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ABSTRACT

Understanding how language models develop their internal computational structure
is a central problem in the science of deep learning. While susceptibilities, drawn
from statistical physics, offer a promising analytical tool, their full potential for
visualizing network organization remains untapped. In this work, we introduce an
embryological approach, applying UMAP to the susceptibility matrix to visualize
the model’s structural development over training. Our visualizations reveal the
emergence of a clear “body plan,” charting the formation of known features like
the induction circuit and discovering previously unknown structures, such as a
“spacing fin” dedicated to counting space tokens. This work demonstrates that
susceptibility analysis can move beyond validation to uncover novel mechanisms,
providing a powerful, holistic lens for studying the developmental principles of
complex neural networks.

1 INTRODUCTION

Just as developmental biologists seek to understand how a single fertilized cell gives rise to a complex
organism with specialized organs, a central mystery in deep learning is how a randomly initialized
network develops its intricate computational structures through training. In this work, we study the
training process of language models as a form of embryology, where token sequences act as cells and
their susceptibility vectors (Baker et al.||2025) serve as the analogue of gene expression profiles. By
visualizing how a low-dimensional representation of these susceptibility vectors develops, we can
watch as the model’s “body plan” takes shape.

Given tokens Y and a language model parametrized by a neural network with components C', ..., Cy
(e.g. attention heads in a transformer) we associate a susceptibility vector

nw(zy) = (x50, xSr) e RH

to the combination of a weight w for the network and a token sequence xy where z € X is a context
and y is a possible next token. The entries in this vector are called per-token susceptibilities and
they measure the covariance of two random variables, one depending on the component C'; and
the other on the continuation y in context z. This vector of susceptibilities is sensitive to how the
model computes its prediction of the next token given x. For example it was shown in|Baker et al.
(2025) that induction patterns (meaning token sequences like the cat ... the involving
a bigram which is repeated in context, where the outlined token is y) tend to have a different pattern
of susceptibilities across heads, and moreover this pattern can be used to distinguish the heads in the
induction circuit (Olsson et al.,[2022) across four seeds of a 3M parameter language model.

Given sequences {z;y; }?_, sampled from some distribution, for example the training distribution of
our language model, the point cloud {7, (x;;)}7_, in R¥ is a representation of the data distribution
from the point of view of the model, since the configuration of token sequences under 7 reflects
patterns in how different components of the model interact to produce predictions of y; given x;.
Under the name structural inference, Baker et al.| (2025) have proposed that studying such patterns is
a means to discover and interpret the internal structure in neural networks.

As the next step in structural inference, it would be useful to visualize the image of the “data manifold”
under 7 in order to see this structure, and in particular, to see how it develops over training. Therefore
in this paper, taking our cue from embryology where it is common to apply dimensional reduction
techniques like UMAP (Mclnnes et al.| [2020) to gene expression profiles in order to study the
development of organisms (Cao et al., 2019), we propose to study the low-dimensional projection of
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the point clouds {7y, (x;y;)}?_, under UMAP for weights w = w(¢t) at various timesteps ¢ of training.
The results are quite striking, as can be seen in Figurem (end of training) and Figure|z| (over training).

In this paper we make the following contributions. We

* Introduce UMAP projections of susceptibilities as an interpretability tool for studying the
internal structure of language models and its development over training.

* Show that the UMAP projection is stratified by token patterns. The ontology of token
patterns introduced in[Baker et al| (2025) and recalled in Table [T]stratifies the UMAP, giving
it the appearance of a “rainbow serpent” (Section {.T)).

* Show that the emergence of the induction circuit is visible in the serpent as a thickening
of the dorsal-ventral axis as induction patterns (orange) separate from other patterns. This
provides a new, and visual, perspective on a well-understood structural development in
language models (Section[4.2) already studied using susceptibilities inBaker et al (2025).

* Show the emergence of a new structure associated with the prediction of spacing tokens
(e.g. actual spaces  but also newlines \n ) (Section .

Moreover, the same ontology of token patterns seems to be adopted across all four seeds of the
language model in the sense that the same token patterns tend to occur in the same parts of the UMAP
(Appendix ).

2 BACKGROUND

2.1 TOKENS AND PATTERNS

We denote by X the set of tokens. For tokenization, we used a truncated variant of the GPT-2 tokenizer
that reduced the original vocabulary of 50,000 tokens down to 5,000 (Eldan and Li,2023)). We denote
token sequences as follows: wa vel ength is asequence of three tokens. We often consider
atoken y € ¥ in context x € X, Following Baker et al.|(2025) we consider eight patterns (Table
which are properties that either hold for individual tokens, or hold for tokens in a given context
(possibly including subsequent tokens). Full definitions are given in Appendix [A]

2.2  SUSCEPTIBILITIES

We define the susceptibility Xfy for a component C' of a neural network used to predict the next token
y given a context x, and explain how to think intuitively about what these scalar values mean. For
full details see Baker et al.[(2025]). We consider sequence models p(y|z, w) that predict tokens y € 3
given sequences of tokens x € SF for various 1 < k < K (called contexts) where K is the maximum
context length and ¥ is the set of tokens. The true distribution of token sequences (z,y) is denoted
q(z,y). The sequence models we have in mind are transformer neural networks, where w € W is the
vector of weights. We set X to be the disjoint union of ¥ over 1 < k < K and Y = X.

Given a dataset D,, = {(z;,y;)}, drawn i.i.d. from ¢(z, y) we define

Z(z,y)(w) = - Ing(y|x7w) 5 Ln(w) = % Zg(x,y)(w) .
1=1

The function L, (w) is the empirical negative log-likelihood and its average over the data distribution
is denoted L(w) = Eq(z.4)[l(z,y)(w)]. By a component of the neural network we mean some
subset of the weights C' associated with a product decomposition W = U x C'. Given a parameter

w* = (u*,v*) and writing w = (u, v) for the decomposition of a general parameter, we define a
generalized function on W by

do(w) = 3(u—u") | L(w) - L{w")] M

where 0 (u — u*) is one if u = u* and zero otherwise. The quenched posterior at inverse temperature
B > 0 and sample size n is

PP (w) = %exp{—nﬁL(w)}go(w) where 7P = /exp{—nﬁL(w)}go(w) dw. 2)



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(G) ——

A)

(A)

(B)

©

D)

E)

F)

G)

Anterior (PC1+)

Patterns

) Word start
(7] Word part
@ Word end
(] Induction
B Spacing
@ Delimiter
@ Formatting
(] Numeric

