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ABSTRACT

Low-Rank Adaptation (LoRA) and its variants have shown impressive results in
reducing the number of trainable parameters and memory requirements of large
transformer networks while maintaining fine-tuning performance. The low-rank
nature of the weight update inherently limits the representation power of fine-
tuned models, however, thus potentially compromising performance on complex
tasks. This raises a critical question: when a performance gap between LoRA
and standard fine-tuning is observed, is it due to the reduced number of train-
able parameters or the rank deficiency? This paper aims to answer this question
by introducing RandLoRA, a parameter-efficient method that performs full-rank
updates using a learned linear combinations of low-rank, non-trainable random
matrices. Our method limits the number of trainable parameters by restricting
optimization to diagonal scaling matrices applied to the fixed random matrices.
This allows us to effectively overcome the low-rank limitations while maintaining
parameter and memory efficiency during training. Through extensive experimen-
tation across vision, language, and vision-language benchmarks, we systemati-
cally evaluate the limitations of LoRA and existing random basis methods. Our
findings reveal that full-rank updates are beneficial across vision and language
tasks individually, and even more so for vision-language tasks, where RandLoRA
significantly reduces—and sometimes eliminates—the performance gap between
standard fine-tuning and LoRA, demonstrating its efficacy.

1 INTRODUCTION

Large pre-trained models that leverage broad data have demonstrated significantly improved gen-
eralization capabilities and remarkable versatility across diverse tasks. However, the resultant high
parameter count also leads to a significant increase in the computational resources required to fine-
tune such models on downstream tasks. To tackle this issue, parameter-efficient fine-tuning (PEFT)
approaches such as low-rank adaptation (LoRA) (Hu et al., 2022), draw inspiration from the low
intrinsic dimensionality of pre-trained models (Li et al., 2018; Aghajanyan et al., 2021) and char-
acterize the weight updates as the product of two low-rank matrices, substantially reducing the
number of trainable parameters and memory requirements during training. This formulation leads
to an adaptable number of trainable parameters, as one modifies the rank of the matrices, providing
great flexibility under various resource constraints.

In spite of the strong performance of LoRAs in parameter-efficient settings, our investigation un-
covers an accuracy plateau, wherein an increase of rank and thus learnable parameters fail to bridge
the accuracy gap with standard fine-tuning. These undesirable scaling properties (Kopiczko et al.,
2024) raise questions about the inherent limitations imposed by the low-rank structure, particularly
when tackling complex tasks that benefit from larger parameter counts. This issue would ideally be
addressed by introducing full-rank updates while maintaining the parameter-efficiency. To this end,
we propose RandLoRA, a PEFT method that leverages a set of linearly-independent random bases
in the form of non-trainable low-rank matrices. By solely learning scaling coefficients for the linear
combination of the random low-rank bases, our method achieves full-rank updates, while maintain-
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Figure 1: LoRA becomes limited by the rank of its update. We train DinoV2 and CLIP to classify
21 image datasets and LLama3-8B to solve 8 commonsense reasoning tasks.

ing low memory usage. As a result, RandLoRA strikes a balance between parameter efficiency and
full-rank updates, allowing for more flexible and effective fine-tuning.

Through extensive experimentation, we empirically demonstrate the limitations of the low-rank for-
mulation in LoRA, particularly on vision-language tasks, and show how RandLoRA can improve
performance under similar parameter budget. Figure 1 summarizes our findings across pure vi-
sion (DinoV2), vision-language (CLIP) and commonsense reasoning (LLama3-8B), where increas-
ing LoRA’s parameter count has highly diminishing returns. We find that RandLoRA outperforms
LoRA as the parameter budget expands, while remaining parameter efficient thanks to its full-rank
update strategy. We conclude our investigation with an insightful discussion on the distinctive char-
acteristics of RandLoRA where our analysis reveals that, in contrast to LoRA, RandLoRA yields
activation patterns in deeper layers that closely align with those obtained through full fine-tuning.
Furthermore, our visualization of the loss landscape reveals that the local minima reached by Rand-
LoRA is often closer to that reached by standard fine-tuning, and it always leads to a lower loss
than LoRA for an equal parameter count. Additionally, we explore the integration of sparse random
bases, where initial findings highlight that sparse bases preserves the performance of RandLoRA.
This suggests promising avenues to further reduce memory and computational requirements when
training large transformer models, without compromising model performance.

