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Abstract

Training neural network classifiers on datasets with label noise poses a risk of overfitting
them to the noisy labels. To address this issue, researchers have explored alternative loss
functions that aim to be more robust. The ‘forward-correction’ is a popular approach wherein
the model outputs are noised before being evaluated against noisy data. When the true noise
model is known, applying the forward-correction guarantees the consistency of the learning
algorithm. While providing some benefit, the correction is insufficient to prevent overfitting
to finite noisy datasets. This work proposes an approach to tackling overfitting caused by
label noise. We observe that the presence of label noise implies a lower bound on the noisy
generalised risk. Motivated by this observation, we propose imposing a lower bound on the
training loss to mitigate overfitting. Our main contribution is providing theoretical insights
that allow us to approximate the lower bound, given only an estimate of the average noise
rate. We empirically demonstrate that using this bound significantly enhances robustness in
various settings with virtually no additional computational cost.

1 Introduction

Over the last decade, we have seen an enormous improvement in the efficacy of machine learning methods
for classification. Correspondingly, there has been an increased need for large labelled datasets to train
these models. However, obtaining cleanly labelled datasets at the required scale can be prohibitively costly.
Consequently, practitioners often resort to methods that generate large but noisy datasets, such as web
querying or crowd-sourcing. Label noise can be a particular issue when data are hard to label, or labelling
requires a specialist background (e.g., medical imaging). This challenge has spurred significant interest in
developing methods capable of learning with noisy labels.

Most approaches for addressing the label noise problem consist of a mechanism for either removing or
compensating for it. However, many strategies to manage label noise are elaborate or require multiple
networks and stages (Li et al., 2020; Han et al., 2018; Jiang et al., 2018; Malach and Shalev-Shwartz, 2017;
Li et al., 2023; Ren et al., 2018; Sachdeva et al., 2021), which may not be feasible in resource-constrained
settings.

A simpler approach designs methods to be inherently resilient in the face of corrupted labels. The most
prominent family of such methods is robust loss functions. The goal is to choose an objective function which
allows training in the presence of noise without harming the generality of the learned classifier. Regularisation-
based robust loss functions use techniques like adding regularisation terms or consistency constraints to
prevent overfitting (Zhang et al., 2017; Liu et al., 2020; Englesson and Azizpour, 2021b; Reed et al., 2014).
Other regularisation-based losses adapt cross-entropy loss to reduce noise sensitivity (Wang et al., 2019;
Zhang and Sabuncu, 2018; Ma et al., 2020). However, the robustness of such losses is often based on empirical
observations rather than theoretical analysis, leaving the reasons for their effectiveness somewhat unclear.

Loss correction methods are a more principled subset of robust losses, using data to infer and subtract the
impact of label noise from the training objective. Forward-corrections apply noise to the model predictions
before evaluating these noised predictions against noisy data, whereas backward-corrections de-noise the
noisy labels (Patrini et al., 2017). Despite satisfying slightly weaker theoretical properties than the backward-
correction (Van Rooyen et al., 2015), forward-corrections generally perform slightly better, are easier to
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implement, and are more frequently used (Patrini et al., 2017; Sukhbaatar et al., 2015; Goldberger and Ben-
Reuven, 2022; Larsen et al., 1998; Mnih and Hinton, 2012; Li et al., 2021). Nevertheless forward-corrections
are still susceptible to overfitting on small noisy datasets.

In this paper, we tackle the challenge of overfitting in popular robust losses, focusing on forward-corrected
loss functions due to their prevalence and importance. We introduce a principled solution: bounding the
allowable loss during training by recognising that the presence of label noise means the generalised noisy risk
is lower bounded. The critical contribution of this paper is explicitly deriving these bounds and showing that
their implementation improves robustness. In addition, we provide a deeper understanding of existing robust
loss functions, unifying correction losses with several other popular regularisation-based losses into a single
family.

Key Idea: When a distribution contains label noise, this implies there is a minimum achievable (noisy) risk.
Current methods do not respect this bound, targeting a minimal training loss instead, causing overfitting. By
bounding the loss below during training, one may prevent this.

1.1 Contributions

This work comprises two contributions: (a) a minor contribution is to generalise the forward-correction
to include non-linear models, demonstrating that some popular regularisation-based robust loss functions
(such as GCE and SCE) are, in fact, disguised forward-correction loss functions. This improves the generality
of the main result where we: (b) show how overfitting can be avoided by ensuring the training loss remains
above a certain threshold. We refer to augmenting a loss function in this manner as a ‘bounded-loss’. The
crucial insight of this work is that when labels are noisy, no model can achieve a loss below the average
entropy of the noisy conditional class distribution. Under a separability assumption, the noisy entropy
depends only on the noise model and can thus be crudely estimated when only the average noise rate is known.
This estimate, called the ‘noise-bound’, is chosen as our threshold for the bounded loss. We demonstrate
empirically that this significantly enhances robustness across a broad range of settings.
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Figure 1: Cross-entropy (CE), forward-corrected cross-entropy (FCE) and, our proposed FCE+B loss functions.
The forward-correction ensures consistency, while the application of a bound (FCE+B) mitigates overfitting.

1.2 Notation and Preliminaries

We adhere to standard notational and terminological conventions used in related literature. Key notations
are defined below; a detailed summary and review of related work are available in Appendix B.

Domains X ⊂ Rd denotes the dataspace, and Y := {1, 2, . . . , c} represents the label space for c classes.
The probability simplex, ∆, consists of c-dimensional vectors with non-negative components that sum to one.
Vectors are indicated in bold.

Loss Function A loss function L : ∆× Y → R measures the discrepancy between predicted and actual
label distributions, resulting in a loss value. The loss across all classes for a prediction q is expressed as:

L(q) = (L(q, 1), L(q, 2), . . . , L(q, c)).
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Expected Loss The expected loss for a forecast q relative to the true class distribution p is the average
loss over labels sampled from p, denoted by HL(p, q) and calculated via:

HL(p, q) = pT L(q).

Proper Losses A loss L is considered (strictly) proper if the expected loss is (uniquely) minimised by the
true label distribution, i.e., q := p.

L-Risk The (generalised) L-risk, representing the expected loss over the entire data distribution p(x, y),
evaluates the overall efficacy of a probability estimator model q(x):

RL(q) := Ex∼p(x)[HL(p(y | x), q(x))].

We call the risk computed with respect to an i.i.d dataset drawn from p(x, y), the empirical risk, which we
denote R̂L.

Label Noise Label noise refers to any random process altering labels from the data-label distribution
p(x, y). We use a tilde notation to distinguish between original (clean) and altered (noisy) labels, such as
p̃(x, ỹ). For a detailed taxonomy of label noise types, see Appendix A.

Noisy Risk Label noise introduces the concept of noisy generalised risk, denoted by Rη
L. This risk is

computed with respect to the noisy label distribution.

Noise Rate The noise rate at any x ∈ X , defined as η(x) := p(ỹ ̸= y | x), reflects the likelihood of label
alteration by noise at that point. The average noise rate across the dataspace is η := p(ỹ ̸= y).

2 Generalised Forward-Corrections

2.1 Robust Loss Functions

Label noise robust loss functions can be categorised into two broad sets: regularisation-based robust losses
and correction-based losses.

Regularisation-Based Losses A popular approach to tackling label noise by selecting losses less prone to
fit the entire training set than the standard cross-entropy (CE). An archetypal example of such a loss is a mean
absolute error (MAE) (LMAE(q, y = k) = 1− qk). MAE will typically ignore the harder-to-fit samples; on
noisy datasets, this often corresponds to those with corrupted labels. The downside is that MAE dramatically
underfits on datasets with many classes (Ma et al., 2020). Alternative losses mitigate this underfitting
by interpolating between CE and MAE to avoid both of their pitfalls. Two well-known examples are the
Generalised Cross-Entropy (GCE) and Symmetric Cross-Entropy (SCE) defined LGCE(q, y = k) := 1−qa

k

a
and LSCE(q, y = k) = −log(qk) + A(1− qk) respectively (Zhang and Sabuncu, 2018; Wang et al., 2019). By
varying the parameters a, A, we can alter the losses’ behaviour from being more like CE to MAE.

Correction-based Losses Correction-based loss functions arise as an alternative, motivated by the
observation that the empirical risk ceases to be an effective proxy for the generalised clean risk (Stempfel
and Ralaivola, 2009) under label noise. By altering the loss through incorporating the noise model, one may
ensure the corrective property that

arg min
q

Rη
LF

(q) = arg min
q

RL(q),

ensuring that minimising the noisy generalised risk aligns with minimising the generalised clean risk. A
popular and effective method is the forward-correction (Patrini et al., 2017). Given a base loss L, the
forward-correction of L is defined

LF (q, k) := L(T̂q, k), (2)

where T̂ is a column stochastic matrix approximating the true transition matrix T := p(ỹ|y) for class-
conditional label noise. Conversely, we say that a loss function L is a forward-corrected loss if it is the
forward-correction of another loss function.
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2.2 Non-Linear Noise Models

In the class-conditional label noise framework (Angluin and Laird, 1988), a label noise model is defined by
a column stochastic matrix T , which represents the transition probabilities (Tij := p(ỹ = j | y = i). This
traditional formulation assumes that the noisy label depends on an unobserved clean label, which might not
reflect real-world scenarios where the noisy annotator never sees the clean label.

An equivalent conceptualisation of class-conditional label noise considers the transition matrix merely as a
tool to link noisy and clean class distributions. For example, if the true conditional class distribution at x
is p(y | x), then according to a class-conditional label noise model, the conditional class distribution of the
noisy labeller is given by Tp(y | x). This approach does not presume dependence on a specific true label,
instead describing how noisy and clean label distributions are related.

However, this perspective raises questions about the necessity of assuming a linear relationship between
these distributions. It is plausible that a labeller might make fewer errors on instances clearly representative
of their class and many more errors when the class distribution p(y | x) is more evenly distributed. This
scenario suggests a non-linear noise model:

p̃(y | x) := f(p(y | x)),

where f : ∆→ ∆ is some (possibly non-linear) transformation on this simplex - which, for simplicity, we will
limit to being injective.

It is straightforward to generalise the forward-correction to allow for T̂ in Equation 2 being a non-linear
transformation f .
Definition 2.1 (Generalised Forward-Correction). Let Lf be a loss function and f : ∆→ ∆ be an injective
function. We say Lf is a ‘generalised forward-corrected loss’ if there exists a loss function L such that for all
q ∈ ∆, k ∈ {1, 2, . . . , c}

Lf (q, k) = L(f(q), k).

We refer to L as the base loss. f can be thought of as a label noise model.

The forward-correction is trivially an example of a generalised forward-correction loss obtained by setting
f := T̂ . We now demonstrate that the GCE and SCE losses previously discussed are generalised forward-
correction losses, deriving expressions for the underlying (non-linear) noise models f . This derivation relies
on the assumption that the base losses which generate these loss functions are proper - i.e. we decompose
both SCE and GCE into a proper loss corrected by a non-linear noise model. This decomposition is unique.
Lemma 2.2. The GCE, SCE and forward-corrected CE (denoted FCE) loss functions can be formulated as
generalised forward-corrected losses with a proper base loss. The noise models fGCE , fSCE , fF CE satisfy

(f−1
GCE(p))i = p

1
1−a

i∑c
i=1 p

1
1−a

i

, (f−1
SCE(p))i = pi

λ−Api
, fF CE(p) = T̂p,

where T̂ is the invertible stochastic matrix used to define FCE, and λ is a constant selected to ensure the
correct normalisation.

For an interpretation and plots of the noise models; fGCE , fSCE , see Appendix D.

Lemma 2.2 demonstrates that GCE and SCE can be conceptualised as non-linear forward-corrected losses;
the noise model is represented by the function f . We stress that these are by no means the only robust losses
which adhere to Definition 2.1. However, they provide valuable examples when empirically demonstrating the
results of Section 4.

