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Abstract

Conversational semantic parsing is a challeng-001
ing task that aims to automatically translate002
user utterances into logic forms (e.g., SQL003
queries) in multi-turn interactions. Most ex-004
isting conversational semantic parsing models005
handle this task by assuming the user utterances006
are well-formed and answerable. Although007
these models have achieved prompting results008
on the Text2SQL task, few methods consider009
the answerability detection problem, causing010
the conversational semantic parser not able to011
deal with the practical scenario. To fill this gap,012
we propose to jointly learn the conversational013
semantic parsing and the answerability detec-014
tion task on top of the pretrained sequence to015
sequence model. In this way, the model would016
be able to detect the answerability of the user ut-017
terance, respond with the translated SQL query018
for the answerable questions, and generate clar-019
ification answers for the unanswerable and am-020
biguous questions. Experimental results show021
that our joint learning framework performs sat-022
isfactorily for the answerability detection task,023
and results in performance improvements in024
terms of the generated SQL quality.025

1 Introduction026

Semantic parsing aims to translate natural language027

questions into machine-readable logical forms,028

such as SQL. Most previous text-to-SQL works029

(Rubin and Berant, 2021; Cao et al., 2021; Lin030

et al., 2020a,b; Wang et al., 2020a) focus on single-031

turn interaction between user and machine, where032

an individual utterance is translated into executable033

SQL query by the semantic parsing model. How-034

ever, in practice users tend to explore the database035

in multi-turn interactions as shown in Table 1. To036

this end, Yu et al. propose the SparC (Yu et al.,037

2019b) and CoSQL (Yu et al., 2019a) dataset for038

conversational text-to-SQL towards cross-domain039

natrual language interfaces to databases. Compared040

to traditional semantic parsing, conversational se-041

User: How many dorms have a TV Lounge?
Response: Found 28 dorms.
User: Which one is closest to the University?
Response: Sorry, do you mean among those
dorms that have a TV lounge?
User: Yes.
Response: The Lochrin Place dorm.
User: How many students are from the UK?
Response: Sorry, unanswerable.

Table 1: An example dialog for our proposed conver-
sational semantic parser with answerability detection.
Grey boxes are the user inputs and the blues boxes are
the model responses. The first sentence in italics is
a clarification answer. The second sentence in italics
means the current user question is not answerable.

mantic parsing is more challenging because it re- 042

quires contextual understanding of user utterances. 043

Recent works (Yu et al., 2019a, 2020b; Hui et al., 044

2021; Wang et al., 2020b; Cai and Wan, 2020) in 045

conversational semantic parsing focus on utiliz- 046

ing pretrained models to exploit the context infor- 047

mation to improve the quality of translated SQL 048

queries. Although encouraging progress has been 049

achieved (Yu et al., 2019a, 2020b; Hui et al., 2021; 050

Wang et al., 2020b; Cai and Wan, 2020), most cur- 051

rent works assume the user questions are legal (Yu 052

et al., 2020b; Hui et al., 2021; Wang et al., 2020b; 053

Cai and Wan, 2020) and output a SQL query for any 054

input, which is inconsistent with the real scenario. 055

Practically, user questions can be ambiguous or 056

unanswerable, which requires the system to be not 057

only capable of translating natural language into 058

SQL query, but also detecting the answerability of 059

questions and generating clarification answers for 060

the ambiguous questions. Recently, Yu et al.(Yu 061

et al., 2019a) and Zhang et al.(Zhang et al., 2020) 062

propose to regard the answerability detection as a 063

separate classification task and ensemble the clas- 064

sification model with the semantic parser to make 065

a complete dialogue system (Zhang et al., 2020). 066
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However, this approach requires separately train-067

