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ABSTRACT

Despite the recent advancement in multi-agent reinforcement learning (MARL),
the MARL agents easily overfit the training environment and perform poorly in
evaluation scenarios where other agents behave differently. Obtaining generalizable
policies for MARL agents is thus necessary but challenging mainly due to complex
multi-agent interactions. In this work, we model the MARL problem with Markov
Games and propose a simple yet effective method, called ranked policy memory
(RPM), i.e., to maintain a look-up memory of policies to achieve good generaliz-
ability. The main idea of RPM is to train MARL policies via gathering massive
multi-agent interaction data. In particular, we first rank each agent’s policies by
its training episode return, i.e., the episode return of each agent in the training
environment; we then save the ranked policies in the memory; when an episode
starts, each agent can randomly select a policy from the RPM as the behavior
policy. Each agent uses the behavior policy to gather multi-agent interaction data
for MARL training. This innovative self-play framework guarantees the diversity
of multi-agent interaction in the training data. Experimental results on Melting
Pot demonstrate that RPM enables MARL agents to interact with unseen agents
in multi-agent generalization evaluation scenarios and complete given tasks. It
significantly boosts the performance up to 818% on average.

1 INTRODUCTION

In Multi-Agent Reinforcement Learning (MARL) (Yang & Wang, 2020), each agent acts decentrally
and interacts with other agents to complete given tasks or achieve specified goals via reinforcement
learning (RL) (Sutton & Barto, 2018). In recent years, much progress has been achieved in MARL
research (Vinyals et al., 2019; Jaderberg et al., 2019; Perolat et al., 2022). However, the MARL
agents trained with current methods tend to suffer poor generalizability (Hupkes et al., 2020) in the
new environments. The generalizability issue is critical to real-world MARL applications (Leibo
et al., 2021), but is mostly neglected in current research.

In this work, we aim to train MARL agents that can adapt to new scenarios where other agents’
policies are unseen during training. We illustrate a two-agent hunting game as an example in Fig. 1.
The game’s objective for two agents is to catch the stag together, as one agent acting alone cannot
catch the stag and risks being killed. They may perform well in evaluation scenarios similar to the
training environment, as shown in Fig. 1 (a) and (b), respectively, but when evaluated in scenarios
different from the training ones, these agents often fail. As shown in Fig. 1 (c), the learning agent
(called the focal agent following (Leibo et al., 2021)) is supposed to work together with the other
agent (called the background agent also following (Leibo et al., 2021)) that is pre-trained and can
capture the hare and the stag. In this case, the focal agent would fail to capture the stag without help
from its teammate. The teammate of the focal agent may be tempted to catch the hare alone and not
cooperate, or may only choose to cooperate with the focal agent after capturing the hare. Thus, the
focal agent should adapt to their teammate’s behavior to catch the stag. However, the policy of the
background agent is unseen to the focal agent during training. Therefore, without generalization, the
agents trained as Fig. 1 (left) cannot achieve an optimal policy in the new evaluation scenario.
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Figure 1: Two-Agent Hunting Game. (a) Training environment. Two agents (hunters) hunt in the environment.
(b) After training in the training environment, all agents behave cooperatively to capture the stag. (c) In the new
evaluation scenario, one agent is picked as the focal agent (in the magenta circle) and paired with a pre-trained
agent (in the brown circle) that behaves in different ways to evaluate the performance of the selected agent. In
conclusion, the conventional evaluation protocol fails to evaluate such behavior and current MARL methods
easily fail to learn the optimal policy due to the lack of diversified multi-agent interaction data during training.

Inspired by the fact that human learning is often accelerated by interacting with individuals of diverse
skills and experiences (Meltzoff et al., 2009; Tomasello, 2010), we propose a novel method aimed at
improving the generalization of MARL through the collection of diverse multi-agent interactions.
Concretely, we first model the MARL problem with Markov Games (Littman, 1994) and then propose
a simple yet effective method called ranked policy memory (RPM) to attain generalizable policies.
The core idea of RPM is to maintain a look-up memory of policies during training for the agents. In
particular, we first evaluate the trained agents’ policies after each training update. We then rank the
trained agents’ policies by the training episode returns and save them in the memory. In this way,
we obtain various levels, i.e., the performance of the policies. When starting an episode, the agent
can access the memory and load a randomly sampled policy to replace the current behavior policy.
The new ensemble of policies enables the agents in self-play to collect diversified experiences in the
training environment. These diversified experiences contain many novel multi-agent interactions that
can enhance the extrapolation capacity of MARL, thus boosting the generalization performance. We
note that an easy extension by incorporating different behavior properties as the keys in RPM could
potentially further enrich the generalization but it is left for future work.