Our contributions are summarized as:

1. We investigate the interplay between rank and number of trainable parameters when fine-
tuning large pre-trained models, highlighting the limitations of LoRA in improving perfor-
mance when larger ranks are required.

2. We propose RandLoRA, a novel parameter-efficient fine-tuning (PEFT) strategy based on
random basis combinations, enabling full-rank updates without memory overhead over
LoRA.

3. We rigorously assess RandLoRA across diverse pre-trained architectures and tasks, span-
ning pure vision and vision-language image classification to commonsense reasoning,
demonstrating its versatility and effectiveness.

2 RELATED WORK

2.1 LOW RANK ADAPTATION OF LARGE MODELS

Low Rank Adaptation (LoRA) of large language models has revolutionized the fine-tuning
paradigm, enabling memory-constrained adaptation to specialist tasks and democratizing access to
larger models. Initially introduced by (Hu et al., 2022), LoRA leverages the observation that weight
updates during fine-tuning can converge to suitable performances without necessitating full rank
updates. By factorizing weight updates into the product of two low rank matrices, LoRA achieves
a memory-efficient solution for adapting large models. Moreover, once the low rank matrices are
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merged into the original weight matrix size, no latency is present during inference. Several improve-
ments have been proposed to build upon LoRA’s success. Weight-decomposed LoRAs (DoRA) (Liu
et al., 2024) proposes to improve convergence by decomposing LoRA updates into magnitude and
direction components. AdaLoRA (Zhang et al., 2023) and AutoLoRA (Zhang et al., 2024c), utilize
specialized metrics or meta-learning to propose rank-adapted LoRA formulations that dynamically
adjust the rank to suit every layer’s need. Other improvements include initialization strategies for the
low rank matrices using the truncated SVD of the pre-trained weights and where the whole decom-
position is fine-tuned as in Pissa (Meng et al., 2024) or where only the singular value matrix is as in
SVFT (Lingam et al., 2024) or LoRA-XS (Bałazy et al., 2024). Further improvements are proposed
in HydraLoRA (Tian et al., 2024) where the scaling-up matrix of the low rank decomposition is
split into multiple ones with a routing layer added to select the contribution of each head. This for-
mulation enhances multi-task learning at the cost of losing the merging capabilities of LoRA in the
pre-trained weight at test-time. These advancements collectively enhance the efficiency of LoRA,
solidifying its position as a cornerstone of large language model fine-tuning.

2.2 PARAMETER-EFFICIENT FINE-TUNING (PEFT) USING RANDOM BASES

Recent research has focused on further reducing the trainable parameter count of LoRA, a crucial
aspect for low-shot applications where minimizing trainable parameters can prevent overfitting and
enhance generalization. A promising direction involves utilizing random bases combinations, where
randomly generated matrices are combined using a limited number of trainable parameters to esti-
mate a weight update.

PRANC (Nooralinejad et al., 2023) pioneered the random base strategy by learning a weighted
averaged of random matrices through back-propagation. PRANC’s solution averages multiple full
size weight matrices for each layer, leading to high memory consumption. To address this, the
authors generate random bases on the fly during forward and backward passes using a fixed seed
random number generator, reducing memory usage to that of the largest trained layer in the network
at the cost of training latency.

Building upon PRANC, NOLA (Koohpayegani et al., 2024) introduces an improved algorithm
where random bases are estimated as the product of two low-rank random matrices, each weighed
using a learnable scalar and summed before matrix multiplication. This approach effectively ap-
proximates a rank 1 LoRA with significantly fewer trainable parameters and largely reduces memory
consumption during training over PRANC.

