can think
of as the (true or estimated) variance. As with truth discov-
ery algorithms, we denote by ϕσ : Rm → Rm modifying
estimators that have access to the true variance σ2.

A trivial example is the identity estimator ϕI(X⃗) := X⃗ .

Definition 2.1 (Empirical Bayes Estimator).

ϕEB(X⃗, σ) := X̄ 1⃗ +
[
1− (m− 3)σ2

∥X⃗ − X̄ 1⃗∥2
]
(X⃗ − X̄ 1⃗). (1)

Arranged differently, ϕEB(X⃗, σ̄) = X̄ 1⃗ (m−3)σ2

∥X⃗−X̄1⃗∥2
+ X⃗

[⃗
1−

(m−3)σ2

∥X⃗−X̄1⃗∥2

]
is a weighted average of each component of X⃗

and its mean X̄ . It is also instructive to notice that when
m = 3 then ϕEB(X⃗, σ) = X⃗ , i.e, ϕEB becomes the iden-
tity estimator ϕI , and when m goes to infinity we get that
limm→∞

(m−3)σ2

∥X⃗−X̄1∥2
= σ2

σ2+C where C ∈ R+ is a constant
related to the variance of the ground truth. We provide an
explicit expression for C, and the derivation of the EBE in
the full version.

Theorem 2.2 ([Lehmann and Casella, 1998]). In the AWG
model with a single worker and m > 3 questions,

Rµ⃗,σ(ϕσEB) < Rµ⃗,σ(ϕI) for all µ⃗ ∈ Rm, σ ∈ R+. (2)

In words, the empirical Bayes estimator for µ⃗, which is not
linear and not unbiased (but has access to the true variance
σ), has strictly lower risk than ϕI . Note that for a single
worker, ϕI coincides with the BLUE Aσ

B .

We also consider Stein’s estimator, which is defined now.

Definition 2.2 ([Stein, 1956]).

ϕStein(X⃗, σ) :=
[
1− (m− 2)σ2

∥X⃗∥2
]
X⃗

Stein estimator can be thought of as an empirical Bayes
estimator with a normal prior and where the prior’s mean is
known to be 0.

3 KNOWN COMPETENCE

We now return to the general multi-worker, multi-question
setting.

We begin by assuming that we know the competences of
the workers σi for i = 1, . . . , n, an assumption that will be
relaxed later.

We will use the following result which stems from Neyman-
Fisher factorization theorem. See full version for the proof.



Algorithm 1: EBBLUEσ for Known Competence
Input: Dataset X ∈ Rn×m, variances σ⃗ ∈ Rn+
X⃗B ← Aσ

B(X) ;
σ̃2 ←

(∑n
i=1

1
σ2
i

)−1
;

return ϕEB(X⃗
B , σ̃) ;

Figure 1: Each data point is a 100,000 samples average, each sample includes new GT and new
workers.

Proposition 3.1. Aσ
B(X) is a sufficient statistic for µ⃗ =

(µ1, .., µm) under Pµ⃗,σ⃗ .

It follows that there is no loss of relevant information when
considering only Aσ

B(X) instead of the observation matrix.
That is, we can replace our observations X ∈ Rn×m with
a single ‘aggregated worker” who answered m questions,
denoted by X⃗B = (XB

1 , ..., X
B
m) = Aσ

B(X). The variance
of this single worker (denoted by σ̃2) is the harmonic mean
of all workers’ variances, divided by n.

Our first algorithm EBBLUEσ (see Alg. 1) simply uses
Aitkin’s BLUE to aggregate the labels independently on
each question, then applies the Empirical Bayes estimator
on the outcome. Since σ̃2 is the true variance of the aggre-
gated worker, ϕEB(X⃗

B , σ̃) = ϕσEB(X⃗
B), so intuitively we

are back to applying Empirical Bayes in a single-worker
scenario. Indeed, from Proposition 3.1 and Theorem 2.2 we
get our main result for this section:

Corollary 3.1.1. In the AWG model, for m > 3 and any n,

Rµ⃗,σ⃗(EBBLUEσ) < Rµ⃗,σ⃗(Aσ
B) for all µ⃗ ∈ Rm, σ⃗ ∈ Rn+

(3)

In words, Corollary 3.1.1 says that if we know the workers’
competences then Alg. 1 strictly beats the unmodifed BLUE,
and by Theorem 2.1 strictly beats any unbiased linear esti-
mator. In statistical terms, BLUE (and any other unbiased
linear estimator) is an inadmissible estimator.

