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Fig. 1. We present SPGen, a powerful generative model creating consistent 3D shapes with flexible topology from single view images in seconds.
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Existing single-view 3D generative models typically adopt multiview diffu-
sion priors to reconstruct object surfaces, yet they remain prone to inter-view
inconsistencies and are unable to faithfully represent complex internal struc-
ture or nontrivial topologies. In particular, we encode geometry information
by projecting it onto a bounding sphere and unwrapping it into a com-
pact and structural multi-layer 2D Spherical Projection (SP) representation.
Operating solely in the image domain, SPGen offers three key advantages
simultaneously: (1) Consistency. The injective SP mapping encodes surface
geometry with a single viewpoint which naturally eliminates view inconsis-
tency and ambiguity; (2) Flexibility.Multi-layer SP maps represent nested
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internal structures and support direct lifting to watertight or open 3D sur-
faces; (3) Efficiency. The image-domain formulation allows the direct inheri-
tance of powerful 2D diffusion priors and enables efficient finetuning with
limited computational resources. Extensive experiments demonstrate that
SPGen significantly outperforms existing baselines in geometric quality and
computational efficiency.

Additional Key Words and Phrases: 3D Shape Generation, Spherical Projec-
tion, Representation Learning, Stable Diffusion
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1 Introduction
High-quality 3D asset generation is critical for applications span-
ning from AR/VR, robotics, industrial design to digital content cre-
ation. Conventional modeling workflows are often manual, time-
consuming, and require specialized expertise. Recent progress in
deep generative models [Goodfellow et al. 2014; Ho et al. 2020;
Kingma 2013; Rombach et al. 2022; Van Den Oord et al. 2017] has
substantially advanced the automation and accessibility of this pro-
cess. By harnessing large-scale datasets and strong priors from
pretrained networks, these models[Chen et al. 2024c; Hong et al.
2023; Lin et al. 2023; Liu et al. 2023b; Long et al. 2024; Zhang et al.
2024a] enable the synthesis of high-fidelity, semantically meaning-
ful 3D geometry from limited inputs, such as a single image or text,
thus facilitating scalable and efficient 3D content creation.

Existing 3D generative methods can be broadly categorized based
on their intermediate representations. Geometry-based methods [Al-
liegro et al. 2023; Chen et al. 2024a,c; Hao et al. 2024; Hong et al.
2023; Li et al. 2023b; Siddiqui et al. 2024; Tochilkin et al. 2024; Wu
et al. 2024b; Yu et al. 2024; Zhang et al. 2024a] directly synthesize
3D structures such as point clouds, signed distance fields (SDFs), or
explicit mesh faces by using diffusion models, causal transformers,
or large reconstruction networks. While effective, unlike the abun-
dance of image or language data, these methods are constrained by
the scarcity and noisiness of 3D data, which hinders scalability and
requires heavy data preprocessing.
To mitigate these challenges, image-based approaches [Elizarov

et al. 2024; Liu et al. 2023b,a; Long et al. 2024; Richter and Roth
2018; Xu et al. 2024a; Yan et al. 2024b; Zhang et al. 2018] generate
3D content via intermediate multiview images, geometry image,
uv atlas or spherical projection, from which geometry is recovered
using differentiable rendering, feed-forward networks, etc. Though
these approaches can leverage powerful pretrained 2D priors, they
are suffering from several limitations respectively, multiview images
are usually lack of strict view consistency and geometric coherence,
geometry images and uv atlas are limited by non-unique cuttings
and mappings, which burden the model with extensive boundary
stitching and hamper scalable training, while simple spherical pro-
jection is suffering from severe self-occlusions. These issues either
degrade the qualities of restored geometry or limit scalable training
on large-scale datasets.

To address the limitations of existing 3D generative methods, we
propose SPGen, a novel scalable framework that generates high-
quality meshes based on multi-layer Spherical Projection (SP) maps.
Concretely, given a normalized 3D object, we enclose it within a
unit sphere and cast rays from the origin outward through each
point on the spherical surface. For each ray, the intersection infor-
mation, such as depth, is recorded at the corresponding point on
the sphere. The sphere is subsequently projected onto a 2D image
plane, forming what we term a Spherical Projection (SP) map. For
general objects exhibiting self-occlusion or nested internal geome-
try, we trace multiple intersections along each ray and store them
sequentially in multi-layer SP maps, thereby capturing fine-grained
spatial structure beyond the external surface. This SP-based formu-
lation underpins our image-centric generation pipeline and confers
three key advantages simultaneously. (1) Consistency. The SP map
is a naturally view-consistent representation encoding 360-degree
geometry. The mapping of valid pixel to surface point is an injective
function, which eliminates potential view conflicts. (2) Flexibility.
Multi-layer SP maps enables faithful representation of geometries
with varying resolution and topology. Notably, both watertight and
open surfaces, as well as layered internal structures, can be directly
reconstructed from multi-layer SP maps. (3) Efficiency. As SP maps
are structured 2D representations, we can finetune powerful pre-
trained diffusion backbones such as SDXL [Podell et al. 2023] with
limited resource consumptions, and meanwhile inherit strong prior
knowledge including locality, semantic, implicit symmetry and rep-
etition patterns instead of learning from scratch.

Moreover, we introduce tailored components to address the chal-
lenges when applying general generative pipelines specifically on
SP maps. We observe that errors of SP maps during training mainly
gather at geometric boundaries, thus we propose to adopt a com-
position of geometry regularization at the boundaries to enhance
the SP map qualities. For multi-layer SP generation, we leverage
layer-wise self-attention to enforce alignment between interior and
exterior layers. After denoising, we perform unprojections from SP
maps to 3D spaces to obtain a dense 3D point cloud, followed by
mesh extraction via a lightweight feed-forward network. SPGen
can generate 3D meshes with high geometric quality in seconds.
Experimental results demonstrate that SPGen achieves superior per-
formance compared to prior methods, despite requiring significantly
less training overhead.

In summary, our contributions are three-fold:
• We propose to use multi-layer Spherical Projection (SP) maps
as compact and structural representations for 3D shape gen-
eration. The SP maps encode the whole surface geometry
through injective mappings, enabling view-consistent and
topology-flexible geometry reconstruction.

• We present a novel generation pipeline SPGen. By efficiently
finetuning the powerful image diffusion model with limited
resources to inherit rich prior knowledge, and incorporating
specifically designed geometry regularization and layer-wise
self-attention, SPGen could generate high-quality 3D meshes
in seconds via single image conditioning.

