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Abstract

Large Language Models (LLMs) have demon-001
strated impressive capabilities in reasoning us-002
ing Chain-of-Thought (CoT) prompting. How-003
ever, CoT can be biased by users’ instruction.004
In this work, we study the reasoning robust-005
ness of LLMs to typographical errors, which006
can naturally occur in users’ queries. We de-007
sign an Adversarial Typo Attack (ATA) algo-008
rithm that iteratively samples typos for words009
that are important to the query and selects the010
edit that is most likely to succeed in attack-011
ing. It shows that LLMs are sensitive to min-012
imal adversarial typographical changes. No-013
tably, with 1 character edit, Mistral-7B’s accu-014
racy drops from 43.7% to 38.6% on GSM8K,015
while with 8 character edits the performance016
further drops to 19.2%. To extend our evalu-017
ation to larger and closed-source LLMs, we018
develop the R2ATA benchmark, which as-019
sesses models’ Reasoning Robustness to ATA.020
It includes adversarial typographical ques-021
tions derived from three widely-used reason-022
ing datasets—GSM8K, BBH, and MMLU—by023
applying ATA to open-source LLMs. R2ATA024
demonstrates remarkable transferability and025
causes notable performance drops across multi-026
ple super large and closed-source LLMs.027

1 Introduction028

Chain-of-Thought (CoT) prompting (Wei et al.,029

2022) enables Large Language Models (LLMs)030

to break down a complex problem into a series031

of intermediate steps to solve complex problems.032

Answering users’ queries in a step-by-step fash-033

ion has been implemented in many state-of-the-034

art AI systems such as ChatGPT (OpenAI, 2022),035

Mistral (Jiang et al., 2023) and Gemini (Team036

et al., 2023). Despite being carefully trained and037

aligned, LLMs’ sensitivity to the prompt is evident038

when employing CoT reasoning. It was shown that039

CoT reasoning can be biased by users’ instructions040

(Perez and Ribeiro, 2022; Lanham et al., 2023;041

Figure 1: There are two typing errors in the query: omis-
sion of a letter (year becomes yar) and duplication of a
letter (has becomes haas). Consequently, in Step 1 the
model wrongly wrote Regina as A, while in Step 2 the
text reverses the relationship between this year’s and
last year’s written novel. These errors in intermediate
steps lead to an incorrect final answer.

Wang et al., 2024; Xiang et al., 2024) and be con- 042

fused by irrelevant context (Shi et al., 2023; Turpin 043

et al., 2024). For example, Turpin et al. (2024) 044

found that models tend to justify answers as correct 045

if the majority of previous examples suggest that 046

answer, even when it’s incorrect. These scenarios 047

demonstrate the importance of evaluating LLMs’ 048

reasoning robustness at the contextual level, such as 049

sentence structure or information correctness. How- 050

ever, it is crucial to recognize that non-contextual 051

mistakes also naturally occur in users’ queries, sig- 052

nificantly influencing LLMs’ performance. 053

In this work, we study the robustness of CoT 054

reasoning against seemingly innocuous errors: ty- 055

pographical errors or typos. We found that typos 056

can significantly undermine the CoT reasoning pro- 057

cess. For instance, in Figure 1, the user made two 058

typographical errors in the input: omitting a letter 059

(year to yar) and duplicating a letter (has to haas), 060

yet these minor typos initiate a cascade of errors. 061

Recognizing the impact of such typos, we propose 062

the Adversarial Typo Attack (ATA) algorithm. It 063

is designed to effectively identify typographical er- 064

rors that can cause the model to generate incorrect 065

answers by modifying the input in a way that in- 066

creases the model’s probability of making mistakes. 067
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Figure 2: ATA mainly consists of three steps: 1 selecting a set of tokens with the highest gradients; 2 sampling
typographical errors to edit the selected tokens and generate a batch of candidates; 3 evaluating the losses of the
candidates using the model and retaining the optimal candidate for the next iteration.