We implement RPM on top of the state-of-the-art MARL algorithm MAPPO (Yu et al., 2021). To
verify its effectiveness, we conduct large-scale experiments with the Melting Pot (Leibo et al., 2021),
which is a well-recognized benchmark for MARL generalization evaluation. The experiment results
demonstrate that RPM significantly boosts the performance of generalized social behaviors up to
818% on average and outperforms many baselines in a variety of multi-agent generalization evaluation
scenarios. Our code, pictorial examples, videos and experimental results are available at this link:
https://sites.google.com/view/rpm-iclr2023/.

2 PRELIMINARIES

Markov Games. We consider the Markov Games (Littman, 1994) represented by a tuple G =
⟨N ,S,A,O, P,R, γ, ρ⟩. N is a set of agents with the size |N | = N ; S is a set of states; A =
×Ni=1Ai is a set of joint actions with Ai denoting the set of actions for an agent i; O = ×Ni=1Oi is the
observation set, with Oi denoting the observation set of the agent i; P : S ×A → S is the transition
function and R = ×Ni=1ri is the reward function where ri : S ×A → R specifies the reward for the
agent i given the state and the joint action; γ is the discount factor; the initial states are determined by
a distribution ρ : S → [0, 1]. Given a state s ∈ S , each agent i ∈ N chooses its action ui and obtains
the reward r(s,u) with the private observation oi ∈ Oi, where u = {ui}Ni=1 is the joint action. The
joint policy of agents is denoted as πθ = {πθi}Ni=1 where πθi : S ×Ai → [0, 1] is the policy for the
agent i. The objective of each agent is to maximize its total expected return Ri =

∑∞
t=0 γ

trti .

Multi-Agent RL. In MARL, multiple agents act in the multi-agent systems to maximize their respec-
tive returns with RL. Each agent’s policy πi is optimized by maximizing the following objective:

J (πi) ≜ Es0:∞∼ρ0:∞G ,ai
0:∞∼πi

[
∞∑
t=0

γtrit

]
,

where J (πi) is a performance measure for policy gradient RL methods (Williams, 1992; Lillicrap
et al., 2016; Fujimoto et al., 2018). Each policy’s Q value Qi is optimized by minimizing the
following regression loss (Mnih et al., 2015) with TD-learning (Sutton, 1984):

L(θi) ≜ ED′∼D

[(
yit −Qi

θi

(
st,ut, s

i
t, u

i
t

))2
]
,
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Figure 2: An example of our formulation. Left: All six agents’ policies are trained with the MARL. Right:
Two agents with policies πϕ1 and πϕ2 are picked as background agents, and the rest of the four agents (with new
indices) are focal agents to be evaluated. The focal and the background agents constitute the evaluation scenario.

where yit = rit + γmaxu′ Qi
θ̄i

(
st+1,u

′, sit, u
i,′). θi are the parameters of the agents. θ̄i is the

parameter of the target Qi and periodically copied from θ. D′ is a sample from the replay buffer D.

3 PROBLEM FORMULATION

We introduce the formulation of MARL for training and evaluation in our problem. Our goal is to
improve generalizabiliby of MARL policies in scenarios where policies of agents or opponents are
unseen during training while the physical environment is unchanged. Following Leibo et al. (2021),
the training environment is defined as substrate. Each substrate is an N -agent partially observable
Markov game G. Each agent optimizes its policy πθi via the following protocol.

Definition 1 (Multi-Agent Training). There are N agents act in the substrate, which is denoted as G.
Each agent receives partial environmental observation not known to other agents and aims to opti-
mizes its policy πθi by optimizing its accumulated rewards:

∑∞
t=0 γ

trit. The performance of the joint
policy πθ = {πθi}Ni=1 is measured by the mean individual return: R̄(πθ) =

1
N

∑N
i=1R(πθi ;G).