The generalisation established by Definition 2.1 offers three advantages. i) It enhances our understanding
of losses like GCE, demonstrating that they implicitly incorporate a noise model. ii) Partially unifies
correction losses with other robust loss functions. iii) Ensures that theoretical results derived for generalised
forward-correction losses are widely applicable, encompassing traditional, linear correction losses and many
other robust loss functions.
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3 Loss Bounding

Our analysis in this section reveals that merely correcting for the noise model (as in Definition 2.1) is
inadequate for achieving robustness. We must also adjust our loss function to incorporate a lower bound to
account for the randomness introduced by label noise.

Key Observation When a data distribution contains label noise, there is a lower bound on the optimal
noisy risk a model can achieve. An analogy to this is that no forecaster can predict the outcome of a biased
coin flip 100% of the time - e.g. if a coin comes up heads 60% of the time we cannot expect a forecaster
to predict more accurately than 60% over a large number of flips. Similarly, even an optimal model, which
minimises the noisy risk, will still incur a non-zero loss on a randomly sampled noisy dataset.

3.1 Overfitting to Label Noise

If one trains a classifier on a noisy dataset using the cross-entropy loss function, the classifier learns to fit all
labels in the training set - including those which have been corrupted by label noise (Arpit et al., 2017) -
damaging generality. Ideally, when training a model on a noisy dataset, we wish to fit the clean labels without
overfitting the noisy ones. A significant obstacle to achieving this desire is the difficulty in determining
whether a specific label is clean or corrupted. However, while it is difficult to determine whether a model has
overfit to a specific label, it is often apparent when a model has overfit to a dataset. For example, if a dataset
is known to contain label noise, obtaining a training loss of zero heavily implies overfitting has occurred.

Forward-Corrections When learning a classifier in the presence of noisy labels, it is, therefore, inap-
propriate to target a zero training loss. Utilising the forward-correction partly addresses this issue. The
forward-correction works by noising our model predictions q 7→ T̂q before applying the loss. This guarantees
that a zero loss is no longer possible since our noised model never predicts any label with complete confidence.
Despite possessing this desirable property, the forward-correction does not go far enough in that the lower
bound it imposes is still too high to prevent overfitting. An illustrative example for a dataset polluted by
40% symmetric label noise is presented in Table 1. The table gives the lowest attainable training loss for a
model trained on this noisy dataset versus the ‘optimal training loss’, i.e. the loss obtained by an optimal
model possessing complete knowledge of how the dataset was generated but has not observed the dataset
labels. Obtaining a training loss lower than this optimal value would suggest that overfitting has occurred.
We see that while FCE imposes a bound (unlike CE), this bound is still too low. Further discussion of this
example is given in Appendix D.1.

Loss Lowest Attainable Optimal
Function Training Loss Training Loss

CE 0 0.673
FCE 0.511 0.673

FCE+B 0.673 0.673

Table 1: Lowest attainable training loss for different cross-entropy variants versus optimal training loss. This
table contrasts the minimum training loss achievable by a model using various loss functions on a noisy
dataset with 40% symmetric label noise. An optimal model minimises the noisy generalised risk, achieving
a loss of 0.673. CE or FCE can result in lower training losses, potentially causing overfitting. While FCE
introduces a loss bound to improve robustness, FCE+B is designed to mitigate overfitting more effectively.

3.2 Bounded Loss

We propose, therefore, that the principled way to handle label noise is to limit the minimum allowable risk
on the training set. Specifically, we define a lower bound ‘B’ and train - preventing the training loss from
going below this value. Explicitly, we augment our loss as follows:
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Definition 3.1 (Bounded Loss). Let L be a loss function. Let D be a batch of N data-label pairs (xi, yi).
Given a lower bound, B ∈ R, we define the B-bounded loss LB obtained from L as follows:

LB(q(x),D) :=
∣∣∣∣∣∣B − 1

N

∑N
i=1 L(q(xi), yi)

∣∣∣∣∣∣
1

(3)

When the average loss on a batch of samples is above our bound B, training proceeds as usual; however, if the
training loss on a batch dips below B, the learning rate effectively becomes negative, resulting in ‘untraining’
which proceeds until the average loss is back above B. Bounding the loss in this way has been previously
explored by Ishida et al. (2020). We extend upon this work by grounding loss bounding within the context of
loss corrections and by providing a theoretically justified method for selecting the loss bound.

4 Risk Bounds

In the last section, we noted that correction losses remain prone to overfitting despite their theoretical basis.
We suggested training with a lower bound, acknowledging that the minimal achievable generalised noisy risk
is non-zero. This section derives explicit lower bounds on the generalised noisy L-risk for forward-corrected
losses and provides a formula for selecting a bound B, termed the noise-bound, for use in Definition 3.1.

Assumptions Throughout this section, we assume all loss functions are generalised forward-corrected,
denoted Lf , with proper base losses L. We also assume that the loss function has no inherent bias toward
any particular class, i.e. the loss is unaffected by a random permutation of the label set. Examples include
CE, MSE, FCE, GCE, SCE, among others.

4.1 Entropy As Lower Bound

In Lemma 4.2 we establish a general lower bound on noisy risk in terms of the average entropy of the noisy
label distribution. Precisely stating Lemma 4.2 requires us to define the ‘entropy function’ of a proper loss.
Definition 4.1 (Entropy Function). Given a proper loss function L, define its entropy function (Ovcharov,
2018) as the expected loss incurred when the forecast equals the true distribution over classes: H : ∆→ R by:

H(p) := HL(p, p) = pT L(p),

where p is a probability distribution over the classes and HL denotes the expected loss.

The entropy function for a (strictly) proper loss function is (strictly) concave and, by the definition of
properness, satisfies H(p) ≤ H(p, q) for all p, q ∈ ∆. This leads immediately to the following Lemma.
Lemma 4.2. Let Lf be a generalised forward-corrected loss whose ‘base-loss’ L is strictly proper (Recall the
definition of ‘base-loss’ from Definition 2.1). The noisy risk of any probability estimator q is lower bounded:

Rη
Lf

(q) ≥ Ex∼p(x)[H(p̃(ỹ|x))], (4)

where H is the entropy function of the base-loss. This bound is tight when f equals the true noise model.
Equality is attained by setting q(x) = f−1 (p̃(ỹ|x)).1

Lemma 4.2 establishes that when using a generalised forward-corrected loss (with proper base loss), the
average entropy of the noisy distribution provides a lower bound on the noisy risk. Ideally, one would calculate
the entropy in Equation 4 to use as the lower bound ‘B’ in Equation 3. However, due to limited knowledge
of the data distribution and noise model, it is often impractical to calculate this precisely, necessitating
simplifying assumptions for approximation.

1Note that if f is the true noise model then p̃(ỹ | x) ∈ f(∆) and the inverse is unique by injectivity.
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Separability Our key simplifying assumption is that the clean label distribution is (approximately)
separable, meaning there’s minimal randomness in label distributions. Although idealised, this assumption
fits many real-world image classification tasks dominated by clear, single-subject images. However, it’s less
applicable in fields like medical diagnostics. We use this assumption to establish several bounds in the
subsequent sections.

4.2 Estimating The Entropy

Given a datapoint x, the entropy of the noisy class distribution p̃(ỹ | x) will depend both of the noise rate and
the type of label noise. For example, symmetric label noise (where noise occurs uniformly between classes)
will result in a different entropy than pairwise label noise (where noise occurs between pairs of classes), even
given the same noise rate. The following Lemma gives a range on the possible entropies of p̃(ỹ | x) given that
the noise rate at x is equal to η(x). For brevity we introduce the following notation:

upair(η, c) := (1− η, η, 0, . . . , 0) (5)

usym(η, c) :=
(

1− η,
η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
(6)

Lemma 4.3. Let Lf be a generalised forward-corrected loss function whose base-loss L has entropy function
H. Suppose that label noise is applied to a separable data-label distribution and let x ∼ p(x). Given that the
noise rate at x is η(x), the entropy of the noisy label distribution at x, H(p̃(ỹ | x)) must lie in the following
interval:

[H(upair(η(x), c)),H(usym(η(x), c))] .

In particular, given a specified noise rate η(x), the highest entropy occurs under symmetric label noise at x,
while the lowest entropy is observed with pairwise label noise.
Corollary 4.4. Given an average noise rate η := Ex∼p(x)[η(x)], the greatest possible value of Ex∼p(x)[H(p̃(ỹ |
x)] occurs when η(x) is constant:

sup
p(ỹ|x,y)

(
Ex∼p(x)[H(p̃(ỹ | x))]

)
= H (usym(η, c)) ,

where the supremum is taken over all noise models such that Ex∼p(x)[η(x)] = η.

Worst-Case Entropy Corollary 4.4 establishes a worst-cast entropy given a specified average noise rate η.
Simply put, the Corollary tells us ‘given that the average noise rate does not exceed η, the noise model with
the highest entropy is uniform symmetric label noise’.

4.3 Main Proposal: Noise-Bounded Loss

Discussion The goal of this section is to derive lower bounds on the noisy risk which can be used as ‘B’ in
our B-bounded loss (Definition 3.1). Ideally, with precise knowledge of the noise model, the lower bound
would be set equal to the average entropy of the noisy label distribution. However, the label noise model is
typically unknown, and we might only have access to an approximate noise rate.

What bound do we choose when we only know the noise rate? Corollary 4.4 establishes that, given
a known noise rate η, a ‘worst-case’ entropy occurs when the label noise is symmetric and uniform. This
means that if we set our bound ‘B’ under the assumption of symmetric-uniform label noise at rate η, B can
never be lower than the actual noisy entropy - making overfitting unlikely. We call this the ‘noise-bound’.
Definition 4.5 (Noise-Bound). Let Lf be a generalised forward-corrected loss whose base loss L has entropy
function H. Using the notation usym(η, c) from Equation 6, we define the noise-bound as:

B(η, c) := H(usym(η, c)) = usym(η, c) ·L(usym(η, c)). (7)
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Examples For CE/FCE the noise-bound corresponds to the Shannon Entropy of the distribution
usym(η, c) = (1− η, η

c−1 , . . . , η
c−1 ). For SCE and GCE we remark that

B(η, c) = usym(η, c) ·L(usym(η, c))
= usym(η, c) ·Lf (f−1(usym(η, c))),

enabling computation of B(η, c) using expressions for f−1 from Lemma 2.2, detailed in Appendix D.4.

This leads us to the main proposal of this paper. When our dataset has label noise, we propose using
the bounded loss (Equation 3) with B set to B(η, c), the ‘noise-bound’ from Equation 7. We call this the
noise-bounded loss:
Definition 4.6 (Noise-Bounded Loss). Let L be a loss function. Let D be a batch of N data-label pairs
(xi, yi). Given a noise rate η, we define the noise-bounded loss LB(η,c) obtained from L as follows:

LB(η,c)(q(x),D) :=
∣∣∣∣∣∣B(η, c)− 1

N

∑N
i=1 L(q(xi), yi)

∣∣∣∣∣∣
1

(8)

where B(η, c) is as given in Equation 7. For an algorithmic implementation of this approach, see Algorithm 1.

Example FCE: The noise-bounded variant of FCE (which we denote FCE+B) is given in Equation 1.

Bound Optimality By construction, the noise-bound only equals the average entropy of the noisy label
distribution if the noise is symmetric and uniform. In all other cases the noise-bound will be higher than
strictly necessary. Ideally, we would like the gap between the noise-bound and the true noisy entropy to be
small in a typical setting: If the gap is large, the noise-bounded loss will cease training long before overfitting
occurs and possibly when there is still signal to be learned. A small gap occurs when all distributions of the
form (1− η, η2, . . . , ηc) (where η :=

∑
i ηi) have roughly the same entropy - i.e. the entropy is ‘insensitive’ to

the structure of the noise model, depending mostly on the noise rate. The level of insensitivity depends on
the entropy function itself. Shannon entropy is relatively sensitive to the structure of the noise model. In
contrast, losses like GCE and SCE induce insensitive entropy functions. Further discussion in Appendix D.2.