Here, we designate the target answer as “Sorry, I’m068

unable to answer the question.” This not only en-069

sures universal compatibility across various user070

queries, but also reinforces our adversarial strategy071

by using negative wording to signal the model not072

to generate a satisfactory answer. As illustrated in073

Figure 2, ATA first extracts tokens that are impor-074

tant to the input, as evaluated by gradients. Subse-075

quently, it samples a set of typing mistakes for each076

selected word and modifies them within the input.077

Finally, it assesses the loss for the edited input and078

preserves the optimal candidate for the subsequent079

iteration. ATA demonstrates significant effective-080

ness in attacking performance. For example, with081

just 1 character edit, Mistral-7B’s accuracy drops082

from 43.7% to 38.6% on GSM8K, while 8 charac-083

ter edits results in a halved accuracy at 19.2%.084

Motivated by the intriguing observation, we085

benchmark various models’ Reasoning Robustness086

against the ATA, named R2ATA, on three common087

language datasets that involve extensive reasoning,088

GSM8K (Cobbe et al., 2021), BBH (Suzgun et al.,089

2023) and MMLU (Hendrycks et al., 2021). We090

test LLMs’ performances under different numbers091

of adversarial typographical changes and report092

their average performances. Moreover, we con-093

sider two scenarios: direct adversarial robustness094

for smaller open-sourced LLMs, where we are able095

to apply ATA, and transfer adversarial robustness096

for super large and closed-source LLMs, where we097

use a fixed set of data obtained on implementable098

models. We found that even state-of-the-art models099

exhibit different levels of vulnerabilities. Notably,100

R2ATA achieves performance drop from 38.2% to101

26.4% on GSM8K, from 52.1% to 42.5% on BBH102

and 59.2% to 51.5% on MMLU, resulting from103

only four edits made on Vicuna-33b-chat. Addi-104

tionally, Mistral-8×7B shows an average decrease105

of 6.7% drop on average among tasks, while Chat- 106

GPT exhibits a drop of 6.5%. We believe that 107

R2ATA will serve as an important benchmark to 108

evaluate the robustness of CoT reasoning. 109

2 Adversarial Typo Attack (ATA) 110

2.1 Overview 111

ATA employs an iterative process to introduce ty- 112

pographic errors in prompt words, selecting re- 113

placements based on their performance in guiding 114

the model to generate the desired attacking target. 115

Unlike traditional adversarial attacks that aim to 116

prompt models to produce harmful outputs, our 117

objective with ATA is to influence LLMs to gener- 118

ate incorrect reasoning responses while preserving 119

the naturalness and coherence of the text. There- 120

fore, to ensure universal adaptability to diverse user 121

queries, we designate our target response as “Sorry, 122

I’m unable to answer the question.”, which lever- 123

ages the negative semantic connotation to signal 124

the model not to generate a satisfactory answer, 125

reinforcing our adversarial strategy. Furthermore, 126

candidates considered in each iteration are limited 127

to those that contain only typographical errors, as 128

thoroughly explained in Section 2.2. 129

2.2 Typographical Errors used in ATA 130

To accurately simulate real user scenarios, we re- 131

strict word modifications to those commonly en- 132

countered during user interactions. In chatbot inter- 133

actions powered by LLMs, users frequently make 134

typing errors due to keyboard usage. These mis- 135

takes often remain undetected in the absence of a 136

grammar check tool. 137

Keyboard Proximity Errors. One common er- 138

ror occurs when users accidentally strike keys adja- 139

cent to the intended key. For instance, when intend- 140
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Error Example Sentence

None The quick brown fox jumps over the lazy dog.

Proximity Thr quick brown fox jumps over the lazy dog.

Double typing The quick brown fox juumps over the lazy dog.

Omission The quick brown fox jumps ovr the lazy dog.

Extra space The quick o brown fox jumps over the lazy dog.

Table 1: Examples of typographical errors.