Figure 1 demonstrates inequality (3). We generated ground
truth µj ∼ N(2, 1), j = 1, . . . ,m independently, and noisy
observations Xij ∼ N(µj , i

2), then we aggregated the an-
swers into a single worker using Aσ

B , applied different mod-
ifying estimators on the outcome, and calculated their (em-
pirical) risk over 4 samples. It can be seen that the advantage

of EBE and Stein is more significant when fewer workers
answer more questions.

4 ESTIMATED COMPETENCE

Often in real world problems we have no access to the
true variances of our workers, σ⃗ ∈ Rn+. However we can
estimate it from the observations. Many truth discovery al-
gorithms are doing exactly that—either in a supervised way
(if we have access to the true answers of some questions) or
unsupervised (by comparing workers to one another).

We therefore abstract away from our Alg. 1, by assum-
ing we only have access to an estimate of the aggregated
worker’s variance. Crucially, our analysis is oblivious as to
how the variance is estimated, or to how observations were
aggregated, and may therefore apply for any truth-discovery
algorithm.

Similarly to the previous section, we consider the aggregated
answer vector. However rather than Aσ

B (which requires the
actual workers’ variances), we now assume an arbitrary truth
discovery algorithm A : Rn×m → Rm is used, together
with some estimator of the variance ψ : Rn×m → R+.

Then, our general EBψA algorithm (see Alg. 2) simply ap-
plies Eq. (1) to modify the output of algorithm A, using the
estimated variance σ̂2 = ψ(X).

Algorithm 2: EBψA for estimated Competence

Input: Dataset X ∈ Rn×m
X⃗A ← A(X);
σ̂2 ← ψ(X);
return ϕEB(X⃗

A, σ̂);

Our analysis is divided into two parts: we first analyze the
risk of Alg. 2 under the minimal assumption that eachXA

j is
an unbiased estimator of µj in Section 4.1. Then, Section 4.2
considers the case where the answers of the aggregated
worker are assumed to be normally distributed around the
true answers.

4.1 GENERAL MODEL

As previously mentioned, truth discovery algorithms typi-
cally estimate the truth by estimating workers’ competence
and then aggregate answers, weighing them accordingly.

In general we may not know the distribution of the aggre-
gated answer, either since the initial observations depart
from the AWG model, or because the algorithm A is com-
plicated or unknown. We thus relax any assumption on
the input in this section, except that X⃗A is unbiased. Thus
µ⃗ = E[X⃗A]. We also denote the true (unknown) variance
by σ2 := V ar[X⃗A

j ] (identical for all j). We next present a



sufficient condition for our Alg. 2 to have smaller risk than
its baseline algorithm A for all µ ∈ Rm.

Theorem 4.1. For any unbiased algorithm A, and m > 3,2

Rµ⃗(EBψA) < Rµ⃗(A) for all µ⃗ ∈ Rm

if and only if

2(m− 3)Σmj=1Cov
(
XA
j ,
ψ(X)(XA

j − X̄A)

∥X⃗A − X̄A1⃗∥2
)

− (m− 3)2Eµ⃗

( (ψ(X))2

∥X⃗A − X̄A1⃗∥2
)
> 0. (4)

The condition in Theorem 4.1 may seem somewhat obtuse,
yet we argue it may still be useful:

• It is easy to see that by choosing ψ(X⃗) that is suffi-
ciently close to 0, the condition holds;

• The condition is purely a function of the observa-
tions X , therefore it can be verified empirically, given
enough samples;

• It leads to an improvement of the algorithm, as we
explain below;

• Under additional assumptions on the distribution, the
condition is substantially simplified and provides im-
portant intuition (Section 4.2).