R(πθi ;G) measures the episode return of policy πθi in game G for agent i.

In order to evaluate the trained MARL policies in evaluation scenario G′, we follow the evaluation
protocol defined by Leibo et al. (2021):

Definition 2 (Multi-Agent Evaluation). There are M (1 ≤ M ≤ N − 1) focal agents that are
selected from N agents. The focal agents are agents to be evaluated in evaluation scenarios. They
are paired with N −M background agents whose policies πϕ = {πϕj

}N−M
j=1 were pre-trained with

pseudo rewards in the same physical environment where the policies πθ are trained. To measure the
generalized performance in evaluation scenarios, we use the mean individual return of focal agents
as the performance measure: R̄({πθ}Mi=1) =

1
M

∑M
i=1R(πθi ;G′).

We show an example of our formulation in Fig. 2. Note that the focal agents cannot utilise the
interaction data collected during evaluation to train or finetune their policies. Without training the
policies of focal agents with the collected trajectories during evaluation, the focal agents should
behave adaptively to interact with the background agents to complete challenging multi-agent tasks. It
is also worth noting that the ad-hoc team building (Stone & Kraus, 2010; Gu et al., 2021) is different
from our formulation both in the training and evaluation. We discuss the differences in the related
works section (Paragraph 3, Sec. 7).

In MARL, the focal agents need adaptively interact with background agents to complete given tasks.
Formally, we define the objective for optimizing performance of the focal agents without exploiting
their trajectories in the evaluation scenario for training the policies {πθj}Mj=1:

maxJ ({πθj}
M
j=1) ≜ maxEs0:∞∼ρ0:∞G′ ,a

j
0:∞∼{πθj

}Mj=1

[
∞∑
t=0

γt 1

M

M∑
j=1

rjt

∣∣∣∣∣G′
]
. (1)

4 RANKED POLICY MEMORY

To improve the generalization of MARL, agents in the substrate must cover as much as multi-agent
interactions, i.e., data, that resemble the unseen multi-agent interactions in the evaluation scenario.
However, current training paradigms, like independent learning (Tampuu et al., 2017) and centralized
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Figure 3: The workflow of RPM for a three-agent substrate. In the workflow, there are three agents in the
substrate. Agent 3 is the background agent. Agents 1 and 2 are focal agents.

training and decentralized execution (CTDE) (Oliehoek et al., 2008), cannot give diversified multi-
agent interactions, as the agents’ policies are trained at the same pace. To this end, we propose a
Ranked Policy Memory (RPM) method to provide diversified multi-agent behaviors.

RPM Building & Updating. We denote an RPM with Ψ, which consists of |Rmax| entries, i.e., ranks,
where |Rmax| is the maximum training episode return (the episode return in the substrate). When an
agent is acting in the substrate, it will receive the training episode return R of all agents with policies
{πiθ}Ni=1. Then {πiθ}Ni=1 are saved into Ψ by appending agents’ policies into the corresponding
memory slot, Ψ[re].add({πie}Ni=1). To avoid there being too many entries in the policy memory
caused by continuous episode return values, we discretize the training episode return. Each discretized
entry κ covers a range of [κ, κ+ ψ), where ψ > 0 and it can be either an integer or a float number.
For the training episode return R, the corresponding entry κ can be calculated by:

κ =

{
⌊R/ψ⌋ × 1{(R mod ψ) ̸= 0} × ψ, if R ≥ 0,

⌊R/ψ⌋ × ψ, otherwise.
(2)

where 1{·} is the indicator function, and ⌊·⌋ is the floor function. Intuitively, discretizing R saves
memory and memorize policies of similar performance in to the same rank. Therefore, diversified
policies can be saved to be sampled for agents.

RPM Sampling. The memory Ψ stores diversified policies with different levels of performance. We
can sample various policies of different ranks and assign each policy to each agent in the substrate to
collect multi-agent trajectories for training. These diversified multi-agent trajectories can resemble
trajectories generated by the interaction with agents possessing unknown policies in the evaluation
scenario. At the beginning of an episode, we first randomly sampleN keys with replacement and then
randomly sample one policy for each key from the corresponding list. All agents’ policies will be
replaced with the newly sampled policies for multi-agent interactions in the substrate, thus generating
diversified multi-agent trajectories.