<— B

orsal PC2+)

detect ive f iction (<|]endoftext|>)

b io £ il m before()

16 / 13 4 ) (O

age \n O

investig ators at (the

the part on dist ribution over all

$ x $ ... in the part (on]

French S ection \n http (://)

Figure 1: The rainbow serpent: UMAP projection of susceptibility vectors. (Top) Each point
represents a token y in context x, positioned according to its 16-dimensional susceptibility vector
1w (2y) computed for a 3M parameter language model (one dimension per attention head) at the
end of training (49900 steps). Token sequences xy are colored by pattern, see Table [} We mark
the anterior-posterior (PC1) and dorsal-ventral (PC2) axes with black lines (Bottom) Susceptibility
vector 7, (2y) showing each head in order (0:0-0:7) (gray) (1:0-(1:7) (black) and the token y (black
outline) in its context x.
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Pattern Definition Examples

VMOGESETRE A token that decodes to a space followed by (_be), ose ,
lower or upper case letters

A non-word-end token that decodes to upper or S ed, at ,
lower case letters st ed

Word end A token that decodes to upper or lower case el im ,
letters followed by a formatting token, delimiter differe ),
or space al

A sequence of tokens uvUwuv where U is any  the cat ... the
sequence, u, v are individual tokens, and uv is
not a common bigram (¢(v|u) < 0.05)

Spacing A token made up of one or more spaces, new- , \n, \t, \n\n
lines, tabs, carriage returns, or form feeds

Delimiter Brackets and composite tokens including paren- ) , ) , 1, ); , (
theses, brackets, and their combinations

Formatting Tokens used for document structure and format- 3. 09. W2
ting beyond simple spacing

JILARY

Tokens containing numerical digits 123, 14, 2024

Table 1: Token pattern categories and their definitions. Throughout the text we apply the indicated
colors to tokens that follow a particular pattern.

Given a generalized function ¢(w) we define the expectation

@) = [ twipilulnydo. G)
and given a function ¢ (w) the covariance with respect to the quenched posterior is

Covg [@ﬂ’] = <¢w>g - <¢>ﬁ<w>ﬁ'
Definition 2.1. The per-token susceptibility of C for (z,y) € X x Y is

ng = —COVﬁ {¢C,f(x7y) (w) — L(w)} . 4)

The susceptibility measures how ¢ (w) and £, ., (w) — L(w) covary when we perturb w away from
w*, with perturbations being more likely according to their probability in the quenched posterior
(that is, perturbations which increase the population loss L(w) are exponentially suppressed). A
variation in w which only changes L(w) by a small amount may nonetheless increase £, ,y(w) for
some tokens and lower it for others (e.g. a variation which improves performance on tokens in code,
but worsens performance on poetry, might net out to a small overall change).

Negative susceptibility means that variations w* — w which increase £, , (that is, make y less
probable in context x) tend to be perturbations in the weights of C' which hurt the loss overall. This
makes sense if (z,y) follows a pattern that C' is involved in predicting, mechanistically. Thus we
associate negative susceptibility with the component C' expressing that y should follow x.

Positive susceptibility means that variations w* — w which lower ¢, . (that is, make y more
probable in context x) tend to be perturbations in the weights of C' which hurt the loss overall. This
makes sense if (x,y) follows a pattern that C is involved in “opposing”, mechanistically. It could be
predicting an alternative completion, or just decreasing the probability of this one. Thus we associate
positive susceptibility with the component C' suppressing the continuation of x by y.

Sign of x Interpretation

Xzy <0 Expression  Variations in C' which decrease loss, also raise p(y|z, w).
Xzy >0  Suppression Variations in C' which decrease loss, also lower p(y|z, w).
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For details on estimating susceptibilities see Appendix [B-2]and Baker et al](2025). In this paper, we
use the same hyperparameters as given there.

2.3 STRUCTURAL INFERENCE

In both statistical physics (Altland and Simons},2010) and biology there is a working definition of
structure in a complex system that goes as follows: we take a set of stimuli (which might mean
exposing the material to external fields in physics, or exposing a population of cells to chemicals or
other environmental perturbations in biology) and a set of observables (which could be susceptibilities
in physics, or gene expression levels in biology). This leads to a data matrix when we measure
each observable after each stimulus. Analysis of this data matrix yields modes of co-variation of the
material or cell in response to a common stimuli and these reveal functional structure in the system.

For example, in biology “gene co-expression networks based on the transcriptional response of cells
to changing conditions” lead to the identification of gene modules which are “groups of genes whose
expression profiles are highly correlated across the samples” (Zhang and Horvath| 2005).

The aim of structural inference as put forward in|Baker et al.| (2025)) is to discover internal computa-
tional structure in neural networks from such analysis. The same “guilt-by-association” logic used in
biology to identify gene modules applies to neural networks: identifying groups of components that
respond in a coordinated fashion to data perturbations is a principled method for discovering their
collective computational function.

3 METHODOLOGY

Our language model is the same 3M parameter attention-only transformer trained in|Hoogland et al.
(2025) and further studied in|Wang et al.|(2024); Baker et al.| (2025). Unless specified otherwise, all
results in the main text are for the same seed of the studied language model. Three additional models
were trained using the same architecture and training distribution, but with different initializations
and ordering of minibatches; see Appendix [Hother seeds.

This transformer has two layers, and in each layer only self-attention (no MLPs). Hence we refer
to this as an attention-only transformer. The attention heads are denoted for0 <[ < 1and
0 < h < 7. It is known from Hoogland et al.|(2025)) that the previous-token heads in this model are
(0:1), (0:4), the current-token head is and the induction heads are (1:6), (1:7). This model was trained
for 50000 steps on a subset of the Pile (Xie et al., 2023)).

For a complete specification of architecture, including dimensions and training hyperparameters,
please refer to [Hoogland et al.[(2025)). While the model also contains embedding, unembedding,
MLP and layer norm weights and it is possible to perform the same susceptibility analysis for these,
we focus on attention heads in this paper.

3.1 UMAP

To each pair (z,y) of a sequence of tokens x and a token y we associate a vector 7, (xy) =
(X}Cy, cen Xfy) € R where H is a set of network components (e.g. attention heads) and w is
the parameter of the neural network. This can be thought of as a feature map which represents
the continuation y in context x from the point of view of the model: token sequences will be
mapped to nearby points in the feature space if the pattern of susceptibilities (e.g. the pattern of
expression and suppression) across heads is similar. When we apply n,, to transform a set of samples
(z,y) ~ q(z,y) from a given distribution over sequences and apply UMAP, this provides a low-
dimensional visualization of this transformation of the data manifold. Note that the transformer does
not receive y as an input. See Appendix [C]for more on UMAP.

