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Abstract

We revisit the problem of general identifiability
originally introduced in [Lee et al., 2019] for causal
inference and note that it is necessary to add posi-
tivity assumption of observational distribution to
the original definition of the problem. We show
that without such an assumption the rules of do-
calculus and consequently the proposed algorithm
in [Lee et al., 2019] are not sound. Moreover,
adding the assumption will cause the completeness
proof in [Lee et al., 2019] to fail. Under positiv-
ity assumption, we present a new algorithm that is
provably both sound and complete. A nice property
of this new algorithm is that it establishes a connec-
tion between general identifiability and classical
identifiability by Pearl [1995] through decompos-
ing the general identifiability problem into a series
of classical identifiability sub-problems.

1 INTRODUCTION

Causal effect identification (or ID for short) problem, a
central concern in causal inference, pertains to whether,
given a causal graph, an interventional distribution can be
uniquely computed from observational distribution [Pearl,
2009]. When all the variables in the system are observable,
Pearl’s do-calculus (a collection of three rules) allows deter-
mining whether a causal effect is identifiable [Pearl, 1995].
Moreover, it was shown that Pearl’s do-calculus is both
sound and complete for ID problem [Shpitser and Pearl,
2006a, Huang and Valtorta, 2008].

In the classical setting of ID problem, both the causal graph
and the observational distribution, denoted by P (V) (V
is the set of observed variables in the causal graph), are
given. However, it is assumed that no extra information
(such as interventional distribution) is available. Recently,
several work in the literature relax these assumptions [Tikka

et al., 2021, Shpitser and Pearl, 2006b, Bareinboim and
Tian, 2015, Bareinboim and Pearl, 2014, Mokhtarian et al.,
2022]. Before discussing these results, let us introduce a
notion. We denote by Px(Y) the distribution of a set of
variables Y resulting from intervening on another set of
variables X. Bareinboim and Pearl [2012] introduced the z-
identification problem (or zID for short) in which for a fixed
set Z ⊆ V, given a set of interventional distributions of the
form {Pz′(V) : ∀Z′ ⊆ Z}, one asks whether Px(Y) is
identifiable. Note that the observational distribution P (V)
always belongs to the set of available distributions. Fur-
thermore, the form of given interventional distributions is
restrictive. Lee et al. [2019] generalized zID and proposed
so-called general identifiability problem (or gID for short).
In the gID, observational distribution is not necessarily given
but instead we have access to {Pzi

(V)}mi=0 for some sub-
sets {Zi}mi=0 of observed variables. When one of Zis is an
empty set, we have access to P (V).

We give formal definitions of identifiability (Definition 3)
and general identifiability (Definition 5) in Section 2. An
important contribution of this paper is to add an assump-
tion on the positivity of the observational distribution in the
definition of general identifiability, i.e., P (v) > 0 for all
the realizations of observed variables. As we shall discuss
in detail in Section 3, this assumption, or at least a relaxed
version of it, is crucial. More specifically, do-calculus-based
methods are no longer sound for the ID problem if we ig-
nore the positivity assumption. In other words, there exist
causal graphs with non-positive distribution P (V) such that
do-calculus would claim a causal effect is identifiable while
it cannot be uniquely computed from mere observational dis-
tribution. Violation of the positivity assumption can happen
in practice. For instance, some empirical distributions would
be zero when the observational data is not large enough. An
even more important reason for including the positivity as-
sumption is that without it, the proposed algorithm in the
original gID in [Lee et al., 2019] is not sound. Furthermore,
as we shall discuss in Section 3, the proof of completeness
in [Lee et al., 2019] relies on building two models that have
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zero probabilities for certain realizations of observed vari-
ables. Therefore, unfortunately, simply adding the positivity
assumption to the definition of general identifiability (g-
identifiability) will fail the proof technique in [Lee et al.,
2019] for the completeness of their proposed algorithm. On
the other hand, ignoring the positivity assumption makes
the soundness of their algorithm incorrect.

In summary, our main contributions are as follows. We rede-
fine the g-identifiability by adding the positivity assumption
of observational distribution (Definition 5). We show in Sec-
tion 3 that this assumption is essential for the gID problem.
We then provide a sound and complete algorithm for the gID
problem (Algorithm 2). A nice property of our algorithm is
that it establishes a connection between gID and classical
ID by showing that gID can be reduced to solving a series
of ID problems (Theorem 1).

2 PRELIMINARIES

2.1 TERMINOLOGY

Throughout the paper, we denote random variables by capi-
tal letters (e.g., X), their realizations by small letters (e.g.,
x), and sets by bold letters (e.g., X or x). We use XX to
denote the domain of random variable X and XX to denote
the Cartesian product of the domains of all the variables in
set X, i.e.,

∏
X∈X XX . For integer numbers a ≤ b, we use

[a : b] to denote {a, a+ 1, · · · , b}.

