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Abstract

We study the dynamics of stochastic gradient descent (SGD) for a class of sequence
models termed Sequence Single-Index (SSI) models, where the target depends
on a single direction in input space applied to a sequence of tokens. This setting
generalizes classical single-index models to the sequential domain, encompassing
simplified one-layer attention architectures. We derive a closed-form expression
for the population loss in terms of a pair of sufficient statistics capturing semantic
and positional alignment, and characterize the induced high-dimensional SGD
dynamics for these coordinates. Our analysis reveals two distinct training phases:
escape from uninformative initialization and alignment with the target subspace,
and demonstrates how the sequence length and positional encoding influence
convergence speed and learning trajectories. These results provide a rigorous and
interpretable foundation for understanding how sequential structure in data can be
beneficial for learning with attention-based models.

Stochastic Gradient Descent (SGD) is the core optimization tool driving modern machine learning.
Recent years have seen substantial progress in understanding its dynamics, particularly in two-layer
networks [Saad and Solla, 1995, Mei et al., 2018, Chizat and Bach, 2018, Rotskoff and Vanden-
Eijnden, 2022, Sirignano and Spiliopoulos, 2020, Arnaboldi et al., 2023a]. While global convergence
is qualitatively well-understood when the network is wide enough, quantitative results are scarcer.
A particularly fruitful body of recent theoretical work addressing this gap has focused on deriving
precise convergence rates for particular model classes on synthetic data, such as high-dimensional
Gaussian single and multi-index models [Ben Arous et al., 2021, Abbe et al., 2022, 2023]. These
advances have sparked a wave of follow-up studies [Damian et al., 2022, 2023, Dandi et al., 2024,
Bietti et al., 2023, Ba et al., 2023, Moniri et al., 2023, Mousavi-Hosseini et al., 2023, Zweig and
Bruna, 2024, Berthier et al., 2024, Arnaboldi et al., 2024a,b], deepening our understanding of what
problems are hard to learn for neural networks trained under SGD.

While multi-index models have served as a cornerstone in theoretical analyses of learning, they
remain far from the architectures driving recent breakthroughs in machine learning. Modern advances
in learning from sequential data — particularly in natural language processing — are increasingly
dominated by attention-based models such as the Transformer architecture [Vaswani et al., 2017].
These models introduce a paradigm shift through self-attention mechanisms, which dynamically
reweight the influence of each input token based on its relevance to others. Through successive layers
of attention, Transformers capture intricate dependencies across sequences, enabling state-of-the-art
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performance in tasks ranging from machine translation to large-scale language modeling [Brown
et al., 2020, Kenton and Toutanova, 2019].

The main goal of this work is to extend our theoretical understanding of learning with SGD on
multi-index models to attention-based architectures and sequential data. Inspired by Cui et al. [2024],
Troiani et al. [2025], our focus will be on the following class of single-layer, tied attention model:

fw(X) = R


softmax

((
X +

P√
d

)
ww⊤

(
X +

P√
d

)⊤
)
 . (1)

where w ∈ Rd are the trainable weights and R is the reduction map, which allows passing from
a L × L matrix to a k-dimensional vector. As detailed in Appendix A, this model is a reduction
of the standard attention mechanism, where (i) key and query matrix are tied, and dhead = 1:
Q = K = X · w ∈ RL×1 ; (ii) since we are considering a single layer attention, and we do
not need to learn a new representation of the sequence, the value matrix is the identity: V = IL.
In this work, we will be interested in the optimization properties of the model in eq. (1) when
trained under (spherical) one-pass stochastic gradient descent (SGD) from a random initial condition
w0 ∼ Unif(Sd−1(

√
d)):

wτ+1 =
wτ − γ∇wℓ(Xτ ,yτ ; fw)∥∥wτ − γ∇wℓ(Xτ ,yτ ; fw)

∥∥∥w
τ∥ . (2)

with the squared loss:

ℓ(X,y; fw) =
∥∥y − fw(X)

∥∥2
F
=

k∑

i=1

(
yi − fw(X)i

)2
. (3)

Note that for one-pass (a.k.a. online or streaming) SGD each sample is only seen once, meaning that
the sample complexity of the algorithm coincides with the convergence rate. The spherical constraint
is considered to simplify the mathematical analysis, a common assumption in the analysis of SGD
for single-index models [Ben Arous et al., 2021, Damian et al., 2022].

To derive a sharp characterization of the sample complexity and convergence rate of SGD for the
single-layer attention mechanism in eq. (1), we assume that the sequence data (X,y) is generated
from the following Gaussian sequence single-index (SSI) model:
Assumption 1 (Data distribution). We assume training data (X,y) ∈ RL×d × Rk is independently
drawn from a Gaussian Sequence Single Index (SSI) model:

fSSI
w⋆

(X) = g(X ·w⋆) (4)

where X ∈ RL×d is a Gaussian matrix with entries N (0, 1/d), g : RL → Rk is a vector-valued link
function that depends only on the scalar product of the input with a fixed vector w⋆ ∈ Sd−1(

√
d) and

k is a integer that does not depend on d nor L.

Recent work by [Cui et al., 2024, Troiani et al., 2025, Cui, 2025] has shown that the single-layer tied
attention model in eq. (1) is a particular instance of a class of sequence multi-index (SMI) models,
creating a bridge between single-index analysis and attention-based learning. This mapping implies
that model eq. (1) can learn at best a predictor in this class, justifying the choice for training data. The
SSI model class was introduced by Cui et al. [2024] in the context of studying phase transitions for the
attention mechanism. These results position the SMI model as a signature synthetic model to study
the interplay between attention mechanisms, data structure, and the dynamics of learning algorithms.
Despite this progress, the learning dynamics of SMI models under SGD remain unexplored. Prior
studies [Cui, 2025, Cui et al., 2024] analyzed the empirical risk minimizer through the heuristic
replica method, while [Troiani et al., 2025] rigorously studied the Bayes-optimal estimator for SMI
models. However, a theoretical understanding of the population landscape and SGD dynamics in this
model is missing. Our work addresses this gap, providing the first rigorous characterization of SGD
dynamics in SMI models by leveraging techniques developed for single and multi-index models.

Main results — Our main methodological contribution is the generalization of analytical tools
to study multi-index models to variants that process sequences of tokens rather than simple vector
inputs. Our contributions can be summarized as follows:
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• We introduce the notion of sequence information exponent (SIE), as a generalization of the informa-
tion exponent for single-index models Ben Arous et al. [2021]; the SIE has a direct correspondence
with the sample complexity of SGD. We also discuss the implications of the positional encoding on
the sample complexity, proving it could help SGD to learn faster.

• We analyze the speed-up introduced by the attention mechanism when learning sequential data,
compared to models not adapted to treat sequence structures, e.g. fully connected networks. For
many problems, we show that the gain is proportional to the sequence length L and in some cases
even larger.

• We investigate the interplay between the positional and semantic structure of the data following the
setting from Cui et al. [2024], showing that SGD dynamics is not always able to disentangle the two
and that a rich phase diagram arises describing the structure of the corresponding population loss
and the performance of SGD.

All our formal claim are supported by rigorous proofs, as well as numerical experiments; the code
developed is available at https://github.com/IdePHICS/Sequence-Single-Index.

Further Related works — There have much activity discussing SGD with synthetic data on
multi-index models over the last decades or so, see e.g. [Ben Arous et al., 2021, Veiga et al., 2022,
Arnaboldi et al., 2023b, Collins-Woodfin et al., 2024, Marion and Berthier, 2023, Montanari and
Urbani, 2025] and reference there in. Information and generative exponent have been the topic of
many works over the last few years [Ben Arous et al., 2021, Abbe et al., 2022, Damian et al., 2024,
Troiani et al., 2024]. Here we discuss and adapt these notions for sequence models Troiani et al.
[2025].

On the topic of the Theory of SGD in transformers, Wu et al. [2023] convergence guarantees
on SGD for the single layer transformer. Song et al. [2024] also study GD convergence in simple
architectures and highlight the existence of suboptimal local solutions. Li et al. [2025] point out that
rapid convergence does not guarantee meaningful learning. Li et al. [2023] give sample complexity
bounds for a shallow vision transformer. Zhang et al. [2025] being overfitting in SGD trained
transformer. Yüksel and Flammarion [2025] focus on gradient-based dynamics for next token
prediction tasks. Compared to these work we move beyond convergence results to study how the data
structure, e.g. sequence structure and positional encodings, affect sample complexity and behaviours
of the the population loss and recovery dynamics in the high-dimensional limit.

Authors of Marion et al. [2024] introduce a model that can be seen as a sequence two-index model.
While we assume the input data to be iid Gaussian they assume a spiked covariance structure in the
data which makes their results not directly comparable to ours. We anticipate that our results can be
generalized to their setting. Another recent work Mousavi-Hosseini et al. [2025] looked at sample
complexity separation between attention-based networks and more traditional architectures, while
their setting is different, this question is related to ours.