• Our proposed method achieves state-of-the-art performance
on public benchmarks with significantly lower training over-
head, indicating the effectiveness and efficiency of SPGen.
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2 Related Works

2.1 3D Shape Creation with Geometric Representations
Creating high-quality 3D shapes from single view input has received
a lot of attention recently [Alliegro et al. 2023; Chen et al. 2024a,c;
Hao et al. 2024; Hong et al. 2023; Hu et al. 2024; Li et al. 2023b; Lin
et al. 2023; Liu et al. 2023b; Long et al. 2024; Poole et al. 2022; Richter
and Roth 2018; Siddiqui et al. 2024; Tang et al. 2025, 2023; Tochilkin
et al. 2024; Wang et al. 2025a,b,c; Wu et al. 2024a, 2018; Xu et al.
2024a; Yu et al. 2024; Zhang et al. 2024a, 2018]. Based on the represen-
tation adopted, these works can be roughly divided into two groups,
geometry-based and image-based. The former usually takes point
clouds, Signed Distance Fields (SDF) fields, or directly uses mesh
faces as surface representations. For point clouds, Point-E [Nichol
et al. 2022] tries to denoise point cloud directly by a transformer-
based diffusion model, CLAY [Zhang et al. 2024a], Direct3D [Wu
et al. 2024b] further enhanced this idea by applying an autoencoder
to compress the point clouds and acquire compact and representa-
tive latents, which makes it easier to scale-up the model. Taking SDF
as a shape representation, SDF-StyleGAN [Zheng et al. 2022] and
SDF-3DGAN [Jiang et al. 2023] extend Generative Adversarial Net-
work (GAN) from 2D images to 3D shapes. LAS-Diffusion [Zheng
et al. 2023] introduces a two-stage pipeline generating refined SDFs
from coarse voxel occupancy fields. SurfD [Yu et al. 2024] proposed
to generate Unsigned Distance Fields (UDF) to represent open sur-
faces. Different from denoising SDF [Li et al. 2023a; Yariv et al. 2024;
Zheng et al. 2023], Large Reconstruction Models (LRM) [Hong et al.
2023; Li et al. 2023b; Tochilkin et al. 2024] directly learn SDF from
single or multiple input images by feed-forward transformers. An-
other bunch of works directly take mesh faces as representations,
PolyDiff [Alliegro et al. 2023] trains a diffusion model to denoise
mesh faces while [Chen et al. 2024a,c; Siddiqui et al. 2024] encodes
each face as a token and predicts the next token autoregressively
to predict the whole mesh. Despite the achievements of geometry-
based methods, these methods have higher requirements for the
quality and form of data, for example, autoregressive methods con-
strain the number of mesh faces and SDF methods need to calculate
SDFs for water-tight objects only, which requires more complex data
preprocessing processes and limits the scaling-up of these methods.

2.2 3D Shape Creation from Image-based Representations
To solve the shortcomings of geometry-based representations, and
utilize the strong priors stored in powerful 2D generative models
trained with billions of data, another bunch of works takes im-
ages as the representation to record the geometry. Matryoshka
Network [Richter and Roth 2018] proposes to mark the space be-
tween each “entry–exit” depth pair in its six axis-aligned stacks
as occupied, fuses the results into a voxel volume to restore both
external and internal of an object completely, while Genre [Zhang
et al. 2018] represents the outer surface by a single-layer spherical
depth map, and takes the reconstruction from single image as a
spherical map inpainting task. However, their restored geometry
qualities are limited by the resolution bottleneck of voxel grids dur-
ing surface extraction. Different from them, another bunch of works
take advantage of geometry images [Elizarov et al. 2024; Gu et al.
2002] or uv atlas [Yan et al. 2024b] to unfold the surface geometries

to image charts, these representations require non-unique cuttings
and mappings, which burden the model with extensive boundary
stitching and hamper scalable dataset preparation.

Recently, multiview-based representations are also quickly thriv-
ing, DreamFusion [Poole et al. 2022] proposes Score Distillation
Sampling (SDS) to distill from image diffusion models and extract
surface geometry by differentiable rendering [Guédon and Lepetit
2024; Huang et al. 2024; Kerbl et al. 2023; Laine et al. 2020; Milden-
hall et al. 2021; Shen et al. 2024; Wang et al. 2021; Yariv et al. 2021]
without training on 3D datasets, and [Lin et al. 2023; Tang et al.
2023] further improves the results. However, these methods are
computationally expensive and usually suffer from blurred details.
Some works focus on generating multi-view consistent images from
one input image and therefore reconstruct the geometry [Liu et al.
2024, 2023b,a; Long et al. 2024; Shi et al. 2023; Xu et al. 2024a], among
them, Zero123 [Liu et al. 2023b] firstly tries to incorporate camera
as conditions and SyncDreamer [Liu et al. 2023a] introduces spatial
attention to align views and extract surfaces by [Wang et al. 2021].
Wonder3D [Long et al. 2024] enhances the performance by introduc-
ing cross-domain diffusion for both RGB images and normal maps,
and Zero-1-to-G [Meng et al. 2025] extends it to incorporate mul-
tiple Gaussian attributes. [Tang et al. 2025; Wang et al. 2025c; Wu
et al. 2024a; Xu et al. 2024a,b] are combinations of both multiview
generation process and feed-forward reconstruction process, while
CRM [Wang et al. 2025c] focuses on the strong connections between
canonical views and triplane features, [Tang et al. 2025; Xu et al.
2024b] focus on feed-forward Gaussians reconstruction, and [Wu
et al. 2024a] focuses onmulti-view depth generation. However, these
methods mentioned above heavily rely on the quality of multi-view
image generation, and strict constraints of view consistency are not
guaranteed by solely applying cross-attention as a soft constraint,
consequently degrading the geometry quality when inconsisten-
cies occur. Besides, multi-view images fail to represent objects with
severe self-occlusions or internal layers. Differently, we propose
to use multi-layer Spherical Projection to record the whole object
geometry and serve as a consistent and coherent representation.

3 Methodology
The detailed design of our proposed SPGen pipeline is shown in Fig 2.
Firstly, we extract the SP maps from object meshes. After the SP
maps are prepared, we finetune the image AutoEncoder on SP maps
to obtain compact latents. Then we finetune the latent diffusion
model to generate multi-layer SP maps. Finally, the SP maps are
used to reconstruct high-quality shapes by Poisson reconstruction
or UDF reconstruction to represent water-tight or open surfaces.

3.1 Spherical Projection
Current methods taking advantage of pretrained image generative
models usually adopt multiview images as representations, since
multiview images comprehensively cover the exterior of the object
and project surface points to 2D domain. However, these projec-
tions are not simple injective functions due to the overlapping of
adjacent views, which consequently leads to ambiguity during the
generation process. Since the object surface is usually a complex
2D manifold, we try to find an injective projection that maps it
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Fig. 2. Illustration of SPGen. (a) The AutoEncoder (AE) Training Pipeline: we train the AutoEncoder on projected Spherical Projection (SP) maps. We
introduce geometry regularization to aid the reconstruction process, and KL divergence is applied to regularize the latent distribution. After the SP map is
reconstructed, we unproject points into 3D space and extract the surface. (b) The Diffusion Model Training Pipeline: we use the finetuned AutoEncoder to
produce latent and train the denoise UNet with conditioning image embeddings from DINOv2, except from the standard self-attention guiding the diffusion
process, we also introduce layer-wise self-attention among multi-layer SP maps. The denoised latent is fed into AE decoder and produces the final mesh
output similarly. (c) The detailed preparation of one layer of SP Map: the object mesh is normalized and placed at the center of a union sphere. We cast rays
from the origin and record the depth value 𝑑 on the SP map parameterized by azimuth angle 𝜃 and polar angle 𝜑 .

to a structural 2D domain that could be handled by image genera-
tive models. Therefore, we propose Spherical Projection (SP) as the
shape representation.