Suppose G = (V∪U,E) is a directed acyclic graph (DAG)
over vertex set V ∪U, where V and U represent the set of
observed and unobserved variables, respectively. For each
edge (X,Y ) ∈ E, X is called a parent of Y , and Y is
called a child of X . Vertex X is an ancestor of Y in G if a
directed path exists from X to Y in G. Note that X is an
ancestor of itself. PaG(X), ChG(X), and AncG(X) denote
the set of parents, children, and ancestors of X in G, respec-
tively. These notations are also used for a set of vertices.
In this case, they refer to the union over the set elements.
For instance, PaG(X) =

⋃
X∈X PaG(X). We assume G is

semi-Markovian, that is for each U ∈ U, PaG(U) = ∅ and
|ChG(U)| = 2. Note that this is not a restrictive assumption
as there exists an equivalency for identifiability in DAGs
and semi-Markovian DAGs [Huang and Valtorta, 2006].

Structural Equation Models (SEMs) are used to model
causal systems [Pearl, 2009]. G is a causal graph for SEM
M if each X ∈V ∪ U is generated as fX(PaG(X), ϵX),
where {ϵX : X ∈ V} is a set of mutually independent ex-
ogenous random variables. We denote by PM(·) the joint
distribution of the variables inM and drop the superscript
M when it is clear from the context. Markov factorization
property implies that PM(·) can get factorized as

P (v) =
∑
U

∏
X∈V

P (x|PaG(X))
∏
U∈U

P (u), (1)

where
∑

U denotes the marginalization over U.

Definition 1. M(G) denotes the set of SEMs with causal
graph G. M+(G) denotes the set of SEMsM∈M(G) such
that PM(v) > 0 for each v ∈ XV.

For X ⊆ V and x ∈ XX, the intervention do(X = x)
convertsM to a new SEM where the equations of X inM
are replaced by the constants in x. We denote by Px(·) the
corresponding post interventional distribution.

Remark 1. For three disjoint subsets X,Y,W of V, if
M ∈ M+(G), then PM

x (y | w) > 0 for any x ∈ XX,
y ∈ XY, and w ∈ XW.

For v ∈ XV and S ⊆ V, we define Q[S](·) by

Q[S](v) := Pv\s(s). (2)

Similar to Equation (1), Q[S] can get factorized as

Q[S](v) =
∑
U

∏
S∈S

P (s|PaG(S))
∏
U∈U

P (u). (3)

For X ⊆ V, G[X] denotes the inducing subgraph of G over
X and the unobserved variables with both children in X.
Note that G is semi-Markovian. Furthermore, we denote by
GX the partially directed graph over X obtained by remov-
ing unobserved variables of G[X] and replacing them by
bidirected edges.

Definition 2 (c-component, c-forest). For X ⊆ V, con-
founded components or c-components of X are the con-
nected components of the graph obtained by only the bidi-
rected edges of GX. Also, a subgraph of GV is called a
single c-component if its bidirected edges form a connected
graph. SupposeH is a subgraph of G over observed vertices
X. The root set of H is the maximal subset of X with no
children inH.H is called R-rooted c-forest if R is the root
set ofH,HX is a single c-component, and each node in X
has at most one child inH.

Example 1: Consider the causal graph G in Figure 1a, where
V = {X1, X2, Y1, Y2} and U = {U1, U2}. GV is depicted
in Figure 1b. The c-components of V are {X1, X2} and
{Y1, Y2}. Figure 1c depicts the inducing subgraph of G over
{X1, X2} and G{X1,X2} is depicted in Figure 1d. Herein,
G[{X1, X2}] is {X1, X2}-rooted c-forest since G{X1,X2} is
single c-component.

2.2 IDENTIFIABILITY

The goal in the identifiability problem is to understand
whether a post-interventional distribution can be uniquely
computed from observational distribution P (V), given the
causal graph [Pearl, 2009].
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Figure 1: An example for a causal DAG G over observed
variables V = {X1, X2, Y1, Y2} and unobserved variables
U = {U1, U2}.

Definition 3 (identifiability). Suppose X and Y are two
disjoint subsets of V. The causal effect of X on Y is said
to be identifiable from G if for any x ∈ XX and y ∈ XY,
PM
x (y) is uniquely computable from PM(V) in any SEM
M∈M+(G). Also, Q[Y] is said to be identifiable from G
if the causal effect of V \Y on Y is identifiable from G.

Huang and Valtorta [2008] showed that identifiability of a
causal effect is equivalent to identifiability of a specific Q[·].
Proposition 1 (Huang and Valtorta [2008]). The causal
effect of X on Y is identifiable from G if and only
Q[AncGV\X(Y)] is identifiable from G.

For a subset S of observed nodes, [Tian and Pearl, 2003]
showed that identifiability of a Q[S] is equivalent to identifi-
ability of all its c-components.

Proposition 2 (Tian and Pearl [2003]). Suppose S1, · · · ,Sl

are the c-components of S ⊆ V. Q[S] is identifiable from G
if and only if Q[Si] is identifiable from G for all i ∈ [1 : l].