1 Setting and definitions

Let (Xτ ,yτ ) ∈ RL×d × Rk denote i = 1, . . . , n samples drawn from the Gaussian sequence single-
index model with weights w⋆ ∈ Rd and link function g, defined in eq. (4). As motivated in the
introduction, our goal in this work is to characterize the sample complexity of learning the sequence
task (Xτ ,yτ ) with a tied single-layer attention trained under one-pass (spherical) SGD defined in
eq. (2). Note that while the model might appear as too simplified because of the lack of correlation
between the tokens, we will show that it is sufficient to capture the main features of sequence models.

As shown in the classical result by Robbins and Monro [1951], one-pass SGD can be understood as a
noisy discretization of gradient flow on the population risk (often refereed also as population loss):

R(w) = EX∼N (0,Id/d)

[
ℓ(X,fSSI

w⋆
(X);fw)

]
. (5)

Therefore, in order to understand the dynamics in eq. (2) it is important to understand the landscape of
the risk above. The key property of single-index models underlying the convergence rate analysis of
Ben Arous et al. [2021] is that rotation invariance of the population risk implies that it only depends
on a single parameter: the correlation between the target weights and the predictor weight, also
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known as an order parameter or sufficient statistic. A similar property holds for the family of SSI
models defined by Assumption 1. Indeed, conditionally on the weights, the following projections

z⋆ = X ·w⋆ ∈ RL and z =

(
X +

P√
d

)
w ∈ RL, (6)

define joint Gaussian variables, which can be fully characterized by their means and covariances:

E
[
z⋆,i
]
= 0, E [zi] = ei

Cov
(
z⋆,i, z⋆,j

)
= δij , Cov

(
zi, zj

)
= δij , Cov

(
z⋆,i, zj

)
= δijm,

(7)

where we have introduced the sufficient statistics:

m =
w⊤

⋆ w

d
and e =

Pw√
d
. (8)

These play exactly the same role as the overlap between target and predictor weights in the standard
single-index model. Therefore, the population risk can be written as a function of these statistics:

R(w) ≡ R(e,m) = E(z⋆,z)



∥∥∥∥∥g(z⋆)−R

[
softmax

(
zz⊤

)]∥∥∥∥∥

2

F


 . (9)

Note that this formulation reduces the problem of understanding the landscape geometry of R in the
w ∈ Rd space to understanding it in (e,m) ∈ RL+1 — a significant simplification when the token
size d is large with respect to the sequence length L, the regime we will focus in this work. Note that,
given the fixed norm constraint on w, the sufficient statistics are constrained inside the unit ball of
RL+1:

∥∥(e,m)
∥∥ ≤ 1.

Escaping mediocrity — As previously discussed, studying the convergence rate of one-pass SGD
is akin to studying the population risk landscape. In the standard single-index model, the picture
arising from [Ben Arous et al., 2021, Arnaboldi et al., 2023c] is rather simple: the only critical points
of the population risk are a single global minima at the target weights and (possibly) a strict saddle
at zero correlation. Therefore, the convergence rate of one-pass SGD from random initialization is
dominated by the time taken to escape this saddle-point, a scenario a scenario commonly referred to
as escaping mediocrity [Arnaboldi et al., 2023c].

As we shall see, the risk landscape of sequence models is richer, with in particular the presence of
local minima. Nevertheless, these models share the common property of mediocrity at initialization,
with the convergence rate dominated by the flatness of the initial saddle-point. Therefore, we start our
discussion by formalizing this notion in the context of SSI models. In the high-dimensional scenario
where d is large, the initial weight w0 is approximately orthogonal to the target direction w⋆, as well
as the positional embedding P . Quantitatively, the sufficient statistics are distributed as

lim
d→+∞

√
d(e0,m0) ∼ N (0, IL+1). (10)

Namely, the initial value of the sufficient statistic is (e0,m0) ≈ (0, 0), with fluctuations of order
O(1/

√
d). For the model in eq. (1), (e,m) = (0, 0) is a saddle-point of risk, and the dynamics is

divided in two phases:

• The escape from the initial condition, where the model develops a weak correlation with the
target direction w⋆ and/or the positional embedding P ;

• Full recovery where it reaches a complete overlap with either the target direction w⋆ and/or
the positional embedding P :

∥∥(e,m)
∥∥ ≈ 1.

As previously discussed, the first phase is the one that requires the most number of gradient steps
Ben Arous et al. [2021], Arnaboldi et al. [2023c]: the sample complexity required for the first phase
is always greater or equal to the one required for the second phase; after having reached a small
correlation with the target, the attention decay exponentially fast to a complete overlapped state.
Definition 1 (Weak recovery). Let η ∈ (0, 1) a parameter independent from d. We say that the model
has weakly recovered the target when

∥∥(e,m)
∥∥ ≥ η. The weak recovery time is then

τweak
η = min

{
τ ≥ 0:

∥∥(eτ ,mτ )
∥∥ ≥ η

}
.
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We use this definition of weak recovery as a proxy for identifying the learning has happened, since the
subsequent strong recovery will be faster. Figure 1 shows some examples of population loss surface:
apart from initialization, there are no other critical points where the dynamic can get slowed down.

Finally, for simplicity of the discussion we will make the following assumption on the spherical
one-pass SGD dynamics in eq. (2).
Assumption 2 (Gradient flow approximation). We approximate the training dynamics of eq.(2) via
the following ODE, which corresponds to an order-2 Taylor expansion in γ:

dw

dt
= E

[
∇⊥

wℓ(X, y, fw)
]
− γ

2
E
[∥∥∥∇⊥

wℓ(X, y, fw)
∥∥∥
2
]
w, (11)

where ∇⊥
w = (I −ww⊤)∇w is the spherical gradient. The time scaling corresponds to t = τ/γ.

As shown in Ben Arous et al. [2021], Arnaboldi et al. [2024c], such an ODE captures both the right
weak recovery time for a fixed γ, as well as the maximal value of γ for which the dynamics do not
stay trapped in the uninformative region.

2 The sample complexity of SGD

In this section, we focus on understanding the complexity of the SGD algorithm, i.e., how the number
of total gradient steps n scales with the dimension d of the token embeddings, in the high-dimensional
limit d ≫ 1; for simplicity of exposition, we focus on the case k = 1, but the same arguments can be
repeated for each of the components of the output.

No positional encoding — We first focus on the case without positional encoding: P = 0 implies
that the only relevant sufficient statistic is m. An analogy with single-index models for networks can
be done: For single-index models, the information exponent fully characterizes the sample complexity
of the SGD algorithm Ben Arous et al. [2021]. The definition can be generalized for sequential data.

Definition 2 (Sequence Information Exponent (SIE)). Given fSSI
w⋆

a sequence single-index model, let
g be the function that acts on the local field z⋆, we define the sequence information exponent as

SIE(fSSI
w⋆

) := min





L∑

l=1

kl > 0: k ∈ NL,Ez∼N (0,IL)







L∏

l=1

Hekl
(zl)


 g(z)


 ̸= 0





,

where Hek is the k-th order Hermite polynomial.

In Appendix B we provide more details on Hermite polynomials. Let us give some examples of SIE
for different SSI models:

• g(z⋆) = z⋆,1 + z⋆,2 + · · ·+ z⋆,L has SIE = 1;
• g(z⋆) = z⋆,1z⋆,2 = He1(z⋆,1)He1(z⋆,2) has SIE = 2;
• g(z⋆) = He1(z⋆,1)He4(z⋆,2) + He2(z⋆,3)He2(z⋆,4) has SIE = 4;

• g(z⋆) =
∏L

l=1 Hekl
(z⋆,l) has SIE =

∑L
l=1 kl.

The main feature of the information exponent is that it can be connected to the sample complexity of
the SGD algorithm; we prove an equivalent result for the sequence information exponent.

Theorem 1 (Informal). Let fSSI
w⋆

(X) be a sequence single-index model, and let SIE be its sequence
information exponent. If the model fw has a rich enough Hermite expansion, then the sample
complexity of the SGD algorithm is

t+η =





OL(d) if SIE = 1

OL(d log
2 d) if SIE = 2

OL(d
SIE−1) if SIE ≥ 3

.

A formal statement of the Theorem and the proof are given in the Appendix C. It relies on the
following connection between the flatness of the landscape near initialization and the sequence
information exponent:
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Figure 1: the landscape of the population risk, together with the hessian at initialization, for different values of
the SIE and positional encoding. (left) g(z⋆) = He2(z⋆,1) + He2(z⋆,2): SIE=2, no positional encoding: null
gradient, but non-null hessian; (center-left) SIE=4, no positional encoding: the first non-null term at initialization
is at the 4th order; (center-right) g(z⋆) = He4(z⋆,1) + He4(z⋆,2): SIE=2, with positional encoding: again
dynamic dominated by the hessian, but we have a positive curvature in the direction of e; (right) SIE=4, with
positional encoding: hessian is positive semidefinite, and the dynamic is again at 4th order in direction of e. In
all the examples L = 2, P1 = −P2, R = Tr.