The main assumption of Theorem 4.1 is that the output of
the truth discovery algorithm used as baseline is unbiased,
i.e., E(X⃗A) = µ⃗. This assumption may not hold, when
workers provide biased estimates. For example, in the build-
ings heights setting, if workers systematically overestimate
the buildings’ heights, then the assumption is violated (see
proof in full version).

Generalizing further? While the modifying estimator
ϕEB we apply is optimal for a single worker, it turns out that
we can do better in the multi-worker case.

We define the generalized EB estimator ϕαEB by replacing
the (m− 3) term in Def. 2.1 with α ∈ R+; and denote by
EBψ,αA the corresponding generalized version of Alg. 2.

Proposition 4.2. Rµ⃗(EBψ,αA ) is minimized by setting

α∗ :=
Σmj=1Cov

(
XA
j ,

ψ(X)(XAj −X̄A)

∥X⃗A−X̄A1⃗∥2

)
E
(

ψ(X)2

∥X⃗A−X̄A1⃗∥2

) .

Proof is in the full version.
2Since in this subsection we do not assume that the distribution

of X follows the AWG model, we do not need a parameter for the
individual competence. Other than that, all definitions remain the
same.

4.2 NORMAL MODEL

Testing whether inequality (4) holds could be a complicated
task. Therefore, to get more intuition, in this subsection we
reinstate the AWG model on our single aggregated worker.
That is, we assume that for any question j, XA

j = µj + ϵj ,
where the errors ϵj are sampled i.i.d. from N (0, σ2). For
a vector Y⃗ ∈ Rm we denote by Ȳ := 1

m

∑
j Yj and

S2(Y ) := 1
m−1

∑
j(Yj − Ȳ )2 its mean and its sample vari-

ance, respectively.

In addition, we assume that the variance estimator ψ is a
function of the aggregated observations X⃗A (which may or
may not be a sufficient statistic for σ2), and that all of its
directional derivatives exist.

Theorem 4.3. Under the Normal model, for m > 3,

Rµ⃗,σ⃗(EBψA) = Rµ⃗,σ⃗(A)

+
(m− 3)2

m− 1

(
Eµ⃗,σ⃗[

(ψ(X⃗A))2

S2(X⃗A)
]

−2σ2
[
Eµ⃗,σ⃗[

ψ(X⃗A)

S2(X⃗A)
]+Eµ⃗,σ⃗

[Σmj=1
dψ(X⃗A)

dXAj
(XA

j − X̄A)

(m− 3)S2(X⃗A)

]])
(5)

The proof is the full version. Theorem 4.3 derives the ex-
plicit risk of the aggregated worker under general depen-
dence structure of σ̂2 and X⃗ . The expected reduction in risk
when using empirical Bayes i.e, Rµ⃗,σ⃗(A) − Rµ⃗,σ⃗(EBψA)
can be estimated from the observations, since if σ2 is re-
placed with σ̂2 = ψ(X⃗A) we get an expression which is
exclusively dependent on the observations and thus, can be
estimated. Corollaries 4.3.1-4.3.2 extend the theorem and
demonstrate different conditions which guarantee that EBE
will have a lower risk than BLUE.

Corollary 4.3.1. Under the assumptions of Theorem 4.3,

Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A) ∀µ⃗ ∈ Rm,m > 3

for any σ̂2 = ψ(X⃗A) such that:

Eµ⃗,σ⃗[
σ̂4

S2(X⃗A)
]

Eµ⃗,σ⃗[
σ̂2

S2(X⃗A)
] + Eµ⃗,σ⃗

[Σmj=1
dψ(X⃗A)

dXA
j

(XAj −X̄A)

(m−3)S2(X⃗A)

] < 2σ2

(6)

We promised that under the Normal model we would get
more intuition, but Condition (6) is not quite there yet. Note
however that if ψ is a constant function (i.e., σ̂2 is guessed
or estimated not from the data), then a whole chunk of the
expression disappears. We next show that this still occurs
under a less restrictive assumption.