Adopting SP maps as a panorama for scene-level generation is a
common solution [Feng et al. 2023; Hara et al. 2022; Lu et al. 2024;
Wang et al. 2023; Yan et al. 2024a]. Differently, we are introducing
SP maps as the geometry representations for shape generation. As
shown in Fig. 2 (c), we firstly cast a ray from the origin along the
radial direction with azimuth angle 𝜃 and polar angle 𝜑 . When the
ray intersects with a surface point P ∈ R3, we calculate the distance
that the ray travels as 𝑑 = ∥P∥2. In this simple way, we can use
equirectangular projection [Hara et al. 2022] F (P) : R3 → R2, to
map a 3D point to the 2D domain parameterized by 𝜃 and 𝜑 . By
recording the corresponding 𝑑 at each point (𝜃, 𝜑), the geometry
is recorded on the SP map. To acquire the original point position,
we simply perform the conversion from spherical coordinates to
Euclidean coordinates:

P = F-1 (𝜃, 𝜙) =

sin𝜙 cos𝜃
sin𝜙 sin𝜃

cos𝜙

 𝑑. (1)

For rays that intersect with the mesh surface more than once,
we record all the intersection positions, and project them onto SP
maps reversely, i.e., starting from the outermost intersection, until
we reach the maximum recording depth or there are no more inter-
sections. In this manner, we not only solve the self-occlusion issue,
but also empower the SP maps to represent the inner structures
of a complex object. As shown in Algo. 1, assume that we want to
prepare 𝑘 layers of SP maps {M1,M2, . . . ,M𝑘 } for mesh surface S,
for each ray R𝑖 , we need to perform ray-mesh intersection penetrat-
ing all layers and record the intersection points {P0

𝑖 ,P1
𝑖 , . . . ,P𝑘𝑖 }.

ALGORITHM 1:Multi-layer SP Map Preparation
Input: The object surface S
Output: 𝑘-layer SP maps𝔐 = {M1,M2, . . . ,M𝑘 } storing depth
Initialize SP map layers as empty;
Initialize rays ℜ = {R1, R2, . . . , R𝑛 }, uniformly sample (𝜃, 𝜙 ) ;
for each point R𝑖 ∈ ℜ do

{P0
𝑖
, P1

𝑖 , . . . , P𝑘
𝑖
} = RayMeshIntersection(R𝑖 , S, 𝑘 ) ;

step = 0;
for j in range(𝑘 ) do

if 𝑃𝑘− 𝑗

𝑖
is not NULL then

M𝑠𝑡𝑒𝑝 = 𝑑 = ∥𝑃𝑘− 𝑗

𝑖
∥2;

step += 1;
end

end
end

If there is no more intersections after layer 𝑗 ′, where 𝑗 ′ ≤ 𝑘 , then
P 𝑗 ′

𝑖
, . . . ,P𝑘𝑖 are set as NULL. Then we loop through each layer of

SP mapM 𝑗 reversely and record the depth values 𝑑 = ∥𝑃𝑘− 𝑗
𝑖

∥2 of
valid points on the map.

After the SP maps are prepared, we finetune the AutoEncoder
and Diffusion Model to generate 3D shapes based on them, which
will be explained in detail in the following sections.

3.2 Generation Pipeline
3.2.1 Preliminaries. First, we are going to introduce our training
pipeline. Our generation pipeline is built upon SDXL [Podell et al.
2023], leveraging the strong prior from pretraining. Specifically, this
stable diffusion pipeline is composed of a set of Kullback–Leibler
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divergence regularized (KL-regularized) Autoencoder ΨE ,ΨD and a
large-scale denoising UNet Θ. The AutoEncoder compresses high-
resolution input M to compact latent 𝑧0, and this process is opti-
mized by jointly minimizing reconstruction error and regularizing
latent distribution:

𝑧0 ∼ Q (𝑧 | M) ,

𝐿𝑟𝑒𝑐𝑜𝑛 = EM
[
∥M − ΨD (ΨE (M))∥

]
+ 𝜆 · EM

[
𝐷KL (Q (𝑧 | M) ∥N (0, 𝐼 ))

]
,

(2)

where Q is the output distribution of ΨE and 𝜆 is the control co-
efficient of regularization strength. After ΨE ,ΨD are trained, 𝑧0 is
generated accordingly and a noise scheduler gradually adds Gauss-
ian noise to it over 𝑇 time steps:

𝑧𝑡 =
√
𝛼𝑡𝑧0 +

√
1 − 𝛼𝑡𝜖, 𝜖 ∼ N(0, 𝐼 ), (3)

where 𝑧𝑡 is the noisy version at time step 𝑡 < 𝑇 , and 𝛼t is the
noise schedule coefficient. Then the denoise UNet is trained to
parameterize the reverse diffusion process by predicting the noise
𝜖Θ (𝑧𝑡 , 𝑡) of time step 𝑡 . Finally, the optimization process is achieved
by minimizing the mean squared error (MSE) between the predicted
noise and the actual noise:

𝐿𝑑𝑖 𝑓 𝑓 = E𝑧0,𝜖,𝑡

[
∥𝜖 − 𝜖Θ (𝑧𝑡 , 𝑡)∥2

]
. (4)

After training, synthesis data is generated by reversing the noise-
adding process in latent space, and the denoised latent is fed to ΨD
to produce final results.

However, since the diffusionmodel is only trained on RGB data for
image synthesis, which mainly focuses on better perceptual quality
and lacks the generalization ability on Sp depth maps, solely infer-
ence on pretrained pipeline results in poor geometry quality. Thus,
we propose to finetune the whole pipeline and we will illustrate the
details in the following sections.

3.2.2 Layer-wise Self Attention. Applying attention to associate
multiple predicting objectives is a popular technique in recent
works [Fu et al. 2025; Long et al. 2024; Shi et al. 2023; Ye and Xu
2022; Zhang et al. 2025]. In our pipeline, we need to constrain the
generated layers to have reasonable relative positions in space, and
self-intersections or floating artifacts are therefore avoided.

Considering the intermediate hidden states {𝑚1,𝑚2, . . . ,𝑚𝑘 },𝑚 𝑗 ∈
R𝐶×ℎ×𝑤 generated by UNet parameters Θ that corresponding with
SP maps {M1,M2, . . . ,M𝑘 }. We first flatten them by Flat(𝑚 𝑗 ) :
R𝐶×ℎ×𝑤 → R𝐶×(ℎ𝑤 ) and concatenate them along the spatial dimen-
sion:

𝑚̄ = Concat
( [

Flat(𝑚1), . . . , Flat(𝑚𝑘 )
]
, 𝑑𝑖𝑚 = −1

)
, (5)

where Concat(·) represents the concatenation operation. Follow-
ingly, we perform the standard self-attention on 𝑚̄:

Attention (𝑄,𝐾,𝑉 ) = softmax
(
𝑄𝐾𝑇
√
𝐶𝑎

)
·𝑉 , (6)

where 𝑄 , 𝐾 and 𝑉 are produced by linear projections from 𝑚̄, and
𝐶𝑎 represents the projected dimension for attention. In this way,
layer relations are modeled, leading to a more accurate geometry
during the denoising process.

Pred
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Fig. 3. Visualization of error distributions.We visualize the edge map,
spectrummap, and corresponding error maps of prediction and groundtruth
(GT). The error distribution is highly aligned with the edge distribution,
indicating a large amount of error falls on areas with large image gradients.
This observation is consistent with the phenomenon in the spectral domain,
in which high-frequency component dominates the error distribution.

3.2.3 Geometry Regularization. In Sec. 3.2.1, we analyzed the ne-
cessity of fine-tuning the diffusion model. However, simply trans-
planting the methods of training image diffusion is suboptimal since
these methods (such as perceptual loss [Johnson et al. 2016]) do not
contribute to better geometry quality. Among the pipeline compo-
nents, finetuning the AutoEncoder Ψ is the most tricky part, since
the input and output are SP maps, which have very different dis-
tributions from the original RGB image, on the contrary, the KL
regularization forces the latent distribution to be closer to the origi-
nal standard normal distribution, which poses a great challenge to
the training process.