ing an answerability detection model, a natural068

language decoder for clarification response gener-069

ation, and another decoder for SQL query genera-070

tion, which is rather complicated and cumbersome.071

To address the aforementioned issues, we inves-072

tigate to jointly learn the conversational semantic073

parsing task with answerability detection and reso-074

lution using the sequence to sequence (Sutskever075

et al., 2014) architecture with a single encoder076

and decoder. Figure 1 shows the illustration of077

our proposed framework. Using the joint learn-078

ing setup, we hypothesize that the encoder can079

learn the intermediate features that encode infor-080

mation effectively for all three downstream tasks.081

Meanwhile, we hypothesize that the decoder can082

learn to identify whether a user question is answer-083

able based on both the context and the knowledge084

base, generate clarification answers for ambiguous085

questions, and generate SQL queries for answer-086

able questions simultaneously. To be more specific,087

as pretrained sequence to sequence models nowa-088

days are widely used in most sequence to sequence089

tasks, we choose to use T5 (Raffel et al., 2019), the090

most popular large-scale pretrained model for se-091

quence transduction, as the backbone model in our092

experiments. Due to the lack of dataset-specific093

to the answerability detection task, we propose094

a novel dynamically negative samples generation095

method during the training process to augment the096

unanswerable questions. Additionally, since the T5097

model is pretrained on human language corpus and098

the target domain includes SQL query, we apply099

the two-stage finetuning (Gururangan et al., 2020)100

to transfer the model to the target domain gradually101

and smoothly. We conduct experiments based on102

the CoSQL (Yu et al., 2019a) dataset. The experi-103

mental result shows that our joint learning frame-104

work performs satisfactorily for the answerability105

detection task, and results in performance improve-106

ments in terms of the generated SQL quality. The107

contributions can be summarized as follows:108

• We propose a jointly learning framework that109

can learn conversational semantic parsing and110

answerability detection and clarification.111

• We propose a novel dynamically negative sam-112

ple generation method for unanswerable data113

augmentation, and apply the two-stage fine-114

tuning strategy for domain transfer.115

• The experimental result shows our joint learn-116

ing framework performs satisfactorily for an-117

swerability detection, and results in perfor- 118

mance improvements of SQL generation. 119

2 Proposed Method 120

Our proposed model is built on T5, a pretrained 121

sequence to sequence model, which requires both 122

the input and output are sequences. Therefore, we 123

elaborately design the input format to linearize the 124

different input components (interaction history I , 125

current user utterance U , and the database schema 126

S). For the output format, we use the first token of 127

the output sequence to indicate whether the ques- 128

tion is answerable or not. If answerable, the fol- 129

lowing part of the sequence will be the machine- 130

executable SQL query. If the question is ambigu- 131

ous, the following part will be the clarification re- 132

sponse. Lastly, the output would be a constant 133

response if the question is not unanswerable (e.g., 134

unrelated to the knowledge base). During the train- 135

ing stage, we propose a novel dynamic negative 136

sample generation method for the unanswerable 137

question augmentation. Additionally, we exploit 138

two-stage finetuning strategy for gradual domain 139

transfer, which recently shows great performance 140

on the graph-to-text task (Ribeiro et al., 2021). 141

2.1 Task Formulation 142

In conversational semantic parsing (i.e., text-to- 143

SQL) task, we have three input components: inter- 144

action history I , database schema U , and the cur- 145

rent user question S. Each interaction includes hu- 146

man utterance Qi(1 ≤ i ≤ K) and corrresponding 147

response. The response could be either a machine- 148

readable SQL query or a clarification answer (e.g., 149

disambiguation, greetings, etc), which depends on 150

whether the question is legal, answerable, and un- 151

ambiguous. Overall speaking, the task requires 152

the model to detect whether the current user utter- 153

ance is answerable based on the interaction history 154

and database schema. For the answerable ques- 155

tions, the model needs to generate executable SQL 156

queries. For the unanswerable questions, the model 157

needs to generate proper clarification to guide the 158

user clarify the ambiguous question or describe 159

the situation (e.g., not answerable for the current 160

database). In this project, we define three types of 161

output, namely answerable, not answerable based 162

on the given schema, and ambiguous questions. 163
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Figure 1: The illustration of our proposed framework.
We append different special tokens before different com-
ponents in the input linearization. The Ans. Label
stands for answerability label. For the answerable ques-
tions, our model outputs the corresponding executable
SQL query. If the question is irrelevant to the database,
the model will respond with a warning. If the question
is ambiguous, our model will generate a clarification
response to guide the users clarify their questions.

