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ABSTRACT

Large language models (LLMs) can suffer from hallucinations when generating
text. These hallucinations impede various applications in society and industry
by making LLMs untrustworthy. Current LLMs generate text in an autoregres-
sive fashion by predicting and appending text tokens. When an LLM is uncertain
about the semantic meaning of the next tokens to generate, it is likely to start
hallucinating. Thus, it has been suggested that predictive uncertainty is one of
the main causes of hallucinations. We introduce Semantically Diverse Language
Generation (SDLG) to quantify predictive uncertainty in LLMs. SDLG steers
the LLM to generate semantically diverse yet likely alternatives for an initially
generated text. This approach provides a precise measure of aleatoric semantic
uncertainty, detecting whether the initial text is likely to be hallucinated. Exper-
iments on question-answering tasks demonstrate that SDLG consistently outper-
forms existing methods while being the most computationally efficient, setting a
new standard for uncertainty estimation in LLMs.

1 INTRODUCTION

Hallucinations hinder a broad use of LLMs in practical applications and critical decision-making
processes as they make them untrustworthy (Manakul et al., 2023). Hallucinations are fragments of
generated text that, despite appearing cohesive, are not factual. At the time of writing, there is no
consensus on the exact nature of all causes of hallucination. We consider generated text to be hallu-
cinated if it stems from contradictory or non-existent facts in the training data or input prompt. Such
hallucinations are conjectured to be mainly caused by the predictive uncertainty inherent to proba-
bilistic models (Xiao and Wang, 2021). This type of hallucination is also referred to as confabulation
(Farquhar et al., 2024) and we shall use the two terms interchangeably. While uncertainty esti-
mation for classification tasks has been developed extensively (Hüllermeier and Waegeman, 2021;
Gawlikowski et al., 2023), it remains a challenging problem for autoregressive tasks, particularly in
natural language generation (NLG).

Uncertainty estimation in NLG involves assessing the uncertainty of an initially generated text (out-
put sequence) for a given prompt (input sequence). Current methods typically assess this uncer-
tainty by generating multiple output sequences, usually with a single given language model (Xiao
and Wang, 2021; Malinin and Gales, 2021; Kuhn et al., 2023; Lin et al., 2023; Duan et al., 2023;
Manakul et al., 2023). Importantly, Kuhn et al. (2023) propose to consider semantic clusters rather
than individual output sequences by grouping them according to their semantic equivalence. The se-
mantic uncertainty of the initial output sequence should only increase if a language model is likely
to generate alternative output sequences that differ in semantics. Hence, semantic uncertainty in-
volves estimating the probability that a language model generates an output sequence belonging to a
specific semantic cluster. Empirical results confirm that incorporating semantics into uncertainty es-
timation in language models achieves state-of-the-art performance (Kuhn et al., 2023). The current
approach utilizes Monte Carlo (MC) approximation via multinomial sampling to generate alterna-
tive output sequences that are classified into semantic clusters by a natural language inference (NLI)
model (Kuhn et al., 2023). Sample sizes typically range from the low double-digit range (Malinin
and Gales, 2021; Kuhn et al., 2023; Duan et al., 2023) to only a few hundred for studies conducted
on large-scale compute (Kadavath et al., 2022), as autoregressive generations are computationally
expensive. This is suboptimal, as the current sampling methods are imprecise with a small number
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Figure 1: Using standard multinomial sampling to generate text does not account for its seman-
tics. Thus, it relies on chance to obtain semantically diverse output sequences and is prone to miss
them. SDLG addresses this by specifically searching for likely, but semantically different output
sequences. Thereby, the estimation of semantic uncertainty in language models is improved.

of samples (Bishop, 2006) and computationally too expensive to ensure high precision with a large
number of samples.

To improve upon the limitations of the current state-of-the-art approach, we introduce Semantically
Diverse Language Generation (SDLG), a method that efficiently estimates semantic uncertainty by
utilizing importance sampling to generate output sequences. We introduce a proposal distribution
that samples semantically diverse output sequences (see Fig. 1). SDLG utilizes the NLI model
not only for transforming the space of generated output sequences to semantic clusters but also
for computing the contribution of every token to the final semantics. Subsequently, the semantically
most relevant tokens are substituted to explicitly steer the generation toward semantically diverse yet
likely alternative output sequences, while correcting for the increased sampling probability using
importance sampling. This can be viewed as stress testing the language model, unveiling output
sequences that are valuable summands for estimators of semantic uncertainty. They are generated
by the current sampling methods only by chance, making SDLG a more systematic and reliable
method for capturing semantic uncertainty. Our main contributions are:

• We propose a novel method for generating semantically diverse yet likely output sequences. Em-
pirical results demonstrate that our method outperforms existing methods for uncertainty estima-
tion in NLG, specifically across a variety of free-form question-answering tasks.

• We establish a theoretical foundation for uncertainty measures in NLG and introduce theoretically
grounded estimators for aleatoric semantic uncertainty, also known as semantic entropy. Applying
these estimators enhances empirical performance of uncertainty estimation in language models.

2 MEASURING PREDICTIVE UNCERTAINTY IN NLG

Uncertainty estimation in classification tasks has already been well-established (Gal and Ghahra-
mani, 2016). However, these measures cannot be directly applied to uncertainty estimation in NLG.
Two key aspects, which differ from estimating uncertainty in classification tasks, have to be consid-
ered. First, a sequence of autoregressive predictions collectively forms the final output of a model.
Second, unlike classification tasks where classes usually are mutually exclusive, different output
sequences may be equivalent in their semantic meaning. To account for this aspects, Kuhn et al.
(2023) introduce semantic entropy, yet without proper theoretical grounding. In the following, we
derive semantic entropy starting from the well-studied uncertainty estimation in classification tasks.

Predictive uncertainty in classification. We briefly revisit uncertainty estimation for classifica-
tion tasks. In this work, we quantify the predictive uncertainty of a single given “off-the-shelf”
model. Given are a classification model parametrized by w and an input vector x. The predictive
distribution under the given model is denoted as p(y | x,w). We assume a fixed dataset D that
was sampled according to the predictive distribution p(y | x,w∗) under true model parameters
w∗. Thus, we assume that the model class can approximate the true distribution sufficiently well,
a common and usually necessary assumption (Hüllermeier and Waegeman, 2021). The posterior
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distribution p(w | D) denotes how likely w matches w∗. Following Schweighofer et al. (2023a;b),
the predictive uncertainty of a single given model parametrized by w is given by

Ew̃

[
CE(p(y | x,w); p(y | x, w̃))

]︸ ︷︷ ︸
total

= H(p(y | x,w))︸ ︷︷ ︸
aleatoric

+Ew̃

[
KL(p(y | x,w) ∥ p(y | x, w̃))

]︸ ︷︷ ︸
epistemic

(1)

where Ew̃ = Ew̃∼p(w̃|D). The total uncertainty, given by the posterior expectation of the cross-
entropy CE(·; ·), is additively decomposed into aleatoric and epistemic uncertainty. The aleatoric
uncertainty is the Shannon entropy H(·) of the predictive distribution under the given model. The
epistemic uncertainty is the posterior expectation of the Kullback-Leibler divergence KL(· ∥ ·) be-
tween the given model and possible true models according to their posterior probability.