Mean-adjusted estimators If we use a reasonable vari-
ance estimator ψ, we would expect a lower estimation as
observations are closer to their mean.

Definition 4.1. An estimator ψ(X⃗) is mean-adjusted if for
each coordinate j such that Xj ≤ X̄ (respectively, Xj >

X̄), we have d
dXj

ψ(X⃗) ≤ 0 (respectively, d
dXj

ψ(X⃗) ≥ 0).

It is not hard to find estimators that are mean-adjusted, for
example ψS(X⃗) := S2(X⃗)c for any constant c ≥ 0.

Corollary 4.3.2. Under the Normal model, if ψ is mean-
adjusted then

Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A)

+
(m− 3)2

m− 1
(Eµ⃗,σ⃗[

(ψ(X⃗A))2

S2(X⃗A)
]− 2σ2Eµ⃗,σ⃗[

ψ(X⃗A)

S2(X⃗A)
])

And hence, Rµ⃗,σ⃗(EBψA) < Rµ⃗,σ⃗(A) for all µ⃗ ∈ Rm and
m > 3 for any σ̂ which satisfies:

Eµ⃗,σ⃗[
(ψ(X⃗A))2

S2(X⃗A)
]

Eµ⃗,σ⃗[
ψ(X⃗A)

S2(X⃗A)
]
< 2σ2 (7)

Now Condition (7) is simple enough to provide some intu-
ition. To see this even better we consider two special cases
of estimators:

1. The first special case is when σ̂2 = ψ(X⃗) is a constant.
Then Condition (7) simplifies to σ̂2 < 2σ2: for a ‘cor-
rect guess’ σ̂2 = σ2 we get the maximal improvement,
which becomes weaker as σ̂2 drifts towards 0 or 2σ2.

2. The second special case is ψ(X⃗) = S2(X⃗). Condi-
tion (7) then simplifies to

Eµ⃗,σ⃗[S
2(X⃗A)] < 2σ2.

Since E[S2(X⃗A)] is itself roughly proportional to the
squared error σ2 plus S2(µ⃗), we get a valuable indi-
cation that Empirical Bayes is expected to perform
better on more uniform sets of questions (i.e. whose
true answers do not vary substantially).

We provide a proof and show more corollaries in the full
version, including the special case of single or multiple
workers where σ̂2 is a constant.

5 EMPIRICAL EVALUATION

In this section, we show experimental results over different
datasets and algorithms. We evaluate EBE combined with
various truth-discovery algorithms.

That is, we run our EBψA algorithm, where the baseline truth-
discovery algorithm A varies (see below). For the variance

estimator ψ we use the following heuristic, which estimates
the variance of each worker using X⃗A as a proxy of the
truth, and then takes the average:

ψH(X) :=
1

n

n∑
i=1

1

m− 1

m∑
j=1

(Xij − X̄A
j )

2.

Algorithms We use the following truth-discovery algo-
rithms from the literature: GTM [Zhao and Han, 2012],
CATD [Li et al., 2014a], and KDEm [Wan et al., 2016],
IPTD [Meir et al., 2021], DTD [Grofman et al., 1983] and,
CRH [Li et al., 2014b]. We let each of the aforementioned
algorithms up to 14 iterations to converge.

Datasets We used datasets from the following papers:
Buildings [Meir et al., 2021] where 208 workers answered
25 questions; Triangles1-Triangles2 [Hart et al., 2018]
where 50 workers answered 300 questions; Emotions1-
Emotions4 [Snow et al., 2008] where 10 workers answered
200 questions; In addition we have generated synthetic
datasets using the AWG model, such that Xij ∼ N(µj , σ

2
i ),

where σ2
i ∼ N(1, 0.5). The distribution of the ground truth

µj appears on top of each figure.

Evaluation To investigate whether EBE can lower the
risk of the above TD algorithms, we sample a subset of
workers and questions, run each algorithm and compute the
Improvement Ratio:

IR :=
R(EBψHA )

R(A)
,

where the (empirical) risk is calculated by taking the average
over 1000 samples of n workers and m questions from the
dataset.