Concurrently, VeRA (Kopiczko et al., 2024) proposed an alternative strategy utilizing a single high-
rank random matrix (typically 256 or 1024), instead of summing multiple rank 1 matrices as in
NoLA. VeRA also employs a scaling strategy of random bases distinct from NoLA, detailed in
section 4, which relates to our approach. Both NOLA and VeRA achieve comparable performance
to LoRA in few-shot fine-tuning scenarios while training substantially fewer parameters.

2.3 ALTERNATIVE STRATEGIES FOR PARAMETER-EFFICIENT FINE-TUNING

We report here on alternatives to weight tuning for parameter-efficient adaptation, specifically fo-
cusing on prompt tuning. Context Optimization (CoOP) (Zhou et al., 2022b) introduced learnable
context vectors for CLIP class names, later generalized to instance-specific prompts in Conditional
CoOP (CoCoOP) (Zhou et al., 2022a). Recent prompt tuning methods, like DePT (Zhang et al.,
2024b) and PromptSRC (Khattak et al., 2023b), emphasize knowledge preservation by isolating
shared subspaces or regularizing prompts. While parameter-efficient, prompt tuning can struggle
with generalization beyond few-shot settings (Han et al., 2024) and may be less effective than LoRA
as data increases (Zanella & Ben Ayed, 2024). We therefore consider prompt tuning orthogonal to
weight-tuning for the scope of this paper and exclude it from direct RandLoRA comparisons except
for early results found in Appendix B.3.

3 MOTIVATIONS

Our literature review reveals that research on improving LoRA is focused on reducing the number
of trainable parameters further, either through adaptable ranks or by using fixed or shared low rank
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projection matrices. When looking at moderate to larger parameter budgets however LoRA remains
highly competitive.

We identify that early research has convincingly demonstrated the promise of random basis combi-
nations as a parameter-efficient strategy for large models, particularly in few-shot scenarios. Two
approaches have emerged, each representing a distinct paradigm. VeRA advocates for a unique ran-
dom base with large rank, while NoLA proposes to average a large number of random bases with
small ranks. Both approaches report performance comparable to LoRA in few-shot scenarios while
converging on a significantly reduced number of trainable parameters. However, as we will demon-
strate, this reduction comes at the cost of limited performance when venturing beyond few-shot
learning, limiting the scalability of these algorithms.

Finally, we report that LoRA is predicated on the assumption that low-rank updates suffice for fine-
tuning large models. We aim in this paper to question the universality of this hypothesis, exploring
scenarios where full rank alternatives may be necessary. The fundamental question follows: is
parameter efficiency achieved through low-rank approximation limited by (1) the low-rank nature
of the update or (2) by the low parameter count. Can parameter-efficient full rank updates provide a
more accurate solution ? This paper aims to address these questions, exploring the balance between
parameter efficiency and low-rank fine-tuning of large transformer models, and shedding light on
the limitations of existing approaches.

4 RANDLORA—PARAMETER-EFFICIENT FINE-TUNING WITH FULL RANK

4.1 WEIGHT UPDATES AS A SUM OF LOW-RANK MATRICES

Let W0 ∈ RD×d be a weight matrix of a large pre-trained model. Fine-tuning aims to find an
appropriate ∆W ∈ RD×d, such that the fine-tuned weights W0 + ∆W lead to an adapted model,
tailored to a specific downstream task. Without loss of generality, let us assume d < D. The
motivation behind RandLoRA stems from the singular value decomposition (SVD) of ∆W , i.e.,
∆W = UΣV T, where U ∈ RD×d, Σ ∈ Rd×d, V ∈ Rd×d. This decomposition can be written as
the sum of the product of rank-one matrices, as follows

∆W =

d∑
i=1

uiσiv
T
i , (1)

where ui and vi denote the columns of U and V , respectively. We suggest that in this context, low-
rank updates such as LoRAs can be characterized as an approximation of the few largest singular
values while the rest of the information in ∆W being discarded. To better illustrate this point, let
us denote the rank of LoRA by r and for brevity of exposition, assume d is divisible by r. We
rewrite equation 1 as a sum of the product of rank-r matrices, as follows

∆W =

n∑
j=1

UjΣjV
T
j , (2)

where UjΣjV
T
j =

∑r(j+1)
i=rj uiσiv

T
i and where n = d/r. This formulation reveals how LoRA mod-

els the approximates the first low-rank partition U1Σ1V
T
1 , and implicitly assumes

∑n
j=2 UjΣjV

T
j ≈

0. We however argue that the remaining n − 1 terms can play a crucial role when capturing more
complex task-specific variations that require larger deviations from the pre-trained weight W0.