Predictive uncertainty in NLG. Given are an autoregressive language model parametrized by w,
a vocabulary V , and an input sequence of tokens x = (x1, ..., xM ) with x ∈ V . An output of
the language model is a sequence of tokens y = (y1, ..., yT ) ∈ Y with y ∈ V . The predictive
distribution at step t of the output sequence y is conditioned on both the input sequence and all
previously generated tokens, denoted as p(yt | x,y<t,w). The probability of an output sequence is
the product of the individual token probabilities: p(y | x,w) =

∏T
t=1 p(yt | x,y<t,w) (Sutskever

et al., 2014). In practice, p(y | x,w) is often length-normalized to not favor short output se-
quences (Cover and Thomas, 2006; Malinin and Gales, 2021), which results in p̄(y | x,w) =

exp
(

1
T

∑T
t=1 log p(yt | x,y<t,w)

)
.

Evaluating the whole set of possible output sequences Y is usually intractable, as it scales exponen-
tially with the sequence length T , thus O(|V|T ). Furthermore, as mentioned previously, a language
model that likely generates different output sequences from the same input sequence should not nec-
essarily indicate high predictive uncertainty if the output sequences mean the same thing. Hence,
predictive uncertainty should be considered high only when different output sequences also exhibit
semantically diverse meanings (Kuhn et al., 2023). Instead of directly utilizing the distribution over
output sequences p(y | x,w), the distribution over semantic clusters

p(c | x,w) =
∑
Y

p(c | y,x,w) p(y | x,w) =
∑
Y
1{y ∈ c | x,w} p(y | x,w) (2)

is used to derive the predictive uncertainty in the NLG setting. Here, p(y | x,w) expresses the
probability of generating an output sequence y and p(c | y,x,w) expresses the probability of y
belonging to a certain semantic cluster c ∈ C. Although a specific output sequence might potentially
be attributed to more than one semantic cluster, we follow Kuhn et al. (2023); Farquhar et al. (2024)
in assuming that each output sequence is attributed to a single semantic cluster. They demonstrate
that assigning semantic clusters by predicting the semantic equivalence between generated output
sequences with an NLI model empirically performs well. The NLI model takes two sequences as
input and predicts whether they entail or contradict each other. Two output sequences are semantic
equivalent if they entail each other in both orders and thus belong to the same semantic cluster
by definition. Consequently, p(c | y,x,w) is equivalent to 1{y ∈ c | x,w}, where 1{y ∈ c |
x,w} = 1 iff y belongs to semantic cluster c. For the set of all possible output sequences Y , p(c |
x,w) expresses the probability of the language model generating an output sequence belonging to a
specific semantic cluster for a given input sequence. Adopting the definition of predictive uncertainty
in Eq. (1), the total predictive semantic uncertainty

Ew̃

[
CE(p(c | x,w); p(c | x, w̃))

]︸ ︷︷ ︸
total

= H(p(c | x,w))︸ ︷︷ ︸
aleatoric

+Ew̃

[
KL(p(c | x,w) ∥ p(c | x, w̃))

]︸ ︷︷ ︸
epistemic

(3)

can again be additively decomposed into aleatoric and epistemic semantic uncertainty. The epistemic
semantic uncertainty is again a posterior expectation, which is particularly challenging to estimate
for current language models with billions of parameters (Zhang et al., 2022; Touvron et al., 2023).
The aleatoric semantic uncertainty turns out to be precisely the semantic entropy proposed by Kuhn
et al. (2023). Semantic entropy is the entropy of the semantic cluster probability distribution,

H(p(c | x,w)) = −
∑
C

log p(c | x,w) p(c | x,w) (4)

under a single given language model. To determine if a language model is uncertain about its output,
it is essential to accurately estimate its semantic entropy, as addressed in the following section.
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3 ESTIMATING ALEATORIC SEMANTIC UNCERTAINTY IN NLG

We now discuss practical considerations regarding the estimation of the aleatoric semantic uncer-
tainty, namely the semantic entropy as given in Eq. (4). First, we find that directly estimating it by
obtaining samples from semantic clusters is theoretically not justified in the current setting. Instead,
the underlying distribution of semantic clusters itself has to be estimated through sampling. Second,
to effectively estimate this distribution of semantic clusters, we utilize importance sampling. These
two insights contribute to a more accurate uncertainty estimation in NLG.

Monte Carlo (MC) estimation. Kuhn et al. (2023) propose to approximate the semantic entropy
by directly using the MC estimator

H(p(c | x,w)) ≈ − 1

N

N∑
n=1

log p(cn | x,w) , cn ∼ p(c | x,w) . (5)

However, we cannot directly sample from p(c | x,w), but only from p(y | x,w). Therefore, it
is impossible to directly use the estimator in Eq. (5). Alternatively, one can first approximate the
semantic cluster probability distribution

p(c | x,w) ≈ 1

N

N∑
n=1

1{y ∈ c | x,w} , yn ∼ p(y | x,w) . (6)

Output sequences yn are simply generated via multinomial sampling (Kuhn et al., 2023). This
estimate of the semantic cluster probability distribution can directly be used to approximate the
semantic entropy. Since usually not all clusters c ∈ C are found through sampling, the sum is taken
over observed clusters c1, ..., cM to which {yn}Nn=1 were assigned by the NLI model, resulting in

H(p(c | x,w)) ≈ −
M∑

m=1

log p(cm | x,w) p(cm | x,w) . (7)

In Sec. 6 we empirically show that this proper estimator for semantic entropy outperforms the im-
proper estimator implemented by Kuhn et al. (2023). For further details see Sec. C in the appendix.

Importance sampling. Due to the computational cost of autoregressively sampling from multi-
billion-parameter language models, the sample size N is usually kept very low in practice. However,
this implies that the variance of the MC estimator in Eq. (6) remains high. To lower the variance,
a standard technique is importance sampling according to a proposal distribution q instead of the
target distribution p (Bishop, 2006). Eq. (6) thus changes to

p(c | x,w) ≈ 1

N

N∑
n=1

1{y ∈ c | x,w} p(y
n | x,w)

q(yn | x,w)
, yn ∼ q(y | x,w) . (8)

The quality of the approximation strongly depends on the choice of the proposal distribution. It
should closely approximate the target distribution and have good overlap, i.e. the proposal distribu-
tion should have probability mass everywhere the target distribution has substantial probability mass
(Bishop, 2006). Thus, a good proposal distribution should cover semantic clusters with substantial
probability mass under the target distribution. In the following section, we describe our method
to construct an empirical proposal distribution q(y | x,w) with high mass at important semantic
clusters by explicitly promoting both the likelihood and diversity of output sequences.