3.2 PER-PATTERN SUSCEPTIBILITY

Rather than focusing on individual tokens, we may aggregate the per-token susceptibilities by pattern.
Let a be one of the pattern categories in Table[T] Given a set of contexts and a model parameter w

we can define the empirical per-pattern susceptibility ¢, (cr) = ﬁ > (eyca(Xays -+ Xayy) Where
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the sum is over those token sequences xy in the sampled contexts that are classified as following
the given pattern o. We plot these values over training in Figure [2]to corroborate the qualitative
observations in our UMAP visualizations.

4 RESULTS

We begin with a high level overview of the UMAP visualization and per-pattern susceptibilities
(Section@ before focusing more closely on two structures: induction (Section[d.2) and spacing
(Section . The former relates to the development of the induction circuit of this model, which
was previously studied in/Hoogland et al.| (2025)); 'Wang et al.|(2024); [Baker et al.|(2025) and offers
a through-line for comparison of methodologies. The latter pattern indicates novel computational
structure related to counting spacing tokens.

We show the development of the language model at four checkpoints: end of stage LM1 (step 900),
end of stage LM3 (step 9000), end of stage LM4 (step 17500) and at the end of stage LMS5 which is
the end of training (step 49900). Notably, the induction circuit forms during stages LM3 and LM4.
See Appendix [B-T]for more details on these stages. In Appendix [[} we present parallel experimental
results for other seeds that demonstrate a high degree of universality in our observations.

In describing the axes of the UMAP body (see Figure[I), we use the posterior-anterior (“tail" and
“head") and dorsal-ventral (“back" and “front") language from biology: the PC1 axis points from the
posterior towards the anterior, and the PC2 axis from ventral to dorsal.

4.1 ONTOLOGY OF PATTERNS AND THE RAINBOW SERPENT

At the end of training the UMAP of susceptibility vectors in Figure[] has a striking and colorful
appearance when we color the points (i.e. token sequences) by pattern (Table[I). We refer to this as
the rainbow serpent. In this section we explain why the UMAP appears this way, how it relates to the
underlying structure of the model, and how the appearance develops over training.

Firstly, the rainbow serpent is a serpent: it is long and thin. This is because PC1 explains most of
the variance. This is most pronounced near the beginning of training: PC1 explains 98.81% of the
variance at step 900 and 95.19% at the end (Appendix [C.2).

In Figure[[]we overlay black lines corresponding to the principal component directions, computed by
constructing points along the lines spanned by each principal component and recomputing UMAP
on these extrapolated points after computing it on the original data. We see that PC1 runs along the
anterior-posterior axis, with positive PC1 pointing towards the anterior (all heads positive) while
PC2 runs along the dorsal-ventral axis, with positive PC2 pointing towards what we have termed the
dorsal side. As observed in|Baker et al.[(2025)), tokens are distributed along PC1 according to their
average susceptibility across heads: tokens that are broadly suppressed are at the anterior end, tokens
that are broadly expressed are at the posterior. This is visible in the samples in Figure [T}

Secondly, we see that at the end of training the UMAP body is stratified by color: we note a clear blue
stripe (word end tokens) along the dorsal side, a yellow streak near the mid-body running along the
anterior-posterior axis (numeric tokens), purple towards the anterior (word starts), an orange “belly”
(induction tokens from the mid-body to the ventral side), red near the posterior end (delimiters) and
a body of spacing tokens extruding from the lower back (which we call the spacing fin). This is a
refinement of the information we can derive from looking at large coefficient tokens in the principal
components, as done in Baker et al.|(2025) and reproduced here in FigureEl

This stratification results from patterns in the tokens inducing differentiated patterns of susceptibilities
across the heads; one natural explanation for this would be that potentially overlapping, but distinct,
sets of heads are involved in expressing (or suppressing) each pattern. In this way the functional
specialization of components of the model determines the “anatomical’f]organization of the UMAP.

The organization of the serpent by color develops over training, as can be seen visually in the UMAP
of Figure JJand numerically in the accompanying plots of per-pattern susceptibilities over time. Up
until the end of stage LM1 (900 steps) there is little stratification by token pattern. Rapid changes in

“Anatomy comes from the Greek dvatoun anatomé “dissection” or “to cut up” and as a technical term it
seems quite apropos to the kind of analysis being performed here.
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Figure 2: Embryology of the rainbow serpent: (Top) UMAP projections of per-token susceptibilities
for all heads across training. Colors represent different token patterns, see Table[T] Arrows point
from the posterior to the anterior. We select checkpoints according to the developmental stages, see
Appendix [B-T] (Bottom) Per-token susceptibilities for seed 1 are aggregated by pattern and their
values are averaged and plotted over the course of training, using approx. 2M tokens. On the left half
(gray outline) are the per-head, per-pattern susceptibilities for layer 0, while layer 1 susceptibilities
are on the right (black outline). Training step ticks are shared across all subplots.
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the per-pattern susceptibility occur over stages LM2 and LM3 (from 900 to 9000 steps). For example,
we can see from the per-pattern susceptibilities that word start tokens have migrated to the posterior,
and word end tokens have migrated to the anterior. Some of the spacing tokens are ejected from
the main body during these stages (see Section[d.3]for more on the development of the spacing fin).
Overall the main body remains “scrambled” in appearance at the end of stage LM3. During stage
LM4 we see the emergence of the color stratification that characterizes the final model.

4.2 THICKENING AND INDUCTION

The importance of induction patterns and their role in the development of language models was first
identified by [Elhage et al.|(2021));|Olsson et al.|(2022)). The internal structure or circuit associated with
the prediction of induction patterns is the induction circuit. An idealized induction circuit consists
of a previous-token head in layer [ and an induction head in layer I’ > [ that K-composes with the
previous-token head; we refer the reader to [Elhage et al.|(2021)) for the definition of K-composition.
Induction heads are identified with the prefix score of |Olsson et al.| (2022). In practice, there can be
multiple previous-token heads and induction heads cooperating to predict induction patterns. In the
particular model we study, Hoogland et al.| (2025)); Wang et al.|(2024) showed that the previous-token
heads are (0:1), (0:4), the current-token head is and the induction heads are (1:6), (1:7). We recall
in Appendix [lhow [Baker et al (2025) identified the induction circuit consisting of these five heads
using susceptibilities.