4.2 PARAMETER-EFFICIENT APPROXIMATION OF LOW-RANK MATRICES

Approximating more terms in the decomposition of ∆W using LoRA’s formulation quickly be-
comes parameter inefficient, culminating to Dd+d2 parameters for a full rank d in place of the orig-
inal Dd parameters of ∆W . To perform full-rank updates while maintaining parameter-efficiency,
we propose instead to approximate each term of ∆W in equation 2 using low-rank random bases
where only scaling coefficients are learned,

∆W =

n∑
j=1

BjΛjAjΓj , (3)
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where Bj ∈ RD×r and Aj ∈ Rr×d are non-trainable, random matrices. The two learnable diagonal
scaling matrices, Λj ∈ Rr×r and Γj ∈ Rd×d are unique to each of the n terms and fulfill com-
plementary roles to improve the approximation. We aim for AjΓj transform the input features into
an low-dimensional space (rank-r), Λj to scale the compressed features which are then transformed
back into the desired output space by Bj .1 Since Γj operates on the column space of Aj and is
unique to each Aj , we use a unique shared matrix A ∈ Rr×d across all n terms without loss of
expressivity but reducing memory consumption. With a shared A, we formulate the update as

∆W =

n∑
j=1

BjΛjAΓj . (4)

To achieve a full-rank update, we set n = d/r, leading to d
r (d + r) = d2/r + d learnable param-

eters. Note that unlike LoRA, the number of learnable parameters is inversely proportional to the
rank of the random bases in RandLoRA, as increasing the rank of the bases leads to a reduction in
trainable parameters while maintaining full rank. In summary, RandLoRA trades-off approximation
accuracy for scope, sacrificing a more precise representation of the individual SVD elements of ∆W
to capture a larger portion of its singular value decomposition.

4.3 CONVERGENCE ANALYSIS

In this section, we present a theorem showing that weight updates using RandLoRA is an accurate
approximation of general matrices under certain theoretical conditions.
Theorem 4.1. Let W be a fixed D× d matrix, with D > d and rank(W ) = d. Fix 1 ≤ n ≤ d, such
that d = nr. The matrix W can be factorized using SVD as

W =

n∑
j

UjΣjV
T
j , (5)

where Uj ∈ RD×r, Vj ∈ Rr×d are partitions of the left and right singular vectors, and Σj ∈ Rr×r

contains r singular values. For each 1 ≤ j ≤ n, let Bj denote a random D×r matrix whose entries
are drawn i.i.d from either a Gaussian or uniform distribution, Aj denotes an r × d matrix whose
entries are drawn similarly, Λj is a diagonal r × r matrix and Γj is a diagonal d× d matrix drawn
similarly. Assume

∥UjΣjV
T
j −BjΛjAjΓj∥F ≤ ϵ (6)

for each 1 ≤ j ≤ n for some 0 < ϵ. Then we have that with probability 1 that each BjΛjAjΓj has
full rank and ∥∥∥∥∥∥W −

n∑
j=1

BjΛjAjΓj

∥∥∥∥∥∥
F

≤ n · ϵ. (7)

For details on the proof of theorem 4.1 please refer to appendix D.1.

