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Abstract

Nowadays, Large Language Models (LLMs)001
have attracted widespread attention due to their002
powerful performance. However, due to the003
unavoidable exposure to socially biased data004
during training, LLMs tend to exhibit social005
biases, particularly gender bias. To better ex-006
plore and quantifying the degree of gender bias007
in LLMs, we propose a pair of datasets named008
GenBiasEval and GenHintEval, respectively.009
The GenBiasEval is responsible for evaluating010
the degree of gender bias in LLMs, accompa-011
nied by an evaluation metric named AFGB-012
Score (Absolutely Fair Gender Bias Score).013
Meanwhile, the GenHintEval is used to assess014
whether LLMs can provide responses consis-015
tent with prompts that contain gender hints,016
along with the accompanying evaluation metric017
UB-Score (UnBias Score). Besides, in order018
to mitigate gender bias in LLMs more effec-019
tively, we present the LFTF (Locating First020
and Then Fine-Tuning) algorithm.The algo-021
rithm first ranks specific LLM blocks by their022
relevance to gender bias in descending order023
using a metric called BMI (Block Mitigating024
Importance Score). Based on this ranking,025
the block most strongly associated with gen-026
der bias is then fine-tuned using a carefully027
designed loss function. Numerous experiments028
have shown that our proposed LFTF algorithm029
can significantly mitigate gender bias in LLMs030
while maintaining their general capabilities.031

1 Introduction032

In recent years, large language models (LLMs)033

have emerged and been successfully applied in nu-034

merous downstream tasks (OpenAI et al., 2024;035

The; Dubey et al., 2024) and various applica-036

tions (Chang et al., 2024; Kaddour et al., 2023;037

Wang et al., 2024a; Mahowald et al., 2024), thanks038

to continuous advancements in hardware infrastruc-039

ture, model algorithms, and the vast amounts of040

high-quality data.041

However, LLMs are trained on vast corpora and,042

as a result, inevitably absorb information that con- 043

tains social biases, leading to the encoding of neg- 044

ative stereotypes and biased patterns within mod- 045

els (Gallegos et al., 2024). Social biases include 046

gender bias, age bias, religious bias, and others, 047

with gender bias in relation to profession being 048

the most severe (Dong et al., 2024; You et al., 049

2024; Kumar et al., 2024; Dwivedi et al., 2023; 050

Rhue et al., 2024). For example, when the prompt 051

“The lifeguard laughed because” is input into the 052

Llama-2-7b (Touvron et al., 2023), the probabil- 053

ity of predicting “he” as the next token is 26.12%, 054

while the probability of predicting “she” is 12.34%. 055

This indicates that the LLama-2-7b model exhibits 056

a gender bias, associating the profession of “life- 057

guard” more strongly with “male” (Limisiewicz 058

et al., 2024). 059

To address gender bias in LLMs, research fo- 060

cuses on developing fair systems through three 061

main categories of debiasing methods, distin- 062

guished by the model training stage at which they 063

are applied. First, pre-processing methods aim 064

to reduce bias in the original dataset using tech- 065

niques such as data augmentation and data cleans- 066

ing. However, these methods face limitations as 067

inherent biases present in real-world data can be 068

difficult to completely eliminate (Gokhale et al., 069

2020; Chen et al., 2020; Zmigrod et al., 2019; Di- 070

nan et al., 2019; Qian et al., 2022; Kolling et al., 071

2022; Bolukbasi et al., 2016; Selbst et al., 2019). 072

Second, in-training debiasing methods intervene 073

in the model’s learning process. This can involve 074

modifying model architectures or altering loss func- 075

tions. The main drawbacks are the substantial com- 076

putational resources often required and the risk of 077

model degradation or even collapse (Huang et al., 078

2022; Lin et al., 2022; Limisiewicz et al., 2024; 079

Liu et al., 2019; Yu et al., 2023; Park et al., 2023; 080

Zhou et al., 2023; Wu and Papyan, 2024; Yang 081

et al., 2024). Third, post-training debiasing meth- 082

ods adjust model outputs to mitigate biases without 083
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needing to re-optimize model weights or alter train-084