2.2 Linearization164

The input comprises the current user utterance U ,165

the database schema S, and the interaction history166

I . We concatenate different components and add167

different special tokens at the beginning of differ-168

ent components. As shown in the euqation 1, we169

prepend <U>, <S>, and <I> at the beginning of170

the current user utterance U , the database schema171

S, and the interaction history I respectively. We do172

this inspired by the Google Multilingual Transla-173

tion (Johnson et al., 2017), which argues that such174

usage of special tokens is able to make the model175

learn to be aware of the role of the following parts.176

<U> utterance <S> schema <I> interactions
(1)177

Note that each database schema may contain more178

than one tables. As shown in equation 2, we ap-179

pend <TAB> at the beginning of each table name,180

and append <COL> at the the beginning of each181

column name followed by the data type.182

<TAB> table <COL> column_name data_type
(2)183

Equation 3 shows how to linearize the interactions:184

<Q> quesk <Q> quesk-1 ... <Q> ques0 (3)185

The order of the components are elaborately de-186

signed due to the input length limitation. We put187

the current user utterance U at the beginning of188

the linearization because this is the most important189

component of the input and we don’t want it to be190

truncated. The interaction history is put at the end 191

of the input because it’s less important compared 192

to the other two components. In many cases we 193

don’t need to know the previous conversation to an- 194

swer the current questions. Within the linearization 195

of the interaction history, we put the most recent 196

question k at the beginning because the most recent 197

history is more relevant to the current utterance. 198

We use the first token of the output sequence to 199

indicate the answerability of the question. More 200

precise, we use <0> to indicate the question is an- 201

swerable and followed by the translated SQL query. 202

<1> means the question is unanswerable based on 203

the given schema, and <2> means the question is 204

ambiguous and will be followed by a clarification 205

response. For the SQL queries, we capitalize all 206

the SQL keywords to distinct them from the corre- 207

sponding English words (e.g., SELECT vs. select) 208

because we want the model to learn different em- 209

beddings for the SQL keywords instead of sharing 210

the embeddings across SQL and natural language. 211

2.3 Two-stage Finetuning 212

Inspired by recent works (Gururangan et al., 2020; 213

Ribeiro et al., 2021) that have shown the benefit of 214

task-specific adaptation, we investigate whether 215

leveraging additional task-specific data can im- 216

prove the performance of pretrained language mod- 217

els on the conversational semantic parsing task. 218

Task-specific data refers to a corpus that is from rel- 219

evant (not exactly the same) domains of the down- 220

stream task. In order to leverage the task-specific 221

data, we add an intermediate adaptive fine-tuning 222

step between the original pretraining and the fine- 223

tuning stage for conversational semantic parsing. 224

More specifically, we first continue fine-tuning the 225

pretrained sequence to sequence model (i.e., T5) on 226

Spider (Yu et al., 2018), a single-turn text-to-SQL 227

dataset. The goal is to adapt the pretrained model to 228

the target domain gradually and smoothly. We use 229

the same linearization methods for both Spider and 230

CoSQL. The only difference is that we don’t have 231

the interaction history in the Spider dataset and the 232

linearization wouldn’t contain this component. 233

2.4 Dynamic Negative Sample Generation 234

In real-world scenarios, users may ask questions 235

irrelevant to the database or ambiguous questions 236

that need clarifications to be answerable. Our pro- 237

posed model is able to detect the answerability. 238

More precisely, we use the first token in the output 239

sequence to classify the input utterance into three 240
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categories: answerable, unanswerable based on the241