Theorem 4.1 is premised on BjΛjAjΓj being a good approximation for the r-truncated singular
value of ∆W , which is shown to be true empirically in VeRA (Kopiczko et al., 2024) for example.
We show in this case that ∆W can be accurately approximated as

∑n
j=1 BjΛjAjΓj , motivating

RandLoRA’s formulation. In contrast, since the best approximation a rank-r LoRA can achieve
is the r-truncated SVD of W , then by Eckart-Young-Mirsky theorem, the Frobenius norm of the
difference between W and low-rank adaptation BA is lower bounded as follows

∥W −BA∥F ≥

∥∥∥∥∥W −
r∑

i=1

uiσiv
T
i

∥∥∥∥∥
F

=

d∑
i=r+1

σ2
i . (8)

We conclude that while LoRA’s rank r approximation is limited by the sum of the last d − r − 1
squared singular values of W , RandLoRA does not present this low bound and is only limited by
how close (ϵ) can BjΛjAjΓj approximate length-r segments of the SVD of W .

1The formulation of our method is similar to that of VeRA (Kopiczko et al., 2024), which will be discussed
in detail in section 6.5.
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Figure 2: Tuning CLIP and DinoV2 vision encoders for image classification. Accuracy averaged
over 21 datasets. We additionally report max GPU VRAM usage during training.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

We conduct a comprehensive comparison with three state-of-the-art approaches: LoRA (Hu et al.,
2022), NoLA (Koohpayegani et al., 2024), and VeRA (Kopiczko et al., 2024). We perform a hyper-
parameter search to identify optimal settings for LoRA, NoLA, VeRA, and RandLoRA to ensure a
fair comparison. More details about the experimental settings can be found in appendix C. Addi-
tional experiments on the General Language Understanding Evaluation (GLUE) (Wang et al., 2019)
and End-to-end (E2E) Novikova et al. (2017) natural language generation benchmarks as well as
further comparison with prompt-tuning algorithms are available in appendix B.

5.2 VISION: DINOV2 AND CLIP’S VISION BACKBONE

We evaluate fine-tuning vision backbones for image classification using pre-trained ViT-B/14 Di-
noV2 (Oquab et al., 2023) and ViT-B/32, ViT-L/14 CLIP (Radford et al., 2021) vision only back-
bones. We fine-tune on 21 datasets (Appendix C.1, Table 7) and evaluate {1, 2, 4, 16}-shot learning
and performance with 50% and 100% training data.

We compare RandLoRA to LoRA rank 32 where RandLoRA’s rank is adjusted to match LoRA’s
parameters, and include VeRA and NoLA as random base alternatives. We fine-tune the vision
backbones and learn linear classifiers for DinoV2, or use frozen CLIP language embeddings for
classification. Results are displayed in Figure 2 where we also report VRAM usage, detailed results
are available in Appendix E.2.

We find that LoRA exhibits a smaller accuracy gap with standard fine-tuning (FT) on DinoV2 than
CLIP. With equal parameters, RandLoRA improves over LoRA, bridging the FT gap in both cases.
We believe that LoRA’s success on the DinoV2 backbone is partly explained by its training objective
(see Section 6.1). RandLoRA demonstrates LoRA’s rank limitation for CLIP architectures and the
benefit of full-rank updates in matching FT performance. VeRA and NoLA are efficient in few-shot
settings but become limited with more data.

5.3 VISION-LANGUAGE: CLIP

We extend in this section our experimental setting to fine-tuning CLIP-like transformer architec-
tures on classification datasets where contrary to section 5.2 both the language and vision encoders
of CLIP are trained. We add ImageNet (Krizhevsky et al., 2012) to the dataset pool to scale up to 22
classification datasets. To assess the effectiveness of RandLoRA compared to LoRA on models of
varying sizes, we consider three variants of pre-trained CLIPs from the open-clip repository (Cherti
et al., 2023): ViT-B/32 (151M parameters), ViT-L/14 (428M parameters) and ViT-H/14 (1B pa-
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Figure 3: Tuning CLIP’s vision and language encoders for image classification. Accuracy averaged
over 22 datasets. We additionally report max GPU VRAM usage during training.

rameters). We scale the rank of the random bases in RandLoRA in the same way as section 5.2
to maintain a number of parameters comparable to a rank 32 LoRA: RandLoRA-{6,8,10} for ViT-
{B/32,L/14,H/14} respectively.