Based on Propositions 1 and 2, [Tian and Pearl, 2003] pro-
posed an algorithm that for two disjoint subsets X and Y
checks the identifiability of the causal effect of X on Y
from observational distribution given the causal graph G. As
we will use their algorithm as a subroutine in our algorithm
for g-identifiability, we present their method in Algorithm 1.
In this algorithm, function ID_Single determines whether
Q[S] is identifiable from G when S is a single c-component.
More precisely, this function starts from Y = V and at each
step, it decreases Y such that both Q[Y] remains identifi-
able from G and S ⊆ Y. If this procedure can reduce Y to
S, then Q[S] is identifiable otherwise, Q[S] is not identifi-
able. This algorithm is both sound and complete [Shpitser
and Pearl, 2006a, Huang and Valtorta, 2008].

2.3 GENERAL IDENTIFIABILITY

In the previous section, we explained the classical identifia-
bility problem which determines whether a causal effect is

Algorithm 1: Identifiability
1: Function ID(X,Y,G)
2: Output: True, if the causal effect of X on Y is

identifiable from G.
3: S← AncGV\X(Y)
4: {S1, . . . ,Sl} ← c-components of S
5: for i from 1 to l do
6: if ID_Single(Si,G) = False then
7: Return False
8: Return True

1: Function ID_Single(S,G)
2: Output: True, if Q[S] is identifiable from G, where S

is a single c-component.
3: Y ← V
4: while Y ̸= S do
5: A← AncGY

(S)
6: Ynew ← The c-component of A that contains S
7: if Ynew = Y then
8: Return False
9: else

10: Y ← Ynew

11: Return True

identifiable from observational distribution given the causal
graph. As we discussed earlier, in many problems of inter-
est, the goal is to identify a causal effect from a set of both
observational and interventional distributions given a causal
graph. A variant of this problem was defined by Lee et al.
[2019] under the name g-identifiability.

Definition 4 (g-identifiability in [Lee et al., 2019]). Let
X,Y be disjoint subsets of V, Z = {Zi}mi=0 be a collection
of subsets of V, and let G be a causal diagram. Px(y) is
said to be g-identifiable from Z in G, if Px(y) is uniquely
computable from distributions {P (V|do(z))}Z∈Z,z∈XZ

in
any causal model which induces G.

Note that the causal model in this definition belongs to
M(G). However, as we shall discuss in Section 3, it is crucial
to assume that the causal model is positive, i.e., it belongs
to M+(G). Therefore, we modify the above definition as
follows.

Definition 5 (g-identifiability). Suppose A = {Ai}mi=0 is
a collection of subsets of V and X,Y are two disjoint
subsets of V. The causal effect of X on Y is said to be
g-identifiable from (A,G) if for any x ∈ XX and y ∈ XY,
PM
x (y) is uniquely computable from the set of distributions
{Q[Ai]}mi=0 in any SEMM∈M+(G). Also, Q[Y] is said
to be g-identifiable from (A,G) if the causal effect of V \Y
on Y is g-identifiable from (A,G).

Note that knowing P (V|do(Z)) for some subset Z ⊆ V is
equivalent to knowing Q[V \ Z], and therefore, by setting



Ai = V \ Zi, the two aforementioned definitions are the
same except for the positivity assumption. For the remainder
of this paper, we use Definition 5 for g-identifiability.

3 ON THE POSITIVITY ASSUMPTION IN
G-IDENTIFIABILITY

In our definition of g-identifiability and the classical defini-
tion of identifiability (Definitions 5 and 3), only SEMs that
belong to M+(G) instead of M(G) are considered [Huang
and Valtorta, 2008, Shpitser and Pearl, 2006a]. That is,
SEMs with positive probabilities for any realization v ∈ XV.
In this section, we discuss why this assumption is crucial
by showing that ignoring positivity leads to wrong conclu-
sions. As a consequence, since Lee et al. [2019] presented
the soundness and completeness of their algorithm for g-
identifiability, ignoring the positivity assumption, we dis-
cuss how after imposing the assumption, their results are
no longer valid. We further show that this issue cannot be
fixed by the relaxed version of the positivity assumption
introduced by [Shpitser and Pearl, 2006a]. After this dis-
cussion, we present a new algorithm in the next section for
g-identifiability and prove its soundness and completeness
under the positivity assumption.

3.1 SOUNDNESS REQUIRES POSITIVITY

The following example shows that do-calculus-based meth-
ods (e.g., Algorithm 1) are no longer sound for the ID prob-
lem ignoring the positivity assumption.

Example 2: Consider again the causal graph in Figure
1. Herein, do-calculus-based methods (e.g., Algorithm 1)
would report that the causal effect of X = {X1, X2} on
Y = {Y1, Y2} is identifiable given G. However, by ignor-
ing the positivity assumption, we can introduce two SEMs
M1 and M2 in M(G) that have the same observational
distribution but result in two different post-interventional
distributions after intervening on {X1, X2}. This clearly
contradicts with the identifiability of Px1,x2(y1, y2).