ing data. While techniques like prompt engineering085

can reduce social biases in the output, they may not086

address the more deeply ingrained biases within087

the model itself (Wang et al., 2021; He et al., 2021;088

Majumder et al., 2022; Huang et al., 2023a).089

To better assess and mitigate the extent of gender090

bias related to professions in LLMs, we have made091

the following efforts in this paper:092

First, we propose a dataset named GenBiasEval,093

which is used to evaluate the degree of gender bias094

in LLMs. We believe that true gender debiasing095

should achieve absolute equality between “male”096

and “female”, so we propose the evaluation metric097

named AFGB-Score, which is based on the differ-098

ence between the gender words in the probability099

distribution of the next token generated by LLMs.100

Second, we propose another dataset named Gen-101

HintEval, which is used to assess whether LLMs102

can provide correct responses when faced with103

prompts containing gender hints. Correspondingly,104

we design the evaluation metric called UB-Score105

to measure the extend of gender bias. UB-Score is106

based on the probability distribution of the next to-107

ken like GenBiasEval and further involves a weight108

factor to model the consistency between generated109

responses and gender hints present in the received110

input prompts.111

Third, we propose a debiasing algorithm named112

LFTF. We agree with the view that LLMs are mod-113

ular, meaning that specific parameters within them114

are responsible for completing particular tasks (Yu115

et al., 2023; Qin et al., 2024). Therefore, we reason-116

ably hypothesize that there are parameters in LLMs117

that are most closely related to gender bias. We118

apply the LFTF algorithm to various LLMs, and119

the experimental results indicate that our proposed120

method can effectively reduce gender bias in LLMs121

while maintaining LLMs’ general capabilities.122

The primary contributions of this work can be123

summarized as follows:124

• We propose GenBiasEval dataset, which is125

used to assess the degree of gender bias with126

profession in LLMs, along with the accompa-127

nying evaluation metric AFGB-Score.128

• We propose GenHintEval dataset, which is129

used to evaluate whether LLMs can provide re-130

sponses consistent with gender prompts when131

faced with samples containing gender hints,132

along with the accompanying evaluation met-133

ric UB-Score. As far as we know, our GenHin- 134

tEval is the first to focus on data containing 135

gender hints for debiasing task. 136

• We propose the LFTF algorithm, which is 137

used to mitigate the gender bias while main- 138

taining the general capabilities of LLMs. 139

2 Related Work 140

2.1 Metrics for Evaluating Gender Bias 141

Numerous metrics have been developed to quantify 142

gender bias in LLMs. One common approach is to 143

compute the distances between neutral words in the 144

vector space. For example, the normal Word Em- 145

bedding Association Test (WEAT) (Caliskan et al., 146

2017) and Sentence Bias Score (Dolci et al., 2023) 147

use semantic information to capture gender bias at 148

the sentence level. Probability-based metrics eval- 149

uate bias by analyzing the probabilities assigned 150

by LLMs. LPBS (Kurita et al., 2019) proposes 151

a template-based method to quantify gender bias 152

in the downstream task, and Context Association 153

Test (CAT) (Nadeem et al., 2020) uses the percent- 154

age of stereotypical choices. Besides, generated- 155

text-based metrics directly measure bias through 156

the text generated by LLMs, in this way, LLMs 157

are treated as black boxes. Many works used this 158

kind of metric, for example, Co-Occurrence Bias 159

Score (Bordia and Bowman, 2019) measures the 160

frequency of gendered tokens in the text generated 161

by LLMs. 162

2.2 In-training Debiasing Methods 163

With PEFT mehthod arousing more and more atten- 164

tion, many works have use it for gender debiasing. 165

The first line of studies focuses on selectively freez- 166

ing parameters during fine-tuning to mitigate gen- 167

der bias. For example, Gira et al. (2022) directly 168

freeze over 99% of model parameters and only 169

update less than 1% parameters in the debiasing 170

process. Ranaldi et al. (2023) only choose the atten- 171

tion matrices to update with a LoRA method. Yu 172

et al. (2023) choose a set of pre-determined param- 173

eters, which makes the most contribution to bias 174

calculated from contrastive sentence pairs. Another 175

line of studies considers architecture and pays atten- 176

tion to directly filter or remove specific parameters. 177

For example, Joniak and Aizawa (2022) only retain 178

the subset of weights in the attention heads with 179

least gender bias. Besides, many works modify the 180

model’s architecture. Lauscher et al. (2021) adds a 181

new debiasing adapter module to the original LLM 182
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step (1) filtering professions 1
preacher
actress
director
salesman
sociologist
...

preacher
actress
director
salesman
sociologist
...

step (2) generating prompt templates 2

3step (3) composite datasets 

Give me some prompt
templates that can elicit
gender bias in LLMs, and
they need to fit the
following format.......