An Improvement Ratio (IR) < 1 indicates that Empirical
Bayes improves the baseline algorithm A on this dataset.

Results In the synthetic datasets (Figure 2, left) we see
that when the ground truth (GT) is constant, EB significantly
improves all algorithms, lowering the risk by a factor of 1%
- 90%. When the variance of the ground truth is higher (right
figures) the IR is closer to 1.

In real world datasets, results are mixed. In the Emotions
datasets (Figure 4) there is an improvement, especially when
n is low. Figure 6 shows real-world datasets where the
ground truth is highly variable, compared to the noise. This
high variance causes EB to fail.

However recall that we recommended based on the discus-
sion following Cor. 4.3.2 working with a more ‘uniform’
sets of questions. To test this point in practice, we partitioned
the questions and considered ‘uniform’ subsets where the
variance of the ground truth is low. Indeed, Fig. 3 and Fig. 5
show that on the low-variance datasets, Empirical Bayes
improves the outcome and reduces the error.



Figure 2: IR over synthetic data sets, n is the number of workers and m is the number of questions
the left plots are under a constant GT, and the right plots are under a random GT

Figure 3: IR of a subset of the Buildings dataset reducing the underlying GT variance from 51567
to 633

To conclude, the results show that Empirical Bayes is
particularly effective when there are few workers and
low variance of the ground truth, and this applies re-
gardless of the baseline truth discovery algorithm in use.

Figure 4: Risk Ratio for the Emotions datasets

Figure 5: IR of a subset of Triangles2 dataset thus reducing the underlying GT variance from 65362
to 195

Figure 6: Risk Ratio for the Buildings and Triangles datasets



6 RELATED WORK

As we stated in the introduction, a large part of the truth
discovery literature deals with estimating workers’ compe-
tence. Of those that deal with real-valued data, most make
iterative estimations of the ground truth and the competence,
and differ in how they implement the steps. For example,
Meir et al. [2021] show that workers’ average distance be-
tween answers from the other workers’ answers can esti-
mate their competence; Li et al. [2014a] weigh workers’
responses proportionally to the upper confidence interval
limit of their estimated variance; Li et al. [2014b] weigh
workers’ responses by a convex optimization framework
which, “minimizes the weighted deviation from the truths
to the multi-source input". A different approach taken by
Wan et al. [2016] is weighing the responses by the weights
which minimizes the kernel density estimation applied to
each question separately. Often algorithms use the BLUE
estimator with the estimated competences instead of the true
workers’ variance.

Surveys (such as [Li et al., 2016]) show that there is no sin-
gle state-of-the-art. Some algorithms work better than others
on specific domains and worse on different domains, This
highlights the importance of methods that are not algorithm-
specific.

A closely related work to ours is of Zhao and Han [2012],
where a Bayesian approach is taken. The authors assume
prior distributions over the ground truth (Normal distribu-
tion), and workers’ competence (Beta distribution). Then, an
Expectation Maximization (EM) approach is taken for the
estimation of workers’ competence. The algorithm’s output
is the posterior mean of the ground truth which incorpo-
rates chosen hyper-parameters (prior knowledge) and the
estimated competence. We estimate the posterior differently
following [Stein, 1956], we do not incorporate any hyper-
parameters. Most importantly, our results rely on theoretical
foundations.

Other truth-discovery algorithms that deal with binary or
categorical labels are outside the scope of this work.

7 CONCLUSION

We showed that when workers’ competences are known, the
Empirical Bayes approach is always a better choice (when
there are more than 3 questions), and improves any TD al-
gorithm that does not have access to workers’ competences,
for an appropriate variance estimator.

We demonstrated both in theory and in practice that the
potential improvement of EBE depends on the uniformity
of the set of questions (i.e. it works better when applied to
questions whose answers are similar). On the other hand
performance also improves when applied to more questions,
thus we have an inherent tradeoff between grouping many

questions together, or separate them to smaller chunks of
‘similar’ questions.

Future work might consider how to integrate this into the
algorithm, by appropriately partitioning the questions in a
way that maximizes the benefit of EBE.
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