All variables in both models are binary. Also, for both mod-
els and i ∈ {1, 2}, we define P (Ui = 0) = P (Ui = 1) =
0.5 and Xi = U1. In modelM1, we define Y1, Y2 to have
the following conditional distributions:

PM1(y1 | u2, x1) =
1

3
1y1=u2

+
2

3
1y1 ̸=u2

,

PM1(y2 | u2, x2) =
1

3
1y2=(u2⊕x2) +

2

3
1y2 ̸=(u2⊕x2),

where 1A is the indicator function which is one whenever
the statement in A is true and is zero otherwise. For model

M2, we define the conditional distributions of Y1, Y2 as

PM2(y1 | u2, x1) =
2

3
1y1=(u2⊕x1) +

1

3
1y1 ̸=(u2⊕x1),

PM2(y2|u2, x2) =
2

3
1y2=u2 +

1

3
1y2 ̸=u2 .

It is straightforward to see that for any realizations
(x1, x2, y1, y2) ∈ XV, we have

PM1(x1, x2, y1, y2) = PM2(x1, x2, y1, y2).

However,

4

9
= PM1

x1=0,x2=1(Y1 = 0, Y2 = 0)

̸= PM2
x1=0,x2=1(Y1 = 0, Y2 = 0) =

5

9
.

Note that M1 and M2 do not belong to M+(G), since
P (x1 = 0, x2 = 1, y1, y2) = 0 for any y1 ∈ XY1

and
y2 ∈ XY2

. This example shows that if we use M(G) instead
of M+(G) in Definition 3, the causal effect of X on Y is
not identifiable from G, and therefore, do-calculus-based
methods such as the proposed algorithm in Lee et al. [2019]
are not sound. Specifically, the proposed algorithm in Lee
et al. [2019] suggests the causal effect in this example is
g-identifiable and returns the following expression:

Px1,x2(y1, , y2) = P (y1|x1, x2)P (y2|y1, x2, x1).

This expression is not well-defined for all realizations ignor-
ing the positivity assumption because for some realizations
P (x1, x2) is zero which means the conditional distribution
P (y1|x1, x2) is not well-defined. Thus, the algorithm in Lee
et al. [2019] is not sound.

Next, we discuss the g-identifiability in Lee et al. [2019]
and show that the completeness result provided in that work
relies on two models in M(G) that violate the positivity
assumption.

3.2 COMPLETENESS

[Lee et al., 2019] presented necessary and sufficient condi-
tions to determine if a causal effect Px(y) is g-identifiable
w.r.t. the Definition 4. To prove that their proposed condi-
tions are necessary for g-identifiability, they construct two
modelsM1 andM2 such that the available distributions in
the definition of the problem are the same for both models
yet PM1

x (y) ̸= PM2
x (y). The issue here is that they con-

structed their models ignoring the positivity assumption,
allowing for zero probability for some realizations. In fact,
having zero probabilities in their model is essential for the
proof. For instance, Lemma 3 in Lee et al. [2019] states
that under certain conditions, there is an observed variable
R ∈ V such that it takes value zero in both their models
with probability one. In other words, the probability of R



not being zero is zero (see Appendix 1.2 for more details.)
This shows that adding the positivity assumption to the def-
inition of gID will fail the proof technique in [Lee et al.,
2019] for the completeness of their proposed algorithm.

It is noteworthy to mention that an alternative positivity
assumption is introduced by Shpitser and Pearl [2006a].
Below, we describe this assumption and discuss that the
models introduced in Lee et al. [2019] also violate this
assumption.

3.3 RELAXED POSITIVITY ASSUMPTION

Shpitser and Pearl [2006a] show that in the ID problem of a
causal effect Px(y), one can relax the positivity constraint
P (V) > 0 to P (X| (PaG(X) ∩V) \X) > 0. They show
that the rules of do-calculus are sound under the relaxed
positivity assumption. However, as we mentioned, even
the relaxed constraint does not hold for the constructed
models in Lee et al. [2019]. More precisely, consider the
causal graph G in Figure 2 which is brought here from Lee
et al. [2019]. Assume that we are interested in g-identifying
the causal effect Q[R] from Z = {∅}, i.e., from mere
observational distribution P (V), w.r.t. Definition 4. In this
case, X = {T1, T2, T3} and therefore:

P (X| (PaG(X) ∩V) \X) = P (T1, T2, T3).

The result in Lee et al. [2019] implies that the causal effect
Q[R] is not g-identifiable given the causal graph G in Fig-
ure 2. To prove the non g-identifiability, Lee et al. [2019]
constructed two modelsM1 andM2 that impose similar ob-
servational distributions, i.e., PM1(V) = PM2(V), while
the causal effect Q[R] under these two models are not the
same for at least one realization. Next, we present these two
models and show that they violate the positivity assumption
claimed in Shpitser and Pearl [2006a], i.e., P (T1, T2, T3) is
zero for certain realizations of {T1, T2, T3}.