A summary of results is available in Figure 3 with detailed results being available in appendix E.1.
Because fine-tuning vision-language architectures such as CLIP is a harder optimization problem,
we observe the existence of a larger performance gap between full fine-tuning and LoRA than for
pure vision, which we confirm is not bridged by increasing the rank of LoRA (see Figure 1). This
suggests that increasing parameter count is not enough, pointing towards the rank of the update as
the possible limit to the performance of LoRA. When running RandLoRA with the same amount
of trainable parameters, we observe that the gap with fine-tuning is bridged. When compared with
NoLA and VeRA we come to the same conclusions as section 5.2 although VeRA is this time much
more competitive for larger data budgets, hinting towards the importance of high ranks for finetun-
ing CLIP-like vision language architectures. We also report that our base sharing strategy allows
RandLoRA to decrease VRAM usage over LoRA which can be relevant for large architectures such
as ViT-H/14.

5.4 COMMONSENSE REASONING

We evaluate RandLoRA for fine-tuning LLMs on eight commonsense reasoning tasks (see Ap-
pendix C.4). We fine-tune Qwen2 (0.5B), Phi3 (3B), and Llama3 (8B) models and assess data effi-
ciency by training on both a 170,000-sample full dataset and a 15,000-sample subset, following Hu
et al. (2023).

Table 1 compares RandLoRA to LoRA, VeRA, and NoLA. We test two LoRA ranks: rank-16 (”Ef-
ficient”) and rank-32 (”Performant”). We then scale RandLoRA the same or lower amount of pa-
rameters to ensure a fair comparison. Detailed results are found in Appendix 15

RandLoRA performs competitively with, and sometimes surpasses, LoRA. Phi3’s strong zero-shot
abilities enable VeRA and NoLA to achieve strong results despite fewer parameters. Conversely,
Qwen2 and Llama3 require more adaptation, challenging VeRA and NoLA to match LoRA’s perfor-
mance. The 15k-sample regime can lead to overfitting when scaling trainable parameters for LoRA
and RandLoRA, decreasing performance even with dropout regularization. When training on the
full 170k samples, RandLoRA consistently outperforms LoRA. Results comparing with DoRA (Liu
et al., 2024) for LLama3 only are available in Table 6 in the appendix where RandLoRA outper-
forms both DoRA and LoRA for larger parameter budgets, while DoRA and LoRA are competitive
at ”Efficient” budgets. We conclude RandLoRA is a compelling alternative to LoRA and DoRA for
LLM fine-tuning, especially with larger datasets and parameter budgets.
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Table 1: Parameter-efficient fine-tuning of Large Language Models (LLMs). Results averaged over 8
commonsense reasoning tasks. We bold the best accuracy between parameter-equivalent RandLoRA
and LoRA configurations.

Network Size ZeroShot NoLA VeRA LoRA RandLoRA

Efficient Performant Efficient Performant

Qwen2-0.5b 15k 5.2 42.6 48.1 53.2 52.3 53.5 52.9
170k 5.2 47.4 51.8 57.4 57.3 57.7 57.9

Phi3-3b 15k 65.4 80.4 78.6 81.8 80.3 81.7 82.3
170k 65.4 82.3 81.4 84.6 85.0 84.7 85.2

LLama3-8b 15k 27.0 76.9 77.1 82.7 83.1 81.0 81.3
170k 27.0 81.2 81.7 84.4 85.2 84.6 85.6

Figure 4: How close do RandLoRA and LoRA get to standard fine-tuning ? We compare CKA
scores of RandLoRA and LoRA with fine-tuned activations (top) and the mode connectivity in the
loss landscape of UCF101 (bottom)
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6 DISCUSSION