Algorithm 1: MARL with RPM

1 Input: Initialize πθ , Ψ, D, G and G′;
2 Input: Initialize behavior policy πθb ← πθ;
3 for each update do
4 if RPM sampling then
5 πθb ← SamplingRPM(Ψ);
6 D ← GatherTrajectories(πθb ,G);
7 πθ ← MARLTrainig(πθ,D);
8 Ψ← UpdateRPM(πθ,Ψ,G);
9 R̄← Evaluate(πθ,G′);

10 πθb ← πθ;
11 Output: πθ .

The Workflow of RPM. We showcase an ex-
ample of the workflow of RPM in Fig. 3. There
are three agents in training. Agents sample
policies from RPM. Then all agents collect
data in the substrate for training. The train-
ing episode return is then used to update RPM.
During evaluation, agents 1 and 2 are selected
as focal agents and agent 3 is selected as the
background agent. We present the pseudo-code
of MARL training with RPM in Algorithm 1.
In Lines 4-5, the πθb

is updated by sampling
policies from RPM. Then, new trajectories of
D are collected in Line 6. πθ is trained in
Line 7 with MARL method by using the newly collected trajecotries and πθb

is updated with the
newly updated πθ. RPM is updated in Line 8. After that, the performance of πθ is evaluated in the
evaluation scenario G′ and the evaluation score R̄ is returned in Line 9.

Discussion. RPM leverages agents’ previously trained models in substrates to cover as many patterns
of multi-agent interactions as possible to achieve generalization of MARL agents when paired with
agents with unseen policies in evaluation scenarios. It uses the self-play framework for data collection.
Self-play (Brown, 1951; Heinrich et al., 2015; Silver et al., 2018; Baker et al., 2019) maintains a
memory of the opponent’s previous policies for acquiring equilibria. RPM differs from other self-play
methods in four aspects: (i) self-play utilizes agent’s previous policies to create fictitious opponents
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when the real opponents are not available. By playing with the fictitious opponents, many fictitious
data are generated for training the agents. In RPM, agents load their previous policies to diversify
the multi-agent interactions, such as multi-agent coordination and social dilemmas, and all agents’
policies are trained by utilizing the diversified multi-agent data. (ii) Self-play does not maintain
explicit ranks for policies while RPM maintains ranks of policies. (iii) Self-play was not introduced
for generalization of MARL while RPM aims to improve the generalization of MARL. In Sec. 6, we
also present the evaluation results of a self-play method.

5 MARL TRAINING

We incorporate RPM into the MARL training pipeline. We take MAPPO (Yu et al., 2021) for instan-
tiating our method, which is a multi-agent variant of PPO (Schulman et al., 2017) and outperforms
many MARL methods (Rashid et al., 2018; 2020; Wang et al., 2021a) in various complex multi-agent
domains. In MAPPO, a central critic is maintained for utilizing the concealed information of agents
to boost multi-agent learning due to non-stationarity. RPM introduces a novel method for agents to
collect experiences/trajectories τ = {τi}Ni=1. Each agent optimizes the following objective:

J (θi) = E
[
min

(
ηti

(
θti
)
·Ati,clip

(
ηti

(
θti
)
, 1− ϵ, 1 + ϵ

)
·Ati

)]
, (3)

where ηti(θ
t
i) =

πθt
i
(ut

i|τ
t
i )

π
θold
i

(ut
i|τt

i )
denotes the important sampling weight. The clip (·) clips the values of

θi that are outside the range [1− ϵ, 1 + ϵ] and ϵ is a hyperparameter. Ati is a generalized advantage
estimator (GAE) (Schulman et al., 2015). To optimize the central critic Vψ({oti, uti}Ni=1), we mix
agents’ observation-action pairs and output an N -head vector where each value corresponds to the
agent’s value:

L(ψ) := ED′∼D

[(
yt − Vψ̄({oti, uti}Ni=1)

)2]
, (4)

where yt =
[∑k−1

l=0 γ
lrt+li + γkVψ̄({ot+ki , ut+ki }Ni=1)[i]

]N
i=1

is a vector of k-step returns, and D′

is a sample from the replay buffer D. In complex scenarios, e.g., Melting Pot, with an agent’s
observation as input, its action would not impact other agents’ return, since the global states contain
redundant information that deteriorates multi-agent learning. We present the whole training process,
the network architectures of the agent and the central critic in Appx. D.