By the construction in Lee et al. [2019], variables
T3, U1, U2, U3 are binary variables and T1, T2 are binary
vectors of length two. For both models, all unobserved vari-
ables are defined to be binary with uniform distribution, and
the observed variables T1, T2, T3 are defined as follows.

T3 = U2 ⊕ U3,

T2,1 = T3, T2,2 = U1,

T1,1 = T2,1 ⊕ U2, T1,2 = T2,2.

In modelM1, variable R is defined as

R = 1T1,1=0 ∧ 1T1,2=0 ∧ 1U3=1 ∧ 1U1=1,

and in modelM2, it is defined to be zero, i.e., R = 0.

Given the above models, it is clear that the probability
P (t1, t2, t3) is equal to zero whenever t2,1 ̸= t3, and there-
fore, the relaxed positivity constraint P (T1, T2, T3) > 0

T1 T2 T3R

U1

U2

U3

Figure 2: A causal graph of [Lee et al., 2019] that shows
the violation of relaxed positivity assumption in constructed
models of [Lee et al., 2019].

does not hold for the models in Lee et al. [2019]. See Ap-
pendix 1 for more details.

To summarize, in this section, our goal was to prove the im-
portance of positivity assumption in both classical ID and its
generalization gID. We did so by showing that the rules of
do-calculus and consequently the proposed algorithm in Lee
et al. [2019] are not sound without the positivity assumption.
Moreover, we discussed that the completeness proof in Lee
et al. [2019] only holds when there is no positivity assump-
tion. This motivates our work to revisit the gID problem by
including the positivity assumption in the definition of gID
and presenting a new algorithm that is provably sound and
complete.

4 AN ALGORITHM FOR GID

In this section, we propose an algorithm for gID from (A,G),
where A = {Ai}mi=0 is a collection of subsets of V. To this
end, we first extend Propositions 1 and 2 from identifiability
to g-identifiability.

Proposition 3. Let X and Y be two disjoint subsets of V.
The causal effect of X on Y is g-identifiable from (A,G) if
and only if Q[AncGV\X(Y)] is g-identifiable from (A,G).

Proposition 4. Suppose S1, · · · ,Sl are the c-components
of S ⊆ V. Q[S] is g-identifiable from (A,G) if and only if
Q[Si] is g-identifiable from (A,G) for all i ∈ [1 : l].

Proofs are provided in Appendix 2. Proposition 3 allows
us to solve the gID problem for Px(Y) by solving an
equivalent problem for Q[S], where S is given in the same
proposition. Proposition 4 shows that the g-identifiability of
Q[S] from (A,G) is equivalent to g-identifiability of its sin-
gle c-components. The following result provides a method
for solving g-identifiability of Q[S] when S is a single c-
component.

Theorem 1. Suppose S ⊆ V is a single c-component. Q[S]
is g-identifiable from (A,G) if and only if there exists A ∈ A
such that S ⊆ A and Q[S] is identifiable from G[A].

A proof for Theorem 1 is provided in Section 5. Note that the
equivalent condition provided in Theorem 1 is identifiability



Algorithm 2: g-identifiability
1: Function GID(X,Y,A = {Ai}mi=0,G)
2: Output: True, if the causal effect of X on Y is

g-identifiable from (A,G).
3: S← AncGV\X(Y)
4: {S1, . . . ,Sl} ← c-components of S
5: for i from 1 to l do
6: if GID_Single(Si,A = {Ai}mi=0,G) = False then
7: Return False
8: Return True

1: Function GID_Single(S,A = {Ai}mi=0,G)
2: Output: True, if Q[S] is identifiable from (A,G),

where S is a single c-component.
3: for i from 0 to m do
4: if S ⊆ Ai and ID_Single(S,G[Ai]) = True then
5: Return True
6: Return False

of a Q[·]. This can be checked by function ID_Single in
Algorithm 1. Therefore, when S is a single c-component, in
order to check whether Q[S] is g-identifiable from (A,G),
we need to check the identifiability of Q[S] from G[A] for
all A ∈ A that S ⊆ A. Algorithm 2 summarizes the steps
for solving g-identifiability of a causal effect given (A,G).
Theorem 2. Algorithm 2 is sound and complete.

Proof. It directly follows from Propositions 3 and 4 and
Theorem 1.

Remark 2. Under the relaxed positivity assumption, the
algorithm is still sound and complete because Algorithm 2
is based on the rules of do-calculus, and these rules are both
sound and complete under the relaxed positivity assumption.