6.1 SIMILARITIES WITH FINE-TUNING: ACTIVATIONS

We evaluate activation similarity to assess LoRA and RandLoRA’s ability to mimic fine-tuned model
activations. Using the Centered Kernel Alignment (CKA) (Kornblith et al., 2019) metric, we mea-
sure the similarity between activations of LoRA, RandLoRA, and a fully fine-tuned model. This
protocol assesses how well each method captures dataset-specific activation patterns. Figure 4a
shows CKA scores for self-attention and MLP layers in CLIP and DinoV2 vision backbones, av-
eraged over 5 datasets where RandLoRA imrpoves over LoRA. For CLIP, LoRA’s CKA decreases
in deeper layers, losing alignment with fine-tuned activations. RandLoRA, with equal parameters,
matches LoRA’s early layer alignment but improves upon it in deeper layers. This CKA drop for
LoRA in deeper layers is absent in DinoV2, explaining LoRA’s near-identical accuracy to fine-
tuning on DinoV2. This difference likely arises from training objectives: DinoV2’s visual objective
creates classification-ready features needing minimal weight adjustments, thus low-rank LoRA suf-
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Table 2: Ablation on the rank of the up-
dates. The same amount of trainable pa-
rameters is used in all methods.

Method Rank Accuracy

LoRA 32 83.74
RandLoRA-a 32 83.62
RandLoRA-b 384 85.32
RandLoRA-6 768 85.98

Table 3: Fine-tuning CLIP or LLama3 using Rand-
LoRA different random distributions or base sparsity.

Model Sparsity Accuracy

CLIP-ViT-B/32 - uniform 0% 85.98
CLIP-ViT-B/32 - normal 0% 85.61
CLIP-ViT-B/32 - binary 0% 85.52
CLIP-ViT-B/32 66% 85.43
CLIP-ViT-B/32 93% 85.57
CLIP-ViT-B/32 98% 84.35
CLIP-ViT-B/32 99% 83.34

LLama3-8b 0% 85.59
LLama3-8b 66% 85.42

fices. CLIP’s multimodal objective, however, demands higher ranks for effective adaptation to vision
tasks.

6.2 SIMILARITIES WITH FINE-TUNING: LOSS LANDSCAPE

We analyze loss landscape connectivity for models fine-tuned with standard fine-tuning, LoRA,
and RandLoRA. We visualize a 2D loss landscape plane by positioning LoRA, RandLoRA, and
fine-tuning models at (0,0), (1,0), and (0.5,1) respectively. For each point (x, y) on this plane,
we interpolate model weights by solving for coefficients αi (where

∑3
i=1 αi = 1) and evaluate

the interpolated model’s loss on a 5% training subset. Figure 4b shows that for CLIP, RandLoRA
reaches a deeper loss minima than LoRA, often with a low-loss path to the fine-tuning optimum, and
despite training the same parameter count. For DinoV2, all optima reside in a shared low-loss basin,
with LoRA already close to fine-tuning, reflecting LoRA’s strong performance on this task. These
visualizations reinforce LoRA’s low rank it particularly limiting for complex tasks, and demonstrate
RandLoRA’s ability to achieve deeper minima than LoRA with equal parameters due to full-rank
updates. Appendix A provides 3D visualizations for additional datasets.

6.3 FURTHER STUDIES ON FULL VS LOW RANK FINE-TUNING OF CLIP

We investigate whether RandLoRA’s CLIP performance advantage over LoRA stems from better
SVD approximation or its full-rank capability. We ablate RandLoRA with two rank-controlled
variants. RandLoRA-a restricts the update rank to r by averaging bases before multiplication:
∆W =

(∑N
i=1 BiΛi

)(∑N
i=1 AiΓi

)
. RandLoRA-b uses half-rank updates by setting N =

rank(∆W )/r/2 and adjusting base rank to maintain parameter count parity with RandLoRA-r.
All variants train the same parameters, only update rank varies. Table 2 presents accuracy on 100%
of 22 datasets for CLIP ViT-B/32. Results show that higher update rank correlates with better
performance, given equal parameter counts. This supports the importance of large rank updates,
particularly for CLIP fine-tuning.