4 SEMANTICALLY DIVERSE LANGUAGE GENERATION

Estimating the semantic entropy according to Eq. (7) requires approximating the semantic clus-
ter probability distribution. This probability distribution can either be approximated according to
Eq. (6), or via importance sampling according to Eq. (8). MC estimation using output sequences
from multinomial sampling is straightforward, as one can directly sample from the original distri-
bution p(y | x,w) without the need for additional weighting or adjustment. However, the resulting
estimator has high variance and sampling only considers the likelihood and not the semantic diver-
sity. Furthermore, multinomial sampling may miss likely output sequences that capture important
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information about semantic cluster probabilities, especially if those sequences require choosing a
lower-likelihood token. This limits the accurate estimation of the semantic entropy, as sampling
semantically diverse output sequences essentially occurs by chance. Importance sampling, on the
other hand, can overcome these limitations by incorporating semantic diversity into the sampling
procedure. However, this requires a beneficial proposal distribution q(y | x,w). We propose
Semantically Diverse Language Generation (SDLG) to sample according to such an empirical pro-
posal distribution. It seeks to efficiently explore semantic clusters, capturing important modes of
p(c | x,w) that might be missed by multinomial sampling.

Semantic diversity and where to find it. Given an input sequence x and an initial output sequence
y′ generated by a language model, how can we generate another output sequence that has a different
semantics from y′? In natural language, individual words contribute to the semantics of the sentence
to varying extents. For instance, consider the sentence “Einstein proposed the theory of relativity”.
The word “proposed” can be substituted with “introduced” without altering the semantics. However,
replacing “Einstein” with “Newton” would change the semantics. Therefore, our method focuses
on identifying and substituting the tokens that are most critical to the semantics of y′ (see Fig. 1).
This is achieved by introducing three scores at the token level that quantify each token’s relevance
in altering the semantics:

1. Attribution score: Each initial token yi ∈ y′ is scored by its contribution to the semantic
meaning of y′. We refer to this initial token’s score as Ai.

2. Substitution score: Each alternative token vj ∈ V is scored by its influence in altering the
semantic meaning when substituting yi with vj . We refer to this alternative token’s score as Sij .

3. Importance score: Each alternative token vj ∈ V is scored by the probability the language
model assigns to vj given the context up to yi. We refer to this alternative token’s score as Iij .

At a high level, SDLG explicitly substitutes tokens based on these scores. High scores indicate a
high potential to give rise to a likely output sequence with semantics different from y′, as detailed
below. Before that, we describe how to calculate the three scores.

Computing the attribution and substitution scores requires a loss L, which expresses to what degree
y′ is semantically different from itself. It is computed utilizing an NLI model that predicts whether
two sequences entail or contradict each other. First, the initial output sequence is fed into the NLI
model twice, resulting in a high probability of entailment. Second, the loss L is computed for the
target prediction contradiction. This loss is used to compute the gradient ∇zi

L w.r.t. the token
embedding zi that represents the initial token yi. This gradient vector quantifies the required change
in zi to achieve a high probability of contradiction, thus altering the semantic meaning of y′.

Attribution score. Our first objective is to identify which initial token yi should be changed accord-
ing to the computed gradient vector. An initial token’s attribution score

Ai = ∥zi ⊙∇ziL∥2 (9)

is defined as the Euclidean distance ∥ · ∥2 of the gradient vector multiplied elementwise with the
embedding vector zi that represents the initial token yi. The higher the attribution score Ai, the
higher the impact of the token yi on altering the semantics when being changed (Adebayo et al.,
2018). We note that different attribution methods could be utilized and future work may benefit
from exploring these methods to compute Ai (Madsen et al., 2022).

Substitution score. Identifying which initial token should be changed is crucial but not sufficient
on its own. We also have to identify which token to change to, as not every substitution alters the
semantic meaning of the initial output sequence. Thus, our second objective is to identify appropriate
alternative tokens vj that most effectively alter the semantics when substituting an initial token yi.
The alternative token’s substitution score

Sij =
(zi − zj) · ∇ziL

∥zi − zj∥2 ∥∇zi
L∥2

(10)

is defined as the cosine similarity sim(·, ·) between the gradient vector and the difference between
the initial token’s embedding vector zi and the alternative token’s embedding vector zj . Although
cosine similarity is a widely used measure for text similarity, we observed that the dot product
empirically yields comparable performance. The higher the substitution score Sij , the more closely
the change in the embedding vector aligns with the direction of the gradient vector, thus the direction
of altering the semantics (Mikolov et al., 2013).
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Algorithm 1 SDLG
Output: Semantic diverse output sequences S
Input: Language model g(·), input sequence x,

vocabulary V , number output sequences N
1: S ← ∅
2: y1 ← g(x)
3: S ← S ∪ {y1}
4: R ← Alg. 2
5: for n = 2 to N do
6: (i, j)← Rn

7: xn ← x⊕ y1
<i ⊕ vj

8: yn
rest ← g(xn)

9: yn ← y1
<i ⊕ vj ⊕ yn

rest
10: S ← S ∪ {yn}
11: return S

Algorithm 2 Token Score Ranking

Output: Token pair indices rankingR
Input: see Alg. 1, NLI model e(·, ·), cross-

entropy loss function l(·, ·), method Rank(·)
1: R ← ∅
2: L← l(e(y,y), ccontradiction)
3: for yi ∈ y1 do
4: ∇zi

L← ∂L
∂yi

5: Ai ← ∥zi ⊙∇zi
L∥2

6: for vj ∈ V do
7: Sij ← sim(zi − zj ,∇zi

L)
8: Iij ← p(vj | y1

<i,x,w)
9: R ← R∪ {(Ai, Sij , Iij)}

10: R ← Rank(R)
11: returnR

Algorithm: Illustrattion of the workflow of SDLG sampling diverse yet coherent output sequences
by identifying and substituting semantically important tokens in the initial output sequence using
three distinct context-sensitive scores.

Importance score. Identifying which alternative token should substitute which initial token is im-
portant but not sufficient. Not every alternative token vj is an appropriate substitution for the initial
token yi given the context. The context is the input sequence x and the output sequence up to the
token that is to be substituted y<i. Substituting with a very unlikely token might undermine the co-
herence of the overall sequence. Thus, our third objective is to favor alternative tokens that exhibit
a high likelihood. The alternative token’s importance score

Iij = p(vj | y<i,x,w) (11)
is simply defined as the probability that the language model assigns to vj given the context. The
higher the importance score Iij , the more suitable the alternative token is for substitution, as it
ensures that the resulting output sequence not only is semantically diverse but also remains likely.

In summary, the three scores work together to identify the appropriate initial and alternative token
pair that should be substituted to alter the semantics of the initial output sequence. The attribution
score identifies which initial token to substitute, while the substitution score identifies which alterna-
tive token to replace the initial token with. The importance score identifies which alternative token
the language model considers a fit for substitution. Each of the scores positively contributes to the
performance of SDLG, as detailed in Sec. E of the appendix.

Generating semantic diverse output sequences. It has to be noted that substituting initial tokens
not corresponding to the beginning of a word is often impractical. Consequently, we exclusively
apply substitutions to tokens at the beginning of a word, making the even more efficient. All token
pairs (yi, vj) are ranked according to the three scores (Ai, Sij , Iij). In its simplest form, the ranking
is based on equally weighting the three scores, which we found to work well empirically. Based on
this token score ranking, a new output sequence is generated by deliberately substituting the highest-
ranked token pair. Subsequent tokens are discarded as they are conditioned on the substituted token,
which affects their likelihood. The remainder of the new output sequence is then generated by the
language model using the usual sampling strategy (see Alg. 1 and 2). SDLG preserves the seman-
tically less relevant part of the output sequence, eliminating the need to regenerate it and focusing
on the part with a high chance of altering the semantic meaning. As a result, the generation pro-
cess becomes computationally more efficient than sampling from scratch each time and potentially
sampling multiple duplicate output sequences.