6 EXPERIMENTS

In this section, to verify the effectiveness of RPM in improving the generalization of MARL, we
conduct extensive experiments on Melting Pot and present the empirical results. We first introduce
Melting Pot, baselines and experiment setups. Then we present the main results of RPM. To
demonstrate that ψ is important for RPM, we conducted ablation studies. We finally showcase a case
study to visualize RPM. To sum up, we answer the following questions: Q1: Is RPM effective in
boosting the generalization performance of MARL agents? Q2: How does the value of ψ impact
RPM training? Q3: Does RPM gather diversified policies and trajectories?

6.1 EXPERIMENTAL SETUP

obs

Agents
CNN

CNN

GRU

MLP

𝜋!"

+ features

MLP

H×W×C
H:	Height
W: Width
C: Channel

MLP

Figure 4: The green box to the lower
left shows the agent’s observation.

Melting Pot. To demonstrate that RPM enables MARL agents
to learn generalizable behaviors, we carry out extensive experi-
ments on DeepMind’s Melting Pot (Leibo et al., 2021). Melting
Pot is a suite of testbeds for the generalization of MARL meth-
ods. It proposes a novel evaluation pipeline for the evaluation
of the MARL method in various domains. That is, all MARL
agents are trained in the substrate; during evaluation, some
agents are selected as the focal agents and the rest agents be-
come the background agents (pre-trained policies of MARL
models will be loaded); the evaluation scenarios share the same
physical properties as the substrates. Melting Pot environments
possess many properties, such as temporal coordination and
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Figure 5: Melting Pot environments. More information can be found in Appx. A.

Table 1: Properties of Melting Pot environments. The first column shows the properties and the first row lists
environments. ✓ mark indicates the environment possessing the corresponding property while ✗ mark stands for
the environment that does not own the corresponding property. Refer to Appx. A for more information.

Stag Hunt
Pure

Coordination
Clean Up

Prisoners’
Dilemma

Rational
Coordination

Chicken Game

Temporal Coordination ✗ ✗ ✓ ✗ ✗ ✗
Reciprocity ✓ ✓ ✓ ✓ ✗ ✓
Deception ✓ ✗ ✓ ✓ ✗ ✓

Fair Resource Sharing ✗ ✗ ✓ ✗ ✗ ✗
Convention Following ✓ ✓ ✓ ✗ ✓ ✓

Task Partitioning ✗ ✗ ✓ ✓ ✗ ✗
Trust & Partnership ✓ ✗ ✗ ✗ ✗ ✓

Free Riding ✗ ✗ ✓ ✗ ✗ ✗

free riding as depicted in Table 1. An agent performing well in such environments indicates that its
behaviors exhibit these properties. In Fig. 4, the agent’s observation is shown in the green box to the
lower left of the state (i.e., the whole image). The agent is in the lower middle of the observation. The
deep neural network architecture of the agent’s policy is shown on the left. More information about
substrates, scenarios, neural network architectures and training details can be found in Appx. D.

Baselines. Our baselines are MAPPO (Yu et al., 2021), MAA2C (Papoudakis et al., 2021),
OPRE (Vezhnevets et al., 2020), heuristic fictitious self-play (HFSP) (Heinrich, 2017; Berner et al.,
2019) and RandNet (Lee et al., 2019). MAPPO and MAA2C are MARL methods that achieved
outstanding performance in various multi-agent scenarios (Papoudakis et al., 2021). OPRE was
proposed for the generalization of MARL. RandNet is a general method for the generalization of RL
by introducing a novel component in the convolutional neural network. HFSP is a general self-play
method for obtaining equilibria in competitive games, we use it by using the policies saved by RPM.