In the present paper, we use a data matrix which combines the heads from both layers. The loadings in
Figure[T3]are broadly positive in layer 0, negative in layer 1 and have the highest magnitude in layer
0 on the previous and current token attention heads, and the lowest (i.e., most positive) magnitude in
layer 1 on the induction heads. This pattern also holds in the other three seeds (Appendix [F.2). In this
sense, the induction circuit has a significant influence on the direction in susceptibility space that
points from the ventral to the dorsal side of the rainbow serpent.

The stratification of color along the dorsal-ventral direction in the UMAP, which runs from orange
induction patterns on the “belly” to blue word endings on the “back”, is made quantitative by Figure[3]
and given the above remarks we can see that this stratification is a direct consequence of the fact
that the induction circuit expresses induction patterns and the rest of the network tends to suppress
them. In this way, an internal structure in the model, the induction circuit, appears both as a principal
component of the matrix of susceptibilities and, relatedly, in the organization of token patterns in the
anatomy of the serpent.

Moreover, the emergence of the induction circuit is represented visually in the development of the
UMAP by thickening along the dorsal-ventral axis and the separation of induction patterns from other
tokens (Appendix [D).

4.3 EMERGENCE OF THE SPACING FIN

Near the beginning of training the spacing tokens (green) appear evenly distributed along the anterior-
posterior axis. Around 1000 steps we see the per-pattern susceptibility for spacing tokens begin to
decrease in both layers, signaling that these tokens are migrating to the posterior end, as can be seen
in the UMAP from step 9000 onwards (Figure ). Notably, at the end of LM3 we see a cluster of
spacing tokens has separated from the main body (moreover, it remains separated even when we
increase the n_neighbors hyperparameter of UMAP from 45 to 125, see Appendix [C.I). This
cluster, once it is reattached to the main body, will form the spacing fin that we see at the end of
training. In Appendix [E.T] we explain what distinguishes those spacing tokens that end up in the
spacing fin.

This suggests that the model develops computational structure, possibly spread across many attention
heads, for differentiating spacing tokens from one another and counting them. At present we lack a
more mechanistic explanation of how this structure operates (analogous to the idealized model of the
induction circuit).
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5 RELATED WORK

Representational geometry of language models. A line of inquiry in interpretability has analyzed
the geometry of language model representations. A landmark example is the work of Hewitt
and Manning| (2019) who introduced a “structural probe” to show that syntactic parse trees are
geometrically embedded within BERT’s activation space. Building on this, |Reif et al|(2019) further
explored this geometric organization. They applied UMAP to the context embeddings of polysemous
words like “die,” demonstrating that different word senses form distinct spatial clusters. Together,
these works show how probing and visualization can map a model’s representational manifold to
known syntactic and semantic concepts. Important work on this topic has also been done in image
models (Carter et al.,|2019) and with SAE features (Bricken et al., 2023 [Engels et al.,[2025; L1 et al.}
2025)). Our work adopts a similar visualization approach but shifts the focus: by applying UMAP to
susceptibility vectors rather than activation vectors, we visualize information about the loss landscape
geometry and how it relates to prediction. The geometry of representations has long been important
in cognitive science (Kriegeskorte and Kievit, 2013]).

Expression and suppression. The results presented in this paper further reinforce the picture
in|Baker et al.| (2025) which suggests that the duality between expression and suppression may be
fundamental to how computation in neural networks is organized. This is not entirely surprising, as
exhibition / exhibition is known to be fundamental in biological neural networks. One theoretical
justification for this has been put forward, that a strong and balanced exhibition/inhibition is necessary
to calculate in the presence of noise in inputs and outputs (Rubin et al., 2017)).

6 DISCUSSION

Universal body plan. Despite using different specific heads for tasks such as induction, the four
training seeds of the language model end up with a strikingly similar overall structure (Appendix [F).
This suggests that while the low-level implementation (which head does what) is contingent, the
high-level functional organization as revealed by the configuration in susceptibility space is to some
degree a universal consequence of the architecture and the data distribution. It is an interesting
question for the science of deep learning whether the universal principles of organization behind such
empirical observations can be clarified.

Limitations.  Our study has several limitations, which present important directions for future
work. The primary limitation is the scale of the model: a 3M parameter, two-layer attention-only
transformer. Whether the UMAP of susceptibility vectors is useful for discovering structure in larger
language models remains an open question. Second, our interpretability method relies on UMAP for
visualization. Although we focused on robust, large-scale phenomena like the separation of token
patterns, UMAP can distort global distances, and thus the geometry of the “rainbow serpent” should
be interpreted cautiously. Finally, the structures we identified may be contingent on our experimental
setup; for instance, the prominence of the spacing fin is likely influenced by the tokenizer, and
different tokenization strategies could lead to different learned structures. It is therefore important to
investigate these phenomena across different model scales and tokenizers.

7 CONCLUSION

In this work, we have demonstrated that the development of language models can be usefully studied
through an embryological lens, by applying UMAP to visualize the evolution of susceptibility patterns
across training. We observed the emergence of clear anatomical organization: an anterior-posterior
axis defined by global expression versus suppression, dorsal-ventral stratification corresponding to
the induction circuit, and the formation of a new structure that we call the spacing fin.

Moreover, the remarkable universality of the developmental trajectories across different model seeds
suggests that language models may be discovering fundamental organizational principles dictated by
their architecture and data distribution.
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8 REPRODUCIBILITY STATEMENT

Appendix [B| outlines experimental details of the model and of hyperparameters used in sampling.
Appendix [C]covers the UMAP hyperparameters used, and Appendix [G]lists hyperlinks to the datasets
used. Further implementation details and theoretical treatment can be found in Baker et al.| (2025).
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APPENDIX

The appendix provides supplementary material to support and expand upon the main text. It is
organized as follows:

Appendix [A} full details on token pattern definitions.

Appendix [B} experimental details, including developmental stages, and posterior sampling
hyperparameters.

Appendix [Ct UMAP hyperparameter details, discussion on the specific tradeoffs of PCA
versus UMAP as dimensionality reduction techniques, and additional plots relating to the
dorsal-ventral thickening of the UMAP serpent.

Appendix D} additional information related to the induction circuit and its representation in
the UMAP.

Appendix[E} additional plots relating to the spacing fin.

Appendix [F} developmental UMAP serpents and per-pattern susceptibilities for three other
model seeds.

Appendix[G} descriptions and links to the datasets used.