Empirical and Generalised Risk Our analysis in Section 4.1 demonstrates that an estimator cannot
achieve a noisy risk below the mean noisy label entropy. However, on a small finite dataset of i.i.d. samples,
it is possible for an estimator to achieve a noisy empirical risk that is lower than the noisy entropy, and this
can occur with non-zero probability, even without access to the actual dataset labels. However, as the size of
the dataset increases, the likelihood of an estimator achieving a loss significantly lower than the noisy entropy
rapidly diminishes. According to the Central Limit Theorem, the probability of obtaining a loss more than δ

below the noisy label entropy diminishes at the rate of O
(

1√
N

)
, where N is the dataset size. In practical

terms, this means obtaining a training loss below the noise-bound is almost impossible unless one has overfit
to the noisy labels.

5 Experiments

5.1 Loss Functions

In this section, we empirically investigate the effectiveness of the noise-bounded loss (Equation 8) for improving
robustness to label noise. We consider several loss functions: CE, SCE, forward-corrected CE (FCE), and
GCE. Additionally, we explore a variant of CE that includes a prior on the model probabilities (CEP). Our
experiments all follow a similar structure. We use a dataset containing intrinsic or synthetic label noise in
the training set. We train neural network models using each loss on this noisy training set and evaluate their
performance on a clean test set. We compare results from models trained without noise-bounds to those
trained with noise-bounds, denoted by a ‘+B’ suffix in the loss name (e.g., CE+B indicates the use of a
noise-bounded cross-entropy loss).
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Baseline Loss Functions Our results are benchmarked against other standard robust loss functions,
including mean squared error (MSE) (Janocha and Czarnecki, 2017), mean absolute error (MAE), NCE-MAE
(Ma et al., 2020), ELR (Liu et al., 2020), Curriculum loss (CL) (Zhou et al., 2020), Bootstrapping loss
(Boot.) (Reed et al., 2014), Spherical loss (Spher.), Mix-up (Zhang et al., 2017), and a version of GCE that
incorporates the additional tricks outlined by Zhang and Sabuncu (2018). To differentiate this version of
GCE from our simplified GCE, we refer to it as ‘Truncated loss’ (Trunc.) due to its use of truncation.

5.2 Datasets

We evaluate each loss on various datasets with different label noise types. We consider versions of EMNIST,
FashionMNIST, CIFAR10, CIFAR100 corrupted by symmetric label noise at rates of 0.2 and 0.4 and MNIST
with rates of 0.4 and 0.6. Additionally, we explore more sophisticated noise types. In the case of ‘Asym-
CIFAR100,’ we introduce asymmetric noise by randomly transitioning labels within the 20 superclasses of
CIFAR100. For example, within the superclass ‘fish’ (comprised of aquarium-fish, flatfish, ray, shark, and
trout), we change training labels to other members of the set with a probability of η ∈ {0.2, 0.4} (e.g., flatfish
→ trout). For ‘Non-Uniform EMNIST,’ we investigate the impact of using non-uniform noise. We train a
linear classifier on EMNIST and, with a probability of 0.6, modify the label of a data point in our training set
to match the output of this classifier. Since the classifier’s performance varies across data space, this creates
label noise with an x-dependence. Further experiments on the TinyImageNet and Animals-10N datasets,
which contain real, intrinsic open-set noise, are given in Appendix E.

Hyperparameters For the Animals and TinyImageNet experiments, we use a ResNet-34 to parameterise
our model. For the other datasets, we use a ResNet-18. For each experiment, the number of epochs is kept
consistent across losses. The bounds we employ in each experiment are obtained by substituting the relevant
number of classes c and the noise rate η into Equation 7. An exception is the case of Non-uniform EMNIST,
where we use a class number of c = 2 to reflect that the label is a mixture of the clean label and classifier
labels. The results where we vary the bound ‘B’ are obtained by doing a small grid search on either side of
our noise-bound value. Additional precise experimental details may be found in Appendix E.

CIFAR10 - SCE Loss EMNIST - CE Loss

Figure 2: Performance as a function of the estimated noise rate used to compute noise-bound:
We plot the final (clean) validation accuracy of a model against the estimated noise rate used to compute
the noise-bound (Eqn. 7) on the noisy CIFAR10/EMNIST datasets using SCE/CE losses respectively. The
noise-bound, as computed with the true noise rate is highlighted by the green dotted line; both
graphs show a bump with a peak near this line demonstrating that underestimating the noise rate causes
overfitting while overestimating causes underfitting. Most crucially, the prominent ‘bump’ reinforces that
robustness can be greatly improved by training using a well-selected bound.
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5.3 Results

The results of our experiments are presented in two tables. Table 2 includes the simpler datasets of MNIST,
FashionMNIST, EMNIST, and CIFAR10, while Table 3 displays CIFAR100, Asym-CIFAR100, and Non-
uniform-EMNIST. The results for TinyImageNet and Animals are presented in a third table in Appendix E.
Each table follows a similar structure, with losses listed in rows and datasets in columns. The baselines are
grouped together at the top. Our main losses are organised into pairs, such as CE, CE+B. The rows that use
the noise-bound (e.g., GCE+B) are highlighted in blue to enhance readability. If using our noise-bound leads
to higher mean accuracy compared to training without the bound, this is indicated by a box . The best
overall model for each dataset is highlighted in bold. In 82% of cases utilising the noise-bound improves
performance relative to the unbounded loss variant.

Exceptions With few exceptions, our bound leads to improved performance compared to the standard,
unbounded version of each loss. For the Asym-CIFAR100 and Non-Uniform-EMNIST datasets, our CE+B
loss performs worse than regular CE. This outcome was expected since our derived bounds are optimal for
symmetric noise and may be suboptimal for non-symmetric noise - this discrepancy is especially pronounced
for losses based on Shannon-Entropy like CE. In contrast, the other generalised forward-corrected losses, as
we had anticipated, exhibit greater resilience to the precise noise structure and consistently outperform the
baseline across different types of noise.

Impact of Estimated Noise Rate Figure 2 shows how clean test accuracy varies with the estimated
noise rate, η̂, for CIFAR10 (SCE loss) and EMNIST (CE loss) datasets, both corrupted by 40% symmetric
noise. Models were trained using noise-bounds based on η̂ (B(η̂, c = 10) in Equation 7), and performance
was plotted against η̂. As η̂ increases, the bound restricts overfitting, enhancing test accuracy. Optimal
performance occurs near the true noise rate at η̂ ≈ 0.4, marked by a vertical green dotted line. Beyond this
point, performance declines as the model underfits. The prominent peak in performance near this green line
empirically validates our theoretical approach. Slight overestimations of the noise rate marginally improve
performance, likely originating from our simplifying assumption, which modelled the underlying distributions
as separable. Appendix E discusses this further, treating ‘B’ as a hyperparameter.

MNIST FashionMNIST EMNIST CIFAR10

Losses 0.4 0.6 0.2 0.4 0.2 0.4 0.2 0.4Top 1 Top 5 Top 1 Top 5
MSE 93.3±0.47 85.8±0.95 84.8±0.22 80.6±0.84 82.9±0.29 98.1±0.04 80.2±0.19 97.1±0.07 78.7±1.51 56.4±0.11
MAE 97.9±0.08 96.4±0.08 83.2±0.10 82.2±0.37 49.8±2.83 52.2±0.10 50.4±1.14 51.4±0.96 88.6±1.34 78.9±5.95
NCE 97.8±0.06 96.0±0.25 87.7±0.26 86.3±0.14 84.5±0.25 97.9±0.05 82.6±0.81 96.7±0.03 89.3±0.40 86.0±0.81
MixUp 95.8±1.24 86.8±0.85 86.9±0.10 82.3±0.54 84.3±0.08 98.1±0.04 81.6±0.48 97.1±0.08 86.0±0.46 77.9±0.49
Spher. 95.0±0.41 88.1±0.82 87.2±0.04 84.1±0.75 84.6±0.12 98.3±0.05 83.2±0.29 98.1±0.58 86.6±0.01 72.1±0.80
Boot. 86.6±0.56 71.2±1.17 82.0±0.61 73.4±1.06 80.5±0.24 96.7±0.06 77.3±0.98 95.0±0.25 77.0±1.57 58.2±2.99
Trunc. 97.1±0.12 94.2±0.39 87.8±0.29 85.3±0.77 84.1±0.53 97.4±1.03 83.1±0.55 97.2±1.00 88.3±0.56 84.2±0.69
CL 82.7±0.57 67.5±1.83 81.2±0.34 73.1±0.66 79.6±0.17 96.4±0.05 75.1±0.67 94.2±0.24 76.0±2.16 59.4±4.20
ELR 98.1±0.04 97.8±0.07 85.3±0.23 83.4±0.02 81.8±0.26 97.5±0.21 76.6±0.10 96.5±0.11 88.1±0.82 85.7±0.06
FCE. 95.4±0.25 92.3±0.13 83.6±0.11 79.9±0.78 83.1±0.12 98.4±0.20 80.6±0.12 98.0±0.03 84.7±0.40 75.1±0.04
FCE+B 95.7±0.18 92.7±0.74 84.8±0.26 81.7±0.27 83.4±0.09 98.5±0.03 81.6±0.51 98.1±0.15 86.7±0.21 82.2±0.06

GCE 94.4±0.36 83.8±1.14 86.4±0.24 81.6±0.37 84.3±0.13 98.4±0.08 82.7±0.07 97.9±0.02 81.1±0.72 60.0±1.31
GCE+B 96.6±0.22 94.0±0.13 86.5±0.56 85.5±0.13 84.1±0.29 98.4±0.04 82.8±0.28 98.0±0.06 86.1±0.22 79.0±1.17

SCE 89.5±5.29 70.2±0.69 82.7±0.64 74.4±0.37 82.1±0.33 96.8±0.10 79.6±0.61 95.4±0.15 78.2±0.42 59.0±4.43
SCE+B 97.0±0.16 93.4±0.29 87.5±0.22 85.2±0.98 83.5±0.29 97.3±0.14 81.8±0.52 96.4±0.20 88.9±0.44 84.7±0.37

CE 80.8±2.31 67.3±0.80 80.9±1.11 72.1±2.16 79.9±0.28 96.4±0.08 75.6±0.20 94.2±0.24 76.9±1.22 59.9±2.15
CE+B 96.2±0.32 93.0±0.09 87.9±0.10 84.7±0.37 80.8±0.08 97.0±0.04 78.9±0.12 96.1±0.26 84.5±0.73 76.0±1.13

CEP 97.5±0.08 92.1±0.44 87.8±0.12 84.8±0.23 85.5±0.10 98.1±0.07 84.3±0.22 97.6±0.14 84.2±0.51 58.2±2.94
CEP+B 95.6±0.32 85.5±0.77 88.1±0.31 84.2±0.33 85.8±0.12 98.3±0.02 84.8±0.10 98.0±0.04 88.5±0.32 85.1±0.20

Table 2: Test accuracies obtained using different losses on the noisy MNIST/ FashionM-
NIST/EMNIST/CIFAR10 datasets. Losses implementing the noise-bound shaded in blue. When using this
bound provides benefit, the corresponding value is boxed . Overall top values in bold.
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CIFAR100 ASYM-CIFAR100 Non-Uniform-EMNIST

Losses 0.2 0.4 0.2 0.4 0.6
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top 1 Top 5