given schema, and ambiguous questions. CoSQL242

provides ambiguous questions and corresponding243

human-written answers. But there doesn’t exist244

any unanswerable questions in CoSQL. Therefore,245

we propose to generate unanswerable questions246

by replacing the original schema of an answerable247

sample with randomly selected knowledge schema.248

However, it would be prone to overfit the dataset249

if we statically generate the negative (i.e., unan-250

swerable) samples before training. Inspired by how251

RoBERTa (Liu et al., 2019) improves BERT(Devlin252

et al., 2019), we propose to generate the unanswer-253

able samples dynamically during the training stage.254

Before each epoch in training process, each an-255

swerable sample is corrupted into an unanswerable256

question with a probability of 0.2 by replacing the257

current schema with randomly selected schema of258

another knowledge base. This can give our model259

the ability to detect if the use question is irrele-260

vant to the knowledge base and unanswerable, and261

generate appropriate responses to the users.262

3 Experiments263

3.1 Dataste264

CoSQL1 We train and evaluate our model on the265

CoSQL (Yu et al., 2019a) dataset, which consists of266

30,000 turns and 10,000 annotated SQL queries. It267

is obtained from a Wizard-of-Oz collection of 3k di-268

alogues querying 200 complex databases spanning269

138 domains. Each dialogue simulates a real-world270

DB query scenario with a crowd worker as a user271

exploring the database and a SQL expert retrieving272

answers with SQL, clarifying ambiguous questions,273

or otherwise informing of unanswerable questions.274

The original CoSQL doesn’t explicitly annotate275

the ambiguous questions and they are concatenated276

with clarifications as new inputs in the dataset. We277

extract these samples manually and add the pairs of278

ambiguous utterances and corresponding clarifica-279

tion answers into the dataset. Note that the original280

CoSQL doesn’t contain any unanswerable ques-281

tions and we generate such data by the dynamic282

algorithm as described in Section 2.4.283

Spider2 Spider is a large-scale complex and284

cross-domain semantic parsing and text-to-SQL285

dataset annotated by 11 Yale students. The goal of286

the Spider challenge is to develop natural language287

1https://yale-lily.github.io/cosql
2https://yale-lily.github.io/spider

interfaces to cross-domain databases. It consists of 288

10,181 questions and 5,693 unique complex SQL 289

queries on 200 databases with multiple tables cover- 290

ing 138 different domains. In Spider 1.0, different 291

complex SQL queries and databases appear in train 292

and test sets. To do well on it, systems must gener- 293

alize well to not only new SQL queries but also new 294

database schemas. As described in Section 2.3, we 295

use the Spider dataset as the external task-specific 296

dataset for the two-stage finetuning strategy. 297

3.2 Implementation Details 298

The model was implemented using PyTorch Light- 299

ning3 and T5 models provided by HuggingFace4. 300

We used T5-base in our experiments. We remove 301

all punctuations and special tokens from the dataset 302

(both CoSQL and Spider). For the column type , we 303

remove the detailed information and only keep the 304

type word. For example, varchar(15) will be mod- 305

ified to varchar. Due to the resource constraint, 306

we set the max lengths to 512 and 128 for the input 307

and output respectively. We finetuned the model 308

on one NVIDIA T4 GPU. We use the AdamW 309

(Loshchilov and Hutter, 2018) optimizer The batch 310

size is 8 and learning rate is set to 0.0001. The 311

early stopping is used to monitor the corss-entropy 312

loss on the validation set with patience of 10. 313

3.3 Metrics 314

We need to evaluate both the quality of generated 315

SQL queries and the detection accuracy in our pro- 316

posed jointly learning framework. 317

For SQL queries We use exact set matching 318

to evaluate the quality of generated SQL queries. 319

Note that the task definition of both Spider and 320

CoSQL does not predict the value strings. Predict- 321

ing correct SQL query structures and columns is 322

more realistic and critical according to the original 323

paper of Spider. We follow the evaluation setting 324

of the Spider dataset, which does not take the value 325

strings into account. More precisely, exact match- 326

ing is a component-based evaluation method that 327

decomposes each component in both prediction 328

and ground truth as bags of sub-components, and 329

check if the two sets of components match exactly. 330

Besides, interaction matching is used for evaluating 331

the generated SQL queries in conversational level. 332

The exact set matching score is 1 for each question 333

only if all predicted SQL clauses are correct, and 334

3https://www.pytorchlightning.ai/
4https://huggingface.co/
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Model Name Exact Set
Match

Interaction
Match

CD-Seq2seq 13.9 2.6
T5 baseline 20.4 7.0
+ Special Tokens 29.3 8.2
+ Capitalization 31.4 8.6
+ Two-stage finetuning 34.3 10.4

Table 2: The results of SQL query prediction. CD-
Seq2seq refers to Context-Dependent Seq2Seq model
proposed in the original CoSQL paper. T5 baselines
model means directly fine-tuning the T5-base model on
the CoSQL with our proposed linearization methods.