ing to type the letter ’S’, users may inadvertently141

touch the keys ‘A’, ‘W’, ’D’, ‘Z’, or ‘X’.142

Keyboard Double-Typing Errors. Another type143

of error that often goes unnoticed is repeated typ-144

ing, where a word is mistakenly typed with re-145

peated characters, such as transforming “flop” into146

“floop”. However, this particular error only occurs147

with words, as users typically recognize and correct148

repeated typing when it involves numbers.149

Keyboard Omission Errors. In contrast to dou-150

ble typing, typing omission refers to the uninten-151

tional omission of a letter from a word.152

Extra Whitespace Error. Another common153

oversight users encounter involves unintentionally154

inserting multiple spaces between words. This of-155

ten stems from typing hastily, where users may156

inadvertently strike the space bar more than once157

or fail to notice extra spaces as they type swiftly.158

These errors are hard to detect as they don’t159

trigger conventional spelling or grammar checks,160

leading to unnoticed text inconsistencies. Table 1161

shows an example sentence with different imper-162

ceptible perturbations errors. In addition to the163

aforementioned minor revisions, there are other164

commonly encountered errors, such as word shuf-165

fling, abbreviation insertion, random uppercase166

transformations, and the use of leet letters (Zhang167

et al., 2022). However, these are usually noticeable168

and easily corrected. Despite potentially impacting169

the reasoning of the response more, we choose to170

disregard them in our approach.171

2.3 ATA Algorithm172

Task Definition. For a LLM, let Q represent the173

original question. Our objective is to create imper-174

ceptible adversarial perturbations in Q to generate175

an adversarial example, denoted as Qadv, which176

induces the model to produce a target answer T .177

This can be formulated as follows:178

min
Qadv

L
(
T |Qadv

)
, (1)179

where L(T |Qadv) = − log p(T |Qadv) is the nega- 180

tive log-likelihood of the LLM generating the target 181

answer T given the adversarial prompt Qadv. 182

Algorithm Description. For each original ques- 183

tion Q1:n = {w1, w2, . . . , wn} comprising of 184

words wi, we initiate our algorithm by identify- 185

ing the most influential words in the question using 186

the loss function ∇L(Q1:n). We then rank these 187

words by their influence and select the top-k, de- 188

noted as {w(1), w(2), . . . , w(k)}. From this influ- 189

ential word set, we randomly sample a word ws 190

and uniformly select a letter ls within ws for po- 191

tential modification. This selected letter undergoes 192

potential modification through the Edit function, 193

introducing errors based on the operations listed 194

in the mistake dictionary M, which covers four 195

types of typographical errors in Table 1. To cre- 196

ate a batch size of B candidates, we repeat this 197

sampling process B time and calculate the loss for 198

each modified question, denoted as L(Qb
1:n), for 199

b ∈ {1, · · · , B}. We finally select the modified 200

question with the lowest loss: 201

Qb∗
1:n = argmin

b
L(Qb

1:n). (2) 202

This process is repeated for E iterations, depend- 203

ing on the desired number of edits to effectively 204

execute the targeted attack on the question. 205

Algorithm 1 Adversarial Typo Attack
Input: Question Q1:n, mistake dictionary M, word edit func-

tion Edit, loss L, batch size B, number of edits E
1: repeat
2: //Retrieve the top-k gradient words

from the question
3: {w(1), w(2), . . . , w(k)} = Top-k(∇L(Q1:n))
4: for b = 1, · · · , B do
5: //Uniformly sample a word and a

letter for editing
6: ws = Uniform({w(1), w(2), . . . , w(k)})
7: ls = Uniform(ws)
8: //Uniformly sample from mistake

dictionary to edit word
9: Q

(b)
1:n = Edit(ws,Uniform(M[ls]))

10: end for
11: //Select modified question with

lowest loss
12: Qb∗

1:n = argminb L(Qb
1:n)

13: //Replace original question with
modified question

14: Q1:n = Qb∗
1:n

15: until Repeat for E times
Output: Modified question Q1:n
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Dataset Model (#Params) Ori. Avg-ATA ATA-1 ATA-2 ATA-4 ATA-8

GSM8K

Gemma-2b (2.5B) 15.1 8.1 (↓ 7.0) 11.2 9.4 7.1 4.6
Llama2-7b (6.7B) 27.3 16.7 (↓ 10.6) 21.8 19.7 14.7 10.6
Mistral-7b (7.2B) 43.7 30.1 (↓ 13.6) 38.6 35.4 27.1 19.2
Gemma-7b (8.5B) 39.9 32.1 (↓ 7.8) 38.7 36.8 29.8 23.1

BBH

Gemma-2b (2.5B) 29.6 20.8 (↓ 8.8) 24.7 21.9 20.2 16.4
Llama2-7b (6.7B) 35.7 28.1 (↓ 7.6) 32.2 30.1 26.8 23.3
Mistral-7b (7.2B) 50.0 40.9 (↓ 9.1) 46.8 43.1 39.1 34.6
Gemma-7b (8.5B) 42.4 35.9 (↓ 6.5) 40.6 38.1 33.5 31.3

MMLU

Gemma-2b (2.5B) 34.1 27.5 (↓ 6.6) 30.3 29.7 27.5 22.6
Llama2-7b (6.7B) 35.1 29.5 (↓ 5.6) 31.6 30.2 28.9 27.5
Mistral-7b (7.2B) 54.6 47.0 (↓ 7.6) 51.1 49.3 44.8 42.7
Gemma-7b (8.5B) 53.5 47.8 (↓ 5.7) 51.7 50.1 47.6 41.8

Table 2: Main results of ATA’s direct attacks on GSM8K (0-shot), BBH (3-shot), and MMLU (5-shot) for smaller
models. Results expressed in accuracy (%). All models are chat models.