MSE 57.2±0.93 78.6±0.25 40.6±0.38 63.0±0.24 56.3±0.11 82.6±0.22 40.7±0.12 74.4±0.25 44.7±2.66 86.7±3.10
MAE 10.0±0.11 13.8±0.28 7.6±1.89 11.6±1.25 7.1±6.02 11.1±6.6 11.1±5.43 25.1±5.76 9.8±1.74 23.1±1.80
NCE 38.7±3.13 51.8±3.77 19.1±0.20 28.8±0.15 16.3±1.24 25.4±1.80 21.8±1.24 37.2±1.80 18.0±1.17 38.8±1.93
MixUp 59.6±0.31 81.5±0.39 51.3±8.63 75.8±8.09 61.2±0.88 86.0±1.12 47.2±0.60 81.3±0.23 52.4±0.80 95.5±0.08
Spher. 57.7±0.18 82.9±0.54 48.8±0.51 74.3±0.73 54.2±0.32 81.2±0.29 39.2±0.31 72.1±0.15 41.9±0.10 94.4±0.04
Boot. 54.0±0.37 76.4±0.39 37.7±0.89 60.9±1.52 56.0±0.34 83.8±0.03 43.2±0.35 78.3±0.20 49.1±0.29 95.3±0.42
Trunc. 58.1±0.36 82.7±0.37 50.9±1.17 77.2±0.59 56.3±0.62 82.3±0.61 45.2±0.81 75.6±0.29 23.7±0.98 40.1±1.24
CL 53.0±0.21 76.3±0.19 36.3±0.77 60.1±0.66 55.3±0.48 83.5±0.28 42.4±0.45 78.1±0.14 48.2±0.45 95.0±0.04
ELR 10.4±0.24 31.7±0.44 10.0±0.64 30.1±0.88 10.8±0.21 32.7±0.53 10.3±0.39 30.8±0.35 40.3±0.39 93.0±0.24
FCE 56.9±0.58 79.2±0.14 43.7±0.15 66.2±0.19 55.3±0.54 83.5±0.24 41.4±0.55 77.3±0.75 39.0±0.05 67.8±0.47
FCE+B 56.1±2.22 81.8±1.37 50.2±0.02 77.2±0.19 54.2±0.44 83.3±0.43 43.8±0.02 77.5±0.13 40.0±0.35 73.2±0.08

GCE 60.0±0.13 82.6±0.63 44.9±0.07 67.2±0.34 53.8±0.55 81.6±0.14 39.4±0.44 74.0±0.36 44.8±0.62 91.2±0.70
GCE+B 59.4±0.02 83.5±0.24 50.3±0.11 75.3±0.64 55.4±0.55 83.0±0.35 46.5±1.44 77.7±0.35 47.1±0.20 93.5±0.43

SCE 55.9±0.53 76.5±0.15 38.7±0.60 60.9±0.41 57.5±0.19 83.7±0.17 43.3±0.87 77.5±0.75 47.2±0.33 92.5±0.01
SCE+B 55.5±0.90 77.4±0.84 47.1±1.32 69.2±1.18 57.9±0.83 83.7±0.41 50.0±1.62 80.4±0.65 47.9±0.80 93.8±0.05

CE 52.3±1.35 75.6±0.93 35.3±1.14 59.3±0.81 54.9±0.12 83.3±0.25 42.4±0.16 78.9±0.56 48.6±0.11 95.3±0.10
CE+B 50.9±1.01 76.5±0.86 39.9±1.02 65.8±1.19 52.9±1.86 83.2±0.88 34.7±2.51 73.4±1.50 45.5±5.11 93.0±0.16

CEP 58.8±0.87 78.6±0.38 43.5±0.24 65.1±1.27 59.4±0.08 82.2±0.03 46.5±0.17 76.4±0.25 48.2±0.05 95.4±0.07
CEP+B 62.3±0.87 85.1±0.46 54.3±0.86 79.2±0.93 63.0±0.92 87.5±0.32 53.0±0.28 82.8±0.13 45.0±0.48 95.0±0.08

Table 3: Test accuracies for different losses on the noisy CIFAR100/Asym-CIFAR100/Non-Uniform EMNIST
datasets. Losses implementing the noise-bound shaded in blue. When using this bound provides benefit, the
corresponding value is boxed . Overall top values in bold.

6 Conclusion, Limitations and Further Work

In this work, we have looked at mitigating the impact of label noise in forward-corrected losses by training
subject to a bound, motivated by our observation that label noise implies a minimum achievable risk.

Summary We began by defining a family of loss functions we called ‘generalised forward-corrected losses’
since they contain correction losses as a strict subset. We showed how some popular existing robust losses
can be formulated as generalised forward-corrected loss functions. We explained how label noise implies
the existence of a lower bound on the achievable risk. We proposed training a model and preventing the
training loss going below a given threshold - we called this a ‘bounded loss’. We derived this lower bound
for generalised forward-corrected losses, showing it is the average entropy of the noisy label distribution
(with respect to the entropy function of the base loss). We showed that uniform symmetric label noise is
a ‘worst-case’ noise meaning that it has the highest entropy for a given noise rate η. When the label noise
rate is known, but the noise model is otherwise unknown, we proposed using this worst-case entropy as a
bound for our bounded loss. Finally, we empirically showed that training using the ‘noise-bound’ improves
performance for different loss functions across various noisy settings.

6.1 Limitations and Future Work

While effective in specific settings, our method has limitations due to its reliance on a data separability
assumption. This can restrict its effectiveness on datasets with inherent randomness. Future research could
extend these methods to non-separable datasets. Also, while our approach improves on methods requiring
detailed noise models, it can be applied only in settings where the noise rate is approximately known.

Although our proposed method generally offers benefits, there are observable differences in performance
between different loss functions. Understanding these differences is a crucial direction for future research.
Another promising area of future work involves extending these ideas to backward-corrections (Patrini et al.,
2017), which are more prone to overfitting than forward-corrected losses.
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A Notation and Terminology

Table 4: Notation Table: Table summarising the notation used in
this study.

Symbol Description
c Number of classes/labels.
X The data domain, a subset of Rd.
Y The label space, defined as 1, 2, 3, . . . , c.
∆ Probability simplex: The set of vectors (p1, p2, . . . , pc) where each pi ≥ 0 and∑

pi = 1.
q A probability vector representing a forecast.
p A probability vector representing ground-truth probabilities.
q : X → ∆ A probability estimator model producing a forecast at each point in X .
p(y | x) The vector representing the conditional class probabilities at x, expressed as

p(y | x) = (p(y = 1 | x), p(y = 2 | x), . . . , p(y = c | x)).
f A classifier function mapping each point in X to a label in Y.
L The loss function used to evaluate the accuracy of predictions against actual

labels.
L The vector-valued function of the loss function L, where L(q) =

(L(q, 1), . . . , L(q, c)).
RL(q) The L-risk of an estimator q.
RL(q)(x) The pointwise L-risk of an estimator q at x.
Rη

L(q) The noisy L-risk of an estimator q.
H or HL The entropy function corresponding to the loss function L.
HL(p, q) The expected L-loss for a forecast q given the true label distribution p.
η The noise rate of the label noise model.
y, ỹ The actual label and the noisy label, respectively.
p(x, y) The joint distribution of data and labels.
p̃(x, y) The joint distribution of data and labels after corruption by label noise.
p(ỹ | y, x) The noise model generating noisy labels ỹ from clean labels y given x.
T The label noise transition matrix describing the probabilities of transforming a

true label into a noisy label.
ek The standard basis vector in Rc where only the kth element is 1, and all others

are 0.

A.1 Terminology

The majority of terminology which we adopt is the same as that found in any other contemporary machine
learning paper on label noise. Label noise is categorised into two primary types: closed-set and open-set. We
specifically address closed-set label noise, wherein the original label set and the noisy label set are identical.
This is in contrast to open-set noise where the true label may not be included in the established label set
(Wei et al., 2021). For instance, in a web-scraped dataset of animal images, a photograph of Tiger Woods’
might be erroneously labeled as Tiger’, even though the correct label, ‘golfer’, is absent from the set of labels
When a label noise model has no dependence on the datapoint p(ỹ | y, x) = p(ỹ | y) we say that it is ‘uniform’
or ‘class-conditional’, otherwise we sat that the label noise model is non-uniform. A uniform label noise
model is called ‘symmetric’ where the transition probability between any distinct classes is the same and
‘asymmetric’ otherwise. Pairwise label noise is a subset of asymmetric label noise where mislabelling occurs
between specific class pairs.
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B Related Work

Corruption identification methods: Methods in this class first identify different types of corrupted
samples and then re-weight, refine or remove these from the dataset. Many such methods rely on the heuristic
that noisy samples have higher losses, especially earlier in training. This is based upon the well-known
observation that complex models generally learn to classify easier data points before over-fitting on noise
(Arpit et al., 2017). Song et al. (2019) use the entropy of the historical prediction distribution to identify
refurbishable samples. Arazo et al. (2019) deploy a beta mixture model in the loss space and use the posterior
probabilities that a sample is corrupted in the parameters of a bootstrapping loss. Zhou et al. (2020) define a
loss which ignores samples that incur a higher loss value. Other approaches include a two-network model
(Li et al., 2020) in which a Gaussian mixture model selects clean samples based on their loss values. These
samples are then taken and used to train the other network. A number of other two-network models work on
similar lines. Co-teaching (Han et al., 2018) trains two networks, one on the outputs of the other with the
lowest loss values. Decoupling (Malach and Shalev-Shwartz, 2017) has the two networks update on the basis
of disagreement with each other. Mentor-Net (Jiang et al., 2018) harnesses a teacher network for training a
student network by re-weighting probably correct samples.

Zheng et al. (2019) is a meta-learning approach in which a label correction network corrects labels and feeds
them to a classifier to train. This is done so that the performance of the classifier is optimised on a held-out
validation set. Other meta-learning approaches include Ren et al. (2018) in which samples are re-weighted
so that the learned classifier generalises better to a held-out clean meta-set. Similarly, in Vyas et al. (2020)
(soft), labels are treated as learnable parameters and learned to maximise the performance on the meta-set.
Other corruption identification methods expect that noisily labelled data lie heavily out of class distribution
under an appropriate metric. In FINE (Kim et al., 2021), noisy samples are detected and removed using an
eigendecomposition in the latent space. Alternatively, a KNN Feng et al. (2021a) in the latent space can
identify and select samples based on their coherence to their neighbours’ classes.

B.1 Robust Loss Functions

An important set of methods for learning in the presence of noisy labels are robust loss methods. These
methods work by substituting the cross-entropy objective for a loss which is less prone to inducing overfitting
in the presence of label noise. An advantage here is the simplicity of these methods, as they do not require
multiple networks or complex noise detection pipelines. This makes them suitable for plug-and-play use in
any setting. These approaches may, crudely, be broken down into two classes; regularisation-based loss and
correction-based losses.

Correction-Based Losses: Correction-based loss functions are motivated by the observation that label
noise causes a distortion of the risk objective which can prevent consistency/Bayes-consistency. Methods in
this class achieve robustness by altering the loss function to correct this distortion. We further subdivide
these into correction-based losses and noise-tolerant losses. The former corrects the loss to compensate for
the noising procedure (Larsen et al., 1998; Mnih and Hinton, 2012; Hendrycks et al., 2018a; Stempfel and
Ralaivola, 2009). This procedure involves using noisy (Patrini et al., 2017) or clean data (Hendrycks et al.,
2018b) to infer the noise transition matrix. The estimated noise model is then used to noise the model
outputs, in the case of the ‘forward-correction’, or denoise the labels, in the case of the ‘backward-correction’
(Stempfel and Ralaivola, 2009; Patrini et al., 2017). A downside of these methods is the difficulty in estimating
a noising matrix for a large number of classes and difficulty handling non-uniform noise models which impacts
generality (Goldberger and Ben-Reuven, 2022; Sukhbaatar et al., 2015). Noise-tolerant loss functions (Ghosh
and Kumar, 2017; Manwani and Sastry, 2013; Van Rooyen et al., 2015; Ma et al., 2020) use loss functions
which ensure Bayes-consistency despite the presence of label noise, without the need to apply a correction to
the loss function.