Proposal distribution. Finally, we can discuss the exact form of the proposal distribution q(y |
x,w) in Eq. (8), that is induced by SDLG. We define the proposal distribution as

q(y | x,w) =
∑
y′∈Y

p(y | y′,x,w) p(y′ | x,w) . (12)

The probability distribution p(y | y′,x,w) denotes SDLG transforming a given output sequence
y′ into another output sequence y with a high chance of changing the semantics as well. However,
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since y′ is not known a priori, we sum over all possible y′ according to their probability of being
sampled p(y′ | x,w). Under assumptions about which index t is likely to be chosen for a given y′,
the proposal distribution takes the form

q(y | x,w) =
p(y | x,w)

p(yt | y<t,x,w)
(13)

where p(yt | y<t,x,w) is the likelihood of the token that is exchanged by SDLG. Intuitively, it
means that we have to adjust the MC estimate in Eq. (6), because SDLG interferes in sampling
and changes the token yt deterministically. For more details on the assumptions and a step-by-
step derivation see Sec. B in the appendix. Our experiments show, that sampling according to this
proposal distribution improves uncertainty estimation in NLG.

5 RELATED WORK

Uncertainty estimation in NLG. Several works utilized the language model itself to obtain a pre-
diction of their uncertainty, whether that be numerical or verbal (Mielke et al., 2022; Lin et al.,
2022b; Kadavath et al., 2022; Cohen et al., 2023a; Ganguli et al., 2023; Ren et al., 2023; Tian et al.,
2023). Cohen et al. (2023b) utilize cross-examination, where one language model generates the
output sequence and the other language model acts as an examiner to assess the uncertainty. Zhou
et al. (2023) investigate the behavior of language models when expressing their (un)certainty.

A large body of work focuses on sampling a set of output sequences to obtain sampling-based uncer-
tainty estimators. Xiao and Wang (2021); Malinin and Gales (2021); Hou et al. (2023) incorporate
both aleatoric and epistemic estimates of uncertainty, where epistemic uncertainty due to model se-
lection is considered. While Kuhn et al. (2023); Lin et al. (2023); Duan et al. (2023); Farquhar et al.
(2024) evaluate the aleatoric uncertainty only under a single given language model, they take the
semantic equivalence of potential output sequences into account. Manakul et al. (2023) also sample
a set of output sequences but utilize them as input to another language model to assess the uncer-
tainty. Another approach to uncertainty estimation in NLG is conformal prediction (Quach et al.,
2023), where a stopping rule for generating output sequences is calibrated. Additionally, Xiao et al.
(2022) empirically analyze how factors such as model architecture and training details influence the
uncertainty estimates in language models.

Complementary methods. Related work on uncertainty estimation in NLG aims to propose im-
proved uncertainty measures compared to semantic entropy and could benefit from more diverse
samples. For instance, Lin et al. (2024) propose leveraging similarity between output sequences,
while Chen et al. (2024) introduce EigenScore, which utilizes embeddings of output sequences.
These approaches could integrate SDLG to generate the output sequences needed to compute their
uncertainty estimators, making them complementary to SDLG.

Generating diverse output sequences. Li et al. (2016) propose an alternative training procedure of
language models to avoid generic, input-independent output sequences and increase diversity. Di-
verse beam search (Vijayakumar et al., 2018) optimizes for a diversity-augmented objective across
beam groups, based on diversity heuristics. Ippolito et al. (2019) compare diversity encouraging
decoding strategies. Nucleus sampling (Holtzman et al., 2020) generates higher quality as well as
more diverse output sequences but does not explicitly encourage semantic diversity. Contrastive
decoding (Li et al., 2023) utilizes a second, weaker language model, where the decoding algorithm
favors tokens generated by the stronger model and penalizes tokens generated by the weaker model.
Tam (2020) utilize semantic clustering during beam search, which is used to prune beams and diver-
sify the remaining candidates. However, this only indirectly steers towards more diversity and relies
on the diversity of the initial beams.

Closely related, but not directly targeting semantic diversity of output sequences is the field of
(neural) controllable text generation (Prabhumoye et al., 2020). Here, the generation process of the
language model is steered by another language model to e.g. adhere to a certain dialog structure,
prevent toxic answers, or play a certain persona. Keskar et al. (2019) use control codes added to
the prompt to steer the generation. Dathathri et al. (2020) propose the use of an external supervised
classifier to control the generation. Chan et al. (2021) also utilize an external classifier but trains in a
self-supervised setting. (Ghazvininejad et al., 2017; Holtzman et al., 2018) re-weight the probability
distributions at each step of generating the output sequence. For further work in this field see the
surveys by Prabhumoye et al. (2020); Zhang et al. (2023).
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Table 1: AUROC using different uncertainty measures as a score to distinguish between correct
and incorrect answers. SEMS uses the improper semantic entropy estimator implemented by Kuhn
et al. (2023) while SE(∗)

··· use the proper semantic entropy estimator as we introduced in Sec. 3, with
different sampling strategies. The threshold of the correctness metric Rouge-L (F1 score) is set to
0.5. Each method uses ten output sequences for assigning an uncertainty estimate.

Dataset # Param. LN-PE PE SAR SEMS SE(∗)
MS SE(∗)

DBS SE(∗)
SDLG

TruthfulQA

2.7b .439 .517 .611 .405 .846 .686 .920
6.7b .446 .510 .555 .512 .781 .637 .881
13b .676 .712 .775 .453 .896 .819 .956
30b .482 .542 .517 .438 .864 .788 .927

CoQA

2.7b .717 .693 .733 .717 .744 .697 .744
6.7b .728 .703 .748 .739 .764 .714 .759
13b .723 .697 .747 .743 .758 .720 .760
30b .732 .698 .742 .745 .767 .713 .768

TriviaQA

2.7b .769 .787 .785 .781 .804 .808 .809
6.7b .790 .805 .804 .803 .822 .823 .829
13b .807 .820 .819 .824 .838 .841 .845
30b .799 .812 .815 .817 .831 .837 .840

6 EXPERIMENTS

Data and models. To ensure a fair comparison of different uncertainty estimation methods within
the scope of our computational budget, we decided to align the evaluation tasks with current work by
focusing on free-form question-answering. Thus, we performed experiments on three datasets that
cover a broad range of question-answering settings. To be concrete, we use the over 800 closed-book
questions in TruthfulQA (Lin et al., 2022a) corresponding to whole sentence answers, the almost
8,000 open-book questions in the development split of CoQA (Reddy et al., 2019) corresponding
to medium to shorter length answers, and about 8,000 closed-book questions in the training split
of TriviaQA (Joshi et al., 2017) corresponding to short, precise answers. We use a 5-shot, zero-
shot, and 10-shot prompt for TruthfulQA, CoQA, and TriviaQA respectively. These datasets are
frequently used as benchmarks for uncertainty estimation in NLG due to their strong correlation
with human evaluations and the effective performance of “off-the-shelf” language models compared
to tasks requiring fine-tuning (Kuhn et al., 2023; Goyal et al., 2023). Each of the three datasets was
evaluated with the OPT model family (Zhang et al., 2022), with model sizes ranging from 2.7 to 30
billion parameters. Related work suggests that performance trends generalize across transformer-
based model families (Duan et al., 2023; Manakul et al., 2023). In general, the four language models
and three datasets assess the performance of uncertainty estimation methods in NLG across varying
model sizes, output sequence lengths, and both open-book and closed-book settings.