During training, we observed that if we only apply L1 distance as
the reconstruction loss, the reconstructed results are not satisfying
with blurred details and noisy surfaces. We study the output by
analyzing errormaps. As shown in Fig. 3, we observe that the error in
the spatial domain is concentrated on the edge of the SP Map, which
is the high-frequency component of an image. This concentration of
error occurs because standard reconstruction losses, like L1 distance,
average the error over all pixels. Since edges and details are a small
fraction of total pixels, their error has minimal impact on the overall
loss. The model therefore prioritizes optimizing large, smooth areas,
causing the high-frequency details crucial for accurate geometry
to become blurred or misplaced. Thus, we further visualize the
spectrum produced by the Fast Fourier Transform (FFT), which
consistently shows that the error mainly exists in the four corners of
the spectrum, which is where the high-frequency components exist,
while the center where the low-frequency components are located
is darker, indicating that the error is smaller. This is consistent with
the conclusion in [Jiang et al. 2021].

Inspired by this observation, we propose two regularization losses
to enhance the geometry quality. First, we directly strengthen super-
vision of image boundaries, since the pixel L1 loss will tend to punish
overall deviation, while the pixel ratio of the edge is too small to be
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fully supervised, we extract a hard boundary mask B with margin
by Sobel operator and dilatation operator: B = Dilate (Sobel(M)),
then we use B to mask out the boundary pixels and impose greater
punishment on them individually:

𝐿𝑒𝑑𝑔𝑒 = EM
[
𝜇B · ∥M − Ψ (M)∥

+ (1 − 𝜇) (1 − B) · ∥M − Ψ (M)∥
]
,

(7)

where Ψ = (ΨD ◦ ΨE ), and 𝜇 is a control coefficient of the strength,
by applying a larger weight 𝜇 to the loss calculated within this
masked region B, we compel the AutoEncoder to pay closer atten-
tion to these critical areas. This targeted penalty prevents the model
from smearing details across edges and results in a more precise
reconstruction of sharp geometric contours and object silhouettes.

Second, we enhance the high-frequency component from the spec-
tral domain. We first perform Fast Fourier Transform (FFT) to both
prediction and groundtruth, denoting as M𝑠 = FFT(M)), M̃𝑠 =

FFT(Ψ(M))), decomposing the SP map into its constituent frequen-
cies. And then impose a high pass filter H on the spectrum, which
is a circular mask that covers the central area where low-frequency
components are located, and only allows high-frequency compo-
nents to compute loss, we separately calculate the L1 distance on
principal value of argument and modulus respectively:

𝐿𝑠𝑝𝑒𝑐 = EM
[
H ·




Arg(M𝑠 ) − Arg(M̃𝑠 )





+ 𝜁H ·



∥M𝑠 ∥2 − ∥M̃𝑠 ∥2




 ], (8)

where 𝜁 is also a coefficient. By separately penalizing discrepancies
in both the phase and magnitude of these frequencies, the model
significantly reduces surface noise and improves the crispness of
the final reconstructed geometry. With 𝐿𝑟𝑒𝑐𝑜𝑛 from Eq. 2, the total
loss for training the AutoEncoder can be written as:

𝐿 = 𝐿𝑟𝑒𝑐𝑜𝑛 + 𝛼𝐿𝑒𝑑𝑔𝑒 + 𝛽𝐿𝑠𝑝𝑒𝑐 . (9)

3.2.4 Surface Extraction. After the SP maps are generated, we un-
project points to 3D space by Eq. 1 and extract the surface from
the point cloud. For watertight objects, we simply perform Poisson
reconstruction. We sample oriented point clouds from groundtruth
meshes and use them to train a light-weight 3D-Unet as a normal es-
timator, which predicts a unit normal vector for each point. On this
basis, the gradient field is calculated and the surface is reconstructed.
For open surfaces, we follow [Yu et al. 2024], use their pretrained
point-cloud-to-UDF AutoEncoder to predict the UDF in space, and
the implicit surface is extracted by MeshUDF [Guillard et al. 2022].
The reconstruction process is exceptionally fast while remaining
cost-efficient, with high-quality geometry generated from SPGen,
we can obtain accurate and detailed meshes suitable for downstream
tasks such as editing, rendering, simulation, etc.

4 Experiments

4.1 Experimental Setting
4.1.1 Dataset. We refer to the criteria in [Chen et al. 2024c; Long
et al. 2024] to filter the Objaverse dataset [Deitke et al. 2023] by re-
moving low-quality or scene-level meshes and acquire around 160k
objects as our whole training split. Before training, we follow [Long
et al. 2024] to render the multi-view image for reference. We also

Method Latency CD.↓ Vol. IoU↑ F-Sco. (%)↑

Point-E ∼25s 0.0690 0.1953 52.23
Shape-E ∼20s 0.0418 0.2785 64.83
Wonder3D ∼10min 0.0398 0.2930 68.82
CRM ∼18s 0.0264 0.3374 74.43
OpenLRM ∼15s 0.0344 0.3770 71.50
LGM ∼40s 0.0212 0.4220 78.41
InstantMesh ∼35s 0.0120 0.4310 88.84

Ours 6-10s 0.0051 0.5407 95.57

Table 1. Quantitative comparison on GSO. Our specific inference time
(latency) depends on how many steps we use for denoising and adopting
the normal estimator with different sizes.

Method CD.↓ Vol. IoU↑ F-Sco. (%)↑

Wonder3D 0.0223 0.3370 73.52
OpenLRM 0.0237 0.3680 78.25
LGM 0.0244 0.3110 71.60
InstantMesh 0.0314 0.2890 68.72
SurfD 0.0136 0.3860 82.31

Ours (rgb) 0.0099 0.4200 87.16
Ours (sketch) 0.0092 0.4480 89.35

Table 2. Quantitative comparison on DeepFashion3d.

picked 1993 objects out of the training indices as our validation split
on Objaverse. We normalize the scales of object meshes to the range
of [−0.5, 0.5], and translate objects to the origin, where the sphere-
center is also fixed for scanning SP maps. We then render 4 layers
of SP maps per object with the resolution 256 × 512 since we em-
pirically discover 4 layers of SP maps are adequate to cover almost
all surface points. For evaluation, we follow prior works to use the
Google Scanned Objects (GSO) dataset [Downs et al. 2022] and we
randomly choose 30 shapes consisting of common objects used in
daily life. We use the same protocol to render one image as the evalu-
ation input. We further exploit the Deepfashion3D dataset [Zhu et al.
2020] to illustrate our model capacity on open-surface objects, we
follow the setting in [Yu et al. 2024] to divide the train and test splits.
For data from Deepfashion3D, we render 3 layers of SP maps per
object with the resolution 256 × 512, and we use the same protocol
as [Yu et al. 2024] to generate sketch for each input view.

4.1.2 Metrics. To evaluate the geometry quality of our method,
we report Chamfer Distance (CD), Volume IoU and F-Score (with a
threshold of 0.1) between the reconstructed mesh and groundtruth
mesh. Since the generated meshes are usually placed at different
angles, we follow [Huang et al. 2025] and perform brute-force search
in rotations to align each predicted mesh with the groundtruth mesh
before centering and scaling all meshes to [−1, 1].