Regularisation-Based Robust Losses: Regularisation-based robust loss functions regularise the loss
so that it less susceptible to overfitting to noise than the commonly used cross-entropy (Janocha and
Czarnecki, 2016). Regularisation-based loss functions are varied. Many methods apply regularisation to
ensure consistency between the predicted labels of nearby datapoints (Zhang et al., 2017; Englesson and
Azizpour, 2021a;b; Iscen et al., 2022) or consistency of model predictions over time (Liu et al., 2020; Cheng
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et al., 2024). Janocha and Czarnecki (2016) observe that Lp-losses typically used for regression show good
robustness in a classification setting. This is particularly true for the MAE loss (Mean Absolute Error),
which exhibits good robustness albeit with a tendency to under-fit and train slowly (Ma et al., 2020). This
observation motivates a set of methods which combine or interpolate between CE and MAE to obtain the
best of both. Wang et al. (2019) propose a solution to this by adding a ‘reverse cross-entropy’ (RCE) term to
the usual cross-entropy (CE) term. Feng et al. (2021b) curtail the Taylor expansion of cross-entropy making
it perform more like MAE. Generalised Cross-Entropy (Zhang and Sabuncu, 2018) construct a family of losses
which interpolate between CE and MAE using a Box-Cox transformation in order to get the best of both.
Other methods soften of mix labels to avoid overfitting (Reed et al., 2014; Szegedy et al., 2016; Thiel, 2008).
Ishida et al. (2020), in-line with our work, bound the loss to prevent overfitting. However, their method is
only briefly discussed in relation to label noise and provides no mechanism for selecting a loss bound. We
ground this work firmly in the context of label noise and provide theoretical results for producing bounds on
the loss.

B.2 Algorithm

Algorithm 1 Training with Noise-Bounded Loss
1: Input: Noisy dataset D = {(xi, ỹi)}N

i=1, estimated noise rate η, number of classes c, epochs T
2: Output: Trained model parameters Θ
3: function ComputeNoiseBound(η, c)
4: usym(η, c)←

(
1− η, η

c−1 , . . . , η
c−1

)
5: return usym(η, c) · L(usym(η, c))
6: end function
7: procedure TrainModel(D, η, c, T )
8: B(η, c)← ComputeNoiseBound(η, c)
9: for epoch = 1 to T do

10: for each (xi, yi) in D do
11: q(xi)← ModelPrediction(xi; Θ)
12: loss←

∣∣∣∣∣∣B(η, c)− 1
N

∑N
j=1 L(q(xj), yj)

∣∣∣∣∣∣
1

13: Θ← UpdateModel(Θ, loss)
14: end for
15: end for
16: return Θ
17: end procedure

C Proofs

The following standard result regarding proper losses due to Savage (Savage, 1971; Gneiting and Raftery,
2007) is indispensable in subsequent proofs.
Theorem C.1 (Savage’s Theorem). A differentiable loss function L is (strictly) proper if and only if there
exists a (strictly) concave function J : Rc → R such that for each q ∈ ∆ and k ∈ Y,

L(q, k) = ∇J (q)(ek − q) + J (q).

Moreover, J is precisely the entropy function for L. Thus, in particular, a loss is (strictly) proper if and only
if its associated entropy function is (strictly) concave.
Definition C.2 (Generalised Forward-Correction). Let Lf be a loss function and f : ∆→ ∆ be an injective
function. We say Lf is a ‘generalised forward-corrected loss’ if there exists a loss function L such that for all
q ∈ ∆, k ∈ {1, 2, . . . , c}

Lf (q, k) = L(f(q), k)

We refer to L as the base loss. f can be thought of as a label noise model.
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Lemma C.3. The GCE, SCE and FCE losses can be formulated as generalised forward-correction losses
with a proper base loss. The noise models fGCE , fSCE , fF CE satisfy

(f−1
GCE(p))i = p

1
1−a

i∑c
i=1 p

1
1−a

i

,

(f−1
SCE(p))i = pi

λ−Api
,

fF CE(p) = T −1p,

where T is the invertible stochastic matrix used to define the correction, and λ is a constant selected to
ensure the correct normalisation.

Proof Idea: Suppose that L is a proper loss, let f : ∆ → ∆ be injective noise-model, and consider the
minimiser of the expected loss defined Lf (q, k) := L(f(q), k) at p ∈ ∆;

arg min
q∈∆

H(p, q) = arg min
q∈∆

c∑
i=1

piLf (q, i)

= arg min
q∈∆

c∑
i=1

piL(f(q), i).

Since L is proper then we know this is minimised by q such that f(q) = p. In other words we can uncover
the noise model f by finding the minimiser of the expected loss. This is how we find f for each of the loss
functions. The core idea of the following proof is to write out the expected loss for each loss function and,
for each p ∈ ∆, to find arg minq∈∆ H(p, q). Assuming that this arg min consists of a single point then this
induces a map f(p) := arg minq∈∆ H(p, q) which, for the reasons given, can be identified with the noise
model.

Proof. We begin by introducing the following notation: Let L be an elementwise loss and let p, q be two
distributions, we denote the expected loss of q with respect to p to be HL(q, p) :=

∑c
i=1 piL(q, i).

Let us begin by considering GCE. The expected loss may be written LGCE(q, p) :=
∑c

i=1 piLGCE(q, i) :=∑c
i=1 pi

1−qa
i

a . We find the minima by constructing the Langrangian A(q, λ) :=
∑c

i=1 pi
1−qa

i

a + λ(
∑c

i=1 qi− 1).
By taking partials and equating to zero, we obtain q1−a

i = api

λ ,∀i. Using the fact that
∑c

i=1 qi = 1 one may

find the value of λ. Specifically, λ = a(
∑c

i=1 p
1

1−a

i )1−a. Thus overall one has q∗
i = (api

λ )
1

1−a = p
1

1−a
i∑c

i=1
p

1
1−a
i

.

Let us repeat this for the SCE loss. The expected loss may be written LSCE(q, p) :=
∑c

i=1 piLSCE(q, i) :=∑c
i=1 pi(A(1 − qi) − log(qi)). As before, we construct the relevant Lagrangian and find the stationary

points: B(q, λ) :=
∑c

i=1 pi(A(1 − qi) − log(qi)) + λ(
∑c

i=1 qi − 1). Taking partials and equating to zero
we obtain pi(A + 1

qi
) = λ =⇒ q∗

i = pi

λ−Api
. Here the value of the normalisation constant λ cannot be

found in closed form for high values of c and must be computed numerically. Finally, we consider the
forward-corrected CE loss. We assume that the loss is corrected by some invertible stochastic matrix
T . LF (q, p) :=

∑c
i=1 piLF (q, i) :=

∑c
i=1−pilog((Tq)i). We remark that since CE is proper that this is

minimised on the simplex by p = Tq∗ ⇐⇒ q∗ = T −1p. For each loss, the function f obtained is injective as
desired.

C.1 Entropy Bounds

Lemma C.4. Let Lf be a generalised-correction-loss whose ‘base-loss’ L is strictly proper (Recall the
definition of ‘base-loss’ from Definition 2.1). The noisy risk of any probability estimator q is lower bounded:

Rη
Lf

(q) ≥ Ex∼p(x)[H(p̃(ỹ|x))], (9)

where H is the entropy function of the base-loss. This bound is tight when f is equal to the true noise model.
Equality is attained by setting q(x) = f−1 (p̃(ỹ|x)).2

2Note that if f is the true noise model then p̃(ỹ | x) ∈ f(∆) and the inverse is unique by injectivity.
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Proof. Recollect that Lf is a generalised forward-correction loss with (strictly) proper base loss L: Lf (q, k) =
L(f(q, k)). Let x be some arbitrary point in the support of p(x) and let q(x) be some probability estimator.
The pointwise noisy risk of q at x may be written as

Rη
Lf

(q)(x) :=
c∑

i=1
p̃(ỹ = i|x)Lf (q(x), i)

=
c∑

i=1
p̃(ỹ = i|x)L(f(q(x)), i)

≥
c∑

i=1
p̃(ỹ = i|x)L(p̃(ỹ|x), i)

=: H(p̃(ỹ|x))

The inequality follows from the definition of the properness of L. Inequality 4 follows by taking expectation
with respect to p(x) on both sides. Equality is attained setting by f(q(x)) = p̃(ỹ|x)) for each x, (equivalently
f−1(q(x)) = p̃(ỹ|x)) which is possible when f is the true noise model as then p̃ ∈ f(∆). The injectivity of f
(as specified in the definition of f−proper) means this occurs uniquely at q(x) = f(p̃(ỹ|x)) as desired.

Lemma C.5 (Class-Conditional Label Noise). When the classes are balanced and label noise is asymmetric
and given by transition matrix T , the noisy risk of a probability estimator q may be lower bounded as follows,

Rη
Lf

(q) ≥ 1
c

c∑
i=1
H(T·,i), (10)

where T·,i denotes the ith column of the matrix T .

Proof. The right-hand side of Inequality 4 can be written

Ex∼p(x) [H(p̃(ỹ|x))] = Ex∼p(x)

[
c∑

i=1
p̃(ỹ = i|x)L(p̃(ỹ|x), i)

]
= Ex∼p(x) [Tp(y|x) ·L(Tp(y|x))]

= 1
c

c∑
k=1

(Tek) ·L(Tek),

where the final equality comes from using the fact that classes are balanced and all points are anchor points.
This is equal to

1
c

c∑
k=1

T·,k ·L(T·,k) = 1
c

c∑
k=1
H(T·,k),

as desired.

Corollary C.6 (Uniform Symmetric Label Noise). Given uniform, symmetric label noise at rate η, the risk
associated with any probability estimator can be bounded as follows:

Rη
Lf

(q) ≥ H
(

1− η,
η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
. (11)

This can be written equivalently as

Rη
Lf

(q) ≥ usym(η, c) ·L(usym(η, c)).

where

usym(η, c) :=
(

1− η,
η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
. (12)
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Proof. When label is symmetric every column of the matrix T is a permutation of
(

1− η, η
c−1 , η

c−1 , . . . , η
c−1

)
.

The result follows immediately from the symmetry assumption on the entropy.

Lemma C.7 (Non-Uniform Symmetric Label Noise). Let p(x, y) be a separable distribution, and let p̃(x, ỹ)
be a noisy distribution obtained by applying non-uniform symmetric label noise to p(x, y). Assume that L is
a generalised forward-correction losses loss and let H denote the (symmetric) entropy function of its base loss.
For any probability estimator q, we have the following lower bound on its noisy risk,

Rη
Lf

(q) ≥ Ex∼p(x)

[
H
(

1− η(x), η(x)
c− 1 ,

η(x)
c− 1 , . . . ,

η(x)
c− 1

)]
,

where η(x) denotes the noise rate at x. This inequality is strict and may be obtained by setting q(x) =
f−1(p̃(y | x)), if p̃(y | x) ∈ f(∆).

Proof. The right-hand side of Inequality 4 can be written

Ex∼p(x) [H(p̃(ỹ|x))] = Ex∼p(x)

[
c∑

i=1
p̃(ỹ = i|x)L(p̃(ỹ|x), i)

]
= Ex∼p(x) [T (x)p(y|x) ·L(T (x)p(y|x))] .

Our separability assumption means that p(y|x) = ek for some k. For each x it follows that T (x)p(y | x) is
some rearrangement of the vector (1− η(x), η(x)

c−1 , η(x)
c−1 , . . . , η(x)

c−1 ). By the assumption that the entropy function
is symmetric we may conclude that

Ex∼p(x) [H(p̃(ỹ|x))] = Ex∼p(x)

[
H
(

1− η(x), η(x)
c− 1 ,

η(x)
c− 1 , . . . ,

η(x)
c− 1

)]
.