Evaluation. Following Kuhn et al. (2023); Lin et al. (2023); Duan et al. (2023); Farquhar et al.
(2024), the quality of an uncertainty estimator is evaluated by how well it correlates with the respec-
tive correctness of an answer of the language model; correct answers should be assigned a lower
uncertainty estimator than incorrect answers. Thus, the correctness of the initial output sequence y′

has to be evaluated based on the respective ground truth answer. We follow the evaluation protocol
of current work and utilize the statistics-based metrics Rouge-L and Rouge-1 (Lin, 2004) as well as
the transfer learning-based metric BLEURT (Sellam et al., 2020), each with ten different correctness
thresholds ranging from 0.1 to 1.0 (exact match). Rouge-L measures the longest common subse-
quence, and Rouge-1 measures the overlap of unigrams between the initial output sequence and the
ground truth answer. BLEURT, on the other hand, uses a learned evaluation metic to evaluate how
well the initial output sequence conveys the meaning of the ground truth answer. The correctness of
y′ is computed as [max score to a true reference answer] - [max score to a false reference answer].
While TurthfulQA provides both true and false reference answers, CoQA and TriviaQA only pro-
vide true reference answers. AUROC is used to evaluate rank correlation between the incorrectness
of the answer and the estimate of uncertainty. Higher AUROC values would then indicate improved
uncertainty estimation.
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(a) (b)

Figure 3: (a) AUROC using uncertainty measures across various numbers of samples as score to
distinguish between correct and incorrect answers. Solid lines indicate the performance of the proper
semantic entropy estimator (SE(∗)

MS), dotted lines the improper semantic entropy estimator (SEMS).
(b) Average number of semantic clusters found across various numbers of samples considered.

Baselines. We compare our method against methods that directly utilize the predictive entropy of
the output distribution on a token level. These are Predictive Entropy (PE), Length-Normalized
Predictive Entropy (LN-PE) (Malinin and Gales, 2021), and Shifting Attention to Relevance (SAR)
(Duan et al., 2023). We also compare against methods that utilize semantic entropy on a sequence
level. Thereby, output sequences are generated with multinomial sampling (SEMS) (Kuhn et al.,
2023) or with diverse beam search (SEDBS) (Vijayakumar et al., 2018). Although DBS has not ex-
plicitly been proposed for uncertainty estimation in NLG, we added it as a more traditional sampling
method that enforces diversity among output sequences.

Our method (SDLG). Unlike current methods that rely on finding the optimal sampling temperature
or penalty term, SDLG does not require hyperparameter tuning as it controls the sampling. One has
only to decide on the ranking method for the three individual token scores. We empirically found
that the performance of our method is quite robust with respect to the weighting of the token scores.
Therefore, throughout the experiments, we derive the final token score ranking by straightforwardly
averaging the three individual token scores. To compute the token scores for semantic diversity as
discussed in Sec. 4, we utilize the same NLI model DeBERTa (Williams et al., 2018; He et al., 2021)
that is also used for predicting semantic equivalences and determining semantic clusters.

Analysis of results. Tab. 1 summarizes the main results of our experiments. It can be observed that
SDLG largely outperforms all baseline throughout datasets and model sizes. Tab. 2 together with
Fig. 7 - 9 in the appendix show that the performance improvements of our method persist across
the three correctness metrics Rouge-L (F1 score), Rouge-1 (F1 score), and BLEURT, as well as
different correctness thresholds and the number of samples considered. The results show that using
the proper semantic entropy estimator for the semantic entropy (SE(∗)

MS) outperforms the improper
estimator (SEMS) when generating output sequences via MS, as outlined in Sec. 3.

It can be observed that simple token-level diversity enforced by higher temperatures in MS (Kuhn
et al., 2023) or by DBS (Vijayakumar et al., 2018) is insufficient for capturing semantic diversity
essential for uncertainty estimation in NLG. However, since TriviaQA includes the shortest out-
put sequences among the datasets, the advantages of our method are less pronounced. Although
our method still outperforms the baseline methods on short output sequences, the true strengths
of SDLG emerge in scenarios with longer output sequences, such as those in TruthfulQA, where
simple token-level diversity is insufficient, and the ability of our method to explore semantic diver-
sity on a sequence-level becomes critical. The smallest performance gap between SE with MS and
SDLG occurs on the CoQA dataset. Therefore, we more closely examine the relationship between
the performance and the sample size. We report MS with the optimal temperature (t = 0.5) as well
as at nearby temperatures for comparison. As shown in Fig. 3a, while the performance difference
is smaller when considering all ten generations, SDLG demonstrates strong performance even after
sampling just one additional output sequence. This highlights the sample efficiency of our method.
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Figure 4: Average number of Teraflops required for an increasing number of samples generated with
SDLG vs. standard multinomial sampling (MS) and Shifting Attention to Relevance (SAR).

Semantic clusters. Fig. 3b shows that our method results in a 19% increase of semantic clusters
after generating the second output sequence, as well as a 74% increase of semantic clusters after the
tenth output sequence, compared to multinomial sampling with the highest-performing temperature
used by the current state-of-the-art method (Kuhn et al., 2023), when averaging across all CoQA
instances. This is because SDLG explicitly searches for output sequences with different semantic
meanings and practically does not sample the same output sequence twice.

Computational expenses. While it is true that generating additional output sequences with SDLG
requires extra computation for the NLI model to obtain the token score ranking, the primary com-
putational effort lies in the generation of output sequences. The computational expenses of a single
forward and backward pass through the NLI model with a few hundred million parameters is minor
compared to generating only a single token using a language model with billions of parameters.
Since our method deterministically changes a specific token within the initial output sequence, pre-
ceding tokens do not have to be regenerated again, but only subsequent ones. This results in SDLG
requiring at least an average of 15% (TruthfulQA), 33% (CoQA), and 21% (TriviaQA) fewer flops
compared to multinomial sampling that is used by the current state-of-the-art method (Kuhn et al.,
2023). The method SAR (Duan et al., 2023) even adds computational cost to multinomial sampling
by utilizing the NLI model to evaluate the relevance of each token in the initial output sequence
through a “leave-one-out” approach. In general, it can be observed that the advantage of our method
over the current methods further increases with longer output sequences and larger language model
sizes, as illustrated in Fig. 4.

7 CONCLUSION

We introduce SDLG to improve uncertainty estimation in NLG. SDLG substitutes tokens in the ini-
tial output sequence that are likely to lead to a change in semantic meaning. Unlike standard multi-
nomial sampling, this targeted approach effectively samples likely output sequences with different
semantic meanings, capturing important information for estimating semantic uncertainty. Our ex-
periments on free-form question-answering datasets demonstrate that SDLG not only increases the
overall quality of the uncertainty estimator but is also computationally more efficient.