Dataset Model (#Params) Ori. Avg-ATA ATA-1 ATA-2 ATA-4 ATA-8

GSM8K
Vicuna-13b (13B) 33.4 28.4 (↓ 5.0) 32.4 30.8 26.2 24.3
Vicuna-33b (33B) 38.2 29.2 (↓ 9.0) 35.3 32.6 26.4 22.5
Mistral-8×7B (47B) 68.5 60.9 (↓ 8.3) 66.7 62.8 57.9 53.4

BBH
Vicuna-13b (13B) 51.2 42.5 (↓ 8.7) 47.7 44.9 40.8 36.6
Vicuna-33b (33B) 52.1 43.7 (↓ 8.4) 49.4 44.7 42.5 38.2
Mistral-8×7B (47B) 65.6 60.4 (↓ 5.2) 64.0 62.8 58.3 56.4

MMLU
Vicuna-13b (13B) 53.4 48.2 (↓ 5.2) 50.8 50.3 48.2 43.6
Vicuna-33b (33B) 59.2 52.3 (↓ 6.9) 56.3 54.9 51.4 47.5
Mistral-8×7B (47B) 68.4 63.3 (↓ 5.1) 66.1 64.8 62.1 60.2

Table 3: Main results of transfer attacks on GSM8K (0-shot), BBH (3-shot), and MMLU (5-shot) for larger models.
Adversarial data used to attack is from Mistral-7b. Results expressed in accuracy (%). All models are chat models.

3 Experiment206

3.1 Experimental Setup207

Dataset. For our experiments, we have se-208

lected three widely recognized reasoning datasets:209

GSM8K (Cobbe et al., 2021), BBH (Suzgun et al.,210

2023), and MMLU (Hendrycks et al., 2021), which211

cover evaluation of comprehensive reasoning ca-212

pabilities, including logical reasoning, symbolic213

reasoning, mathematical reasoning, and common-214

sense reasoning. Due to computational constraints,215

we will select a subset of 50 questions from each216

topic in the BBH and MMLU datasets. Addition-217

ally, we will include all test questions from GSM8K218

in our evaluation.219

Generation of adversarial test cases. We con-220

duct ATA on both zero-shot and few-shot prompts,221

focusing specifically on editing the questions (and222

options, if applicable). Notably, we avoid attacking223

the standardized prompt, “Let’s think step by step.”224

to ensure the model retains its understanding of the225

need for CoT. For few-shot prompts, we retain the226

original examples without edits, simulating human227

behavior of directly copying examples. 228

Models. To evaluate the reasoning robustness 229

of LLMs, we select LLMs ranging from smaller 230

parameters to larger parameters to attack. We 231

use Gemma-2B, Gemma-7B (Team et al., 2024), 232

Mistral-7B (Jiang et al., 2023), Llama2-7B (Tou- 233

vron et al., 2023), Vicuna-13B, Vicuna-33B (Chi- 234

ang et al., 2023), Mistral-8×7B (Jiang et al., 2024), 235

ChatGPT (gpt-3.5-turbo-0613) (OpenAI, 2022), 236

GPT-4 (gpt-4-0613) (OpenAI, 2023). For the larger 237

and closed-source models, such as Vicuna-33B, 238

Mistral-8×7B, and ChatGPT, we employ questions 239

generated by the smaller Mistral-7B-chat model to 240

evaluate their performance. This approach demon- 241

strates ATA’s transferability across white-box mod- 242

els and between white-box and black-box models. 243

Implementation details. We present accuracy 244

results for both the original and edited scores, rep- 245

resented on a logarithmic scale ranging from 1 to 8 246

edits applied to each question. The primary metric 247

for assessing the effectiveness of an adversarial at- 248

tack is the reduction in accuracy. All experiments 249

are conducted on the A800-80G GPU. 250
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3.2 Main results251