Training setup. We use 6 representative substrates (Fig. 5) to train MARL policies and choose
some evaluation scenarios from each substrate as our evaluation testbed. The properties of the
environments are listed in Table 1. We train agents in Melting Pot substrates for 200 million frames
with 3 random seeds for all methods. Our training framework is distributed with 30 CPU actors
to collect experiences and 1 GPU for the learner to learn policies. We implement our actors with
Ray (Moritz et al., 2018) and the learner with EPyMARL (Papoudakis et al., 2021). We use mean-std
to measure the performance of all methods. The bold lines in all figures are mean values, and the
shades stand for the standard deviation. Due to a limited computation budget, it is redundant to
compare our method with other methods, such as QMIX (Rashid et al., 2018) and MADDPG (Lowe
et al., 2017) as MAPPO outperforms them. All experiments are conducted on NVIDIA A100 GPUs.

6.2 EXPERIMENT RESULTS

To answer Q1, we present the evaluation results of 17 Melting Pot evaluation scenarios in Fig. 6. Our
method can boost MARL in various evaluation scenarios, which have different properties, as shown in
Table 1. In Chicken Game (CG) 1-2 (the number stands for the number of the evaluation scenario of
Chicken Game), RPM outperforms its counterparts by a convincing margin. HFSP performs no better
than RPM. RandNet gets around 15 evaluation mean returns on Chicken Game (CG) 1. MAA2C and
OPRE perform nearly random (the red dash lines indicate the random result) in the two scenarios.
In Pure Coordination (PC) 1-3, Rational Coordination (PC) 1-3 and Prisoners’ Dilemma (PD) 1-3,
most baselines perform poorly. In Stag Hunt (SH) 1-3 and Clean Up (CU) 1-2, MAPPO and MAA2C
perform unsatisfactorily. We can also find that HFSP even gets competitive performance in Stag Hunt
(SH) 1-3. However, HFSP performs poorly in Pure Coordination (PC) 1-3, Rational Coordination
(RC) 1-3 and Prisoners’ Dilemma (PD) 1-3. Therefore, the vanilla self-play method cannot directly be
applied to improve the generalization of MARL methods. In summary, RPM boosts the performance
up to around 818% on average compared with MAPPO on 6 evaluation scenarios. To answer Q2, we
present experimental results of the impact of ψ and the sampling ratio in HFSP in the following.
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Figure 6: Evaluation results of RPM and baselines in 17 scenarios. The red dash horizontal lines indicate the
results of random policy. The optimal (opt) values are shown in each sub-figure and were gathered from (Leibo
et al., 2021), which an exploiter generated. The exploiter was trained in the evaluation scenarios with RL
methods, and the training time steps were 1,000 M.
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6.3 ABLATION STUDY

The Impact of ψ. To investigate which value of ψ has the greatest impact on RPM performance,
we conduct ablation studies by (i) removing ranks and sampling from the checkpoint directly; (ii)
reducing the number of ranks by changing the value of ψ. As shown in Fig. 8, without ranks (sampling
policies without ranks randomly), RPM cannot attain stable performance in some evaluation scenarios.
Especially in Pure Coordination (PC) 1-3, the result is low and has a large variance. In RPM, choosing
the right interval ψ can improve the performance, as shown in the results of Pure Coordination (PC) 1-
3 and Prisoners’ Dilemma (PD) 1-3, showing that the value of ψ is important for RPM. We summarize
the results and values of ψ in Table 2 and Table 3.
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Figure 8: Ablation Studies: the performance of RPM with 3 types of ψ and Random sampling (without ranks).

Table 2: Ablation study: the averaged value of the last three
evaluation episode returns. Curves are in Fig. 8.

Eval Scenarios RPM Random Types of ψ

1 2 3

Pure Coordination 1 0.78 0.18 0.33 0.39 0.42

Pure Coordination 2 0.23 0.16 0.24 0.17 0.27

Pure Coordination 3 0.70 0.19 0.37 0.33 0.42

Prisoners’ Dilemma 1 13.90 10.11 10.70 8.70 3.20

Prisoners’ Dilemma 2 19.60 10.41 13.76 17.74 14.96

Prisoners’ Dilemma 3 22.31 10.28 19.80 11.74 9.76

Table 3: ψ values. ψ∗ indicates the values of ψ
used to get results in Fig. 6.