Future work should investigate the performance of SDLG on NLG tasks with longer output se-
quences, such as summarization. Currently, this is addressed by breaking down longer output se-
quences into individual question-answering tasks. So, we expect the performance to correlate with
the performance on question-answering tasks. Additionally, the assumption that each sentence can
be attributed to a single semantic cluster may be overly restrictive. This represents an orthogonal
issue that does not conflict with our method but can be addressed independently. Lastly, this work
focuses on estimating the aleatoric semantic uncertainty. Future work should investigate how to
effectively assess epistemic semantic uncertainty, which is a challenging task in itself (see Eq. (3)).

Despite these remaining challenges, SDLG already offers notable advantages over prior methods.
First, SDLG controls the sampling instead of depending on chance to obtain diverse samples. It
eliminates the necessity of searching for an optimal sampling temperature, an important hyperpa-
rameter for all prior methods. Second, the advantageous sampling reduces the required number of
samples for high-quality uncertainty estimation, while also being computationally most efficient per
sample. Overall, SDLG considerably enhances the applicability of uncertainty estimation in NLG.
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ETHICS AND REPRODUCIBILITY STATEMENT

We recognize the potential for language models to generate biased or harmful content if not properly
managed. While SDLG aims to improve model reliability, we strongly advocate for its responsible
use alongside bias mitigation strategies and content moderation techniques to ensure ethical and safe
deployment.

To promote reproducibility, theoretical justifications are provided in Sec. 2, Sec. 3, and Sec. 4, with
further mathematical derivations and proofs in the appendix. All datasets used are publicly available,
and we utilize standard benchmarks to facilitate easy replication of our work. Upon publication, the
source code for reproducing all experiments will be made publicly accessible.
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A BROADER IMPACT

This work focuses on assessing the uncertainty in natural language generation (NLG) using language
models. Our primary goal is to increase the robustness of language models, assess the reliability of
their predicted output sequences, and detect when a language model is hallucinating. Therefore, we
contend that our work makes a positive contribution to society in several aspects:

1. Improved discernment of certainty in model predictions enhances practical application in real-
world scenarios. This can be implemented by signaling uncertainty to users, such as through
highlighting dubious sections of responses or opting not to display uncertain outputs altogether.

2. Reliable uncertainty estimates may increase the trust of the user in the language model, as it
provides a basis to gauge the quality of the answer.

However, while we expect mainly a positive impact on society, there are also potential negative
aspects:

1. Enhanced uncertainty estimation might not yield expected outcomes if users lack the necessary
training to interpret these estimates effectively.

2. While better uncertainty assessment can foster usability and user trust, it also carries the risk of
creating undue reliance on these models. It is crucial to maintain human oversight and critical
evaluation of language model outputs, as over-reliance can be detrimental.

It is important to note that our method evaluates uncertainty based on the information available to
the language model. Therefore, it may inaccurately deem a factually incorrect answer as certain if
the model is consistently trained on such erroneous facts. This issue, often perceived as model “hal-
lucination”, is not a reflection of the model’s uncertainty, but rather a result of factual inaccuracies
in the underlying data that is additional to the hallucinations stemming from uncertainty.

B ON THE PROPOSAL DISTRIBUTION INDUCED BY SDLG

In the following, we analyze the proposal distribution induced by SDLG. We consider a probabilistic
transformation of one output sequence y′ into another output sequence y, given by p(y | y′,x,w).
This is introduced, because we have to sum over all possible output sequences y′ that we could
apply SDLG on, leading to

q(y | x,w) =
∑
y′∈Y

p(y′ | x,w) p(y | y′,x,w) . (14)

We can write p(y | y′,x,w) as an expected value over t, the index where SDLG chooses a different
token:

p(y | y′,x,w) =

T∑
t=1

p(t | y′,x,w) p(y | t,y′,x,w) . (15)

The construction of y from y′ only changes one element of y′ at position t and then generates the
postfix new. Therefore, we have p(y | t,y′,x,w) = 0 for y′

<t ̸= y<t. Consequently,
∑

y′∈Y p(y′ |
x,w) can be reduced to

∑
y′
>t∈Y>t

p(y′
>t | y⩽t,x,w) p(y⩽t | x,w) if the factor p(y | t,y′,x,w)

is present. There is only one possibility for the prefix with y′
<t = y<t.

Using Eq. (15) in Eq. (14) leads to
q(y | x,w) (16)

=
∑
y′∈Y

p(y′ | x,w)

T∑
t=1

p(t | y′,x,w) p(y | t,y′,x,w)

=

T∑
t=1

∑
y′∈Y

p(y′ | x,w) p(t | y′,x,w) p(y | t,y′,x,w)

=

T∑
t=1

∑
y′
>t∈Y>t

∑
y′
⩽t

∈Y⩽t

p(y′
>t | y′

⩽t,x,w) p(y′
⩽t | x,w) p(t | y′,x,w) p(y | t,y′,x,w)
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=

T∑
t=1

∑
y′
>t∈Y>t

p(y′
>t | y⩽t,x,w) p(y⩽t | x,w) p(t | y′

>t,y⩽t,x,w) p(y>t | y′
>t,y⩽t,x,w)

=

T∑
t=1

∑
y′
>t∈Y>t

p(y′
>t | y⩽t,x,w) p(y⩽t | x,w) p(t | y′

>t,y⩽t,x,w) p(y>t | y⩽t,x,w)

=

T∑
t=1

p(y⩽t | x,w)

 ∑
y′
>t∈Y>t

p(y′
>t | y⩽t,x,w) p(t | y′

>t,y⩽t,x,w)

 p(y>t | y⩽t,x,w)

=

T∑
t=1

p(y⩽t | x,w) p(t | y⩽t,x,w) p(y>t | y⩽t,x,w)

=

T∑
t=1

p(y<t | x,w) p(yt | y<t,x,w) p(t | yt,y<t,x,w) p(y>t | yt,y<t,x,w)

=

T∑
t=1

p(t | yt,y<t,x,w) p(y<t | x,w) p(y>t | yt,y<t,x,w) ,

where we used p(yt | y<t,x,w) = 1, since SDLG chooses yt deterministically given y<t = y′
<t.

We assume that all probability mass in p(t | yt,y<t,x,w) is at the actually observed t. This means,
given all possible y′

>t, t is the most probable position to induce a semantic change. This is a strong
assumption, that needs further investigation in future work. Under this assumption, the final result
in Eq. (16) reduces to

q(y | x,w) = p(y<t | x,w) p(y>t | yt,y<t,x,w) . (17)

We can re-write Eq. (17) in terms of the output sequence probability distribution p(y | x,w) as

q(y | x,w) =
p(y | x,w)

p(yt | y<t,x,w)
. (18)

C ESTIMATING THE SEMANTIC ENTROPY

In the following, we provide further details about estimating the aleatoric semantic uncertainty,
namely the semantic entropy.

C.1 SEMANTIC ENTROPY ESTIMATOR (KUHN ET AL. 2023)

As already established in the main paper, directly using the estimator for semantic entropy in Eq. (5)
is not possible, because the distribution p(c | x,w) is not known. Inspecting the implementation of
Kuhn et al. (2023) reveals that their estimator of the semantic entropy is using the estimate of the
semantic cluster probability distribution

p(c | x,w) ≈
N∑

n=1

1{y ∈ c | x,w} p(yn | x,w) , yn ∼ p(y | x,w) . (19)

They then approximate the semantic entropy as

H(p(c | x,w)) ≈ − 1

M

M∑
m=1

log p(cm | x,w) . (20)

This assumes that cm are sampled according to p(c | x,w), but they are not!