Proposition 1. Define the flatness index κ(fw,fSSI
w⋆

) of the model as

κ(fw,fSSI
w⋆

) = min
{
k > 0 : ∇kR(0, 0) ̸= 0

}
,

where R is the reduced population loss defined in (9). Then, if the model fw has a rich enough
Hermite expansion, then

κ
(
fw,fSSI

w⋆

)
= SIE

(
fSSI
w⋆

)

Intuitively, a higher value of κ implies that the landscape of R is flatter around the initialization point
(0, 0), and thus the number of gradient steps needed to build a weak correlation along either the e or
m directions is higher.

In Figure 1, we show some examples of the population loss landscape for different values of the SIE.
Figure 1 focuses on even SIE because the symmetry of Equation (1) restricts the possible targets to
even functions; in the Appendix D we discuss how to surpass this limitation, and we present settings
with odd SIE.

The effect of positional encoding — Despite the fact that positional encoding only acts on the
trained model, and not the target function, it changes the population loss, potentially changing the
dynamic at initialization. In particular, adding positional encoding increase the expressivity of the
model, and can ultimately lead to faster weak-recovery of the SGD.

Lemma 1. Let fw be a model with P = 0 that learns a target fSSI
w⋆

(X) with a given SIE. If we add
a positional encoding P to the model, and let f new

w be new model, then

κ
(
f new
w ,fSSI

w⋆

)
≤ κ

(
fw,fSSI

w⋆

)
= SIE

(
fSSI
w⋆

)
.
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m
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[
0.0 0.0
0.0 −0.0

]

−1
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−1
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m
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0.0 −0.0
−0.0 −1.1

]

Figure 2: Population loss landscape for P = 0 (left) and
P ̸= 0 (right). Example of a case where SIE = 4, while
SIEpositional = 2. Target: g(z⋆) = 4/3 + He4(z1) +
2He4(z⋆,2), P1 = −P2, R = Tr.

In other words, the positional encoding can only
decrease the flatness of the loss landscape, thus
the sample complexity of the SGD algorithm
could be reduced. The proof of this lemma is
given in the Appendix C. In the right part of
Figure 2, we present an example where adding
the positional encoding can improve the sample
complexity of the SGD algorithm. The left part
of Figure 2 shows that the population loss land-
scape at initialization is flat, and the hessian is
null: the first non-null term in the Taylor expan-
sion is at order 4, hence the SIE is 4. The right
part of Figure 2 shows instead that when we add
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the positional encoding, a non-null term appears at order 2, and SIEpositional = 2. Note that while
the positions of the global minima are not affected by the positional encoding, SGD can converge to
the new local minima instead; more discussion on this point is given in Section 4. In contrast, the
right part of Figure 1 shows that the positional encoding is not necessarily beneficial: there are cases
for which the loss landscape changes, but not the sample complexity.

3 The role of the sequence length

In this section, we focus a first new emerging characteristic of the sequence single-index models
over the vanilla single-index models: the sequence length L. Therefore, we neglect the effect of the
positional encoding, by setting P = 0, in order to isolate just the effect of the sequence length. The
goal of the section is to measure the speed-up that a model like Equation (1) can achieve over the
plain single-index models when processing sequential data with length L.

Linear attention — Our first goal is to understand the dependence of the convergence rate of
SGD on the sequence length. For that, consider the particular case of linear attention, given by the
reduction map:

R[A] = a⊤
leftAaright with aleft = aright =

1√
L
(1, 1, . . . , 1)

⊤ ∈ RL. (12)

Rearranging the terms

fw(z) = a⊤
left

(
zz⊤

)
aright =

1

L

L∑

i=1

L∑

j=1

zizj =




L∑

i=1

zi√
L




2

=

(
flatten(X) ·wtied√

L

)2

, (13)

where wtied := concat(w, . . . ,w) ∈ RLd is the concatenation of L copies of w. This model
is equivalent to a generalized linear model with tied weights, and activation function σ(x) = x2.
In terms of performance, taking a general activation σ will at worst be the same of the attention
mechanism originally considered, if not better. More precisely, we consider:

fw(X) = σ

(
flatten(X) ·wtied√

L

)
. (14)

This is the most generic model we study in this section. Further numerical experiments elucidating
the equivalence of the speed-up for this tied network and for the attention models can be found in
Appendix E. Note that tied networks are not restricted to learn even function only, differently from
the model in Equation (1).

The corresponding untied network — Given the model in Equation (14), a natural benchmark is
the model with untied weights. Let W ∈ RL×d be the matrix of weights, whose rows are all updated
with Equation (2), the untied network is given by

fW (X) = σ

(
flatten(X) · flatten(W )√

L

)
. (15)

Since we have L independent weights (the rows of W ) the sufficient statistic measuring the overlap
between the model and the target SSI is not a scalar as for the tied network, but a vector of length L

m =
Ww⋆

d
∈ RL compacted to a scalar as muntied =

∥m∥√
L
. (16)

Measuring the speedup — The learning rate plays an important role in determining the number
of gradient steps needed to reach weak recovery: the larger the learning rate γ(L) is, the faster the
model learns. However, if it becomes too large, SGD will fail to converge, never achieving weak
recovery. The gradient-flow approximation in Eq. (11) exhibits this effect: when γ becomes too large
the dynamic of the system is not attracted by w⋆ or P anymore, and there is no learning. In order to
have a faithful measure of the speed-up, we will assume that the learning rate is taken to be the largest
possible that guarantees weak recovery; we discuss this upper bound on the learning rate in App. E.
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Figure 3: Left: overlap m for tied (green) and untied (orange) networks as a function of the number of gradient
steps; different symbols represent different values of L. Right: measured gain as a function of the sequence
length L, with the best fit line showing its scaling as L2. g(z⋆) =

∑L
i=1 He2(z⋆,i), d = 1000, σ = ReLU.

We measure the speed-up of tied networks with respect to untied networks, as measured in terms of
number of gradient steps needed to reach weak recovery, by the ratio of the weak recovery times in
the two cases

gain(L) :=
τweak
η,untied

τweak
η

. (17)

where τweak
η,untied is given by Definition 1 where m is replaced by muntied; the dependence of gain on

η is subleading, and we will neglect it in the following.

Theorem 2. Let CSIE ∈ RLSIE

be the first non-zero tensor in the Hermite expansion of g (see
Appendix B). Then the gain satisfies with high probability

gain ≳

(
CSIE × (1, . . . ,1)

∥CSIE∥op

)2

·
{
L if SIE = 1

1 otherwise
.

If the tensor CSIE is orthogonally decomposable, in particular in the cases where SIE ≤ 2 or g is
separable, then

gain ≍
(
CSIE × (1, . . . ,1)

∥CSIE∥op

)2

·
{
L if SIE = 1

1 otherwise
.

By definition of the operator norm, we have

CSIE × (1, . . . ,1) ≤∥CSIE∥op LSIE/2, and hence 0 ≤ gain ≲ LSIE∨2.

Since the untied network has L times the number of parameters compared to the tied one, a naive
parameter counting argument would yield a gain = L(SIE−1)∨1 expected gain. Counter-intuitively,
the actual gain of using a tied network can either exceed or fall short of this naive value, depending
on the function g. In pathological cases (see Appendix E), the tied network can even either fail to
learn the target, or do so slower than its untied counterpart.

Example for SIE = 2 — Let’s assume to have a target function g(z⋆) =
∑L

i=1 He2(z⋆,i). In this
case, the SIE is 2 and the tensor C2 is simply the identity matrix IL. The gain is by

gain ≍
(
IL × (1, . . . ,1)

∥IL∥op

)2

· 1 =

(
L

1

)2

· 1 = L2.

Fig. 3 show a numerical experiment, with a ReLU activation, confirming the result of Th. 2.

4 Positional encoding and training dynamics

We now turn our attention to the role played by positional encoding in the attention layer when trained
under SGD. Since the focus is on the effect of positional encoding, we stick with a class of target
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functions that can exhibit either a semantic (label mostly depends on tokens value, but not the order)
or a positional (where tokens most important feature is their position in the sequence, rather then
their embedding). Consider a SSI target function of the form

fSSI
w⋆

(X) = (1− ω) softmax
(
Xw⋆w

⊤
⋆ X

⊤
)
+ ω softmax

[(
a2 −a2

−a2 a2

)]
∈ R2×2, (18)

where he parameter ω ∈ [0, 1] allows the target to switch from a semantic to a positional behavior,
while the parameter a ∈ (0, 1] controls the alignment of the target with its positional part.