The main results of the attacks on the GSM8K,252

BBH, and MMLU datasets and comparison of the253

performance of the baselines models are summa-254

rized in Table 2 and Table 3.255

Performance Degradation under ATA. As256

shown in Table 2 and Table 3, our method consis-257

tently reduces model performance across various258

datasets, demonstrating the significant vulnerabil-259

ity of LLMs to such errors. For instance, in Table 2,260

small models like Gemma-2b, Llama2-7b, Mistral-261

7b and Gemma-7b show striking average absolute262

reductions of 7.0%, 10.6%, 13.6% and 7.8% re-263

spectively for GSM8K. Similar declines are ob-264

served across four models on other datasets and265

8.8%, 7.6%, 9.1%, and 6.5% respectively for BBH,266

and 6.6%, 5.6%, 7.6%, and 5.7% respectively for267

MMLU. These results consistently illustrate that268

even minor typographical errors can trigger signifi-269

cant performance degradation, reflecting a systemic270

weakness in LLMs’ ability to handle imperfect in-271

put. The consistent decrease in accuracy across272

different datasets and models underscores the gen-273

eralizability of our attack. By exploiting these vul-274

nerabilities, our adversarial typographical errors275

disrupt the internal reasoning processes of LLMs,276

leading to erroneous outputs and highlighting a277

critical area for improvement for LLMs.278

Transferability. To further explore the impact279

of adversarial typographical errors on LLMs, we280

evaluated the transferability of adversarial prompts281

crafted for Mistral-7b to larger models. The re-282

sults reveal a similar vulnerability to smaller mod-283

els, as larger models shown in Table 3: Vicuna-284

13b, Vicuna 33b, and Mistral-8×7B show aver-285

age absolute reductions of 5.0%, 9.0%, and 8.3%286

respectively for GSM8K, 8.7%, 8.4%, and 5.2%287

respectively for BBH, 5.2%, 6.9%, and 5.1% re-288

spectively for MMLU. This consistent decrease289

in performance across various larger models un-290

derscores the high transferability of our adversarial291

attacks, demonstrating that typographical errors not292

only disrupt smaller models but also significantly293

impair the reasoning processes of more complex294

systems. These findings emphasize that the vulner-295

abilities exploited by our attacks are fundamental,296

affecting a broad spectrum of model architectures297

and sizes, thereby highlighting the critical need for298

robust defense mechanisms in the development of299

future LLMs.300

3.3 Attack Performance Analysis 301

Effectiveness. We compare ATA-4 with two 302

baselines to evaluate its effectiveness. The first 303

baseline, referred to as the random baseline, in- 304

volves randomly choosing words and letters to be 305

edited and replacing them by randomly sampling 306

from a mistake dictionary. The second baseline em- 307

ploys the "DeepWordBug" strategy from Prompt- 308

bench (Zhu et al., 2023), which targets the instruc- 309

tion portion of the prompts. As shown in Table 4, 310

our results demonstrate that ATA-4 significantly 311

outperforms both baselines in degrading model per- 312

formance. For Mistral-7b, Gemma-7b, and Vicuna- 313

33b, ATA-4 at 4 edits results in average absolute 314

reductions in accuracy of 11.9%, 6.3%, and 9.7% 315

respectively. In stark contrast, the random baseline 316

yields much lower reductions of 2.6%, 0.3%, and 317

0.6%, while Promptbench’s DeepWordBug strat- 318

egy results in minimal reductions of 0.1%, 0.1%, 319

and 0.1%. These findings underscore the superior 320

effectiveness of ATA-4, which leverages targeted 321

typographical errors to exploit model vulnerabil- 322

ities more efficiently than random or instruction- 323

focused attacks. This also demonstrates a clear and 324

significant impact on the reasoning capabilities of 325

LLMs compared to the baseline strategies. 326

Model Method GSM8K BBH MMLU Avg.