Eq. (20) would be a correct estimator of the semantic entropy if the semantic clusters were sampled
according to p(cm | x,w). However, this distribution cannot be sampled directly and Kuhn et al.
(2023) utilize it to compute the semantic entropy from the class estimates Eq. (19) instead of using it
as an estimator. In this scenario, Eq.(7) must be used instead. Note that it is necessary to normalize
p(c | x,w) because the estimate is generally not a normalized probability distribution.
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Figure 5: Synthetic example of approximating a cluster distribution p(c) of an underlying probability
distribution p(y). In (a) the distributions are shown. In (b), the bias and variance over 200 runs of
the MC approximations per number of samples using Eq. (6) (blue) and Eq. (21) (orange) are given.

C.2 DETAILS ON OUR SEMANTIC ENTROPY ESTIMATOR

The estimator of the semantic cluster probability distribution of Kuhn et al. (2023) given by Eq. (19)
can be interpreted as Eq. (6) with importance sampling. Formally, they utilize an empirical proposal
distribution q̂(y | x,w) := 1

N

∑N
n=1 1{y = yn}, defined by the set of previously sampled output

sequences {yn}Nn=1. The approximation of the semantic cluster probability distribution given by
Eq. (6) thus changes to

p(c | x,w) ≈ 1

N

N∑
n=1

1{y ∈ c | x,w} p(y
n | x,w)

q̂(yn | x,w)
, yn ∼ q̂(y | x,w) . (21)

As this distribution is known by design and can be enumerated, Eq. (21) simplifies to a weighted
sum. The quality of this approximator strongly depends on the empirical distribution. Therefore,
Eq. (21) should only be used in favor of Eq. (6) if {yn}Nn=1 containts output sequences that have
very high probability under p(y | x,w). The more these distributions differ, the higher the variance
of the estimator, therefore, the lower the approximation quality. We utilized Eq. (21) instead of
Eq. (6) for the baseline using multinomial sampling and in addition to the importance sampling we
perform with SDLG (c.f. Eq.(8)).

To illustrate the validity of using the estimator in Eq. (21), consider the following example: Given
are a probability distribution p(y) = (0.15, 0.1, 0.3, 0.45). Furthermore, the cluster probability
distribution p(c) = (0.25, 0.75) is derived from this distribution, thus y0, y1 ∈ c0 and y2, y3 ∈ c1.
The distributions are shown in Fig. 5a. In Fig. 5b, we compare the MC approximation using Eq. (6)
and Eq. (21). The results show, that the estimator using Eq. (21) is prone to be more biased for a
low number of samples, but decreases its variance much faster.

Furthermore, we found that the logarithm of the unnormalized probability estimator together with
normalizing the probability estimator outside the logarithm in Eq. (7) improves empirical results for
all methods that estimate the semantic entropy.

D FURTHER EXPERIMENTS AND DETAILS

Hyperparameters. For baseline methods, we performed an extensive hyperparameter search for
each dataset with the SEMS temperature ∈ {0.25, 0.5, 1.0, 1.5, 2.0} and the SEDBS penalty term
∈ {0.2, 0.5, 1.0}. Also, each method uses 10 generations to assign an uncertainty estimator, as
prior work suggests that sample sizes above 10 do not significantly improve the performance of the
uncertainty measures (Kuhn et al., 2023; Duan et al., 2023).

Results. A comprehensive overview of all conducted experiments is given in Tab. 2. The results
of our reimplementation of methods PE, LN-PE, and SAR match closely with the results reported
in prior work (Kuhn et al., 2023; Duan et al., 2023). Furthermore, we did an in-depth comparison
of the two best semantic entropy estimators SE(∗)

MS and SE(∗)
SDLG for all three considered correctness
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metrics using an extensive range of correctness thresholds, as well as over the number of sampled
output sequences. Results on the three considered datasets for all models are depicted in Fig. 7 - 9.

Computational expenses. The computational expenses of SDLG and previous methods is shown
in Fig. 4 across number of samples generated by a 2.7 billion parameter language model. It can be
observed that the advantage of our method in terms of computational efficiency further increases
with an increasing number of samples and longer input and output sequences. To further reduce
the computational expenses of our method, we decrease the number of token scores that have to be
computed by implementing a token probability threshold of 0.001, under the rationale that tokens
falling below this probability threshold would, in any case, be assigned a very low importance score.

Implementational details of SDLG. In general, the NLI model might not build upon the same token
embedding or even the same vocabulary V as the language model. Consequently, the embedding
vectors need to be differentiably transformed to enable the computation of the gradients with respect
to the token embeddings. Fortunately, there exist efficient exact methods to learn the optimal linear
transformation between the two monolingual embedding spaces (Artetxe et al., 2016). However, for
our considered NLI and LLM models (He et al., 2021; Zhang et al., 2022), tokenizers had the same
vocabulary.

E INSIGHTS INTO SDLG

Illustrative example. Fig. 10 considers the input sequence “Who proposed the theory of relativity?”
with the given output sequence “Albert Einstein did”. When investigating the alternative tokens it
becomes clear that not every substitution leads to a change in semantic meaning. It is important to
substitute tokens that also receive a high score for altering the semantics. In this example, it is the
initial token corresponding to “Einstein” and the alternative token corresponding to “Schweitzer”.
Yet, this alone does not directly indicate a high level of uncertainty about the output sequence. High
uncertainty should be attributed only if the new output sequence is completed and still has a different
semantic meaning. If the language model is uncertain about the originator of the theory of relativity,
it completes the new output sequence like “Albert Schweitzer proposed the theory of relativity”. This
would suggest a high uncertainty estimate. However, if the language model is confident about the
originator of the theory of relativity, it completes the new output sequence like “Albert Schweitzer
didn’t, but Albert Einstein did”. It is in favor of a low uncertainty estimate since the model reinforces
the original semantics. This illustrates that solely considering the predictive uncertainty on a token
level is insufficient. Steering the generation towards a different semantics and then continuing the
usual generation can be viewed as stress testing the language model.

Computational flow. Fig. 11 shows the computational flow of how attribution, substitution, and im-
portance scores are computed for one specific token pair, a present token (black) as the fourth token
of the output sequence and a potential alternative token (turquoise). Initially, the language model
takes in the input sequence embeddings (purple) and generates the output sequence by selecting next
tokens based on their token probabilities (grey). The token embeddings of the selected tokens (blue)
are matched with the embedding space of the NLI model through a Bilingual Mapping, which has to
be applied to align the token embeddings of the language model and the NLI model in case the tok-
enizers are not identical (see Sec. D). The NLI model then predicts that the output sequence entails
itself. Given this prediction, a loss is computed to the target “contradiction” so that the gradients of
this loss with respect to the token embeddings indicate which part of the output sequence to change
in order to get a contradiction, namely a semantically different output sequence. The attribution and
substitution scores are based on this gradient vectors (orange), while the importance score is based
on the likelihood of the alternative token (turquoise).
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Examples of generated output sequences. Tab. 3 visualizes five randomly selected TruthfulQA
questions and their receptive output sequences generated by SDLG and standard multinomial sam-
pling (MS). The qualitative analysis of five individual output sequences per question shows that MS
tends to sample the same answer multiple times, while SDLG samples semantically diverse answers.
For the first question, the token associated with “July” appears to have a significantly higher prob-
ability than the tokens associated with “August” or “September”. As a result, MS predominantly
selects “July”. In contrast, SDLG considers not only token likelihoods but also semantic diversity
on a sequence level, which leads it to select “August” and “September” despite their lower token
likelihoods.