Suppose Algorithm 2 determines that the causal effect of
X on Y is g-identifiable from (A,G). Analogous to the
method in Tian and Pearl [2003], we can derive a formula
for Px(Y) as follows. For each Si ∈ {S1, · · · ,Sl}, we can
derive a formula for Q[Si] using ID_Single function in line
4 of GID_Single. This allows us to compute Q[S] using

Q[S] =

l∏
i=1

Q[Si].

Finally, the expression for Px(Y) will be

Px(Y) =
∑
S\Y

Q[S].

5 MAIN RESULT: THEOREM 1

In this section, we present the main steps of the proof of
Theorem 1. The technical lemmas in this section are proved
in Appendix 2.

Sufficient part: This part is straightforward: if Q[S] is
identifiable from G[A] for some A ∈ A such that S ⊆ A,
then Q[S] is uniquely computable from Q[A], and therefore,
Q[S] is g-identifiable from (A,G).

Necessary part: Suppose S is a single c-component and
Q[S] is not identifiable from G[Ai] for all Ai ∈ A such that
S ⊆ Ai. We need to show that Q[S] is not g-identifiable
from (A,G). Recall that A = {Ai}mi=0. To this end, we will
introduce two SEMsM1 andM2 in M+(G) such that for
each i ∈ [0 : m] and any v ∈ XV,

QM1 [Ai](v) = QM2 [Ai](v), (4)

but there exists v0 ∈ XV such that

QM1 [S](v0) ̸= QM2 [S](v0). (5)

This shows that Q[S] cannot be uniquely computed from
{Q[Ai]}mi=0.

For sake of space, we assume that there exists at least one
i ∈ [0,m] such that S ⊂ Ai. In this case, without loss of
generality, we assume that there exists k ∈ [0 : m] such that
S ⊂ Ai for i ∈ [0 : k] and S ⊈ Ai for i ∈ [k + 1 : m]. A
proof for the case in which S is not a subset of Ai for all
i ∈ [0,m] is provided in Appendix 3.

We first modify G by deleting some nodes and edges and
show that it is enough to prove Theorem 1 for the modified
graph. Then, we provide our method for constructingM2

fromM1 by introducing a system of linear equations.

Graph modification: Since S is single c-component, the
bidirected edges in GS form a connected graph over S. Let
FS be a minimal (in terms of edges) spanning subgraph
of G[S] such that FS

S is single c-component. Thus, FS
S has

no directed edges, and its bidirected edges form a spanning
tree.

Lemma 1 (Shpitser and Pearl [2006a]). Suppose
S ⊆ A ⊆ V. Q[S] is not identifiable from G[A] if and only
if there exists at least one S-rooted c-forest F with the set
of observed variables B such that S ⊊ B ⊆ A, the bidi-
rected edges of FB form a spanning tree, and the induced
subgraph of F over S is FS, i.e., FS = F [S].

Recall that for each i ∈ [0 : k], S ⊂ Ai and Q[S] is not
identifiable from Q[Ai]. Hence, Lemma 1 implies that for
each i ∈ [0 : k], there exists a S-rooted c-forest Fi over
a set of observed variables Bi such that S ⊊ Bi ⊆ Ai,
the bidirected edges of (Fi)S form a spanning tree, and
FS = Fi[S]. Next, we use {Fi}ki=0 to modify G.

We define G′ to be the union of all the subgraphs in {Fi}ki=0

with the observed variables V′ :=
⋃k

i=0 Bi and unobserved
variables U′. Furthermore, let A′ := {A′

i := Ai ∩V′}mi=0.
Because for each i ∈ [0 : k], Fi is a S-rooted c-forest in G′,
Lemma 1 implies that Q[S] is not identifiable from G′[A′

i].



Next result establishes the connection between non g-
identifiability of Q[S] from (A,G) and non g-identifiability
of Q[S] from (A′,G′).

Lemma 2. If Q[S] is not g-identifiable from (A′,G′), then
Q[S] is not g-identifiable from (A,G).

To complete the proof using Lemma 2, it is enough to show
that Q[S] is not g-identifiable from (A′,G′).

From g-identifiability to a system of linear equations:
To show that Q[S] is not g-identifiable from (A′,G′), we
introduce two models in M+(G′) such that equations (4) and
(5) are satisfied. That is, Q[S] cannot be uniquely computed
from {Q[A′

i]}mi=0.

Note that to define a SEM M over a causal graph G′, it
suffices to define the domains XX and either the conditional
distributions PM(X|PaG′(X)) or the corresponding equa-
tion in the SEM for all X ∈ V′ ∪ U′, where V′ and U′

denote the observed and unobserved variables in G′. We de-
fine the domains of all variables to be finite, i.e., |XX | <∞
for all X ∈ V′ ∪U′. Let U0 ∈ U′ be a fixed unobserved
variable (we will discuss later how to select U0) with domain
XU0 := {γ1, · · · , γd}. We define both modelsM1 andM2

to have similar distributions over all variables except vari-
able U0 (We will specify these distributions in Section 5.)
More specifically, for all V ∈ V′,

PM1(V | PaG′(V )) = PM2(V | PaG′(V )), (6)

and for all U ∈ U′ \ {U0},

PM1(U) = PM2(U) =
1

|XU |
. (7)

As the distributions in Equations (6) and (7) are the same for
both models, for the sake of brevity, we drop the superscripts
M1 and M2 from here on. For j ∈ [1 : d], We define
PM1(U0 = γj) = 1/d and PM2(U0 = γj) = pj , where
we will specify {pj}dj=1 later such thatM2 ∈M+(G′) and
both Equations (4) and (5) hold.