Appendix [H} additional viewing angles for the UMAP serpent, revealing otherwise hidden
token structures.

Appendix[I} additional related work.
Appendix[J} a statement on the use of LLMs in this research.
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Figure 3: Percentages of tokens in each dataset which follow a given pattern. Note that not all patterns
are mutually exclusive.

A TOKEN PATTERN DEFINITIONS

A summary of the token patterns used in this paper is given in Table[I] In the rest of this section we
give a fully detailed definition of each pattern. Let ¥ denote the set of tokens in our tokenizer.

Definition A.1. A left delimiter token is an element of the set of tokens

(Y AN NN NN N N N )%

A right delimiter token is an element of the set of tokens

{y Ay A§ YY X N N N N N N N %
We call a token a delimiter token if it is either a left or right delimiter token.

The asymmetry between left and right delimiters is due to the tokenizer. For our model, right
delimiters seem much more important than left delimiters.

Definition A.2. A formatting token is an element of the set of tokens

{ "N XN XN X X XX XX X

======== —=  ———=  ———————= , okk L, kkkk L Ak kkokokokk

##EF, ., , , ., 1, 1,5, 7,",, <|lendoftext|>,

Definition A.3. A word start is a single token that begins with a space and is followed by lower or
upper case letters. That is, it is a token which when de-tokenized matches the regular expression "
[A-Za—-z]+S".

Definition A.4. A spacing token is a token which when de-tokenized is a sequence of characters
from the set

{,am, e, e, )

Definition A.5. A numeric token is a token which when de-tokenized and with spaces removed,
consists of one or more digits.

The patterns defined above are independent of the context in which a token appears. By contrast, the
subsequent definitions apply to a token in a given context.
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Test loss E(Wt)
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Figure 4: Developmental stages of the language model. Critical points in the local learning
coefficient (LLC) curve mark boundaries between distinct developmental stages (bottom row; warm
hues for increasing LLC, cold for decreasing LLC).

Definition A.6. A word end token is a token which when de-tokenized is made up of upper or lower
case letters and which is followed in its context by a single formatting token, delimiter or space.

Definition A.7. A word part token is a token which is not a word ending in its context and which
when de-tokenized consists of upper or lower case letters.

Definition A.8. An induction pattern is a sequence xyUxy where U € ¥* and z, y € X, satisfying
the following conditions:

* The conditional probability of y following x satisfies ¢(y|x) < 0.05.
ez,y¢{ ,\n, ,, ., the, to, :, and, by, in, a, be }.

Note that U can be the empty sequence and may contain occurrences of x, y. In a given context we
classify a token as an induction pattern token if it is y for an induction pattern zyU xy within the
context.

We use estimated conditional probabilities based on samples from the Pile. Note that the sets of left
delimiters, right delimiters, formatting tokens, word start tokens and word part tokens are pairwise
disjoint. The set of induction pattern tokens and word part tokens are disjoint. The percentage of
N = 20000 tokens sampled from each dataset which fit each of these patterns are given in Figure 3]

Note that the structure learned by a model may be substantially influenced by the tokenizer: for
instance, the importance of space tokens in this paper is partly explained by the fact that many
sentences are tokenized with individual spaces  that are not bound into words, as for example the
spacein The is bound.

B EXPERIMENTAL DETAILS

B.1 DEVELOPMENTAL STAGES

In Figure ] we recall the five developmental stages of the language model as discovered in[Hoogland
et al.[(2025):

14
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e LMI1 : The model learns to predict common bigrams, patterns of token pairs x—y.

e LM2 : The model learns to predict common multigrams, patterns of tokens
z1U; -2, U, — xp41 where U; may be empty or not (i.e. they may be “skip"” multi-
grams or not).

* LM3 : The previous token heads begin to form.
e |LM4 : The induction heads begin to form.

* LMS : Stage five was identified as a distinct stage by Hoogland et al.| (2025)), but the
primary developmental changes were not determined.

B.2 SUSCEPTIBILITIES HYPERPARAMETERS

Following Baker et al.| (2025), we compute susceptibilities using Stochastic Gradient Langevin
Dynamics (SGLD) with hyperparameters v = 300, n3 = 30, € = 0.001, batch size 16, 4 chains, and
100 draws to compute the per-token susceptibilities.

For additional details on the theory and implementation of susceptibilities used in this paper, please
refer to the appendices of Baker et al.|(2025)).

C UMAP

We chose UMAP for dimensionality reduction because of its speed and accurate representation
of local topological properties of the dataset. Any method of dimensionality reduction introduces
potential for error into an analysis, because there is simply no way to accurately reflect the geometry
of a high dimensional space in two or three dimensions. Some common faults are that UMAP does
not preserve global structure, and that it represents data as roughly uniformly dense even when that is
not the case. See|Chari and Pachter (2023) for a more detailed discussion.

To avoid this, we focus our analysis on observations where it is clear that UMAP has faithfully
represented an aspect of the original distribution. The phenomena analyzed in this paper happen at
large scale, and are ultimately determined by which points are near each other (in both the UMAP
plot and high-dimensional susceptibility space), so we can be confident they are not illusions.

We apply UMAP to a data matrix X with 16 columns and 260k rows. Each row is the susceptibility
vector 1, (xy) for a fixed neural network parameter w where (z,y) ~ ¢'(z,y) as 1 <1 < 13 ranges
over the datasets in Appendix [G]except for PILEIM. We sample 20k token sequences for each dataset.
The data matrix X is standardized (that is, the columns have the mean subtracted and are rescaled to
have unit standard deviation) before applying the UMAP algorithm.

C.1 UMAP HYPERPARAMETERS

The UMAP algorithm depends fundamentally on the choice of n_neighbors hyperparameter. The
images in this paper were computed with n_neighbors= 45.

This hyperparameter governs how many nearest neighbors are taken into consideration when comput-
ing the local distances in the original embedding that the learned embedding tries to match. The value
being too low can cause misleading clusters of data points in the visualization. Since our analysis
includes identifying clusters, we took pains to identify such false patterns. We rendered visualizations
with n_neighbors ranging between 15 and the equivalent of 8000 (via down-sampling by a factor
of 8, with n_neighbors set to 1000), and any phenomena that were not observable in all renderings
were dismissed as spurious.