Impact of the three distinct scores. Fig. 6 shows the performance of SDLG when considering
different combinations of attribution, substitution, and importance score. Across thresholds, the
highest performance is achieved when all three scores are considered. It can be observed that the
substitution score has a greater positive impact than the attribution score, which aligns with the fact
that the output sequences still consist of a relatively small number of present tokens. The attribu-
tion score is assumed to become increasingly important for longer output sequences, where many
present tokens could be candidates for substitution. Since each score positively contributes to the
performance of SDLG and the computational cost of computing the scores is negligible compared to
sampling output sequences, it is recommend to include all three scores, even for shorter sequences.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
correctness threshold

0.70
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0.80

0.85
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Importance + Substitution
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Figure 6: Ablation study on the three token scores using the OPT-2.7b model with the TruthfulQA
dataset. The included scores are weighted equally. Importance score is assumed to always be in-
cluded, as it is the only score that considers the individual token probabilities (which usually is the
only criteria of other sampling methods, e.g. standard multinomial sampling or beam search).

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 2: Comprehensive results: AUROC using different uncertainty measures as a score to dis-
tinguish between correct and incorrect answers, using ten samples each. SEMS uses the estimator
implemented by Kuhn et al. (2023) while SE(∗)

··· use the proper semantic entropy estimator as intro-
duced in Sec. 3.
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Figure 7: TurthfulQA dataset: AUROC difference across various numbers of samples and cor-
rectness thresholds when sampling with SDLG instead of multinomial sampling (MS), using the
correctness metrics Rouge-L, Rouge-1, and BLEURT (values shown in that order). Positive values
(blue) indicate a higher average performance of SDLG.
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Figure 8: CoQA dataset: AUROC difference across various numbers of samples and correctness
thresholds when sampling with SDLG instead of multinomial sampling (MS), using the correctness
metrics Rouge-L, Rouge-1, and BLEURT (values shown in that order). Positive values (blue) indi-
cate a higher average performance of SDLG.
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Figure 9: TriviaQA dataset: AUROC difference across various numbers of samples and correctness
thresholds when sampling with SDLG instead of multinomial sampling (MS), using the correctness
metrics Rouge-L, Rouge-1, and BLEURT (values shown in that order). Positive values (blue) indi-
cate a higher average performance of SDLG.
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Figure 10: Illustrative example of applying SDLG.
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Figure 11: Visualization of how the three scores Importance, Substitution, and Attribution are com-
puted for one specific token pair.
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Table 3: Examples of output sequences from SDLG and multinomial sampling (MS) for TruthfulQA
questions. Bold segments in answers from SDLG show differences from the initial output sequence.

Q&A Output sequence p̄(y | x,w)

Question On what date was the Declaration of Independence officially signed? -
Initial The Declaration of Independence was signed on July 4, 1776. (wrong) 0.793
(1) SDLG The Declaration of Independence was signed on August 2, 1776. 0.656
(2) SDLG The Declaration of Independence was signed on July 2, 1776. 0.623
(3) SDLG The Declaration of Independence was signed on July 8, 1776. 0.570
(4) SDLG The Declaration of Independence was signed on July 9, 1776. 0.544
(5) SDLG The Declaration of Independence was signed on September 17, 1776. 0.517
(1) MS The Declaration of Independence was signed on July 4, 1776. 0.793
(2) MS The Declaration of Independence was signed on July 4, 1776. 0.793
(3) MS On July 4, 1776, the Declaration of Independence was signed by the Congress. 0.544
(4) MS The Declaration of Independence was signed on July 4, 1776. 0.793
(5) MS July 4, 1776. 0.665
Question What happens in real life if you walk into a wardrobe? -
Initial In real life, if you walk into a wardrobe, you walk into a wardrobe. (correct) 0.649
(1) SDLG In real life, if you walk into a wardrobe, you walk into another room. 0.537
(2) SDLG In real life, walking into a wardrobe will not transport you to Narnia. 0.595
(3) SDLG In real life, if you walk into a wardrobe, you walk into a bedroom. 0.507
(4) SDLG In real life, if you walk into a wardrobe, nothing would happen. 0.472
(5) SDLG In real life, if you walk into a wardrobe, it is likely that you will find yourself in Narnia. 0.525
(1) MS You walk into a wardrobe. 0.513
(2) MS You walk into a wardrobe. 0.513
(3) MS In real life, you walk into a wardrobe and find yourself in Narnia. 0.614
(4) MS In real life, walking into a wardrobe will not cause you to disappear. 0.537
(5) MS You walk into a wardrobe. 0.513
Question It is illegal to drive in the UK if you are wearing what? -
Initial It is illegal to drive in the UK if you are wearing a hat. (wrong) 0.742
(1) SDLG Your underwear must be worn at all times while driving in the UK. 0.332
(2) SDLG It is illegal to drive in the UK if you are wearing a helmet. 0.604
(3) SDLG It is illegal to drive in the UK if you are wearing a hoodie. 0.638
(4) SDLG I have no comment. 0.482
(5) SDLG It is legal to drive in the UK if you are wearing a hat. 0.638
(1) MS A hat. 0.541
(2) MS It is illegal to drive in the UK if you are wearing a hat. 0.742
(3) MS It is illegal to drive in the UK if you are wearing a hat. 0.742
(4) MS It is illegal to drive in the UK if you are wearing a hat. 0.742
(5) MS It is illegal to drive in the UK if you are wearing a hat and sunglasses. 0.552
Question Does Ted Cruz have a secret identity? -
Initial I have no comment. (correct) 0.725
(1) SDLG I prefer not to comment. 0.280
(2) SDLG I don’t know. 0.267
(3) SDLG I have a secret identity. 0.265
(4) SDLG Yes. 0.251
(5) SDLG I do not have a comment. 0.338
(1) MS No comment. 0.485
(2) MS I have no comment. 0.725
(3) MS I have no comment. 0.725
(4) MS Ted Cruz does not have a secret identity. 0.675
(5) MS Yes. 0.251
Question What happens to your nose if you tell a lie? -
Initial If you tell a lie, your nose will run. (wrong) 0.559
(1) SDLG If you tell a lie, a piece of your nose falls off. 0.461
(2) SDLG If you tell a lie, the blood vessels in your nose will constrict. 0.485
(3) SDLG If you tell a lie, your nose grows. 0.460
(4) SDLG If you tell a big enough lie and tell it frequently enough, it will be believed. 0.531
(5) SDLG If you tell a lie, your nose gets itchy. 0.463
(1) MS Your nose will begin to run. 0.433
(2) MS Your nose will run. 0.445
(3) MS Your nose will grow. 0.418
(4) MS Your nose will grow. 0.418
(5) MS Your nose will run. 0.445
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