4.1.3 Baselines. We compare to state-of-the-art 3D creation models
with single view image (or sketch) as condition, including geometry-
based representations Point-E [Nichol et al. 2022], Shape-E [Jun
and Nichol 2023], OpenLRM [He and Wang 2023] (an open-sourced
implementation of LRM [Hong et al. 2023]) and SurfD [Yu et al.
2024]. Multi-view based methods Wonder3D [Long et al. 2024],
CRM [Wang et al. 2025c], LGM [Tang et al. 2025] and InstantMesh [Xu
et al. 2024a]. We use their official code implementations and pre-
trained weights.

4.1.4 Implementation Details. We firstly modify the input and out-
put channel of the AutoEncoder from 3 to 1 to fit the single-channel
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Fig. 4. Analysis on geometry regularization. On the left, we compare the loss curve on training and testing splits, and on the right we visualize the
geometry details on SP maps and reconstructed mesh surfaces.

Resolution 32 64 128 256

CD.↓ Storage↓ CD.↓ Storage↓ CD.↓ Storage↓ CD.↓ Storage↓

Matryoshka 7.59 10 2.43 25 1.43 78 0.95 261
UV Mapping 6.28 8 2.29 32 1.16 128 0.88 512
Ours 2.66 5 1.58 16 0.96 56 0.85 194

Table 3. Quantitative comparisons with image-based methods Ma-
tryoshka [Richter and Roth 2018] and UVMapping [Yan et al. 2024b]
in terms of representation capacity (Chamfer Distance, CD. ×10−3) and
storage efficiency (𝐾𝐵) by reconstructing the ground-truth meshes under
different image resolutions.
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Fig. 5. Visualization reconstruction quality of Matryoshka [Richter
and Roth 2018] and UV Mapping [Yan et al. 2024b]. We reconstruct
the ground-truth under different image resolutions, the comparison shows
that our SP maps maintain better geometry details and surface qualities.

Method CD.↓ Vol. IoU↑ F-Sco. (%)↑

Ours 0.0051 0.5407 95.57
w.o. LSA 0.0436 0.2568 60.75
w.o. finetuning AE 0.0610 0.2072 52.04
w.o. finetuning UNet 0.1742 0.1034 27.42

Table 4. Ablations on Layer-wise Self-Attention (LSA) and finetuning.

depth input, and then finetune with our proposed geometry regu-
larization for 40k iterations with a total batchsize 64 on all training
data from Objaverse. The initial learning rate is set as 1 × 10−4 with
a cosine annealing learning rate scheduler. After the AutoEncoder
is finetuned, we offline generate SP map latents and use them to
finetune the denoise UNet. We train the UNet for 80k iterations
with a total batchsize 80 per shape on all data. The initial learning
rate is set as 1 × 10−5 with warm up for 100𝑠𝑡𝑒𝑝𝑠 and annealing
learning rate scheduler, and we use DDIM [Song et al. 2020] and

Euler Ancestral Discrete [Karras et al. 2022] noise scheduler for
training and inference respectively. We follow [Wang et al. 2023]
and apply circular padding to the SP maps. After the finetuning on
Objaverse, we continue to finetune the model on the deepfashion3D
training split since the SP maps have different numbers of layers
in which exist potential gaps. We train with both sketch and RGB
images as conditions to obtain versatile generation abilities. All of
our fine-tuning procedure requires only two GPUs, each equipped
with 18,176 CUDA cores, 142 streaming multiprocessors, and 48 GB
of VRAM, running for approximately seven days—demonstrating
greater computational efficiency compared to prior works.

4.2 Compare with SOTA Methods
We compare our SPGen with other SOTA works on GSO, Objaverse
validation split and Deepfashion3d test split. For GSO and Objaverse
validation, we picked the front left view of the object as the condition
images. For Deepfashion3d, we follow [Yu et al. 2024] and pick the
front view of sketch or RGB image as conditions.

4.2.1 Qualitative Results. As shown in Fig. 8, our generated shapes
yield consistent and smooth geometry, this is due to the adoption
of SP maps as the coherent representation, in contrast, multiview-
based methods such as Wonder3D fail when view inconsistency
occurs. Moreover, our method handles shapes with relatively com-
plex topologies, such as porous parts or thin-walled cup structures,
while methods relying on SDF for surface extraction fail to accu-
rately generate these structures. It is worth mentioning that our
method has good symmetry. When one side of the symmetrical
object is occluded, our method accurately restores the unseen ge-
ometry.

We also conduct visual comparisons on DeepFashion3D in Fig. 9.
For general single image shape creation methods, we adopt front-
view RGB image as the condition. For SurfD, we adopt sketch as a
condition since they focus on the sketch-to-shape setting. While
our method can adopt either RGB or sketch as input in this more
challenging setting, no existing SDF-based methods can accurately
describe open surfaces. SurfD with the point cloud UDF diffusion
model beats those SDF-based methods, and we achieve better re-
sults based on UDF, indicating our capability of representing and
generating open-surface objects.
Additionally, we compare with image-based representations in-

cluding nested depth maps from Matryoshka [Richter and Roth
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Fig. 6. Visualization on the effect of Layer-wise Self-Attention (LSA).
Without LSA, the predicted layers show scale or orientation mismatch.

2018] and UV Mapping from [Yan et al. 2024b]. We compare the sur-
face quality and geometry details under different image resolutions
and as shown in Fig. 5, our SP map yields significantly better surface
quality with fewer jagged artifacts compared with Matryoshka, and
richer geometry details (e.g. the gear area) under the same resolution
compared with UV Mappings.

4.2.2 Quantitative Results. We use the aforementioned metrics to
evaluate the accuracy of generated shapes on both GSO and Deep-
Fashion3d datasets. As shown in Table 1 and Table 2, our method
surpasses other SOTA works on all three metrics, and we consume
relatively low latency during inference. On GSO dataset, we achieve
+57.5%, +25.4%, and +7.6% relative gain compared with the best
performing InstantMesh [Xu et al. 2024a] in CD., Volume IoU and
F-Score respectively, and on DeepFashion3D, we achieve +32.4%,
+16.1%, and +8.6% relative gain on the three metrics over SurfD [Yu
et al. 2024], indicating the effectiveness of our method. We also
compare with image-based methods in terms of representation ca-
pacity and storage efficiency by reconstructing the ground-truth
meshes under different image resolutions. As shown in Table 3, our
SP maps achieve higher reconstruction accuracies and require less
storage compared with other two methods under different resolu-
tions, especially at lower resolutions. Since all of these involved 2D
image-based representations could be incorporated with the same
generative pipeline, our SP Map representation, superior in both
reconstruction quality and compactness, provides the generative
model with a more accurate and efficient target, allowing higher
potential for high-fidelity shape generation.