We shall train the model in Equation (1) with positional encoding P1 = −P2 and reduction map
R the identity function. We focus on the gradient flow limit where η is sufficiently small [Robbins
and Monro, 1951]. Our analysis will focus on the population loss given by Equation (9), since it
completely characterize the behavior of SGD in this regime; the sufficient statistics (e,m) are the
only free variables of the setting.
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Figure 4: Different behaviors of SGD de-
pending on the parameters ω and a.

The sequential information exponent of this setting is
SIE = 2 (see Appendix F for the explicit derivation),
thus the sample complexity for escaping the initializa-
tion is O(d log d). After the initial phase, SGD fast con-
verges to the minimum of the population loss that is fully
aligned with either the semantic or the positional sufficient
statistic, i.e.

∥∥(e,m)
∥∥ = 1, but is not guaranteed to be

the global minimum. Figure 5 shows an example where
the population loss has 2 minimums, one semantic with
(e,m) = (1, 0) and one positional with (e,m) = (0, 1),
and the steepest direction at initialization, namely the
eigenvector associated with the lowest eigenvalue of the
Hessian, points towards the local one; in this case, the
gradient flow will converge to the wrong minima.

Varying the parameters, ω and a the high-dimensional
SGD dynamics from random initialization exhibits a rich phenomenology. In Figure 4 we show the
phase diagram with all the possible behaviors:

• Unique Positional Minima: the population loss has unique positional minima, and the SGD
converges to it. This is the case for ω = 1 and a = 1.

• Global Positional Minima: the population loss has both a semantic and a positional minimum, and
SGD converges to the global positional one.

• Global Semantic Minima, Positional Dynamic: the population loss has both a semantic and a
positional minimum, and SGD converges to the local positional one. This is the case where SGD
does not converge to the global minima.

• Unique Semantic Minima, Misaligned Dynamics: the population loss has unique semantic
minima, and the SGD converges to it, even though the steepest direction at initialization points
orthogonal to it.

• Global Semantic Minima: the population loss has both a semantic and positional minima, and
SGD converges to the global semantic one.

• Unique Semantic Minima: the population loss has unique semantic minima, and the SGD con-
verges to it. This is the case for ω = 0 and a = 1.

We verify this by simulating many runs of SGD with different initializations and data samples. In
Figure 5 we compute the empirical probability of convergence to the semantic minima, for a = 1
and varying ω. The theoretical value of ω where we have a transition from sematic to positional
dynamics is ωtrans = 0.64, which is in good agreement with the transition observed in the measured
probabilities; the transition becomes sharper as d increases: ideally, in the limit d → ∞ we expect a
step function. The simulations in Figure 5 are performed with d = 1000, and some finite size effects
are still present. In Appendix F we show present a more detailed analysis, including different values
of d.
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Figure 5: (left) surface of the population loss for ω = 0.67 and a = 1. The steepest direction at initialization
(green vector) points towards the positional local minimum, while the global minima is semantic. Some examples
of SGD trajectories are shown in yellow: most of them fall into the semantic local minimum, while some others
manage to fully-recover the global minimum due to finite size effects (d = 1000). (right) empirical probability
of convergence to the semantic minima as a function of ω for a = 1. The probability is computed over 64 SGD
runs with different initializations and data samples. The theoretical prediction of the transition from semantic to
positional minima is at ωtrans ≈ 0.64.

Conclusion
In this paper, we introduced the Sequence-Single Index model as a new, high-dimensional theoretical
framework for analyzing single-layer attention architectures. The most significant contribution of
this study is the definition of the Sequence Information Exponent. This exponent, which serves as
a rigorous tool to quantify the inherent hardness and predict the sample complexity of Stochastic
Gradient Descent, is defined in direct analogy with classical single-index models. This analysis
transcends qualitative understanding, providing precise scaling laws for the required number of
gradient steps, denoted by n, relative to the token dimension, denoted by d. We demonstrated that the
sequential setting is significantly richer, showing how the sequence length L accelerates convergence
and how positional encoding can proactively reduce the SIE, thereby lowering the computational
barrier to learning.

This work establishes a foundational line of research essential for a principled understanding of
modern sequential data models, particularly those based on the Transformer architecture. The intricate
dynamics manifesting in the population loss landscape, exemplified by the identification of phase
transitions and the convergence to suboptimal local minima, unveil a wealth of avenues for future
investigation. Subsequent research should aim to fully map these complex high-dimensional dynamics,
develop techniques for robustly breaking inherent symmetries, and extend the SIE framework to more
complex multi-index and multi-layer attention systems. We hope that this quantitative framework
will stimulate further theoretical explorations, leading to the development of a robust, generalizable
understanding of learning on structured sequential data.
Limitations – The theoretical analysis of SGD in Sequence Single-Index models is subject to
several simplifications for tractability. Specifically, the model under scrutiny is a simplified, single-
layer attention architecture where the key and query matrices are tied, the attention head dimension
is one (dhead = 1), and the value matrix is the identity (V = IL). It should be noted that the
scope of this architecture is restricted to a specific class of target functions, including even functions,
although Appendix D provides an extension to this class. Additionally, the analysis operates under
the assumption of token independence across the sequence, a crucial simplification that facilitates the
execution of numerous sequence modeling tasks. The analysis of SGD dynamics is founded on the
approximation of the discrete dynamics via a second-order ODE (Gradient Flow approximation).
Acknowledgement— We would like to thank Luca Pesce, Luca Biggio, and Yatin Dandi for their
insightful discussions. We acknowledge funding from the Swiss National Science Foundation grants
SNSF SMArtNet (grant number 212049), OperaGOST (grant number 200021 200390), DSGIANGO
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A Reduction from attention to sequence single-index

Let X ∈ RL×d denote a sequence of length L of d-dimensional tokens, and consider the standard
dot-product attention:

Attention(X) = softmax

(
QK⊤
√
dhead

)
V (19)

where Q = (X + P )WQ,K = (X + P )WK , V = (X + P )WV ∈ RL×dhead are trainable weights
known as the query, key and value matrices, respectively. The matrix P ∈ RL×d is the positional
encoding, a fixed matrix needed to inject a representation of the position of the tokens in the
sequence. To make the analysis tractable, [Troiani et al., 2025] considered the following simplifying
assumptions:

• Key and query matrix are tied, and dhead = 1: Q = K = X ·w ∈ RL×1;
• Identity value matrix V = IL.

Note the second assumption is mild for single-layer attention, since we do not need to learn a new
representation of the sequence. Under these assumptions, eq. (19) reduces to:

TiedAttention(X) = softmax
(
Xww⊤X⊤

)
(20)

This is a map from sequences X ∈ RL×d to L × L matrices. Further adding the reduction map
R : RL×L → Rk, we get the model in eq. (1). Finally, to get the reduction to a sequence single-index
model, it suffices to consider P = 0 and the map on real-valued sequences s ∈ RL:

g(s) = R
[
softmax (ss⊤)

]
(21)

B Mathematical preliminaries and notations

B.1 Tensors

We consider tensors as multidimensional arrays: a tensor T of order k and dimensions (d1, . . . , dk)
is simply an element of Rd1×···×dk . Its elements are denoted by Ti1...ik , where iℓ ∈ [dℓ]. The scalar
product between two tensors with same dimensions is defined as

⟨T, T ⟩ =
∑

i1,...,ik

Ti1...ikT
′
i1...ik

.

We say that a tensor is symmetric if all its dimensions are equal and for any index (i1, . . . , ik) and
permutation σ ∈ Sk,

Ti1...ik = Tiσ(1)...iσ(k)
.

We shall need two operations on tensors: the first is the tensor product, that turns two tensors of order
k, ℓ into a tensor of order k + ℓ defined as

(T ⊗ T ′)i1...ik+ℓ
= Ti1...ikT

′
ik+1...ik+ℓ

.

The second is the tensor-matrix contraction: given a tensor T of order k, an index ℓ and a matrix M
of size dℓ × d′ℓ, the tensor T ×ℓ M is defined as

(T ×ℓ M)i1...i′ℓ...ik =
∑

iℓ

Ti1...iℓ...ikMiℓi′ℓ

Given k matrices M (1), . . . ,M (k), we will use the shorthand
T × (M (1), . . . ,M (k)) = T ×1 M

(1) · · · ×k M (k)

Immediate properties of those operations are gathered in the following lemma:
Lemma 2. The operation × is associative: if T is a tensor and (M (1), . . . ,M (k)), (N (1), . . . , N (k))
are matrices with compatible dimensions,(

T × (M (1), . . . ,M (k))
)
× (N (1), . . . , N (k)) = T × (M (1)N (1), . . . ,M (k)M (k))

Let T ∈ Rd1×···×dk and (x1, . . . ,xk) ∈ Rd1 × · · · × Rdk . Then
⟨T,x1 ⊗ · · · ⊗ xk⟩ = T × (x1, . . . ,xk).
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Odeco tensors Since tensors of order k ≥ 3 are sometimes hard to handle, we work with a restricted
class. We say that a symmetric tensor T is odeco (short for orthogonally decomposable, see Robeva
[2016]) if there exist real numbers λ1, . . . , λr and orthogonal vectors v1, . . . ,vr such that

T =

r∑

i=1

λiv
⊗k
i .