For v ∈ XV′ , i ∈ [0 : m], and j ∈ [1 : d], we define

θi,j(v) :=
∑

U′\{U0}

∏
X∈A′

i

P (x | PaG′(X))
∏

U∈U′\{U0}

P (u),

ηj(v) :=
∑

U′\{U0}

∏
X∈S

P (x | PaG′(X))
∏

U∈U′\{U0}

P (u),

where the index j indicates that U0 = γj in the factoriza-
tions. Using these definitions, we can write {Q[A′

i]}mi=0 and
Q[S] for both modelsM1 andM2 as follows:

QM1 [A′
i](v) =

d∑
j=1

1

d
θi,j(v),

QM2 [A′
i](v) =

d∑
j=1

pjθi,j(v),

(8)

and

QM1 [S](v) =

d∑
j=1

1

d
ηj(v),

QM2 [S](v) =

d∑
j=1

pjηj(v).

(9)

As we mentioned, we need to define {pj}dj=1 such that
M2 ∈ M+(G′) and both Equations (4) and (5) hold. Sub-
stituting Equations (8) and (9) into (4) and (5) yield the
following set of equations.

d∑
j=1

(pj −
1

d
)θi,j(v) = 0, ∀v ∈ XV′ , i ∈ [0,m],

d∑
j=1

(pj −
1

d
)ηj(v0) ̸= 0, ∃v0 ∈ XV;,

d∑
j=1

pj = 1,

0 < pj < 1, ∀j ∈ [1 : d].

(10)

Note that the last inequalities ensure thatM2 ∈ M+(G′).
The system of linear equations in (10) is solvable with re-
spect to {pj}dj=1 if and only if the following system of linear
equations is solvable with respect to {βj}dj=1.

d∑
j=1

βjθi,j(v) = 0, ∀v ∈ XV′ , i ∈ [0 : m]

d∑
j=1

βjηj(v0) ̸= 0, ∃v0 ∈ XV′

d∑
j=1

βj = 0.

(11)

Remark 3. If {β∗
j }dj=1 is a solution for (11), then

p∗j :=
1

d
+

β∗
j

2hd
, (12)

is a solution for (10), where h = max
j∈[1:d]

|β∗
j |. Note that the

division by 2h in Equation (12) ensures that 0 < p∗j < 1 for
each j ∈ [1 : d].

A solution to the system of linear equations in (11) will spec-
ify the distribution of U0 in modelM2. Clearly, existence of
a solution to (11) depends on the choices of {θi,j(v)} and
{ηj(v)}. The following result presents a sufficient condition
under which (11) admits a solution.

For v ∈ XV′ and i ∈ [0 : m], let θi(v) and η(v) denote the
vectors (θi,1(v), ..., θi,d(v)) and (η1(v), ..., ηd(v)) in Rd,
respectively.



Lemma 3. Consider the following set of vectors in Rd

Ω := {θi(v) : i ∈ [0 : m],v ∈ XV′} ∪ {1d}, (13)

where 1d denotes the all-ones vector in Rd. If there exists
v0 ∈ XV′ such that η(v0) is linearly independent from all
the vectors in Ω, then the system of linear equations in (11)
admits a solution.

To summarize, so far, we have introduced two models for
proving the necessary part of Theorem 1. In order to com-
plete the proof, it remains to specify the conditional distri-
butions in (6) for all observed variables which consequently
specify the vectors in Ω in Equation (13) and to find a re-
alization v0 ∈ XV′ such that η(v0) is linearly independent
from the set of the vectors in Ω.

Constructing the conditional distributions: In order to
specify the conditional distributions in (6), we first introduce
the following definitions and notations.

Since B0 is a single c-component, the bidirected edges in
G′B0

form a connected graph. Hence, there exists a bidirected
edge between S and B0 \ S. Accordingly, let U0 be an
unobserved variable in subgraph F0 that has one child in
S and one child in T := V′ \ S. We denote the set of
unobserved variables in G[S] by US and define UT :=
U′ \ (US ∪ {U0}). For X ∈ V′ ∪U′, we define α(X) to
denote the number of graphs in {Fj}kj=0 that contains X .

For each i ∈ [0 : k], let Ti denotes a node in Bi\S such that
ChFi

(Ti) ∩ S ̸= ∅. Note that such variables exist because
Fis are S-rooted c-forest.