C.1.1 The General Case

Lemma C.8. Lemma 4.2 establishes that we can lower bound the noisy risk of an estimator by the average
entropy of the noisy conditional class distribution

Rη
Lf

(q) ≥ Ex∼p(x)[H(p̃(ỹ | x)].

Given that the noise rate at x is η(x), this Lemma establishes that H(p̃(ỹ | x) must lie in the following
interval:

H(p̃(ỹ | x) ∈
[
H(1− η(x), η(x), 0, 0, . . . , 0),H

(
1− η(x), η(x)

c− 1 ,
η(x)
c− 1 , . . . ,

η(x)
c− 1

)]
.

In particular, given a fixed noise rate η(x) at x, the highest possible entropy occurs when label noise is
symmetric at x. The lowest entropy occurs when the label noise is pairwise.

Proof. Let q(x) be a probability estimator and let x be some point in the support of p(x). We established
in the proof of Lemma 4.2 that Rη

L(q)(x) ≥ H(p̃(ỹ|x)). We have equality (uniquely) when q(x) = p̃(ỹ|x).
Let T (x) denote the noising transition matrix at x. By the separability assumption, we have some k such
that p(y = k|x) = 1 and p(y = i|x) = 0 otherwise. Thus p̃(ỹ|x) =

∑c
y=1 p̃(ỹ|y, x)p(y|x) = p̃(ỹ|y = k, x) =

(T1k(x), T2k(x), . . . , Tck(x)). Let A(η(x), c) := H(T1k(x), T2k(x), . . . , Tck(x)) where η(x) := 1 − Tkk is the
noise rate at x. The symmetry of H means that, without loss of generality, we may let k = 1. It remains to
show that A(η(x), c) ∈

[
H(1− η(x), η(x), 0, 0, . . . , 0),H

(
1− η(x), η(x)

c−1 , η(x)
c−1 , . . . , η(x)

c−1

)]
.

Upper Limit: We begin by demonstrating that A(η(x), c) is upper bounded byH(1−η(x), η(x)
c−1 , η(x)

c−1 , . . . , η(x)
c−1 ).

Let ∆(η(x)) denote the set of non-negative vectors (a1, a2, . . . , ac−1) such that ai ≤ 1 and
∑c−1

i=1 ai = η(x). We
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wish to show the supremum of H(1−η(x), a1, a2, . . . , ac−1) is attained on ∆(η(x)) by setting ai = η(x)
c−1 for all i.

This corresponds to the label noise being symmetric at x. By Theorem C.1 H is a (strictly) concave function.
Moreover, the symmetry assumption implies thatH is a symmetric function of its variables. Define the function
g(a1, a2, . . . , ac−1) := H(1− η(x), a1, a2, . . . , ac−1). We wish to show that g attains its maximum on ∆(η(x))
when ai = aj for all i, j. We begin by noting that the (strict) concavity of H implies the (strict) concavity of g.
To see this consider two arbitrary vectors x = (x1, x2, . . . xc−1), y = (y1, y2, . . . yc−1). Now g(λx+(1−λ)y) =
H(λx′ + (1− λ)y′) where x′ := (1− η(x), x1, x2, . . . , xc−1) and y′ := (1− η(x), y1, y2, . . . , yc−1). Thus the
concavity of H implies g(λx + (1−λ)y) := H(λx′ + (1−λ)y′) ≥ λH(x′) + (1−λ)H(y′) = λg(x) + (1−λ)g(y)
as desired. Thus g is a symmetric (strictly) concave function of its variables.

Let a∗ denote a maxima of g on ∆(η(x)). Let σ denote the cyclic permutation of the components of a. That
is σ(a1, a2, . . . , ac−1) := (ac−1, a1, a2, . . . , ac−2). By the symmetry of g, we know that if a∗ is a maxima then
so is σi(a∗) for all i: g(a∗) = g(σi(a∗)) for all i ∈ N. The defining property of a concave function is that

g(λ1v1 + λ2v2 + . . . + λd, vd) ≥
d∑

i=1
λig(xi)

where
∑

i

λi = 1.

Hence by the (strict) concavity of g, setting λi := 1
c−1 ;

g

(
η(x)
c− 1 ,

η(x)
c− 1 , . . . ,

η(x)
c− 1

)
= g

(
1

c− 1(a∗ + σ(a∗) + σ2(a∗) + . . . + σc−2(a∗))
)

≥ 1
c− 1g (a∗) + 1

c− 1g (σ(a∗)) + . . . + 1
c− 1g

(
σc−2(a∗)

)
= g(a∗)

Hence g is maximised by setting ai = η(x)
c−1 for all i as desired. This is the unique maxima when the base loss

strictly proper.

Lower Limit: It now remains to show that the lower bound on A(η(x), c) holds. The (strict) concavity means
that g attains it minima on the vertices of ∆(η(x)) (eg (η(x), 0, . . . , 0). To see this let a∗ = (a∗

1, a∗
2, . . . , a∗

c−1)
denote a minima of g on ∆(η(x)). Then we have,

g(a∗
1, a∗

2, . . . , a∗
c−1) = g(a∗

1e1 + a∗
2e2 + . . . + a∗

c−1ec−1)

≥
c−1∑
i=1

a∗
i

η(x)g(η(x)ei)

= g(η(x), 0, . . . , 0) (13)
= H(1− η(x), η(x), 0, 0, . . . , 0)

ei denotes the coordinate vector with 1 in the ith position and zeros elsewhere. Equation 13 holds by
the symmetry of g and since

∑
a∗

i = η(x). Thus we have shown that g is lower bounded by H(1 −
η(x), η(x), 0, 0, . . . , 0) as desired. Moreover, this infimum is obtained on the vertices of ∆(η(x)).

Corollary C.9. Given an average noise rate η := Ex∼p(x)[η(x)], the greatest possible value of Ex∼p(x)[H(p̃(ỹ |
x)] occurs when η(x) is constant:

sup
p(ỹ|x,y)

(
Ex∼p(x)[H(p̃(ỹ | x))]

)
= H

(
1− η,

η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
,

where the supremum is taken over all noise models such that Ex∼p(x)[η(x)] = η.

Proof. We established in the proof of Lemma 4.3 that, given that the noise rate at x is η(x),

H(p̃(ỹ | x) ∈
[
H(1− η(x), η(x), 0, 0, . . . , 0),H

(
1− η(x), η(x)

c− 1 ,
η(x)
c− 1 , . . . ,

η(x)
c− 1

)]
.
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Thus, given a fixed average noise rate η we maximise the expected entropy when the noise model describes
symmetric label noise at each point in dataspace. We now wish to demonstrate that

Ex∼p(x)

[
H
(

1− η(x), η(x)
c− 1 ,

η(x)
c− 1 , . . . ,

η(x)
c− 1

)]
≤ H

(
1− η,

η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
,

which is to say that we maximise the entropy of symmetric noise by setting η(x) = const. H is concave
(strictly concave if the base loss is strictly proper) thus we can use Jensen’s Inequality which tells us that

f(E[X]) ≥ E[f(X)],

if f is concave. Hence, by setting our random variable X := (1− η(x), η(x)/(c− 1), . . . , η(x)/(c− 1)), and
f = H yields the desired result.

D Additional Theory and Discussion

D.1 Example: Forward-Corrected CE

This section gives a breakdown of the example from Table 1. We demonstrate how a neural network classifier
can achieve a training loss lower than any model that has not accessed the training labels, indicating that it
must have overfit.

Consider a separable distribution p(x, y) corrupted by uniform, symmetric label noise at a rate of 40%.
Assume this noise model is known and corrected for in the loss calculation. We utilise a cross-entropy loss,
hence the forward-corrected loss is defined:

LF (q, 1) = − log(0.6q + 0.4(1− q)) = − log(0.4 + 0.2q),
LF (q, 0) = − log(0.4q + 0.6(1− q)) = − log(0.6− 0.2q).

We generate a large noisy dataset from p(x, y), denoted D̃ = {(xi, ỹi)}N
i=1. Our objective is to construct a

model that attains minimal loss on D̃.

Scenario One: No Label Peeking Without peeking at the dataset labels, we minimise the expected loss
on the noisy dataset by setting our model predictions q(x) such that, for every x ∼ p(x), q(x) minimises the
noisy expected loss with respect to LF . For example, consider a point x0 ∼ p(x) with a clean label y0 = 1,
implying p(y0 = 1 | x0) = 1. The noisy conditional class distribution at x0 is p̃(ỹ0 | x0) = 0.6. The noisy
expected loss at x0 is:

HLF
(p̃, q) = 0.6LF (q, 1) + 0.4LF (q, 0)

= −0.6 log(0.4 + 0.2q)− 0.4 log(0.6− 0.2q).

This loss is minimised by setting q = 1, yielding an expected noisy loss of 0.673 at x0. Similarly, for y = 0,
setting q(x) = 0 achieves the same loss.

Scenario Two: Label Peeking Conversely, if a model can peek at the noisy dataset labels before
forecasting, it minimises the empirical risk by setting q(x) = 1 if ỹ0 = 1 and q(x) = 0 if ỹ0 = 0, attaining a
noisy risk of:

LF (q = 1, 1) = LF (q = 0, 0) = − log(0.6) = 0.511.

Therefore, while an over-parameterised neural network model trained for sufficient epochs may achieve a
training loss of 0.511, the lowest possible training loss for an optimal model without label access is 0.673.
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Loss Function Optimal Training Loss
Label Peeking No Peeking

CE 0 0.673
FCE 0.511 0.673

FCE+B 0.673 0.673

Table 5: Comparison of the minimum loss which may be achieved by a model on a (large) dataset when using
different loss function both allowing and not-allowing peeking at the dataset labels assuming 40% symmetric
label noise on a separable binary label dataset. The results highlight a significant overfitting potential in
cross-entropy, as indicated by the large gap between the peeking and non-peeking scenarios. While FCE
introduces an inherent loss bound, improving robustness, it may still permit overfitting. Our bounded variant,
FCE+B, is designed to better align with the dataset and mitigate overfitting.

D.2 Sensitivity of Bounds

The noise-bound is equal to the average entropy of the noisy label distribution when label noise is uniform
and symmetric. When we deviate from these noise conditions, this bound is too high in that an optimal
probability estimator could achieve a (noisy) risk lower than this value without overfitting. Since we use this
bound in all noise conditions, it is essential to get an idea of the size of the gap between our bound and the
minimum achievable risk. Ideally we want this gap to be small. In this section, we look briefly at this topic,
noting that this gap is usually smaller for GCE and SCE than CE. This implies that the noise-bound is more
suitably used with SCE and GCE than with CE when noise deviates from idealised assumptions. Given a
noise rate η, the following Lemma gives the worst-case gap between the true average entropy of the noisy
distribution and the noise-bound, asusming uniform label noise.
Corollary D.1. Suppose we have some uniform label noise at noise rate η. Let H denote the average entropy
of the noisy label distribution, that is

H := Ex∼p(x)[H(p̃(y | x))].

Let B(η, c) denote the noise-bound defined in Definition 4.5. Then

|B(η, c)−H| ≤ H
(

1− η,
η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
−H(1− η, η, 0, 0, . . . , 0)

Proof. This follows immediately from Lemma 4.3 when η(x) has no dependence on x (η(x) = η).