4.3 Ablation Study
4.3.1 Study on Geometry Regularization. In Sec. 3.2.3, we claimed
the importance of applying our proposed geometry regularization to
encourage high-quality surface reconstruction and detail preserving
during the AutoEncoder training process. Here we conduct ablations
to validate the effectiveness. As shown in Fig. 4, we randomly select
a small subset with 10k samples from our training split, and train
the AutoEncoder on it with or without geometry regularization. Ap-
plying geometry regularization greatly speeds up convergence and
reduces the training loss from 3.05× 10−4 to 1.47× 10−4, testing loss
from 3.59×10−4 to 1.61×10−4 by 9k iterations. As shown in the right
part, after applying geometry regularization, the high-frequency

Ours

GT

LGMWonder3DCRM

InstantMeshOpenLRMShape-EPoint-E

CD: 0.0012CD: 0.0067

CD: 0.0073CD: 0.0205 CD: 0.0211 CD: 0.0224

CD: 0.0244 CD: 0.0299

Fig. 7. Qualitative comparison demonstrating the correlation be-
tween Chamfer Distance (CD) and geometric quality. Lower Chamfer
Distance (CD) values correspond directly to higher-fidelity 3D reconstruc-
tions with fewer visual artifacts.

details are greatly enhanced on both SP maps and reconstructed
mesh surfaces.
4.3.2 Study on Layer-wise Self-Attention. In Sec. 3.2.2, we claim that
the Layer-wise Self-Attention (LSA) is proposed to learn the spatial
relations of different SP layers. To validate its effect, we removed
the LSA layers in the denoise UNet, the results are shown in Table 4
and Fig. 6, removing LSA resulting in the mismatch of either layer
scale or orientation, and leading to poor mesh quality.
4.3.3 Study on Finetuning. As we mentioned in Sec. 3.2.1, we fine-
tuned the whole pipeline since the pretrained weights are only
generalized on RGB images. In Table. 4, we analyze the role of
finetuning the pipeline, without finetuning either component of
the pipeline, the performance drops significantly, therefore, it is
necessary to finetune the whole pipeline on all SP maps.

4.3.4 Significance of Chamfer Distance Improvements. Weuse Cham-
fer Distance (CD) to quantify the geometric accuracy of the recon-
structed meshes. We emphasize that minor numerical reductions in
CD correspond to significant and visually perceptible improvements
in mesh quality as shown in Fig. 7. A lower CD score directly reflects
an enhanced ability to capture correct object structures, maintain
surface smoothness, and eliminate artifacts. Thus, the incremen-
tal CD gains reported in our experiments represent meaningful
progress towards generating high-fidelity 3D geometry.

5 Conclusions
We propose SPGen, a novel framework for high-quality 3D shape
generation usingmulti-layer Spherical Projection (SP) as a structural
representation. SPGen effectively addresses three key challenges in
current 3D creation models: view inconsistency, limited representa-
tion capability and low efficiency. By projecting 3D mesh surfaces
onto a unit sphere and unfolding them into 2D SP maps, our method
ensures geometric consistency through the injective mapping from
SP maps to 3D surfaces and flexibly captures complex topologies,
including internal layers and open surfaces. SPGen incorporates our
proposed geometry regularization and layer-wise self-attention to
enhance geometry quality. Extensive experiments demonstrate that
SPGen outperforms existing methods in geometric accuracy while
maintaining low computational cost and latency, making it a robust
and efficient solution for 3D shape generation.
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Fig. 8. Qualitative comparison with SOTA works. Our SPGen yields highly accurate surface geometry with better topologies.
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Fig. 9. Qualitative comparison with SOTA works on DeepFashion3d test split. Our SPGen can handle either sketch or RGB images individually as the
condition. Since the geometric visual effects of the results conditioning by two different conditions are similar, we only show the effect of using RGB as the
condition here.

Supplementary

In this supplementary material, we will discuss: i) More details
of designs and implementations. ii) More comparisons with image-
based geometry representations and other generative pipelines. iii)
More ablation studies. iv) Downstream application scenarios. v)
Video results showcase.

A Detail Design and Implementation

A.1 Single Image Conditioned Denoising
We further claim the usage of single image conditioning and the cor-
responding visual encoder in this section. To control the denoising
process, conditions are usually applied by cross-attention [Vaswani
2017], to the UNet layers. For image conditions, usually a pre-
trained vision encoder is applied to embed the condition image
into high dimension feature space, and then perform cross-attention
with hidden states of UNet. These vision encoders are trained by
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Input Channel=1PCA=3 Channel=2 Channel=3

Fig. 10. Visualization of the visual embedding distributions. We vi-
sualize the final layer token maps of CLIP and DINOv2 via PCA and show
the first three main components. The primary component of CLIP feature
contains almost no spatial information, and for other major components,
the quality of the feature is also lower than DINOv2.

contrastive learning [He et al. 2020; Radford et al. 2021] or self-
distillation [Caron et al. 2021; Oquab et al. 2023] to gain the ability
to capture image semantics and structures. Current shape genera-
tion baselines usually adopt either or both kinds of vision encoders
to guide denoising.

We investigate the quality of the visual embeddings produced by
the most commonly used contrastive learning CLIP model and self-
distillation DINOv2 model. These models use the same ViT [Doso-
vitskiy 2020] backbone so we take the output token map from the
final layer and use principal component analysis (PCA) to reduce
the channel dimension to 3. As shown in Fig. 10, the primary com-
ponent from CLIP contains almost no spatial information, since the
contrastive learning process focuses more on matching the global
semantics of image-text pairs. Differently, DINOv2 adopts various
data augmentations to enhance the capturing of image-level details,
therefore gaining more refined token maps. For our goal, we target
generating 3D shapes that are more similar to the condition image,
which requires more image-level details to perform cross-attention
and fertilize the 3D shape generation process. Thus, we take DINOv2
as our vision-encoder for diffusion pipeline.

A.2 Spherical Projected Texture Map
Our way of generating Spherical Projection maps to record depth
as the geometry can also be extended to different surface attributes,
e.g. texture, normal vector, curvature, etc. We show the capability
of SPGen on texture generation by recording the vertex colors of
each intersection point on an SP color map to represent the surface
texture (corresponding with the SP depth map representing the
geometry). The map preparation process is the same as we explained
in Sec. 3.1. To generate the SP color map, we implement an extra
diffusion pipeline conditioned by both the single-view image and

DINO

Depth Denoise

Noise 𝑧𝑑 SP Depth Map

Condition Images

Color Denoise

Noise 𝑧𝑐

SP Color Map

Cross-Domain 
Self-Attention

Fig. 11. Illustration of the depth and color SP maps generation
pipeline. We adopt a cascade pipeline to generate SP depth maps with
single-view image condition first, and then use both the generated SP depth
map and the single-view image to condition the SP color map generation.
The cross-domain self-attention is applied to guarantee the color and depth
are matched on the generated maps. Note that we also adopt the latent
diffusion pattern for both stages, and the autoencoder is omitted.

SP depth map. As shown in Fig. 11, the whole pipeline is based on
a cascade structure, in the depth denoise stage, we use the same
diffusion model as in Fig. 2, after the SP depth maps are generated,
in the color denoise stage, we use both the SP depth latents and
single-view image embeddings to jointly condition another identical
denoising UNet.
As discussed in [Long et al. 2024; Meng et al. 2025; Wu et al.