We also created the plots with a range of values between 0 and 0.5 for the min_dist parameter,
which has a maximal value of 1. This value governs how close neighboring points are allowed to be
when learning the low dimensional embedding. We did not see substantial differences in the plots for
different min_dist values. The figures in this paper were rendered with min_dist = 0.1.
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Figure 5: Per-token susceptibility PCA showing mean and standard deviation of loadings of
principal components on data patterns across 10 independent draws of 20000 tokens from each
dataset. The data matrix is the same as that used for UMAP, see Appendix [C] The number 30.2
appearing in “Top 1% Negative” for word start tokens in PC1 means that when we order the tokens in
PC1 with negative coefficients by magnitude, 30.2% of those in the top 1% by magnitude are word
start tokens.

C.2 UMAP VERSUS PCA

Throughout this paper, UMAP is our dimensionality reduction tool of choice. Any dimensionality
reduction tool comes with tradeoffs, and we discuss our reasons for choosing UMAP in section
Section 311

However, the most common such tool is PCA, so it is natural to ask why we do not also incorporate
PCA visualizations into our analysis. For PCs 1 and 2, we already capture much of the information
from the fact that PC1 runs along the posterior-anterior direction and that PC2 runs along the dorsal-
ventral direction. Together, these capture around 98% of the explained variance. Below, we present
the explained variances for principal components 1 to 6:

e PC1: 0.9519 (0.9519 cumulative)
PC2: 0.0262 (0.9781 cumulative)
PC3: 0.0058 (0.9839 cumulative)
PC4: 0.0033 (0.9872 cumulative)
PC5: 0.0028 (0.9900 cumulative)
PC6: 0.0022 (0.9922 cumulative)

We see that for PC3 and beyond, the amount of explained variance is comparable for the different
principal components, and so it is not obvious that privileging PC3 above 4, 5, and 6 in a visualization
gives as useful of a representation of the susceptibilities as a UMAP reduction does.
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Figure 6: A 3D visualization of the first three principal components is shown for the same per-
token susceptibility data used to generate the UMAP serpents. Note that the different axes were
automatically rescaled.
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Figure 7: The distribution of tokens projected onto PC2 in susceptibility space, separated into
induction pattern tokens and all other tokens.

As an example, in Figure [} we have a 3D plot of the first three principal components of the
susceptibilities data. Some of the macroscopic structure visible in the UMAP serpent, such as
the general posterior-anterior organization and the separation in PC2 of induction pattern tokens.
However, the spacing fin is no longer visible: the tokens composing the spacing fin in the UMAP plot
now make up the densest visible cluster of green tokens in the center of the head. This suggests that
the structural information that separates the spacing fin is contained in PC4 and higher, which is lost
by using PCA as our dimensionality reduction technique but preserved by UMAP. Similarly the streak
of numeric tokens visible in the UMAP (Appendix [H) appears only in PC5 (see Figure5). Therefore,
for the type of analysis we are doing in this paper, the tradeoffs in using UMAP are preferable.

In Figure j] we show the percentage of extreme positive and negative tokens in the PCs which follow
a given pattern; this gives a quantitative picture of the extremes of the point cloud of susceptibility
vectors.
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C.3 THICKENING OF PC2

In Figure[7} we see that between checkpoints 9000 and 17, 500, the induction pattern tokens grow
significantly relative to other tokens along PC2 and maintains this through the end of training. As
stated in the main text, the explained variance for PC2 increases from 2.3% to 6.4% between steps
9000 and 17, 500. This quantifies the visual striation and thickening of the induction tokens visible
in Figure[I} showing that this is not just a misleading visual artifact of UMAP.

D INDUCTION CIRCUIT

In this section we study how the development of the induction circuit is represented in the evolution
of the structure of the UMAP. This development was originally studied in [Hoogland et al.| (2025]),
see Appendix[I} In the present paper the most natural indicators of development are the per-pattern
susceptibilities in Figure ] for induction patterns, which in both layers are small and negative until
around 2000 steps when they begin a slow increase, which becomes rapid sometime before 10000
steps. The effect of this increase is visible in the UMAP: at 9000 steps there is no dorsal-ventral
stratification by color, whereas this is obvious at 17500 steps (the end of LM4). The thickening of the
serpent is explained by the variance of the susceptibility of induction tokens along the direction of
PC2 experiencing a sharp increase: the percentage of total variance of the subset of induction tokens
accounted for by PC2 increases from 2.3% to 6.4% (see Appendix for more details) between
9000 and 17500 steps.

E SPACING FIN

E.1 DEVELOPMENT

In Figure[8] we show the development of the spacing fin over training. We see that these are token
sequences xy where y is a spacing token and x ends with a sequence of spacing tokens (typically
a space preceded by a sequence of spaces, as in the examples (B)-(D) of Figure[I). By the end of
training we can see that moving outwards along the spacing fin from the UMAP body we encounter
(on average) token sequences where y is preceded by an increasing number of spacing tokens; in
particular, some tokens on the rim of the spacing fin exist in a “desert” of hundreds of spaces. This
observation is made quantitative by Figure [[T] which also indicates the approximate direction in
susceptibility space that the spacing fin juts out towards.

Another interesting development phenomenon is the the reattachment of the spacing fin to the main
body, first to the posterior end at 17500 and then to the anterior end sometime before the end of
training. As can be seen in Figure[land the examples of Figure[I]the reattachment at the posterior
end is easy to understand: the ordinary spaces (preceded by non-spacing tokens in context) that make
up the posterior bulk of spacing tokens (see Figure[J) become “glued” to the token sequences xy in
the fin where x ends in a small number of spaces. The anterior attachment of the spacing fin is more
subtle, since the region it attaches to contains newlines \n rather than spaces.

E.2 ADDITIONAL FIGURES
In FigureP] we see the distribution of spaces and newlines in the serpent roughly split between the
anterior and posterior halves, and we also see the spacing fin attached at the boundary.

In Figure[T0} we see a histogram of the frequency of different counts of consecutive spacing tokens.
Note the log scale on the y-axis, indicating roughly exponential decay.

In Figure[TT] we see the evolution of per-head susceptibilities on spacing tokens as the minimum
number of preceding spacing tokens increases, indicating directions in susceptibility space that
increasing consecutive spacing tokens points in.
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(Step 900 (end LM1) (Step 9000 (end LM3) ]

A

Figure 8: The development of the spacing fin. UMAP projections of spacing tokens across training
using approximately 42000 tokens. Tokens are colored according to the number s of preceding
spacing tokens with green component 1 — 0.8a where a = log,,(1 + s)/log,,(1 + 50). Points with
50 or more preceding spacing tokens are black, with the maximum number of preceding spacing
tokens being 665. Arrows indicate the direction from the posterior to the anterior.
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Figure 9: The development of the spacing fin, by type. UMAP projections of spacing tokens at
four checkpoints across training, using approximately 42000 tokens. Tokens are colored according to
whether they are single spaces , individual newlines \n or other. Susceptibilities for both layers
are used, and arrows indicate the direction from the posterior to the anterior.