Eval Scenarios ψ∗ Types of ψ

1 2 3

Pure Coordination 1 0.01 0.1 0.5 1

Pure Coordination 2 0.01 0.1 0.5 1

Pure Coordination 3 0.01 0.1 0.5 1

Prisoners’ Dilemma 1 0.02 0.2 1 5

Prisoners’ Dilemma 2 0.02 0.2 1 5

Prisoners’ Dilemma 3 0.02 0.2 1 5

The Sampling Ratio in HFSP HFSP shows comparable results in some scenarios in Figure 6. In
Figure 6, the sampling ratio of HFSP is 0.3. We are interested in studying the impact of the sampling
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Figure 9: Ablation Studies: the results of HFSP with different sampling ratios.

(a) (b) (c) (d)

Figure 10: Results analysis. (a) The evaluation results of RPM on Stag Hunt (SH) 1; (b) The number of RPM
keys during training; (c) The distribution of the keys of RPM during training; (d) The histogram of the keys of
RPM at timestep 200M during training.

ratio in HFSP on evaluation performance. We conduct experiments in CU 1 and 2, PC 1 and 3 and
PD 1 and 3. The sampling ratio list is [0.9, 0.7, 0.5, 0.3, 0.1]. We use the default training setup and
use 3 random seeds. HFSP shows comparable results in PC 2 and 3, but its performances are poor
in CU 1 and 2 and PD 2 and 3. As shown in Figure 9, HFSP heavily relies on the sampling ratio.
HFSP should be carefully tuned on each substrate to attain good performance, which is not feasible.
In contrast, RPM is stable (the sampling ratio is 0.5) on all substrates. HFSP can also perform well
in substrates such as PC and PD, where the return-checkpoint count distribution is more uniform.
The absence of ranks leads to the frequent sampling of policies with high count values in substrates
that have skewed return-checkpoint count distribution, thereby reducing the diversity of training data.
Such distributions typically comprise a large number of policies with suboptimal performance.

6.4 CASE STUDY

We showcase how RPM helps to train the focal agents to choose the right behaviors in the evaluation
scenario after training in the substrate. To illustrate the trained performance of RPM agents, we
use the RPM agent trained on Stag Hunt and run the evaluation on Stag Hunt 1. In Stag Hunt,
there are 8 agents. Each agent collects resources that represent ‘hare’ (red) or ‘stag’ (green) and
compares inventories in an interaction, i.e., encounter. The results of solving the encounter are the
same as the classic Stag Hunt matrix game. In this environment, agents are facing tension between
the reward for the team and the risk for the individual. In Stag Hunt 1, One focal agent interacts with
seven pretrained background agents. All background agents were trained to play the ‘stag’ strategy
during the interaction1. The optimal policy for the focal agent is also to play ‘stag’. However, it is
challenging for agents to detect other agents’ strategy since such a behavior may not persist in the
substrate. Luckily, RPM enables focal agents to behave correctly in this scenario.

To answer Q3, we present the analysis of RPM on the substrate Stag Hunt and its evaluation scenario
SH 1 in Fig. 10. We can find that in Fig. 10 (b), the number of the keys in RPM is growing
monotonically during training and the maximum number of the keys in RPM is over 20, showing
that agents trained with RPM discover many novel patterns of multi-agent interaction and new keys
are created and the trained models are saved in RPM. Meanwhile, the evaluation performance is
also increasing in SH 1 as depicted in Fig. 10 (a). In Fig. 10 (c), it is interesting to see that the
distribution of the keys of RPM is expanding during training. In the last 25 million training steps, the
last distribution of RPM keys covers all policies of different performance levels, ranging from 0 to
14. By utilizing RPM, agents can collect diversified multi-agent trajectories for multi-agent training.
Fig. 10 (d) demonstrates the final histogram of RPM keys after training. There are over 600 trained
policies that have a small value of keys. Since agents should explore the environment at the early

1This preference was trained with pseudo rewards by Leibo et al. (2021) and the trained models are available
at this link: https://github.com/deepmind/meltingpot
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stage of training, it is reasonable to find that many trained policies of RPM keys have low training
episode returns. After 50 million training steps, RPM has more policies with higher training episode
returns. Note that the maximum training episode return of RPM keys is over 14 while the maximum
mean evaluation return of RPM shown in Fig. 10 (a) is around 14.