In particular, all tensors of order 1 (with r = 1) and 2 (with r equal to the rank of T ) are odeco.

B.2 Hermite Polynomials

In this section we provide our definition of Hermite polynomials, which are used in the construction
of the Hermite basis, both for the one-dimensional and the multidimensional case.

Gaussian measure and Gaussian ℓ2 space We define the Gaussian density in p dimensions

ωp(x) =
1

(2π)d/2
exp

(
−∥x∥

2

2

)
,

and dωp(x) = ωp(x)dx. This measure defines a space ℓ2(ωp) of functions f satisfying

∥f∥ω :=

∫
f(x)2dωp(x) < ∞;

it is a Hilbert space w.r.t the scalar product

⟨f, g⟩ω =

∫
f(x)g(x)dωp(x).

Hermite polynomials and tensors We follow the conventions of Grad [1949]. Define the k-th
Hermite tensor Hk as

Hk =
(−1)k

ωp
∇kωp,

where ∇k is the k-th order derivative. This results in a k-th order symmetric tensor of size p×· · ·×p.
The Hermite tensors are orthogonal, in the sense that

⟨(Hk)i1...ik , (Hℓ)j1...jℓ⟩ω ̸= 0 if and only if k = ℓ and (i1, . . . , ik) is a permutation of (j1, . . . , jℓ).

When p = 1, all Hermite tensors are scalars, and we get the usual Hermite polynomials:

He0(x) = 1, (22)
He1(x) = x, (23)

He2(x) = x2 − 1, (24)

He3(x) = x3 − 3x, (25)

He4(x) = x4 − 6x2 + 3. (26)

Hermite expansion The orthogonality properties of the Hermite tensors imply the following
theorem:
Theorem 3. Let f ∈ ℓ2(ωp). There exist a unique sequence of coefficients

(
Ck(f)

)
k≥0

such that
Ck(f) is a tensor of order k and

f =
∑

k≥0

⟨Ck(f),Hk⟩. (27)

Those coefficients are given by the following formula:

Ck(f) =
1

k!

∫
f(x)Hk(x)dωp(x).

Further, the scalar product ⟨·, ·⟩ω can be written as

⟨f, g⟩ω =
∑

k≥0

1

k!
⟨Ck(f), Ck(g)⟩
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The proof of this theorem can be found in Grad [1949]. The identity (27) is called the Hermite
expansion of f , and the Ck(f) are its Hermite coefficients.

Finally, by invariance of the Gaussian distribution through orthogonal transformation, the following
holds:
Lemma 3. Let g : Rp → R, and W ∈ Rp×q be a matrix satisfying WW⊤ = Ip. Let f(x) = g(Wx).
Then

Ck(f) = Ck(g)× (W, . . . ,W ).

When p = 1 and w is a single vector, we get

Ck(f) = ck(g)w
⊗k.

This gives rise to a link between odeco tensors and separable functions:
Lemma 4. Let g : Rℓ → R be a separable function, such that

g(z) =
∑

i

gi(zi),

W ∈ Rℓ×q an orthogonal matrix, and let f(x) = g(Wx). Then

Ck(f) =

ℓ∑

i=1

ck(gi)w
⊗k
i ,

and in particular every Hermite coefficient of f is odeco.

C Formalization and proofs

C.1 Preliminaries

We consider the following approximation of the SGD dynamics:

dw

dt
= −E

[
∇⊥

wL(X, y, fw)
]
− γ E

[∥∥∥∇⊥
wL(X, y, fw)

∥∥∥
2
]
w (28)

The results of Ben Arous et al. [2021] (when m is a scalar) and Arnaboldi et al. [2024c] (when m is
a vector) imply the following:
Theorem 4. Let τη be the weak recovery time of the ODE (28), with the same initial conditions as
the process (2). Then for small enough η and any δ > 0, there exist constants c(δ), C(δ) such that if

γ = c(δ)(dτη)
−1, (29)

then with probability at least 1− δ
t+η ≤ C(δ)dτ2η .

On the other hand, for any t ≤ C(δ)dτ2η , if γ ≤ c(δ)(dt)−1/2, then with probability 1− δ

t+η ≥ c(δ)t

When γ does not satisfy the bound (29), we cannot show a strong enough concentration around
the deterministic ODE dynamics, and hence directly showing non-convergence of (2) is difficult.
However, as we shall see in the proof, above this value of γ the inhibitive term in (28) dominates at
initialization, and hence the ODE dynamics stay trapped around zero overlap with the target subspace.
For this reason, we shall consider (in line with Ben Arous et al. [2021]) that the sample complexity
cannot be improved by increasing γ above the bound (29).
Remark. When γ is instead fixed below the value (29), the hitting time of the dynamics 2 is instead
given by

t+η (γ) ≍ γ−1τη.

We shall also assume that m0 > 0, and that the coefficients appearing in the gain expression in
Theorem 2 are all non-negative. As mentioned in Ben Arous et al. [2021], Arnaboldi et al. [2024b,c],
this condition can be ensured with probability 1/2 by randomly setting the learning rate to ±γ with
equal probability.
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C.2 An ODE for overlap evolution

We begin by computing the expectation of the gradient term:
Lemma 5. In the tied case, we have when∥w∥ = 1

E
[
L(X, y, ftied)

]
= E[y2]− 2

∑

k≥0

ck(σ)Ck(g)× (1L, . . . ,1L)m
k +∥σ∥ω .

In the untied case, we have instead

E
[
L(X, y, funtied)

]
= E[y2]− 2

∑

k≥0

ck(σ)Ck(g)× (m, . . . ,m) +∥σ∥ω .

Proof. Recall that L(X, y, f) = (y − f(X))2 = y2 − 2yf(X) + f(X)2. For simplicity, define

w̃tied = (ww . . .w) ∈ RdL, w̃untied = (w1 . . .wL) ∈ RdL and W̃ ⋆ =




w⋆
1 0 · · · 0
0 w⋆

2 · · · 0
...

...
. . .

...
0 0 · · · w⋆

L


 ∈ RL×dL

Then, for □ ∈ {tied, untied}, we have

f□(X) = σ

( ⟨w̃□,flatten(X)⟩√
L

)
and y(X) = g(W̃ ⋆ · flatten(X)).

Since flatten(X)√
L

is a standard normal vector, and both w̃□√
L

and W̃⋆
√
L

are orthogonal matrices, we can
use the Hermite expansion properties to find

E
[
f□(X)y(X)

]
=
∑

k≥0

⟨Ck(f□), Ck(y)⟩

=
∑

k≥0

⟨ck(σ)w̃⊗k
□ , Ck(g)× (W̃ ⋆, . . . ,W ⋆)⟩

=
∑

k≥0

ck(σ)Ck(g)× (W̃ ⋆w̃□, . . . , W̃
⋆w̃□).

In the tied case, we have W̃ ⋆w̃tied = m1L, while in the untied case W̃ ⋆w̃untied = m. For the last
term, we have in both cases ⟨w̃□,flatten(X)⟩√

L
∼ N (0, 1) whenever∥w̃□∥2 = L, and hence

E[f□(X)2] =∥σ∥ω .

This ends the proof.

When∥w∥ (resp.∥wi∥ is different from one, the expressions of Lemma 5 depend on q =∥w∥2 (resp.
qi =∥wi∥2). However, we can write

∇wE[L(X, y, ftied)] =
∂

∂m
E[L(X, y, ftied)]w

⋆ + 2
∂

∂q
E[L(X, y, ftied)]w.

As a result, we have

∇⊥
wE[L(X, y, ftied)] =

(
∂

∂m
E[L(X, y, ftied)]

)
(w⋆ −mw).

The same holds for the untied case:

∇⊥
wE[L(X, y, ftied)] =

(
∂

∂mi
E[L(X, y, ftied)]

)
(w⋆ −miwi)

We arrive at the following result:
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Proposition 2. Define the drift functions

ϕtied(m) = 2(1−m2)
∑

k≥0

kck(σ)Ck(g)× (1L, . . . ,1L)m
k−1

ϕuntied(m) = 2(1−m ◦m) ◦
∑

k≥0

ck(σ)Ck(g)× (IL,m, . . . ,m).