Mistral-7b∗

Original 43.7 50.0 56.6 50.1
Random 39.2 48.4 54.8 47.5 (↓ 2.6)
PromptBench − 50.0 56.4 53.2 (↓ 0.1)
ATA-4 27.1 39.1 48.3 38.2 (↓ 11.9)

Gemma-7b∗

Original 39.9 42.4 53.5 45.3
Random 40.3 41.2 53.4 45.0 (↓ 0.3)
PromptBench − 42.3 53.5 47.9 (↓ 0.1)
ATA-4 29.8 33.5 47.6 37.0 (↓ 6.3)

Vicuna-33b+

Original 38.2 52.1 59.2 49.8
Random 37.4 52.2 57.9 49.2 (↓ 0.6)
PromptBench − 52.1 59.0 55.6 (↓ 0.1)
ATA-4 26.4 42.5 51.4 40.1 (↓ 9.7)

Table 4: Performance compared to random selection
and PromptBench, where ∗ indicates direct applying
ATA, while + indicates transfering from other models.
Promptbench is not used to attack GSM8K dataset as
there is no instruction used in GSM8K.

Performance on ChatGPT and GPT4. We con- 327

duct transfer experiments on ChatGPT and GPT4. 328

However, due to the high cost involved, we only 329

sample 100 instances for each dataset, and we run 330

for 3 times and report the results with their respec- 331

tive standard deviations in Table 5. ATA achieves 332

an average performance drop of 8.5% on GSM8K, 333

5.8% on BBH, and 6.3% on MMLU. However, 334
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when targeting GPT-4, it fails to produce significant335

impact, resulting in an average performance drop336

of only 3.5% on GSM8K, 2.3% on BBH, and 2.3%337

on MMLU. The inability to attack GPT-4 demon-338

strates that when models possess a similar level of339

comprehension as humans, typos have negligible340

influence on the results. Moreover, this substan-341

tiates that ATA solely incorporates imperceptible342

typos within prompts.343

Model Task Ori. ATA-1 ATA-2 ATA-4 ATA-8

ChatGPT+
GSM8K 72± 0.8 68± 1.3 66± 2.5 62± 1.2 58± 1.7

BBH 69± 0.4 68± 0.4 65± 0.7 61± 0.3 59± 0.6
MMLU 67± 0.3 65± 0.2 63± 0.4 59± 0.6 56± 0.5

GPT-4+
GSM8K 88± 0.5 87± 0.6 86± 0.5 84± 0.4 81± 0.7

BBH 89± 0.6 89± 0.6 87± 0.7 86± 0.2 85± 0.6
MMLU 86± 0.8 85± 0.4 84± 0.3 84± 0.9 82± 0.8

Table 5: Performance of ATA on closed-source models.
ATA notably impacts ChatGPT but have a minimal im-
pact on GPT-4, highlighting GPT-4’s human-level com-
prehension and resistance to such errors. This affirms
that ATA generates imperceptible typos in prompts.