Now, we are ready to introduce the domains of all variables
in V′ ∪U′. Recall that V′ = S∪T and U′ = US ∪UT ∪
{U0}.

XX := [0 : κ], ∀X ∈ S,

XX := {0, 1}α(T ), ∀X ∈ T,

XX := [0 : κ], ∀X ∈ US,

XX := {0, 1}α(U), ∀X ∈ UT,

XU0
:= [0 : κ]× {0, 1}α(U0)−1.

In the above definition, κ is an arbitrary odd integer greater
than 4. Note that the number of elements in XU0

is d =
(κ+ 1)2α(U0)−1.

According to the above definitions, for each X ∈ T∪UT∪
{U0}, its domain XX is a subset of Rα(X) and it belongs
to exactly α(X) number of subgraphs in {Fi}ki=0. Suppose
X belongs to Fi1 , · · · ,Fiα(X)

, where i1 < · · · < iα(X).
Thus, we denote X by a vector (X[i1], · · · , X[iα(X)]) of
length α(X). Next, we construct the conditional distribu-
tions of the observed variables by specifying their functional
dependencies to their parents.

When X ∈ T, we define the entries of its corresponding
vector as

X[ij ] ≡

 ∑
Y ∈PaFij

(X)

Y [ij ]

 (mod 2),

where j ∈ [1 : α(X)].

We now construct the variables in S. Recall that U0 has one
child in S which we denote it by S0. For each S ∈ S \ {S0}
and any realization of PaG′(S), we define I(S) to be one if
there exists i ∈ [0 : k] such that

1. Ti ∈ PaG′(S) and Ti[i] = 0, or

2. there exists X ∈ PaG′(S) \ (US ∪ {Ti}) such that Fi

contains X and X[i] = 1,

and zero, otherwise. Note that according to the definition of
Ti, it belongs to Fi and therefore, Ti[i] exists. Analogously,
we define I(S0) to be one if there exists i ∈ [0 : k] such that

1. Ti ∈ PaG′(S) and Ti[i] = 0, or

2. i ̸= 0, Fi contains U0, and U0[i] = 1, or

3. there exists X ∈ PaG′(S) \ (US ∪ {Ti, U0}) such that
Fi contains X and X[i] = 1.

Now, for each S ∈ S and s ∈ [0 : κ], we define P (S = s |
PaG′(S)) as

1
κ+1 if I(S) = 1

1− κϵ if I(S) = 0 and s ≡M(S) (mod κ+ 1),

ϵ if I(S) = 0 and s ̸≡M(S) (mod κ+ 1),

where 0 < ϵ < 1
κ and

M(S) :=

{∑
x∈PaG′[S](S) x , if S ∈ S \ {S0},

u0[0] +
∑

x∈PaG′[S](S) x , if S = S0 .

Note that M(S) is an integer number. This is because
PaG′[S](S) ⊆ US and thus all terms in the above defini-
tion belong to [0 : κ].

Lemma 4. The SEM constructed above belongs to M+(G′).

Existence of realization v0: Herein, we show that for
the aforementioned conditional distributions, there exists a
realization v0 such that η(v0) is linearly independent from
the set of the vectors in Ω (in Equation (13)). Consider the
following subset of XU0 = {γ1, ..., γd} with κ+1

2 elements:

Γ :=
{
(2x, 0, · · · , 0) : x ∈ [0 :

κ− 1

2
]
}
.

Recall that for v ∈ XV′ and i ∈ [0 : m], θi(v) and η(v) are
two vectors in Rd with j-th entry corresponds to U0 = γj .
Suppose that Γ = {γj1 , ..., γjκ+1

2

}. Next result shows that

in our constructed models, all entries of θi(v) with indices
in {j1, ..., jκ+1

2
} are equal.



Lemma 5. For any v ∈ XV′ and i ∈ [0 : m],

θi,j1(v) = θi,j2(v) = · · · = θi,jκ+1
2

(v).

An immediate consequence of this result is that any linear
combination of the vectors in Ω will have equal entries at
the indices in {j1, ..., jκ+1

2
}. Next, we show there exists a

realization v0 for which η(v0) does not follow this pattern
and thus it is linearly independent of all vectors in Ω.

Lemma 6. There exists 0 < ϵ < 1
κ for which there exists

v0 ∈ XV′ and 1 ≤ r < t ≤ κ+1
2 such that

ηjr (v0) ̸= ηjt(v0).

Lemma 6 implies that there existM1 and ϵ for which there
exists v0 ∈ XV′ such that η(v0) is linearly independent
from the set of vectors in Ω. As we discussed before, this
completes our proof for Theorem 1.

6 CONCLUSION

We revisited the problem of general identifiability and
showed that the positivity assumption of observational dis-
tributions is crucial for the soundness of do-calculus rules.
This assumption was ignored in previous work. We pre-
sented a novel algorithm for g-identifiability, which is prov-
ably sound and complete considering the positivity assump-
tion.
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