Then the tied and untied overlaps satisfy the following ODEs:

dm

dt
= ϕtied(m)− γ E

[∥∥∥∇⊥
wL(X, y, fw)

∥∥∥
2
]
m (30)

dm

dt
= ϕuntied(m)− γ E

[∥∥∥∇⊥
wL(X, y, fw)

∥∥∥
2
]
m (31)

C.3 Controlling the gradient norm

We turn our attention to the inhibitive terms in Proposition 2. We show the following:
Lemma 6. There exist an η > 0 and two constants c, C such that if m < η (resp.∥m∥ ≤ η),

cd ≤ E
[∥∥∥∇⊥

wL(X, y, fw)
∥∥∥
2
]
≤ Cd

Proof. We only treat the tied case; the untied one is done similarly. Differentiating the loss w.r.t w,
we find

∇wL(X, y, f) = 2σ′
( ⟨wtied,flatten(X)⟩√

L

)(
σ′
( ⟨wtied,flatten(X)⟩√

L

)
− y(X)

)
·
∑

i xi√
L

We write xi = x
∥
i + x⊥

i , where x
∥
i is the projection on xi on the subspace spanned by w and w⋆.

Then

∇⊥
wL(X, y, f) = 2σ′

( ⟨wtied,flatten(X)⟩√
L

)(
σ′
( ⟨wtied,flatten(X)⟩√

L

)
− y(X)

)
·
∑

i(I −ww⊥)x
∥
i +

∑
i x

⊥
i√

L

Importantly, the vector x⊥
i is independent from any of the prefactors, and has norm d− 2, while the

first vector is a fixed-dimensional Gaussian. As a result, we have

E
[∥∥∥∇⊥

wL(X, y, f)
∥∥∥
2
]
= E

[
fw(X)2(y(X)− fw(X))2

]
(d− 2) +O(1)

It remains to show that the expectation above is bounded away from zero. Assuming that the labels
are centered for simplicity, when m = 0 the expectation simplifies to

L0 = E
[
fw(X)2

]
E
[
y(X)2

]
+ E

[
fw(X)4

]
> 0.

By continuity, we can choose η > 0 such that if |m| ≤ η

L0

2
≤ E

[
fw(X)2(y(X)− fw(X))2

]
≥ 2L0,

which ends the proof.

C.4 Hitting time for the tied dynamics

We are now ready to prove Theorem 1 (as well as part of Theorem 2). In light of Theorem 4,
it suffices to compute the hitting time τη of the tied dynamics (30). Since ϕtied(m) = 2CSIE ×
(1L, . . . ,1L)m

SIE−1 +O(mSIE), there exists an ηtied > 0 such that if m < ηtied,

cSIE(σ)CSIE × (1L, . . . ,1L)m
SIE−1 < ϕtied(m) < 3cSIE(σ)CSIE × (1L, . . . ,1L)m

SIE−1
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Combining this with the bound of Lemma 6, we find that whenever m(t) ≤ η for some constant
c > 0,

dm

dt
≥ c · CSIE × (1L, . . . ,1L)m

SIE−1 − Cγdm

For any δ > 0, there exists a constant κ(δ) such that with probability at least 1− δ,

m(0) ≥ κ(δ)√
d
.

As a result, when γ ≤ κ(δ)SIE−1C−1d−
SIE
2 +1, then for 0 ≤ t ≤ τη

dm

dt
≥ c′ · CSIE × (1L, . . . ,1L)m

SIE−1

This implies:

• when SIE = 1,

m(t) ≥ m0 +
CSIE × (1L, . . . ,1L)

2
t, hence τη ≤ C ′η

CSIE × (1L, . . . ,1L)
;

• when SIE = 2,

m(t) ≥ m0 exp

(
CSIE × (1L, . . . ,1L)

2
t

)
, hence τη ≤ C ′ ln(d)

CSIE × (1L, . . . ,1L)
;

• when SIE ≥ 2,

m(t) ≥
(
m(0)2−SIE − CSIE × (1L, . . . ,1L)

2
tSIE−2

)− 1
SIE−2

, hence τη ≤ C ′d
SIE
2 −1

CSIE × (1L, . . . ,1L)
.

The bound on γ above is always weaker (up to constant factors) than the bound γ ≤ C(dτd)
−1 of

Theorem 4, and hence we always have
t+η ≤ Cdτ2η ,

which corresponds to the statement of Theorem 1.

On the other hand, for any t ≥ 0 we have

dm

dt
≤ 3CSIE × (1L, . . . ,1L)m

SIE−1,

which by the same reasoning implies that the bounds on τη that we obtained are sharp up to constants.

C.5 Hitting time for untied dynamics

We are now ready to finish the proof of Theorem 2. Since

ϕuntied(m) = 2cSIE(σ)CSIE × (IL,m, . . . ,m) +O(∥m∥SIE),
for small enough η > 0 we have for t ≤ τη

d∥m∥
dt

≤ C · CSIE × (m, . . . ,m) +∥CSIE∥∥m∥SIE−1 ≤ (C + 1)∥CSIE∥ ·∥m∥SIE−1
.

Recall that the hitting time τη,untied corresponds to∥m∥ hitting the threshold η
√
L. As a result, since

the dependency in η is of leading order only for SIE = 1, we find

τη,untied ≥ c

∥CSIE∥





η
√
L if SIE = 1

log(d) if SIE = 2

d
SIE
2 −1 if SIE ≥ 3

Since the gain satisfies

gain ≍
(
τη,untied

τη

)2

,

19



this proves the first part of Theorem 2.

For the second part, assume that CSIE is odeco, hence there exists λ1, . . . , λL and orthogonal vectors
v1, . . . ,vL such that

CSIE =

L∑

i=1

λiv
⊗SIE
i .

We assume that the λi are ordered by absolute value, so that∥CSIE∥ = |λ1| Letting m(1) = ⟨m,v1⟩,
we have

⟨v1, CSIE × (IL,m, . . . ,m)⟩ = CSIE × (v1,m, . . . ,m) = λ1(m
(1))SIE−1

For small enough η, this implies that

dm(1)

dt
≥ c∥CSIE∥ (m(1))SIE−1

Since∥m∥ ≥ m(1) by the Cauchy-Schwarz inequality, the hitting time τη,untied is at most that of m(1),
and hence

τη,untied ≤ C

∥CSIE∥





η
√
L if SIE = 1

log(d) if SIE = 2

d
SIE
2 −1 if SIE ≥ 3

This closes the upper bound of Theorem 2.

C.6 Proof of 1

Let Rnew(e,m), R(m) be the reduced population losses for the model with and without positional
encoding, respectively, so that R(m) = Rnew(0,m). Then

∂kRnew

∂mk
(0, 0) =

dkR

dmk
(0),

and hence ∇kR(0) ̸= 0 implies that ∇kRnew ̸= 0.

D Sequence Information Exponent Beyond attention

In the main paper, we discussed the learning of a generic Sequence Single Index model with a
parametrized model like Equation (1), with the goal of modelling the attention mechanism learning.
The theory of Sequence Information Exponent goes beyond this, and can be used to understand the
sample complexity of the learning of a generic sequence single-index model both as a target and as a
trained model. In this Appendix, we focus on a particular choice of positional encoding that breaks
the even symmetry of the model, allowing attention to weakly recover odd SIE targets. In particular,
we consider a dynamical positional encoding of the form:

Pi =
ci√
d
w + P̃i with P̃i ∈ RL×d a fixed vector. (32)

c ∈ RL is a fixed vector of coefficients. We call this special version of positional encoding injected
positional encoding. The trained model becomes:

fw(X) = R


softmax



(
X +

P̃√
d

)
ww⊤

(
X +

P̃√
d

)⊤

+ cc⊤





 , (33)

and it has now a non-zero odd Hermite expansion. In Figure 6 we show examples of population
losses with odd targets, learned with the model in Equation (33). The injected positional encoding
breaks the symmetry, as the population risk plots show.
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Figure 6: Population loss of the model in Equation (33) with odd targets. (left) g(z⋆) = He1(z⋆,1)+He1(z⋆,2),
no positional encoding; (center-left) g(z⋆) = He1(z⋆,1) + He1(z⋆,2), injected positional encoding; (center-
right) g(z⋆) = He3(z⋆,1) + He3(z⋆,2), no positional encoding; (right) g(z⋆) = He3(z⋆,1) + He3(z⋆,2),
injected positional encoding. L = 2, P̃ = 0 in order to isolate the effect of the injection.

E Further analysis on the effect of sequence length

The aim of this Appendix is to clarify and give further examples on Theorem 2. Here we provide an
intuitive explanation of the result, while the mathematical details can be found in Appendix C.