40 60
Number of Preceding Spacing Tokens

Figure 10: Histogram of the number of spacing tokens preceding a spacing token, in the approximately
42k spacing tokens found in the set of 260k sampled token sequences.

F OTHER SEEDS

Four models were trained in the same setting as described in|[Hoogland et al.|(2025). In the main text
we describe results for seed 1 and in this appendix we provide partial results for other seeds (2, 3, 4).
Note that we use the same checkpoints for direct comparison to seed 1 but the stage boundaries for
each seed differ by small amounts.
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Figure 11: The average per-token susceptibilities for spacing tokens is shown across four checkpoints
(900, 9000, 17500, 49900 reading from left to right and top to bottom) conditional on the minimum
number of preceding spacing tokens. Colors range from green (1) to black (80).

F.1 UMAPS AND PER-PATTERN SUSCEPTIBILITIES FOR OTHER SEEDS

The UMAPs are shown in Figure[T2} Figure [I3] and Figure[T4] Across these different seeds, we
see an astonishing degree of universality in the macroscopic structure of these models, including
the ways particular patterns cluster towards the anterior or posterior, the dorsal-ventral striations,
and the existence of a spacing fin. The most obvious difference appears to be the specific stages of
development that the spacing fin undergoes, with seed 2 seeing a similar ejection of tokens from the
main body, while seeds 3, 4 do not.

We did not investigate other seeds as closely as seed 1, so we do not know the source of these
differences. We do note that there is some tension in desiring universality, while still wanting to be
able to pick up on meaningful differences between seeds.

The similarities in UMAP visualizations are reflected in the accompanying per-pattern susceptibilities
plots. Across the different seeds and patterns, the overall shape of the curves is fairly consistent, with
the largest differences occurring after the curves begin to fan out and differentiate from each other.
Even the differentiations share many qualitative features, for example, the shapes of induction pattern
susceptibilities for layer 1 heads are highly regular.

F.2 PC LOADINGS

In Figure [T6} Figure [[8] we show the loadings on heads of the top three principal components for the
data matrix X of susceptibilities.

G DATASETS
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Figure 12: Embryology of the rainbow serpent, seed 2: (Top) UMAP projections of per-token
susceptibilities for all heads across training for seed 2. Arrows point from the posterior to the anterior.
(Bottom) Per-token susceptibilities for seed 2 are aggregated by pattern and their values are averaged
and plotted over the course of training, using approximately 2M tokens. On the left half (gray outline)
are the per-head, per-pattern susceptibilities for layer O, while layer 1 susceptibilities are on the right
(black outline).

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

|

LO: Word Start LO: Word Part LO: Word End L1: Word Start L1: Word Part L1: Word End
0.0

1.0 N

|
o
o

Susceptibility
L
°
°
@

|
=
i
o
°

LO: Induction LO: Spacing LO: Formatting L1: Induction L1: Spacing
0 0.0 o 0.00
515
310 -1 -0.25
g -0.5 = \
805 -2 -0.50
3
a
0.0 -3 -1.0 -0.75
LO: Right Delimiter LO: Left Delimiter LO: Numeric L1: Right Delimiter L1: Left Delimiter L1: Numeric
AN A
23 N \ 3
2 1.0
22 y 2
8
g1 1 - 05 /~—
5 "/
a
o 0 0.0
102 10° 10% 102 10° 10% 102 10° 104 102 10° 10* 102 10° 10* 102 10° 10*
Training Step Training Step Training Step Training Step Training Step Training Step

~——HO - H — H2 — H3 —— H4 — H5 — H6 —— H7

Figure 13: Embryology of the rainbow serpent, seed 3: (Top) UMAP projections of per-token
susceptibilities for all heads across training for seed 3. Arrows point from the posterior to the anterior.
(Bottom) Per-token susceptibilities for seed 3 are aggregated by pattern and their values are averaged
and plotted over the course of training, using approximately 2M tokens. On the left half (gray outline)
are the per-head, per-pattern susceptibilities for layer O, while layer 1 susceptibilities are on the right
(black outline).
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Figure 14: Embryology of the rainbow serpent, seed 4: (Top) UMAP projections of per-token
susceptibilities for all heads across training for seed 4. Arrows point from the posterior to the anterior.
(Bottom) Per-token susceptibilities for seed 4 are aggregated by pattern and their values are averaged
and plotted over the course of training, using approx. 2M tokens. On the left half (gray outline) are
the per-head, per-pattern susceptibilities for layer 0, while layer 1 susceptibilities are on the right

(black outline).
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Figure 15: Head loadings of per-token susceptibility PCA for seed 1. In Wang et al| (2024}
Appendix G) it was found that in this seed the previous-token heads are and (0:4), the current-
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Figure 16: Head loadings of per-token susceptibility PCA for seed 2. In Wang et al| (2024,
Appendix G) it was found that in this seed the previous-token head is
and the induction head is (1:0).
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Figure 17: Head loadings of per-token susceptibility PCA for seed 3. In Wang et al| (2024,
Appendix G) it was found that in this seed the previous-token head is (0:4), the current-token head is
and the induction head is (1:6).
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Figure 18: Head loadings of per-token susceptibility PCA for seed 4. In|Wang et al| (2024}
Appendix G) it was found that in this seed the previous-token heads are and (0:3), the current-

0.4

0.21

0.

o

—0.21

PC2 PC3
0.4
T sl
i u
0.0 Lo
all _| I Lk L
-0.4

token head is and the induction heads are and (1:3).

25




Under review as a conference paper at ICLR 2026

Table 2: Details of the Pile (Gao et al., 2020) subset datasets used in our analysis.