4 Benchmark: Reasoning Robustness to344

Adversarial Typo Attacks (R2ATA)345

To enable a comprehensive evaluation of LLMs’346

Reasoning Robustness to ATA, including future347

new models, super-large models, and closed-source348

models, we propose the establishment of a bench-349

mark named R2ATA. This benchmark utilizes ad-350

versarial typographical questions derived from351

transfer experiments conducted in Section 3, specif-352

ically GSM8K, BBH, and MMLU.353

4.1 R2ATA Statistics354

Representative Example. Figure 3 compares the355

model’s responses to an original and an adversari-356

ally edited GSM8K question. In the original ques-357

tion, the model follows a logical reasoning pathway358

to reach the correct answer. Meanwhile, the ad-359

versarially edited question introduces subtle typo-360

graphical errors. These minor perturbations cause361

the model to misinterpret key terms, leading to er-362

roneous intermediate steps and ultimately resulting363

in a wrong answer.364

Distribution of Typographical Edits. One of365

the key analyses involves examining the distribu-366

tion of the edit operations used in R2ATA. Fig-367

ure 4 illustrates the edit operation statistic present368

in R2ATA. Notably, the predominance of the369

whitespace error operation adopted by ATA high-370

lights its significance in exploiting model vulnera- 371

bilities. This suggests that LLMs are particularly 372

susceptible to errors stemming from additional 373

whitespace, possibly due to a lack of robustness 374

in handling such perturbations. The frequency of 375

whitespace errors implies that patterns involving 376

multiple whitespaces between words are likely in- 377

frequent in the training data, resulting in heightened 378

sensitivity and errors in reasoning outputs. 379

The variation in error operation distribution 380

across the three datasets, as depicted in Figure 4, 381

indicates that task complexity influences the preva- 382

lence of specific error operations. The GSM8K 383

dataset focuses on mathematical reasoning, while 384

MMLU and BBH cover a broader range of tasks, in- 385

cluding logical and commonsense reasoning (Suz- 386

gun et al., 2023). By systematically evaluating 387

LLMs’ performance under these conditions, the 388

benchmark aims to provide insights into improving 389

model robustness across diverse reasoning tasks. 390

4.2 R2ATA Analysis 391

The R2ATA benchmark is analyzed at various levels 392

to provide comprehensive insights into the types 393

and patterns of typographical errors that impact 394

model performance. 395

Type of Edited Words. Figure 5 illustrates the 396

distribution of edited word types across all three 397

datasets. The data reveals that nouns are the most 398

frequently edited word type, accounting for 48.9% 399

of the edits. Verbs follow at 16.7%, and adjectives 400

at 14.9%. This distribution reflects the significant 401

roles these word types play in conveying meaning. 402

Nouns, as primary subjects and objects, are often 403

targeted for edits due to their substantial semantic 404

weight, which can profoundly alter sentence mean- 405

ing and context. Verbs, crucial for actions and 406

states, similarly impact sentence meaning when 407

modified. Adjectives, providing descriptive nu- 408

ances, can subtly change the tone or implication of 409

text upon editing. In contrast, stop words such as 410

conjunctions and prepositions primarily contribute 411

to grammatical structure rather than semantic con- 412

tent, making them less frequently edited and thus 413

less impactful on overall meaning. This goes to 414

show that models need to be more robust to subject 415

perturbations to ensure more robustness to these 416

typographical errors. 417

Edited Words Statistics. Figure 6 shows the 418

word cloud of edited words with size reflecting edit 419

frequency. To ensure a fair comparison, we applied 420

6



(a) Whitespace and Replace Errors. (b) Omission and Double.

Figure 3: Comparison of Mistral-7B responses to original (left) and adversarially edited (right) GSM8K questions.
Minor typographical errors in the edited question can lead to misinterpretation and incorrect answers.

Figure 4: Distribution of error operations selected by ATA across
the datasaets in R2ATA benchmark. The predominance of whites-
pace errors highlights a key vulnerability in LLMs.

Verb
16.7%

Noun
48.9%

Adjective
14.9%

Preposition
5.7%

Adverb
3.8%

Determiner
2.9%
Other
2.6%

Pronoun
2.3%

Numeral
1.3%

Conjunction
1.0%

Figure 5: Distribution of edited word types in
R2ATA. Nouns, Verbs, and Adjectives constitute
the majority of edited words.

Inverse Document Frequency (IDF) normalization,421

calculated using: IDF(t) = log
(

N
dft

)
, where t is422

the term, N is the total number of prompts, and dft423

is the number of prompts containing the term t.424

We adjust each word’s frequency by multiplying425

it with its IDF weight to highlight words dispropor-426

tionately edited relative to their overall frequency.427

In the GSM8K dataset, frequent edits of words428

like “many,” “people,” “much,” “two,” “each,” and429

“total” suggest their semantic importance in mathe-430

matical problems due to their inherent complexity431

and the model’s sensitivity to linguistic patterns and432

numerical expressions. Figures 6(b) and 6(c) show433

word clouds from BBH and MMLU datasets, high-434

lighting words like “describe,” “which,” “complete”435

for BBH, and “individual,” “an,” “which,” “all,”436

and “morally” for MMLU, which cover diverse437

topics compared to GSM8K’s focus on math. The438

minimal presence of stop words among frequently439

edited words indicates that edits target content-440

bearing words, suggesting that ATA edits aim to 441

disrupt the text’s logical flow, coherence, or se- 442

mantics, thus strategically influencing the model’s 443

reasoning abilities. 444

Impact on the Token Level. Figure 7a illustrates 445

the how accuracy varies with edit distance for ad- 446

versarially edited prompts across three datasets: 447

GSM8K, BBH, and MMLU. Meanwhile, Figure 448

7b shows how accuracy varies with the Jaccard co- 449

efficient, with each data point representing 0, 1, 450

2, 4, and 8 edits. It is evident that even a small 451

number of edits leads to a substantial increase in 452

edit distance, resulting in a significant decline in 453

accuracy. However, despite this increase in edit 454

distance, the Jaccard coefficient remains relatively 455

stable, consistently exceeding 0.8 across all edits. 456

This high degree of similarity between the edited 457

and original prompts suggests that the edits are 458

likely imperceptible to humans, underscoring the 459

challenge of detecting adversarial modifications. 460

7



(a) GSM8K (b) BBH (c) MMLU

Figure 6: Statistic of words edited in R2ATA.