1 for each interaction only if there is an exact set335

match for every question in the interaction.336

For answerability detection accuracy We re-337

gard the answerability detection as a classification338

task and use the recall to evaluate the performance.339

3.4 Results340

SQL prediction Table 2 shows the results of341

SQL prediction task. We can observe that T5 base-342

line outperforms the CD-Seq2seq model on both343

exact set match score and interaction match score.344

This indicates that knowledge T5 learning during345

the pretraining is helpful for the conversational346

semantic parsing task. Adding different special to-347

kens before different components in the input can348

improve the exact set match score by 8.9 points349

and 1.2 points in terms of the interaction match350

score. We could gain another 2.1 point and 0.4351

point improvement on exact set match and interac-352

tion match score by capitalizing the SQL keywords353

in the output sequence. This shows that the hy-354

pothesis of treating SQL and English as different355

languages helps with our task. In the two-stage356

finetuning setting, we finetune the T5 model on357

Spider dataset before finetuning on CoSQL. This358

could bring us 2.9 points improvement on exact set359

match score and 1.8 on the interaction match.360

Answerability Detection Table 3 shows the re-361

sults of the answerability detection experiments.362

We can observe that the jointly learning setting363

could slightly improve the exact set match score.364

Without the dynamic negative sample generation365

method, the recalls for the answerable and unan-366

swerable questions are 98.7% and 96%. The rea-367

son for this is there are significant features in an-368

swerable and unanswerable questions, i.e., over-369

lapped column or table names. Our proposed dy-370

namic negative sample generation algorithm could 371

improve the recall of unanswerable questions by 372

2.2%, which shows the effectiveness of this method. 373

Meanwhile, it can bring minor improvement on 374

exact set match score and the recall scores for an- 375

swerable. However, we can observe that the recall 376

for ambiguous question is only around 28%. We 377

found that in many cases the model generates SQL 378

queries despite the user questions are ambiguous. 379

Another problem is different tasks don’t converge 380

simultaneously. We can observe from Figure 2 that 381

the exact set match score, the recall for answerable 382

and unanswerable questions reach optima in the 383

first few epochs and then slowly decrease. How- 384

ever, the recall for ambiguous question stay zero 385

until the 15th epoch and then gradually increase. 386

3.5 Case Study 387

In this section we analyse some cases for the SQL 388

prediction and disambiguation task. 389

SQL prediction Table 4 shows a bad case of 390

SQL prediction. In the first example, from the 391

schema we can observe that LocalName is a col- 392

umn in table country. However, our model pre- 393

dicts LocalName belongs to another table city. 394

This means that our model doesn’t manage to parse 395

the connection between tables and columns in some 396

cases. We argue the reason is that T5 is pretrained 397

on English corpus and is not able to link the ta- 398

ble/column name and the query word. We could 399

incorporate schema linking related pretraining ob- 400

jectives to address the issue (Yu et al., 2020a). 401

Disambiguation Table 5 is a case for disam- 402

biguation. We can observe from the schema that we 403

have two columns related to name – first_name 404

and last_name. This would cause ambiguation 405

if the user doesn’t specify it is the first or the 406

last name they want. The model of 5th epoch is 407

the model with best SQL prediction performance, 408

and it classifies this case as answerable question 409

and generates a SQL to retrieval the first_name. 410

While the model of the last epoch performs best on 411

the ambiguation question detection, and it classi- 412

fier this case as ambiguous question and generate 413

reasonable clarification answer. 414

4 Conclusion 415

In this paper we propose a joint learning framework 416

for both conversational semantic parsing and the 417

answerability detection task. Experimental results 418
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Model Exact Set Match Ans. Recall Unans. Recall Ambig. Recall

T5 + SpeTok + Cap 31.4 - - -
+ AnswDet 31.7 98.7% 96.0% (epoch 10) 28.4% (epoch 30)

+ DynGeneration 32.0 98.9% 98.2% (epoch 19) 28.3% (epoch 30)

Table 3: The results of answerability detection experiments. SpeTokn, Cap, AnswDet, and DynGeneartion mean
special tokens, capitalization, answerability detection, and dynamic negative sample generation respectively.

Epoch Epoch

Figure 2: The results of the answerability detection experiments. Left is the model with dynamic negative sample
generation algorithm while the right figure is the model without dynamic negative sample generation algorithm.

Current User Question: What is the local name?
Schema: <TAB> city <COL> Name char <COL>
District char <COL> Population integer ... <TAB>
country <COL> LocalName char <COL> Govern-
mentForm char <COL> Capital integer ...
Ground Truth:
<0> SELECT LocalName FROM country

Model Prediction:
<0> SELECT LocalName FROM city

Table 4: The case study of SQL prediction.

indicate that the parser benefits from answerability419

detection task. There are several future research di-420

rections: (1) Apply the joint learning framework on421

top of other sequence to sequence model to test the422

generalization ability. (2) Assign different weights423

to balance different tasks and make them converge424

simultaneously. (3) Generalize the dynamic nega-425

tive sample generation to the ambiguous questions.426
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