As discussed previously, when noise is uniform but not symmetric, our noise-bound (Definition 4.5) of
H(1 − η, η

c−1 , η
c−1 , . . . , η

c−1 ) is too high since the true minimum achievable risk is lower than this bound.
In other words, there exists a probability estimator which attains a risk lower than our bound. This non-
optimality is the cost we incur as a result of requiring a simple, easily computable bound depending on only
on the noise rate. Importantly, Corollary D.1 gives us a rough way to quantify this non-optimality, using the
difference between the upper and lower entropy limits[

H
(

1− η,
η

c− 1 ,
η

c− 1 , . . . ,
η

c− 1

)
,H(1− η, η, 0, 0, . . . , 0)

]
(14)

When this difference is large, one can construct two types of label noise with the same rate η, such that
the difference in the minimum achievable risks between these noise types is significant. Conversely, when
this gap is small, the minimum achievable risk for any type of label noise at a fixed rate η is similar. This
is a desirable property and suggests that simply setting our bound to our noise-bound is probably suitable
regardless of the specifics of the noising process.

On the top row of Figure 3, we give a plot of the upper and lower limits of Equation 14 for η ∈ (0, 0.5] for
c = 10 (left) and c = 200 (right) for GCE, SCE and CE. The upper limit is given by a dotted line, while
the lower limit is given by a filled line in the same colour. Each loss is scaled so they may be more easily
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Figure 3: On the top row, we plot the upper and lower limits of A(η, c) for η ∈ (0, 0.5] from Corollary D.1 for
the CE (red), SCE (yellow) and GCE (blue) losses for 10 classes (left) and 200 classes (right). On the bottom
row, we plot a ratio of these upper and lower limits instead. We observe that the difference between these
upper and lower limits is far greater for CE than the other losses. This is more pronounced for more classes.

compared. Similarly, in the row below, we plot the ratios of the upper and lower limits of Equation 14 for
each loss. These graphs show that the difference between the upper and lower limits is much greater for CE
than for SCE and GCE. This difference is more pronounced when the number of classes is greater. The result
is that on non-symmetric noise, our noise-bound (Definition 4.5) will generally be less suitable when used in
conjunction with CE than when used with GCE or SCE.

D.3 Noise Model Plots

In Lemma 2.2 we showed that the SCE, GCE and FCE losses are generalised forward-correction losses and
derived the corresponding functions f . (In fact we derived f−1 as this turned out to be easier.) As discussed,
these functions can be interpreted as noise models; f(p(y|x)) ≈ p̃(ỹ|x). In section we provide some plots of
these noise models.

Properness While Definition 2.1 does not require the so-called base loss to be proper, Lemma 2.2 shows
that GCE and SCE can be obtained by applying a non-linear correction to a proper loss. The defining
characteristic of a proper loss is that the expected loss is minimised by setting p = q. Therefore,

HLf
(p̃, q) := p̃ · Lf (q) = p̃ · L(f(q)).

is minimised by setting p̃ = f(q) ⇐⇒ q = f−1(p̃). We make this point because plotting f−1 as a function
of p (which we do below) is the same as plotting arg minq H(p, q) - this allows us to include the MAE loss on
this plot even though it isn’t a generalised forward-correction loss.
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Plots In Figure 4, we present plots of f−1 for the SCE, GCE and FCE loss functions in the binary setting.
The x−axis gives probability of a noisy label being equal to one p̃(ỹ = 1 | x). On the y−axis we plot
p(y = 1 | x) where p = f−1(p̃). For proper losses, f = id, reflecting the fact that they contain encode no
noise model. The graphs for GCE and SCE are remarkably similar. Their graphs portray a noise model
where labels noise occurs more frequently at points where p contains higher intrinsic uncertainty. Conversely
no label noise occurs at anchor points at all. FCE requires a noise model in order to be fully specified; we
assume symmetric label noise at η = 0.4. Varying η will change the steepness of the respective f−1. Finally,
we plot MAE The graphs of SCE and GCE lie between those of MAE and CE. By varying the parameters of
these losses, we can interpolate between them.

Noise Model Plots

Proper Loss
GCE Loss
FCE Loss
SCE Loss
MAE Loss

Noisy probability (p)
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Figure 4: Plot of f−1(p) for SCE (A = 8), GCE (a = 0.7), FCE (η = 0.4), CE and MAE in the binary case.
We have the true probability p on the x-axis and the choice of q, which minimises the expected loss on the
y-axis.

D.4 Explicit Bounds

Using Lemma 2.2 we can produce the noise-bounds (Definition 4.5) for GCE and SCE. The bound for GCE
is given below.

BGCE(η, c) := (1− η)
a

(
1−

(
(1− η)

1
1−a

(1− η)
1

1−a + (c− 1)( η
c−1 )

1
1−a

)a)
+

η

a

1−
(

η
c−1

1
1−a

(1− η)
1

1−a + (c− 1)( η
c−1 )

1
1−a

)a
 .

The noise-bound for SCE is

BSCE(η, c) := (1− η)
(
−log

(
1− η

λ−A(1− η)

)
+ A

(
1− 1− η

λ−A(1− η)

))
+η

(
−log

(
η

λ(c− 1)−Aη

)
+ A

(
1− η

λ(c− 1)−Aη

))
.

Recollect that λ is chosen so that the resulting distribution normalises: 1−η
λ−A(1−η) + η(c−1)

λ(c−1)−Aη = 1 and may
be computed numerically or by solving the resulting quadratic.
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E Further Experiments

E.1 Experiment Details

The number of training epochs was the same for each loss. For MNIST, FashionMNIST, TinyImageNet and
Animals10N, we used 100 epochs; for all other datasets, we used 120 epochs. Each experiment in Tables
1 and 2 (Section 6) was run three times, and the mean and unbiased estimate of the standard deviation is
given. We used a ResNet18 architecture for all experiments except TinyImageNet and Animals10N, where a
ResNet34 was used. Each experiment is carried out on a single GeForce GTX Titan X. We used a batch size
of 300 in all experiments except TinyImageNet and Animals10N, where this is reduced to 200. A learning
rate of 0.0001 was used for all losses except MAE (lr = 0.001) and ELR where we used their recommended
learning rate of 0.01. We use a learning rate scheduler which scales our learning rate by 0.6 at epoch 60. Our
implementation of the Truncated Loss comes from the official github implementation of GCE. Likewise, we
use the official codebase for our implementation of ELR. Other losses are re-implementations based on details
given in the respective papers. Our SCE loss used the recommended hyperparameter of A = 8. Our GCE
loss used a = 0.4. FCE requires one to define a noise model. In each case, we assume noise is symmetric at
the relevant rate. For Animals10N, this rate is set to 11%, which is the estimated noise rate.

E.1.1 CE with Prior

One of the losses used in our experiments is cross-entropy with a ‘prior’ term (CEP). We give an explanation
of the motivation for this additional loss term and details of how it’s implemented.

In Section 4.2 we assumed that the un-noised distribution p(x, y) is separable (i.e. for each x, p(y = k | x) =
1, p(i ̸= k | x) = 0) for some k ∈ Y . Thus, in the case of symmetric noise with a known noise rate η, the noisy
label distribution p̃(ỹ|x) is of the form for each x:

p̃(ỹ | x) =

 η

c− 1 ,
η

c− 1 , . . . , 1− η︸ ︷︷ ︸
kth position

, . . . ,
η

c− 1

 (15)

We argue, therefore, that it is reasonable to introduce a term to penalise our model when its outputs deviate
from this distribution. This is achieved through a regularisation term which measures the KL-divergence
between our model probabilities and the desired distribution (Equation 15). Let pη := (p1, p2, . . . , pc) :=
(1− η, η

c−1 , . . . , η
c−1 ) and let q1, q2, . . . , qc denote the probabilities output by our model. We sort the qi into

descending order (which we denote as qσ(i)) and define our prior term as:

Lprior(q, pη) := −
c∑

i=1
pi log(qσ(i)) (16)

Thus, overall we have LCEP (q, i) := LCE(q, i) + Lprior(q, pη). Tables 1 and 2 in Section 6 show that this
additional term generally results in additional improvement over using the noise-bound alone. This prior
acts as a method of feasible set reduction: There are many different probability estimators which achieve a
training error equal to our noise-bound. Therefore, by introducing a prior term (Equation 16) we can further
restrict the set of admissible models.

E.2 Varying The Bound

We explore treating the bound ‘B’ as a hyperparameter to assess the proximity of the noise-bound to
optimality. This consists of doing a grid search in a small vicinity of the noise-bound for each loss function
and recording how this impacts clean test performance. Tables 7, 8 include the result of these experiments,
indicated with a star (e.g. CE+B*) together with the results of the other loss functions. When varying
the bound from the noise-bound doesn’t yield an improvement, the starred and unstarred accuracy values
are the same. In slightly over half of our experiments, we find that we may achieve an improvement by
perturbing the bound. This improvement is generally minor. Our assumption that the underlying clean
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dataset is separable means one should be able to improve performance by raising the bound to account for
the additional randomness in the label distributions. Generally, we find this to be so. An exception to this
pattern are the non-uniform and asymmetric datasets. In these cases, one typically benefits from marginally
lowering the bound. This observation is consistent with our expectation; the noise-bound is a ‘worst-case’
entropy, attained only by uniform symmetric label noise. For other noise models the noise-bound will be
higher than strictly necessary to prevent overfitting and may benefit from being slightly decreased. The
values of the optimal bounds may be found in a table in Appendix E.

MNIST Fashion EMNIST CIFAR10 CIFAR100 ACIFAR100 NU-EMNIST
0.4 0.6 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.6

FCE -0.05 -0.05 0.0 -0.05 0.05 0.05 0.05 0.1 0.03 0.0 -0.1 -0.35 -0.2
GCE 0.0 0.0 0.05 0.0 0.03 0.05 0.05 0.05 0.05 0.0 0.05 0.05 0.0
SCE 0.0 0.05 0.0 0.2 0.2 0.1 0.0 0.2 0.2 0.2 0.0 0.0 0.0
CEB 0.0 0.0 0.0 0.0 0.05 0.05 0.05 0.05 0.1 0.1 0.2 0.0 -0.6
CEP -0.15 -0.15 -0.15 -0.15 0.0 0.02 0.0 0.0 -0.08 -0.08 -0.08 -0.08 -0.1

Table 6: table giving the offset of the ‘optimal’ bound from the noise-bound. Here a negative (blue) number
means that the bound is greater than the noise-bound. Positive (red) means the optimal bound is lower.
Grey means that the optimal bound is zero, i.e. no offset.