Our experiments show that training policies with good performance in the substrate is crucial for
improving generalization performance in the evaluation scenarios. When MARL agents perform
poorly in the substrate, the evaluation performance will also be inferior or random, making it hard to
have diversified policies. We show the results in Appx. E.

7 RELATED WORKS

Recent advances in MARL (Yang & Wang, 2020; Zhang et al., 2021) have demonstrated its success
in various complex multi-agent domains, including multi-agent coordination (Lowe et al., 2017;
Rashid et al., 2018; Wang et al., 2021b), real-time strategy (RTS) games (Jaderberg et al., 2019;
Berner et al., 2019; Vinyals et al., 2019), social dilemma (Leibo et al., 2017; Wang et al., 2018;
Jaques et al., 2019; Vezhnevets et al., 2020), multi-agent communication (Foerster et al., 2016; Yuan
et al., 2022), asynchronous multi-agent learning (Amato et al., 2019; Qiu et al., 2022), open-ended
environment (Stooke et al., 2021), autonomous systems (Hüttenrauch et al., 2017; Peng et al., 2021)
and game theory equilibrium solving (Lanctot et al., 2017; Perolat et al., 2022). Despite strides made
in MARL, training generalizable behaviors in MARL is yet to be investigated.

Recently, generalization in RL (Packer et al., 2018; Song et al., 2019; Ghosh et al., 2021; Lyle et al.,
2022) has achieved much progress in domain adaptation (Higgins et al., 2017) and procedurally
generated environments (Lee et al., 2019; Igl et al., 2020; Zha et al., 2020). However, there are few
works of generalization in MARL domains (Carion et al., 2019; Vezhnevets et al., 2020; Mahajan et al.,
2022; McKee et al., 2022). Recently, Vezhnevets et al. (2020) propose a hierarchical MARL method
for agents to play against opponents it hasn’t seen during training. However, the evaluation scenarios
are only limited to simple competitive scenarios. Mahajan et al. (2022) studied the generalization
in MARL empirically and proposed theoretical findings based on successor features (Dayan, 1993).
However, no method to achieve generalization in MARL was proposed in (Mahajan et al., 2022).

Ad-hoc team building (Stone & Kraus, 2010; Gu et al., 2021) models the multi-agent problem as
a single-agent learning task. In ad-hoc team building, one ad-hoc agent is trained by interacting
with agents that have fixed pretrained policies and the non-stationarity issue is not severe. However,
in our formulation, non-stationarity is the main obstacle to MARL training. In addition, there is
only one ad-hoc agent evaluated by interacting agents that are unseen during training, while there
can be more than one focal agent in our formulation as defined in Definition 2, thus making our
formulation general and challenging. There has been a growing interest in applying self-play to
solve complex games (Heinrich et al., 2015; Silver et al., 2018; Hernandez et al., 2019; Baker et al.,
2019); however, its value in enhancing the generalization of MARL agents has yet to be examined.
Due to space constraints, we discuss meta-learning (Al-Shedivat et al., 2018; Kim et al., 2021) and
population-based training (Strouse et al., 2021; Lupu et al., 2021; Tang et al., 2021) works in Appx. F.

8 CONCLUSION, LIMITATIONS AND FUTURE WORK

In this paper, we consider the problem of achieving generalizable behaviors in MARL. We first
model the problem with Markov Game. To train agents that can interact with agents that possess
unseen policies. We propose a simple yet effective method, RPM, to collect diversified multi-agent
interaction data. We save policies in RPM by ranking the training episode return. Empirically, RPM
significantly boosts the performance of MARL agents in various Melting Pot evaluation scenarios.

RPM’s performance is dependent on the appropriate value of ψ. Several attempts may be needed to
determine the correct value of ψ for RPM. We are interested in discovering broader measures for
ranking policies that do not explicitly consider the training episode return. Recently, there has been a
growing interest in planning in RL, especially with model-based RL. We are interested in exploring
the direction of applying planning and opponent/teammate modelling for attaining generalized
MARL policies for future work. Agents are engaged in complex interactions in multi-agent scenarios.
Devising novel self-play methods is our future direction.
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