6.4 SPARSE RANDOM MATRICES

We propose to investigate using sparse random matrices for improved memory and computational
efficiency, drawing inspiration from random projection literature and the Johnson-Lindenstrauss
lemma (Lindenstrauss & Johnson, 1984). We adopt the sparse construction from Bingham & Man-
nila (2001) and Li et al. (2006), where matrix elements are {−1, 0, 1} with probabilities { 1

s , 1−
2
s ,

1
s}

(s ∈ [2,
√
D] for W ∈ RD×d), followed by normalization. Appendix C.6 discusses why this formu-

lation preserves full rank. Table 3 shows experimental results using these sparse bases in RandLoRA.
We explore sparsity ratios s ∈ {2, 6,

√
D, 100, 200}, achieving sparsity levels from 66 to 99%. Con-

sistent with Li et al. (2006), the recommended sparsity levels (
√
D) yield performance comparable

to dense matrices, theoretically reducing memory and compute. However, higher sparsity can de-
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grade accuracy, suggesting potential for optimized RandLoRA variants using compute-optimized
sparse random bases.

6.5 SUMMARY OF DIFFERENCES WITH RELATED RANDOM BASES ALGORITHMS

Prior work like VeRA (Kopiczko et al., 2024) and NoLA (Koohpayegani et al., 2024) utilizes random
bases for parameter-efficient fine-tuning. However, unlike VeRA and NoLA which approximate a
low-rank LoRA update, RandLoRA aims to approximate the full-rank weight update. It could be
argued that VeRA approximates only the first block in a decomposition of W , whereas RandLoRA
approximates all blocks. Thus, while VeRA and NoLA improve parameter-efficiency while main-
taining low-rank updates, RandLoRA addresses cases requiring full-rank updates. Furthermore,
Equation equation 4 evidences the flexibility in RandLoRA’s parameter count, ranging from VeRA’s
parameter efficiency (r = rank(W )) to full fine-tuning parameters (r = 1) while maintaining full-
rank.

6.6 LIMITATIONS

Despite RandLoRA’s effectiveness, we identify three key limitations for future research.

First, RandLoRA introduces computational overhead in weight update calculations, increasing train-
ing time for larger models (Appendix C.6.1). We however evidence room for improvement using
ternary sparse bases in Section 6.4. Future work should explore matmul-free matrix combinations
using these ternary sparse bases. Efficient implementations could replace costly matrix products
with simple aggregations, eliminating floating-point arithmetic (Li et al., 2006), and accelerating
RandLoRA training time pending the development of optimized CUDA kernels (Zhu et al., 2024).

Second, exploring non-random, optimal bases Bi and A could improve convergence and efficiency
by further reducing ϵ in equation equation 6. Discovering such bases, potentially through experi-
ments or decomposition of pre-trained weights (Bałazy et al., 2024; Meng et al., 2024), is a promis-
ing research direction to enhance RandLoRA.

Third, hybrid approaches combining LoRA and RandLoRA warrant investigation. LoRA could
estimate the dominant SVD components of W , while RandLoRA captures the remaining spectral
information efficiently. Despite challenges in harmonizing training objectives, a starting point would
use RandLoRA to refine a LoRA when convergence is insufficient. Addressing these limitations will
further improve RandLoRA’s potential for efficient full-rank fine-tuning.

7 CONCLUSION

This paper introduces RandLoRA, a method achieving parameter efficiency and low memory cost
while enabling full rank model updates. Our findings underscore the critical importance of full-
rank updates when fine-tuning pre-trained architectures and we observe that our approach surpasses
LoRA’s performance for an equal parameter count, highlighting the value of full-rank updates in
large model fine-tuning. Through extensive experiments across diverse tasks we demonstrated the
efficacy of our method. While RandLoRA incurs additional computational overhead due to random
basis multiplications, memory consumption remains contained and we provide venues for reducing
this compute in practice. As a results, RandLoRA offers a viable alternative to LoRA for fine-tuning
large pre-trained models on consumer-grade hardware. Our results have significant implications
for efficient and effective model adaptation, prompting for future research in scalable and versatile
full-rank fine-tuning techniques.
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