Dataset Description Size (Rows)
GITHUB-CODE Code and documentation from GitHub 100k
PILE-PILE-CCi Web crawl data from Common Crawl 100k
PILE-PUBMED_ABSTRACTS|  Scientific abstracts from PubMed 100k
PILE-USPTO_BACKGROUNDS| Patent background sections 100k
PILE-PUBMED_CENTRAL] Full-text scientific articles 100k
PILE-STACKEXCHANGE] Questions and answers from tech forums 100k
PILE-WIKIPEDIA_EN| English Wikipedia articles 100k
PILE-FREELAW Legal opinions and case law 100k
mJ Scientific papers from arXiv 100k
PILE-DM_MATHEMATICS| Mathematics problems and solutions 100k
PILE-ENRON_EMAILS Corporate emails from Enron 100k
PILE-HACKERNEWS] Tech discussions from Hacker News 100k
PILE-NIH_EXPORTER] NIH grant applications 100k
PILE I M| Combined samples from all subsets M
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H ADDITIONAL EXAMPLES OF TOKENS

In Figure[I9} we present the seed 1 UMAP using two additional projections.

Comparing with Figure[5]we can see how the linear structure in the data matrix exhibited by PCA is
reflected also by the (non-linear) projection computed by UMAP, and how some of the features in
the UMAP are intrinsically non-linear (e.g. variations that occur away from the origin). Note that
the separation between word ends (blue) and induction patterns (orange) which characterizes PC2
Figure[3]is mostly a phenomena that we see in positive PCI in the UMAP. Also, the streak of numeric
tokens (yellow) visible in the UMAP (particularly in the XY view) appears only in PC5.

In Figure[I9) we highlight several streaks of tokens, by which we mean sets of tokens following the
same token pattern (i.e. having the same color in the UMAP) and which are arranged contiguously
along the anterior-posterior direction. Streak (A) consists of token sequences zy where x ends with
the conclusion of a sentence and y is a word start token which decodes to a space followed by a
capitalized word, as shown in Figure Other token sequences involve y among The , This,

While, These, There . Streak (B) consists of numeric tokens, largely appearing in math
questions from DM_MATHEMATICS. Streak (C) consists of spacing token sequences xy where y is a
tab \t (which appear in code and HTML). Streak (D) consists of the tokens. Streak (E) consists
of to and and tokens.

Observe that streaks (D), (E) consist of function words the , to , and which appear on the
dorsal spine of the UMAP, opposite to induction tokens which are more often “content” words. It is
interesting that as we move along the dorsal spine of the UMAP from the posterior, we encounter
space tokens  then newlines \n (see Fi gure and then eventually these function words; from
some perspective these are all “structural” tokens.

I ADDITIONAL RELATED WORK

Development of the induction circuit. = The development of the induction circuit in the same
language model used in this paper was studied in [Hoogland et al.|(2025| §4). The emergence of the
induction circuit was tracked with prefix scores for the two induction heads and the ICL score of
the network, while in|Wang et al| (2024, Fig. 7) the emergence was studied using K-composition
between the induction heads and previous-token heads. According to the prefix and ICL scores, most
of the change occurs over LM4, whereas the K-composition increases more gradually from around
2000 steps, although with a step change in slope around the LM3-LM4 boundary (8500 steps). In
general, LM3 and LM4 were identified as the stages where the induction circuit develops.

Structural inference for the small language model. In|Baker et al.[(2025) it was found that if
PCA is computed for each layer separately (in the sense that we take two data matrices, one with
a column per head in layer 0 and the other with a column per head in layer 1) then PC2 for both
matrices has a strong positive loading on the heads {, 0:4), } and {, } respectively.
That is, the heads we would expect based on the idealized description to be involved in the induction
circuit, together with the current-token attention head (0:5). Moreover, this is true for all four seeds. In
this sense, structural inference as introduced in |Baker et al.| (2025) finds the induction circuit, which
we define to include the current-token attention head.

Thom’s morphogenesis and structural stability. It was the proposal of [ Thom|(1972) that the stages
in embryonic development are associated with catastrophes in the sense of singularity theory. The
susceptibilities x, which are defined as integrals against the quenched posterior exp(—nL(w))p(w),
are sensitive to the geometry of the level sets of L(w) (Arnold et al.l|1985). We conjecture that the
qualitative changes in the pattern of susceptibilities, which take visual form in the evolution of the
UMAPs of this paper, are associated with specific changes in this geometry. Under this hypothesis
the development of shape and form that we study in the UMAP in this paper is close to the vision of
morphogenesis put forward by Thom.

Data manifold. A fundamental insight in deep learning is that learning representations is closely
related to learning a coordinate system on the “data manifold,” see Bengio et al.[| (2013} §8) and
Fefferman et al|(2016). If we think of the UMAP as a representation, from the model’s point of view,
of the data samples as a manifold (with boundary), then it is natural to think of the geometry of the
configuration of tokens (especially at the boundary) as being meaningfully connected to the learned
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Figure 19: The rainbow serpent, other angles. UMAP projection of per-token susceptibilities at the
end of training, showing two additional 2D projections (the YZ projection was shown in the main
text). Shown are lines corresponding to the first two principal components (labels PC1, PC2 occur at
the positive end of the axis). We highlight token streaks (A)-(E) which are detailed in Figure
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Figure 20: Token streaks. Susceptibility vector 7,,(2y) showing each head in order (0:0-0:7) (gray)

(1:0-(1:7) (black) and the token y (black outline) in its context z. The examples are taken from the

streaks (A)-(E) identified in Figure[I9} Note the similarity of the susceptibility vectors of the tokens
the, to, and.

representation within the model. It would be interesting to study more deeply the relation between
representation geometry and loss landscape geometry that appears here.

Structural inference vs circuit discovery. The approach to identifying computational structure
in neural networks taken in [Baker et al.| (2025) and continued here views structure as being about
coherent patterns of variation in the responses of model components to particular patterns in the
input. As a methodology, this is almost identical to the way structure is defined in modern genomics.
Biologists identify functional “modules” or “pathways” by finding gene coexpression networks. They
apply a stimulus (for example, a drug) to cells and measure the expression levels of thousands of
genes. Genes whose expression levels show a coherent pattern of variation (i.e., they are consistently
up- or down-regulated together) are grouped into a functional module. In some respects, this is
different from the prevailing “circuit-centric” paradigm in mechanistic interpretability. In fact, among
the most prominent structures in our sense is the anterior-posterior axis, which is determined by
a coherent pattern of suppression or expression across all heads, and the spacing fin, which is not
obviously encoded by a small subset of heads. We expect that structural inference and circuit-based
interpretability are complementary methods: for instance, having identified the spacing fin as an
interesting structure by our methods, one could then target it for more mechanistic analysis.

J STATEMENT ON USE OF LLMS

LLMs were used in the course of this research to support literature review for related work as well as
to generate some of the code used to implement experiments and to analyze and plot the data. All
LLM-generated output was reviewed by a human author.
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