Let’s start from the main result on the gain, that can be broken down in three parts:

gain ∼ (gain at costant γ) ·
(

γtied
γuntied

)
· (special factor for SIE = 1) (34)

The gain constant γ This speedup comes from the different structure of the two networks, the
tied one can built up correlation faster than the tied one because it compose L different signals. The
strength of this effect is strongly dependent on the target function, the overall result is

gain at constant γ ∼ CSIE × (1, . . . ,1)

∥CSIE∥op
. (35)

The ratio of the learning rates In Appendix C, we showed that the the learning rate can grow with
the sequence length L at most as

• for the tied network
γtied ≲ CSIE × (1, . . . ,1),

• for the untied network
γuntied ≲∥CSIE∥op .

It is clear that saturating the bounds above leads to a factor

γtied
γuntied

≲
max γtied
max γuntied

∼ CSIE × (1, . . . ,1)

∥CSIE∥op
, (36)

that is exactly the same as the gain at constant γ. Obviously the gain measure is fair only if the
learning rates bounds are saturated, but our result predict the speed-up factor even in the case where
the optimal learning rates are not used.

The special factor for SIE = 1 The case SIE = 1 is special because the dependence of the weak
recovery time on the constant η is not negligible, differently from the cases SIE ≥ 2. This slows
down further the learning of the untied network, by a factor

√
L, leading to a factor

special factor for SIE =

{
1 SIE ≥ 2√
L SIE = 1

(37)

E.1 Example at not optimal learning rate

In Figure 3 we presented the speed up in the case of a target function with SIE = 2, and optimal
learning rate for both the tied and untied network. Here we want to show that our result predicts the
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Figure 7: The gain in the case of a target function with SIE = 2, where both cases use the same learning rate
γ0 = 0.005. (left) The evolution of the overlap, (middle) the weak recovery time and (right) the gain. The gain
is proportional to L, as predicted.

gain well even when the learning rate are not scaled up optimally. In particular, consider the same
setting as in Figure 3, but with the learning rates

γtied = γuntied = costant with L = γ0. (38)

Using Equation (34) we can predict the gain as

gain ∼ L · 1 · 1 = L. (39)

In Figure 7 we show the result of the simulation, where we can see that the gain is indeed proportional
to L, as predicted.

E.2 The upper bound of learning rate scaling

In this subsection we want to show an example proving that not all scalings of the learning rate are
allowed: if it grows too fast with the sequence length, the network will not be able to learn.

Let’s take as example the SIE = 1 target function

g(z⋆) =
1√
L

L∑

i=1

z⋆,i, (40)

with the corresponding leading Hermite tensor

C1 =
(
1/

√
L . . . 1/

√
L
)
∈ RL. (41)

We know that the maximum scaling for the learning rate of the untied network is

γuntied ≲∥C1∥op = 1,

thus we stick with a constant learning rate γ0 for both networks

γtied = γuntied = γ0 ∼ 1. (42)

We can use Equation (34) to have the theoretical prediction of the gain in this case:

C1 × (1, . . . ,1) =
√
L =⇒ gain ∼

√
L · 1 ·

√
L = L. (43)

In Figure 8 we show the result of the simulation, where we can see that the gain is indeed proportional
to L, as predicted. We can now ask what happens if we push the learning rate scaling of the untied
network beyond the limit of Theorem 2. If we set

γuntied = γtied = γ0 · L, (44)

the ratio between the learning rates becomes now γtied/γuntied = 1/L, and the gain

gain ∼
√
L · 1

L
·
√
L = 1. (45)

Apparently, the untied network performance is matching the one of the tied network. Figure 9 shows
the result of the simulation of such a case: the learning rate of the untied network is too high, and
the network is not able for large L, and thus the gain diverges with a maximum value of . This plot
proves our bounds on the learning rate scaling are indeed correct.
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Figure 8: The gain in the case of a target function with SIE = 1, where both cases use the same learning rate
γ0 = 0.005. (left) The evolution of the overlap, (middle) the weak recovery time. The gain is proportional to L,
as predicted. d = 1000, σ = ReLU
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Figure 9: The gain in the case of a target function with SIE = 1, where both cases use the same learning rate
γ0 = 0.005. (left) The evolution of the overlap, (middle) the weak recovery time and (right) the gain. The gain
diverges, as predicted. d = 1000, σ = ReLU
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Figure 10: comparison between the learning of the tied network with squared activation (orange), namely linear
attention, and the single-layer softmax attention(green) (left) The evolution of the overlap; each symbol is a
different value of L. (right) the weak recovery time. The two networks learn at the same rate, but with different
costants. g(z⋆) =

∑L
i=1 He2(z⋆,i), d = 1000, σ = ReLU
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E.3 Equivalence between Single-Layer attention and Tied network

In the main paper we proved that the tied network model is a generalization of the single-layer
attention model. In particular, if the activation function is σ(x) = x2, the tied network is equivalent to
the single-layer linear attention. We also claimed that adding a non-linearity to the attention can only
improve the performance of the network, although not affecting the scaling with the sequence length.
In Figure 10 we show the comparison between the learning of the tied network with squared activation
(orange), namely linear attention, and the single-layer softmax attention(green). The two networks
learn at the same linear rate, but with different growth constants. Softmax attention performs better
than the tied network with squared activation for sufficiently large sequence lengths.

E.4 Pathological cases

Theorem 2 shows that there could be cases where the gain from learning is 0, meaning that the
tied network cannot learn anything, while the untied one possibly can. In particular the degenerate
condition happens when

CSIE × (1, . . . ,1) = 0, (46)
where Theorem 2 guarantees that the gain is 0. Examples of such pathological cases are:

• SIE = 1: a possible pathological target could be

g(z⋆) = z⋆,1 − z⋆,2.

In this case the leading term in Hermite expansion is

C1 =

(
1
−1

)
and consequently C1 × 1 = 0.

• SIE = 2: anlogously, a possible pathological target could be

g(z⋆) = z2⋆,1 − z2⋆,2.

In this case the leading term in Hermite expansion is

C2 =

(
1 0
0 −1

)
and consequently C2 ×

(
1 1
1 1

)
= 0.

In Figure 11 we show the pathological case for SIE = 1 and SIE = 2. The untied network is not
able to learn the target function because of the symmetry: the tied network is by design symmetric,
while the target is constructed to be as antisymmetric as possible in the sequence length. The untied
network instead is able to learn the target function, because the weights are not constrained to be
equal, thus the symmetry is broken by the initialization.
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Figure 11: Pathological cases for SIE = 1 (left) and SIE = 2 (right). The untied network is able to learn the
target function, while the tied one cannot.

The degeneracy of the tied network could be solved by weighting randomly the neurons. In that case,
almost surely we have

CSIE × (1, . . . ,1) ̸= 0. (47)
Although this is a possible solution, we leave the study of the effect of random weights fro symmetry
breaking for future work.
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F Further discussion on the positional-semantic transition

F.1 SIE of model (18)

Definition 2 of the sequence information exponent does not apply directly to the model (18) because
the model has a non-scalar output. However, we can still extend the concept of SIE to this case by
looking at the update rule of sufficient statistics around initialization.

The population loss function is given by

R(e,m) = Ez,z⋆∼P(e,m)




∥∥∥∥∥∥
(1− ω) softmax

(
z⋆z

⊤
⋆

)
+ ω softmax

[(
a2 −a2

−a2 a2

)]
− softmax

(
zz⊤

)
∥∥∥∥∥∥
F




= Ez,z⋆∼P(e,m)

[
L(z, z⋆)

]

(48)

with

P(e,m) ≡ N







0
0
e
−e


 ,




1 0 m 0
0 1 0 m
m 0 1 0
0 m 0 1





 . (49)

Using parity arguments, we can easily show that the gradient of the population loss is 0 at the
initialization point (e,m) = (0, 0). Let p(z⋆, z; e,m) be the probability density function associated
with the distribution P(e,m). Then the gradient at initialization is

∇(e,m)R(e,m)
∣∣∣
e=m=0

= Ez,z⋆∼P(e,m)

[
∇(e,m)p(z⋆, z; e,m)

p(z⋆, z; 0, 0)
L(z, z⋆)

]
(50)

L(z⋆, z) is an even function of (z⋆, z), while the gradient of the probability density function is an
odd function of (z⋆, z). Therefore, the product is an odd function of (z⋆, z) and the expectation is 0.

∇(e,m)R(e,m)
∣∣∣
e=m=0

= (0, 0). (51)

We can use the same computation technique to compute the Hessian of the population loss at
initialization. This time the parity arguments does not apply, and we can show numerically that the
Hessian is non-null

∂2R

∂e2

∣∣∣∣∣
e=m=0

,
∂2R

∂m2

∣∣∣∣∣
e=m=0

,
∂2R

∂e∂m

∣∣∣∣∣
e=m=0

̸= 0. (52)

The information exponent We can also compute the information exponent by looking at what rate
m grows around initialization. We use spherical gradient descent beacuse we assumed the norm of
the vector w to be costant (as Ben Arous also does in his paper on Information Exponent):

The update rule of w is

wτ+1 =
wτ − γ∇wL

∥wτ − γ∇wL∥ 2

√
d,

multiplying both sides by w⋆/d we get

mτ+1 =
mτ − γw⋆·∇wL

d

∥wτ − γ∇wL∥2
√
d.