MNIST FashionMNIST EMNIST CIFAR10

Losses 0.4 0.6 0.2 0.4 0.2 0.4 0.2 0.4Top 1 Top 5 Top 1 Top 5
MSE 93.3±0.47 85.8±0.95 84.8±0.22 80.6±0.84 82.9±0.29 98.1±0.04 80.2±0.19 97.1±0.07 78.7±1.51 56.4±0.11
MAE 97.9±0.08 96.4±0.08 83.2±0.10 82.2±0.37 49.8±2.83 52.2±0.10 50.4±1.14 51.4±0.96 88.6±1.34 78.9±5.95
NCE 97.8±0.06 96.0±0.25 87.7±0.26 86.3±0.14 84.5±0.25 97.9±0.05 82.6±0.81 96.7±0.03 89.3±0.40 86.0±0.81
MixUp 95.8±1.24 86.8±0.85 86.9±0.10 82.3±0.54 84.3±0.08 98.1±0.04 81.6±0.48 97.1±0.08 86.0±0.46 77.9±0.49
Spher. 95.0±0.41 88.1±0.82 87.2±0.04 84.1±0.75 84.6±0.12 98.3±0.05 83.2±0.29 98.1±0.58 86.6±0.01 72.1±0.80
Boot. 86.6±0.56 71.2±1.17 82.0±0.61 73.4±1.06 80.5±0.24 96.7±0.06 77.3±0.98 95.0±0.25 77.0±1.57 58.2±2.99
Trunc. 97.1±0.12 94.2±0.39 87.8±0.29 85.3±0.77 84.1±0.53 97.4±1.03 83.1±0.55 97.2±1.00 88.3±0.56 84.2±0.69
CL 82.7±0.57 67.5±1.83 81.2±0.34 73.1±0.66 79.6±0.17 96.4±0.05 75.1±0.67 94.2±0.24 76.0±2.16 59.4±4.20
ELR 98.1±0.04 97.8±0.07 85.3±0.23 83.4±0.02 81.8±0.26 97.5±0.21 76.6±0.10 96.5±0.11 88.1±0.82 85.7±0.06
FCE. 95.4±0.25 92.3±0.13 83.6±0.11 79.9±0.78 83.1±0.12 98.4±0.20 80.6±0.12 98.0±0.03 84.7±0.40 75.1±0.04
FCE+B 95.7±0.18 92.7±0.74 84.8±0.26 81.7±0.27 83.4±0.09 98.5±0.03 81.6±0.51 98.1±0.15 86.7±0.21 82.2±0.06

FCE+B* 96.7±0.17 94.3±0.50 84.8±0.26 83.3±0.22 84.4±0.06 98.6±0.13 83.1±0.42 98.1±0.10 87.2±0.20 82.2±0.06

GCE 94.4±0.36 83.8±1.14 86.4±0.24 81.6±0.37 84.3±0.13 98.4±0.08 82.7±0.07 97.9±0.02 81.1±0.72 60.0±1.31
GCE+B 96.6±0.22 94.0±0.13 86.5±0.56 85.5±0.13 84.1±0.29 98.4±0.04 82.8±0.28 98.0±0.06 86.1±0.22 79.0±1.17

GCE+B* 96.6±0.22 94.0±0.13 87.0±0.04 85.5±0.13 84.3±0.09 98.4±0.06 83.6±0.25 98.2±0.03 86.7±0.07 80.2±0.83
SCE 89.5±5.29 70.2±0.69 82.7±0.64 74.4±0.37 82.1±0.33 96.8±0.10 79.6±0.61 95.4±0.15 78.2±0.42 59.0±4.43
SCE+B 97.0±0.16 93.4±0.29 87.5±0.22 85.2±0.98 83.5±0.29 97.3±0.14 81.8±0.52 96.4±0.20 88.9±0.44 84.7±0.37

SCE+B* 97.0±0.16 93.7±0.52 87.5±0.22 85.8±0.67 83.6±0.03 97.4±0.02 81.8±0.52 96.5±0.26 88.9±0.44 84.9±0.20
CE 80.8±2.31 67.3±0.80 80.9±1.11 72.1±2.16 79.9±0.28 96.4±0.08 75.6±0.20 94.2±0.24 76.9±1.22 59.9±2.15
CE+B 96.2±0.32 93.0±0.09 87.9±0.10 84.7±0.37 80.8±0.08 97.0±0.04 78.9±0.12 96.1±0.26 84.5±0.73 76.0±1.13

CE+B* 96.2±0.32 93.0±0.09 87.9±0.10 84.7±0.37 81.5±0.11 97.3±0.02 79.0±0.09 96.2±0.01 84.8±0.55 78.6±1.28
CEP 97.5±0.08 92.1±0.44 87.8±0.12 84.8±0.23 85.5±0.10 98.1±0.07 84.3±0.22 97.6±0.14 84.2±0.51 58.2±2.94
CEP+B 95.6±0.32 85.5±0.77 88.1±0.31 84.2±0.33 85.8±0.12 98.3±0.02 84.8±0.10 98.0±0.04 88.5±0.32 85.1±0.20

CEP+B* 98.5±0.05 97.9±0.11 88.4±0.04 87.2±0.21 85.8±0.12 98.3±0.02 84.8±0.10 98.0±0.16 88.5±0.32 85.1±0.20

Table 7: Test accuracies obtained by using different losses on the noisy MNIST/ FashionM-
NIST/EMNIST/CIFAR10 datasets. Losses implementing the noise-bound shaded in blue. When using this
bound provides benefit, the corresponding value is boxed . Overall top values in bold.

E.2.1 Optimal Bounds

In our experiment tables in Section E.2, we give results using our noise-bounds. We additionally give results
where the bound is treated as a hyperparameter. We do not search over the entire space; rather, we do
a grid search near the noise-bound. For MNIST, FashionMNIST, EMNIST, CIFAR10 and CIFAR100, we
search over {−0.2,−0.15,−0.1, . . . , 0.15, 0.2} where e.g. 0.2 means that we add 0.2 onto our noise-bound
(B(η, c) 7→ B(η, c) + 0.2). For Asymmetric CIFAR100 (ACIFAR100) and Non-uniform EMNIST (NU-
EMNIST), this range is broadened to {−0.6,−0.55, . . . 0.55, 0.6}. The bounds which give the best results
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CIFAR100 ASYM-CIFAR100 Non-Uniform-EMNIST

Losses 0.2 0.4 0.2 0.4 0.6
Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5 Top 1 Top 5

MSE 57.2±0.93 78.6±0.25 40.6±0.38 63.0±0.24 56.3±0.11 82.6±0.22 40.7±0.12 74.4±0.25 44.7±2.66 86.7±3.10
MAE 10.0±0.11 13.8±0.28 7.6±1.89 11.6±1.25 7.1±6.02 11.1±6.6 11.1±5.43 25.1±5.76 9.8±1.74 23.1±1.80
NCE 38.7±3.13 51.8±3.77 19.1±0.20 28.8±0.15 16.3±1.24 25.4±1.80 21.8±1.24 37.2±1.80 18.0±1.17 38.8±1.93
MixUp 59.6±0.31 81.5±0.39 51.3±8.63 75.8±8.09 61.2±0.88 86.0±1.12 47.2±0.60 81.3±0.23 52.4±0.80 95.5±0.08
Spher. 57.7±0.18 82.9±0.54 48.8±0.51 74.3±0.73 54.2±0.32 81.2±0.29 39.2±0.31 72.1±0.15 41.9±0.10 94.4±0.04
Boot. 54.0±0.37 76.4±0.39 37.7±0.89 60.9±1.52 56.0±0.34 83.8±0.03 43.2±0.35 78.3±0.20 49.1±0.29 95.3±0.42
Trunc. 58.1±0.36 82.7±0.37 50.9±1.17 77.2±0.59 56.3±0.62 82.3±0.61 45.2±0.81 75.6±0.29 23.7±0.98 40.1±1.24
CL 53.0±0.21 76.3±0.19 36.3±0.77 60.1±0.66 55.3±0.48 83.5±0.28 42.4±0.45 78.1±0.14 48.2±0.45 95.0±0.04
ELR 10.4±0.24 31.7±0.44 10.0±0.64 30.1±0.88 10.8±0.21 32.7±0.53 10.3±0.39 30.8±0.35 40.3±0.39 93.0±0.24
FCE 56.9±0.58 79.2±0.14 43.7±0.15 66.2±0.19 55.3±0.54 83.5±0.24 41.4±0.55 77.3±0.75 39.0±0.05 67.8±0.47
FCE+B 56.1±2.22 81.8±1.37 50.2±0.02 77.2±0.19 54.2±0.44 83.3±0.43 43.8±0.02 77.5±0.13 40.0±0.35 73.2±0.08

FCE+B* 56.1±2.22 82.2±0.39 50.2±0.02 77.2±0.19 54.2±0.44 83.4±0.24 45.1±0.37 79.9±0.24 43.1±0.40 79.4±0.12
GCE 60.0±0.13 82.6±0.63 44.9±0.07 67.2±0.34 53.8±0.55 81.6±0.14 39.4±0.44 74.0±0.36 44.8±0.62 91.2±0.70
GCE+B 59.4±0.02 83.5±0.24 50.3±0.11 75.3±0.64 55.4±0.55 83.0±0.35 46.5±1.44 77.7±0.35 47.1±0.20 93.5±0.43

GCE+B* 61.0±1.33 83.9±0.74 50.3±0.11 75.3±0.64 56.6±0.10 83.8±0.88 47.7±0.35 77.9±0.03 47.1±0.20 93.5±0.43
SCE 55.9±0.53 76.5±0.15 38.7±0.60 60.9±0.41 57.5±0.19 83.7±0.17 43.3±0.87 77.5±0.75 47.2±0.33 92.5±0.01
SCE+B 55.5±0.90 77.4±0.84 47.1±1.32 69.2±1.18 57.9±0.83 83.7±0.41 50.0±1.62 80.4±0.65 47.9±0.80 93.8±0.05

SCE+B* 56.6±1.07 78.5±0.88 47.3±1.16 69.6±0.90 57.9±0.83 83.7±0.41 50.0±1.62 80.4±0.65 47.9±0.80 93.8±0.05
CE 52.3±1.35 75.6±0.93 35.3±1.14 59.3±0.81 54.9±0.12 83.3±0.25 42.4±0.16 78.9±0.56 48.6±0.11 95.3±0.10
CE+B 50.9±1.01 76.5±0.86 39.9±1.02 65.8±1.19 52.9±1.86 83.2±0.88 34.7±2.51 73.4±1.50 45.5±5.11 93.0±0.16

CE+B* 50.9±1.01 78.2±1.16 39.9±1.02 68.1±0.63 53.3±0.89 83.2±0.88 45.9±0.40 79.7±0.29 50.2±0.35 95.9±0.14
CEP 58.8±0.87 78.6±0.38 43.5±0.24 65.1±1.27 59.4±0.08 82.2±0.03 46.5±0.17 76.4±0.25 48.2±0.05 95.4±0.07
CEP+B 62.3±0.87 85.1±0.46 54.3±0.86 79.2±0.93 63.0±0.92 87.5±0.32 53.0±0.28 82.8±0.13 45.0±0.48 95.0±0.08

CEP+B* 62.9±0.79 85.1±0.46 55.3±0.37 79.8±0.08 63.0±0.14 87.5±0.32 55.6±0.66 83.8±0.11 47.7±0.19 95.9±0.23

Table 8: Test accuracies for different losses on the noisy CIFAR100/Asym-CIFAR100/Non-Uniform EMNIST
datasets. Losses implementing the noise-bound shaded in blue. When using this bound provides benefit, the
corresponding value is boxed . Overall top values in bold.

TinyImageNet (0.2) TinyImageNet (0.4) Animals
Losses Top 1 Top 5 Top 1 Top 5

L2 (MSE) 42.91 67.02 29.42 53.13 80.97
MAE 3.86 5.58 3.94 5.54 54.67

NCE-MAE 7.63 10.24 6.29 10.70 80.85
Mix-Up 47.13 70.08 31.05 58.96 83.76

Bootstrap 40.04 61.94 25.69 46.65 82.11
Truncated 43.35 63.67 38.14 59.99 81.69
Mix-Up 47.13 70.08 31.05 58.96 83.10

Curriculum 41.81 64.53 27.57 48.84 81.68
ELR 44.95 66.65 34.66 55.72 82.62
FCE 43.81 64.97 48.85 29.92 81.82

FCE+B 51.18 73.79 46.34 69.92 82.40
GCE 39.81 60.51 26.93 45.17 81.13

GCE+B 47.40 71.37 39.13 63.75 81.37
SCE 39.81 60.51 26.93 45.17 82.59
CE 39.34 61.82 25.84 46.08 81.45

CE+B 38.47 61.85 30.00 52.61 80.72
CEP 44.39 64.56 33.33 51.45 82.06

CEP+B 47.85 71.00 40.56 65.15 81.79

Table 9: Test accuracies obtained by using different losses on the noisy TinyImageNet and Animals10N
datasets. Losses implementing the noise-bound are shaded in blue. When using this bound provides benefit,
the corresponding value is boxed . Overall top values are in bold.

are given in Table 6. When the optimal bound is higher than the noise-bound, this is highlighted in blue.
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Otherwise, the cell is indicated in red. In our original table, we have columns for Top1 and Top5 accuracy
which often have slightly different optimal bounds. For brevity, we combine these by taking a mean of these
values.
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