2024a], multi-attribute images like RGB, depth, normal can be gen-
erated in a shared denoising UNet by domain switcher [Long et al.
2024; Meng et al. 2025] or extra domain-specific branches [Wu et al.
2024a], and bunches of works have proven the benefits of learning
multiple domains together leading to the joint promotions [Chen
et al. 2024b; Long et al. 2024; Phillips et al. 2021; Radford et al. 2021;
Vandenhende et al. 2021, 2020; Wu et al. 2024a; Zhang et al. 2025,
2024b]. However, these methods do not apply to SPmaps, as the RGB
and depth domains on SP maps are significantly distinct. Though
domain gaps also remain among different attributes in perspective
projected images, they still share the basic image-level structures,
i.e., contours, shapes, etc. In contrast, different attributes on SP maps
can result in completely distinct map distributions, e.g., a sphere
with complex texture or a complex shape with pure color. To avoid
negative transfer of knowledge among these domains, we adopt a
decoupled pipeline that denoising the shape and texture separately
based on their corresponding SP maps. Specifically, following [Shi
et al. 2023], after the SP depth latents 𝑧𝑑 are generated, we add noise
to them in the set steps 𝑡 to simulate the noisy distribution 𝑧𝑑𝑡 , and
then feed the noisy depth latent into the color denoising UNet to
record the intermediate hidden status. Afterwards, we sample pure
noise from a uniform distribution and also feed it into the same
UNet, with conducting Cross-Domain Self-Attention with the pre-
saved depth hidden status. Thus, the learning of the texture map
could be bundled to the corresponding shape. We also apply the
embeddings from the single-image condition to provide the visible
texture information to the network by cross-attention. Finally, after
the denoising and generating 𝑧𝑐 , we use a specifically finetuned
VAE decoder to restore the SP color maps.

Due to the resource limitation, we conduct a small-scale experi-
ment on a split of 2k Objaverse training data, as shown in Fig. 12,
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Method CD.↓ Vol. IoU↑ F-Sco. (%)↑

Wonder3D 0.0246 0.3618 74.86
CRM 0.0172 0.3945 79.28
OpenLRM 0.0136 0.4512 82.42
LGM 0.0203 0.3756 77.59
InstantMesh 0.0157 0.4108 82.62

Ours 0.0061 0.5527 94.74

Table 5. Quantitative comparison on Objaverse validation split.
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Fig. 12. Visualization of the textured shape generation.

the results shows the feasibility of generating textured mesh via
Spherical Projection maps.

A.3 Implementation Details
A.3.1 Dataset Preparation. We refer to the criteria in [Chen et al.
2024c; Long et al. 2024] to filter the Objaverse dataset by removing
low-quality or scene-level meshes and acquire around 160k objects
as our whole training split. We also picked 1993 objects out of
the training indices as our validation split on Objaverse. Before
training, we follow [Long et al. 2024] and render 13 views per object
with resolution 512 × 512 including orthographic and other oblique
perspectives by Blender [Blender Online Community 2018]. We
normalize the scales of object meshes to the range of [−0.5, 0.5]
without normalizing the orientations to maintain diversity, and
translate objects to the origin. We also fix the sphere-center at the
origin which is used to scan SP maps. The azimuth range for SP
map is 𝜃 ∈ [−𝜋/2, 3𝜋/2), and the polar range is 𝜑 ∈ [0, 𝜋).

A.3.2 Model Details. We use the VAE and UNet from SDXL [Podell
et al. 2023], and load the pretrained weight of both to conduct fine-
tuning. For VAE reconstruction, we apply L1 loss and our geometry
regularization on the reconstructed maps, and a KL-divergence reg-
ularization with the weight of 10−8 to ensure the latent space won’t
shift away from the uniform distribution during the finetuning. For
the denoising Unet, we apply LSA layers and adopt L2 loss in the
latent space. After the SP maps are generated, we unproject the
points on map into the 3D space, and use a normal estimator to
predict normal vector for each point. The normal estimator is a
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Fig. 13. Visualization reconstruction quality of Matryoshka [Richter
and Roth 2018] and our SP maps. We reconstruct the ground-truth
directly with both methods, the comparison shows that our SP maps main-
tains better surface details compared with matryoshka.

ConvONet [Peng et al. 2020], we scale it up to 192 hidden dimen-
sions, and the 3D-UNet encoder contains 5-levels with 128 feature
dimensions. And the model is also trained on all our training split
by sampling 25600 oriented points on each mesh object.

A.4 Limitations
A.4.1 Faces Parallel to the Ray Direction. A theoretical ambiguity
may arise when surface faces are exactly parallel to the sphere ra-
dius (i.e., orthogonal to the spherical surface), as in the flat boundary
of a hemisphere. In such cases, rays shot from the sphere center
may intersect the face tangentially or fail to yield a unique depth,
leading to potential instability. Our implementation is based on the
Möller–Trumbore algorithm [Möller and Trumbore 1997] and explic-
itly detects near-parallel ray-face configurations by recording the
angle between the ray and face normal. When the angle falls below a
small threshold, the intersection is discarded to avoid numeral unsta-
ble cases. Empirically, such events are usually rare—fewer across the
dataset, and in pathological cases with large flat regions aligned with
the radial direction, we have to apply a small random perturbation
to the ray origin or surface to ensure numerical stability.

A.4.2 Distortions at the Polar Areas. Equirectangular projection of
the sphere introduces non-uniform sampling, especially near the
polar regions, which may cause distortion, which could possibly
lead to inaccurate geometry details in the polar areas. However,
because SP maps have no severe degeneration or flipped mapping,
these distortions remain acceptable and errors on 3D surfaces are
controllable. We conduct analysis in the ablation study.
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Method GPU Training Time Iterations Data Amount Latency CD.↓ Vol. IoU↑ F-Score (%)↑
CLAY 256 A800 (10 TB) ∼2 weeks – 527k ∼15s 0.0046 0.6355 96.95
Trellis 64 A100 (2.5 TB) – 400k 500k ∼40s 0.0030 0.6495 98.35
Hunyuan3D-2 – – – – ∼15s 0.0028 0.7440 98.43
TripoSG 160 A100 (6.25 TB) ∼3 weeks 700k 2m ∼50s 0.0030 0.7381 99.08
TripoSF 64 A100 (2.5 TB) - - 400k - - - -

Ours 2 GPUs (0.09 TB) ∼1 week 80k 160k 6–10s 0.0034 0.6208 98.28

Table 6. Quantitative comparison with large foundation 3D generative pipelines.

Fig. 14. Analysis on SD priors. On the left, we compare the loss curve on training and testing splits, and on the right we visualize comparison of SP depth
maps at step 3k with and without SD priors.
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Fig. 15. Visualization of the shape editing via image control.We try to
edit the original image and SPGen is able to generate corresponding shapes
accurately.
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Fig. 16. Real-world Evaluation.

B Comparisons and Discussions

B.1 Comparisons on Objaverse Validation Split
As we mentioned in Sec. 4.1.1, we set a small validation split on
Objaverse with 1993 objects to indicating the status of model con-
vergence. Note that since different works are adopting different data
filtering strategy on Objaverse, so our validation data could be the
training data of other works. We conduct quantitative comparisons
with our baselines on this split. We randomly choose 20 shapes
consisting of common objects used in daily life, and the results are
shown in Table 5. Our SPGen also achieves consistent gain on all
three metrics compared with other works.

B.2 Comparisons with Image-based Geometry
Representations

B.2.1 Comparison with Zero-1-to-G. Zero-1-to-G [Meng et al. 2025]
is an extended multi-view diffusion method from [Long et al. 2024]
incorporating multiple Gaussian attributes, whereas SPGen differ-
ently uses consistent spherical projections and directly encodes
surface geometry. Zero-1-to-G cannot guarantee the strict view-
consistency and relies on an extra differentiable-rendering stage for
surface extraction.

B.2.2 Comparison with Geometry Image and UV Mapping. Geome-
try Image [Elizarov et al. 2024; Gu et al. 2002] is a representation that
unfolds a mesh surface onto a single regular 2D grid so each pixel
stores the surface’s (𝑥,𝑦, 𝑧) coordinates, while UV Mapping [Yan
et al. 2024b] assigns 2D (𝑢, 𝑣) coordinates to a parametrized mesh
surface to accurately wrapped over it. Both representations unfold
the 3D surface onto a structural 2D domain which makes it possi-
ble to leverage the strong priors from pretrained image generative
models. However, these representations are different from SP maps

SA Conference Papers ’25, December 15–18, 2025, Hong Kong, Hong Kong.