We can assume to be in the gradient flow regime, where the learning rate γ ≪ 1

∥w − γ∇wL∥2 =

√
∥w∥2 − 2γw · ∇wL+ γ2∥∇wL∥2 ≈

√
d

√
1− 2γ

w · ∇wL
d

,

that finally lead us to

mτ+1 =

(
mτ − γ

w⋆ · ∇wL
d

)(
1 + γ

w · ∇wL
d

)
≈ mτ − γ

w⋆ · ∇wL
d

+ γ
w · ∇wL

d
, (53)
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Figure 12: reproduction of Figure 5 for d = 100. The transition is smoother than in the d = 1000. Averaged
over 25 runs.

where in the last step we used again the small learning rate limit.

Now we can use the chain rule for getting the gradient in terms of the derivatives we already have

∇wL =
∂L
∂m

· ∇wm+
∂L
∂e

· ∇we =
∂L
∂m

· w⋆

d
+

∂L
∂e

· p√
d

We can rearrange the equation above as

mτ+1 −mτ

γ/d
= −w⋆·

(
∂L
∂m

· w⋆

d
+

∂L
∂e

· p√
d

)
+w·

(
∂L
∂m

· w⋆

d
+

∂L
∂e

· p√
d

)
= − ∂L

∂m
+m

∂L
∂m

+e
∂L
∂e

where we used the fact p ·w⋆ ≈ 0 in high dimension (as already assumed above), and∥w⋆∥ = d.

We are interested in what is happening at initialization, therefore all the derivatives should be evaluated
around (e,m) = 0. We already know that ∇e,mL

∣∣
e=m=0

= 0, so we expand the at the next order in
m

mτ+1 −mτ

γ/d
= −m

∂2L
∂m2

∣∣∣∣∣
m,e=0

+ 2me
∂2L
∂m∂e

∣∣∣∣∣
m,e=0

.

We can repeat the same derivation for finding the analogous equation for e:

eτ+1 − eτ

γ/d
= −e

∂2L
∂e2

∣∣∣∣∣
m,e=0

+ 2me
∂2L
∂m∂e

∣∣∣∣∣
m,e=0

.

Since the hessian of he loss has always a negative eigenvalue, both these equations need τ =
O(d log d) to escape a neighborhood of initialization, leading to IE = 2.

F.2 Numerical experiments on the transition

In this Appendix we would like to provide more details on the phase diagram of Figure 4.

In Figure 12 we reproduce Figure 5 for d = 100, clarifying the finite size effects we claimed in the
main text. Smaller values of d lead to a more smooth transition, since the grndient flow assumption is
less valid. In the limit d → ∞ we expect to see a step function.

The yellow region in the phase diagram of Figure 4 is predicted to have a unique global semantic
minima, while SGD is aligned with the positional direction at initialization. The resulting trajectories
are shown in Figure 13: the dynamics moves towards the minima direction, get stuck in the local flat
(but not critical) region around (e,m) = (1, 0), and then it moves towards the global minima. In this
region the convergence is very slow. The turning point of the dynamics is a bit misplaced because of
the numerical errors given by the loss integration; details on this in Appendix G.
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Figure 13: The loss surface in the yellow region of the phase diagram. The SGD trajectory is shown in yellow.
The training moves towards the direction orthogonal to the one of global minima, ultimately slowing down the
convergence.

F.3 An alternative model without phase transition

In order to highlight the peculiarity of the model (18), we present an example of a model that does
not exhibit a phase transition between the positional and semantic regimes. Let’s assume that our
target is a softmax attention matrix with positional encoding

y(X) = softmax
[
(X + P⋆/

√
d)w⋆w

⊤
⋆ (X + P⋆/

√
d)⊤
]

where

P⋆ =

(
+p⋆
−p⋆

)
, w⋆ =

√
1− ω2ws + ωp⋆

√
d with ws⊥p⋆.

ω plays the same role as in the model (18), and we can set ω = 0 to get the semantic model, or ω = 1
to get the positional model. The difference is that in this case the positional encoding is added to the
input of the softmax function, while in the previous model it was added to the output. This change
has a significant impact on the behavior of the model.

The gloabl minima of the population loss function does not transition from a positional to a semantic
regime, but rather it smoothly move from the semantic to the positional regime as ω increases. We
leave the details and numerical experiments for future work.

G Numerical experiments details

All the codes used to run the experiments are available at https://github.com/IdePHICS/
Sequence-Single-Index; where details for reproducing figures are not available in the paper,
we provide the code to reproduce them in the repository.

The experiments run on a Mac Studio M2 Ultra, within at most few hours for the largest ones. The
code is written in Python, using the libraries numpy, scipy, torch and matplotlib. hydra is used
to manage the configuration files.

G.1 Details on the integration method of squared loss

All the plot of population loss we showed are a numerical integration of the loss function. As showed
in Section 1, the population loss is given by a multivariate Gaussian integral of 2L dimensions, where
the mean and the covariance are determined by the sufficient statistics. The integral can’t be computed
analytically, so we use a custom numerical procedure based on the Gauss-Hermite quadrature.

Let f : R2L → R be a function of 2L variables to be integrated, and let µ ∈ R2L and Σ ∈ R2L×2L be
the mean and covariance of the multivariate Gaussian distribution. The integral we want to compute
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is

I =

∫

R2L

f(x)
1

(2π)L
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
dx (54)

The numerical procedure is as follows:

(i) Compute the 1D Gauss-Hermite nodes and weights for Nint points

{xi}Nint
i=1 and {wi}Nint

i=1

where xi are the nodes given by the roots of the Hermite polynomial HNint(x) and wi are
the corresponding weights, computed as

wi =
2Nint

√
π

Nint!

1

H ′
Nint

(xi)2

(ii) Compute the 2L dimensional nodes and weights by taking the Kronecker product of the 1D
nodes and weights

{Xi}N
2L
int

i=1 =

2L⊗

l=1

{xi}Nint
i=1 and {Wi}N

2L
int

i=1 =

2L⊗

l=1

{wi}Nint
i=1

(iii) Let T be the Cholesky decomposition of Σ, i.e. Σ = T⊤T . We can then change the variable
to y = T−1(x− µ) and compute the integral as

I =

∫

R2L

f(x)
1

(2π)L
exp

(
−1

2
(x− µ)⊤Σ−1(x− µ)

)
dx =

∫

R2L

f(Ty+µ)
1

(2π)L
exp

(
−1

2
y⊤y

)
dy

(iv) The integral can then be approximated, as

I ≈
N2L

int∑

i=1




2L∏

l=1

Wi,l


 f(TXi + µ)

The precision of the integral is obviously regulated by the number of points Nint we use. In our
experiments, we used Nint = 17, while for the phase diagram in Figure 4 we used Nint = 19. Some
effects of this integration error are visible in Figure 13.
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NeurIPS Paper Checklist

(i) Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We state all the result clearly in the Main Result section.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

(ii) Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We state all the assumptions made in the paper and discuss their limitations.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

(iii) Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

29



Justification: All hypothesis and proof of the theoretical results are reported either in the
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• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
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• Inversely, any informal proof provided in the core of the paper should be complemented
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perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We release the code used for the experiments, as well as an appendix with
details on numerical simulations.
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• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

(v) Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See answer above.
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• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
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• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
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• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
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• The authors should provide instructions on data access and preparation, including how
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
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Answer: [Yes]

Justification: The released code contains all the details needed to reproduce the experiments,
including the hyperparameters. Sometimes the hyperparameters are also specified in the
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• The answer NA means that the paper does not include experiments.
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that is necessary to appreciate the results and make sense of them.
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material.
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Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When applicable, we report the standard deviation of the results as symmetric
error bars.
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• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-
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• The factors of variability that the error bars are capturing should be clearly stated (for
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figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
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experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

(ix) Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
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Answer: [Yes]
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of Ethics. Concering Societal Impact, our result do not work with any real dataset, nor we
release any trained model that could be used for malicious purposes.
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• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
(x) Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
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Guidelines: Our result do not work with any real dataset, nor we release any trained model
that could be used for malicious purposes.
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• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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(e.g., deployment of technologies that could make decisions that unfairly impact specific
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to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
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models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

(xi) Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: our result do not work with any real dataset, nor we release any trained model
that could be used for malicious purposes.
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.
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• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

(xiv) Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

(xv) Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

(xvi) Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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