(a) Edit Distance. From left to right,
each data point represents 0, 1, 2, 4,
8 edits respectively.

(b) Jaccard Coefficient. From left to
right, each data point represents 8, 4,
2, 1, 0 edits respectively.

Figure 7: Examining the effects of adversarial edits at the token level.

Figure 8: Visualizing attention changes be-
fore and after adversarial attacks.

Impact on Attention Figure 8 illustrates the461

changes in attention distribution before and after462

an adversarial attack on a question. In the original463

question, attention was focused on critical words464

such as “much,” “increased,” and “by 150%”. How-465

ever, after the question was edited, there was a466

noticeable shift in attention. For instance, the at-467

tention on “much” decreased significantly due to468

it being altered to “muxh”. Similarly, attention469

on “increased” and “by 150%” was entirely lost.470

Instead, the attention was redirected to irrelevant471

words like “the house”. This misallocation of at-472

tention led to errors in the reasoning steps, as the473

model focused on less important parts of the text,474

thereby compromising its ability to understand and475

answer the question correctly.476

5 Related Work477

Textual Adversarial Attacks have garnered signifi-478

cant attention due to their potential to reveal vulner-479

abilities in LLMs. These attacks involve making480

changes to input text to mislead models into mak-481

ing incorrect predictions, or generating incorrect482

answers. As noted by Zhu et al. (2023), adversarial483

attacks on input text can be done on across various484

levels: character-level (Gao et al., 2018; Li et al.,485

2019; Pruthi et al., 2019), word-level (Garg and486

Ramakrishnan, 2020; Jin et al., 2020; Zhou et al., 487

2024), sentence-level (Shi et al., 2023; Xu et al., 488

2024; Turpin et al., 2024; Lanham et al., 2023) and 489

semantic-level Zhu et al. (2023); Parcalabescu and 490

Frank (2023). However, these attacks often result 491

in edits that are easily detectable by human users, 492

limiting their practical applicability. We instead 493

aim to introduce subtle, imperceptible changes to 494

prompts, ensuring they go unnoticed by human 495

users and thus remain uncorrected in real-time. 496

6 Conclusion 497

This study examined the robustness of LLMs to 498

typographical errors using the ATA algorithm and 499

the R2ATA benchmark. Our findings show that 500

even minor typographical changes significantly re- 501

duce model accuracy. We observe that adversar- 502

ial prompts from Mistral-7b similarly affect larger 503

models like Vicuna-13b, Vicuna-33b, and Mistral- 504

8×7B, indicating that both smaller and larger mod- 505

els are vulnerable. This highlights the need for 506

improved robustness in LLMs against typograph- 507

ical errors. The R2ATA benchmark is a valuable 508

tool for developing more resilient models capa- 509

ble of reliable performance despite minor errors, 510

emphasizing the critical need for robust defense 511

mechanisms in future LLMs. 512
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Limitation513

Our algorithm primarily focuses on typographi-514

cal errors common in languages that use alphabets515

and whitespaces, such as English. This excludes516

languages with different writing systems, such as517

Chinese, where typographical errors may involve518

character substitutions or stroke omissions. The519

typographical errors considered may not cover all520

possible real-world scenarios. For instance, whites-521

pace errors only apply to languages that use spaces,522

while letter addition and deletion errors are relevant523

only to alphabetic languages. Therefore, future re-524

search should extend the scope to encompass a525

broader range of linguistic diversity to ensure the526

applicability of findings across various languages527

and writing systems. Exploring language-specific528

modifications will provide a more comprehensive529

understanding of LLM robustness across diverse530

linguistic contexts. Developing and testing adver-531

sarial attacks tailored to these languages will help532

in creating more universally resilient language mod-533

els.534

Additionally, our evaluation primarily relies on535

open-source and commercially available LLMs536

due to accessibility constraints. While the R2ATA537

benchmark effectively demonstrates vulnerabilities538

in these models, the performance of many closed-539

source LLMs remains unexplored.540
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