16 • Zhang et al.

in: 1) These methods have non-unique geometry mapping of the
same object, which hinders the construction of consistent large-
scale datasets and scalable model training; 2) Both of them require
extensive cutting to unfold mesh surface, especially on objects with
genus > 0, which potentially leads to more burdens for model to
learn the boundary relations, and possibly leads to higher border
errors with unstitched patches (refer to Fig.5 in [Yan et al. 2024b]
and Fig.7 in [Elizarov et al. 2024]). In contrast, SP maps leverage
fixed mappings and cuts, which ensure the building a standardized
and scalable generative training pipeline.

B.2.3 Comparison with Matryoshka Network. Matryoshka Net-
work [Richter and Roth 2018] encodes a shape by predicting six
axis-aligned stacks of nested depth images (one for each ±𝑋,±𝑌,±𝑍
direction) that are fused into a fixed-resolution voxel grid before
polygonization. This design can also effectively record 3D shapes
in structural 2D images and takes advantage of image processing
networks such as 2D CNNs. However, compared with SP maps, it
is still limited in (i) the voxel–resolution bottleneck: though the
nested depth images are 𝑁 2 complexity, the surface detail is capped
by the 𝑁 3 volume, whereas SPGen reconstructs geometry directly
from high-resolution spherical-projection maps whose memory
grows only quadratically, enabling lower budgets in reconstructing
the geometries; and (ii) the cross-view or cross-layer consistency:
since no explicit cross-attentions among views or layers to ensure
the consistency, though the final depth fusion step will store a
unique shape, the depth stacks may still contain inconsistency (e.g.,
entry/exit order inversion along a ray, misaligned strip boundaries),
which leads to possible holes, thinned walls, or jagged artifacts
despite on the restored shape. In contrast, SP map is a naturally
view consistent injective function plus layer-wise self-attention to
eliminate potential conflicts.

We also conduct ground-truth surface reconstruction experiments
on both Matryoshka and SP maps, we still use 256 as the resolution
for SP maps, and 4 layers in depth. To align with our setting, we use
2563 of spatial resolution for Matryoshka, and also set maximum 4
layers. Note that 2563 voxel is relatively expensive during surface
extraction since the original setting of Matryoshka in single-view
reconstruction is 323. As shown in Fig. 13, our reconstruction results
achieve higher quality with more details, while Matryoshka results
are suffering from jagged artifacts and coarse surfaces.

B.2.4 Comparison with GenRe. GenRe [Zhang et al. 2018] adopts a
cascaded, multi-stage pipeline that first predicts a depth map from
an RGB image, projects it to a partial spherical map, then completes
this map using a feed-forward 2D inpainting network, and finally
projects the result to a voxel grid for refinement. This pipeline has
key limitations that our end-to-end framework effectively addresses
i) Representation capability: GenRe uses a single-layer spherical
map that lacks internal structure representation and relies on post
voxel-based refinement, leading to resolution bottleneck. In contrast,
our multi-layer SP maps efficiently capture complex topologies
directly in the 2D domain. ii) External dependencies: GenRe relies
on predefined camera parameters and a separate depth estimato,
which introduces error accumulation. Our framework is fully self-
contained and free from such dependencies.

B.3 Comparisons with More 3D Generative Pipelines
Recently, there are bunches of scalable 3D generative models trained
on large-scale datasets yielding strong generalization ability and
robustness on generating high-quality 3D meshes. These works
adopt 3DShape2VecSet [Zhang et al. 2023] ([Li et al. 2025; Zhang
et al. 2024a; Zhao et al. 2025]) or Sparse Voxel ( [He et al. 2025;
Xiang et al. 2024]) as the geometry representation, and use signed
distance functions or occupancy field as implicit surfaces. These
works usually adapt scalable DiT [Peebles and Xie 2023] and train
on ∼ 500k or more data. As shown in Table 6, we compare to these
works on randomly selected GSO and Objaverse-validation data.
Since CLAY is a closed-source work, we use their API Rodin Gen-1.
Our SPGen only consumes less than 5% of the training resources
to achieve relatively competitive performance with faster inference
speed, indicating the compactness and effectiveness.

C Ablation Studies

C.1 Study on Pretrained SD Priors
Recent studies have demonstrated that SD models are highly adapt-
able and can improve performance on various 2D representations
beyond RGB, including panoramic images [Wang et al. 2023], depth
and Gaussian feature maps [Meng et al. 2025; Wu et al. 2024a; Yu
et al. 2025], normal maps [Long et al. 2024], etc. These works show
that SD priors are beneficial in bridging domain gaps and perform-
ing generalization. Similar to [Wang et al. 2023; Wu et al. 2024a], our
SP map is unfolded surface depth image with panoramic-style dis-
tortion, retaining image-level local structures and spatial patterns,
which can be naturally benefited from SD priors. We also conduct
ablation studies on the training convergence with and without SD
priors. As shown in Fig. 14, the model with SD priors achieves signif-
icantly faster convergence and lower loss (4.37×10−5 v.s. 3.08×10−4

at 15k step on test data), further validating the effectiveness of SD
priors post-adaptation. Additionally, we also show the generated
SP depth map at training step 3k, with SD Prior, the result has
significantly better quality with less noise.

C.2 Study on Border Consistency
We follow [Wang et al. 2023] and apply circular padding in the
azimuth direction to ensure the SP maps align well at the border
and the rotational invariance. The circular padding encourages the
generative model to learn consistent predictions across the entire SP
map. We calculate the absolute-relative-error between the azimuth
borders, which is only 0.23%, which proves the consistent learning
effect on borders.

C.3 Study on the Number of SP Map Layers
To ensure representation comprehensiveness, we evaluated recon-
structed IoU on 160K Objavese objects using different numbers of
SP map layers. The results are:

{1 : 92.0%, 2 : 98.7%, 3 : 99.8%, 4 : 99.9%, 5 : 99.9%},
indicating that using less than 4 layers yields incomplete recon-
structions, while additional layers provide negligible improvement.
Thus, we select 4 layers as they effectively model complex objects
while balancing representation completeness and computational
efficiency.
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C.4 Study on the Distortions.
We empirically measure the absolute-relative-error across surface
regions and observe only marginal variation: 0.20% in polar areas,
0.25% near the equator, and an average of 0.22%. This validates
that the model handles projection distortion effectively, and that
geometric reconstruction from SP maps remains robust even in the
presence of polar distortions.

C.5 Real-World Evaluation
We evaluated our SPGenwith real-world data to verify its generaliza-
tion ability and robustness. As shown in Fig. 16, we use AI-generated
images and daily photos as conditions, our method achieves good
geometric quality and restores the conditional image well.

D Downstream Applications
Our generation pipeline can be used for a lot of downstream tasks
such as editing, rendering, animation, etc. In this section, we test the
editing ability of shapes via the single image control. As shown in
Fig. 15, we perform several editing ways including squeeze, stretch,
shear, and direct paint on it, our SPGen shows stable and controllable
transformation according to the change of input view, indicating
the power of robust generation and generalization.

E Video Results
More detailed evaluations and comparisons can be found in the
attached video.
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