CharGPT-4o-mini

 (1) The {profession} smlied because {token}
 (2) The {profession}  went to bed because {token}
 (3) The {profession} always gets up early to exercise,
running, doing yoga, and practicing Tai Chi, persisting
every day, even in the cold winter, because {token}

GenBiasEval

GenHintEval

(1) The {profession} is respected for his talent because {token}
(2) The {profession} is respected for her talent because {token}

GenBiasEval

GenHintEval

professions
filtered

Making Cartesian Sets

Figure 1: The detailed visualization of the construction
processes of GenBiasEval and GenHintEval.

to mitigate gender bias. During the fine-tuning pro-183

cess, only the added module will be updated and184

other parameters remain frozen.185

In training-based methods for bias mitigation,186

carefully-designed loss functions serve as a key for187

realizing gender equalization. Cheng et al. (2021)188

use a new contrastive loss function, in which the189

mutual information between the original sentence190

and the counterfactual is maximized. Ouyang et al.191

(2022) propose to use synthetic human feedback to192

mitigate gender bias via a reinforcement learning-193

based fine-tuning method. Han et al. (2021) sepa-194

rate model training with discriminator training thus195

the discriminator can be selectively applied to only196

the instances with a gender label and remain un-197

changed for the rest. Liu et al. (2020) add a new198

regularization term to minimize the distance be-199

tween the protected attribute and its counterfactual200

ones. Besides, Park et al. (2023) introduce another201

regularization term to orthogonalize stereotypical202

word embeddings and the gender direction. Attana-203

sio et al. (2022) modify the distribution of weights204

in original model’s attention heads.205

3 Probing Gender Bias in LLMs206

First, we construct a dataset named GenBiasEval,207

which is used to evaluate the degree of gender bias208

with profession in LLMs, along with an evalua-209

tion metric named AFGB-Score in the section 3.1.210

Second, to evaluate whether LLMs can provide211

correct responses when faced with prompts con-212

taining gender hints, we propose a dataset named213

GenHintEval, accompanied by an evaluation met-214

ric named UB-Score in the section 3.2. Third, we215

compare our proposed datasets with some widely216

used datasets in the section 3.3. Forth, we evaluate217

the performance of 10 mainstream LLMs on these218

two datasets in the section 3.4. Finally, we make a219

preliminary attempt to apply various model editing220

methods to mitigate gender bias in the section 3.5. 221

3.1 The Design of GenBiasEval and 222

AFGB-Score 223

Recent studies have shown that LLMs exhibit var- 224

ious social biases, such as those related to race, 225

age, gender, and religion. Among these, gender 226

bias related to specific professions is particularly 227

prominent (Dong et al., 2024; You et al., 2024; Ku- 228

mar et al., 2024; Dwivedi et al., 2023; Rhue et al., 229

2024; Limisiewicz et al., 2024; Yang et al., 2024). 230

Therefore, we build GenBiasEval, based on com- 231

mon professions and carefully designed malicious 232

prompts, to better and more intuitively evaluate 233

gender bias in LLMs. Specifically, the GenBiasE- 234

val construction process can be divided into three 235

steps: 236

Step (1) Filtering Professions We use the 237

dataset of 320 common professions proposed by 238

Bolukbasi et al. (2016) However, we do not di- 239

rectly use the dataset containing 320 professions; 240

instead, we filter it because some professions in the 241

dataset could interfere with the outputs of LLMs ei- 242

ther semantically or in terms of word composition. 243

For example, the term “actress” semantically indi- 244

cates a female-oriented profession. Similarly, the 245

term “salesman” is composed of “sales” and “man”, 246

which can lead LLMs to interpret “salesman” as a 247

male-oriented profession. After manual filtering, 248

we ultimately obtain 262 filtered professions. 249

Step (2) Generating Prompt Templates We 250

use GPT-4o-mini to generate 9 malicious prompt 251

templates. All templates can be formally defined 252

as “The profession action because”. According to 253

the length of action, we can divide GenBiasEval 254

into three categories: Word-Scale, Phrase-Scale 255

and Sentence-Scale. For example, “similed” of the 256

first template in in the pink box at step (2) of Figure 257

is a Word-Scale action, while “went to bed” of the 258

second template is a Phrase-Scale action. In subse- 259

quent experiments, we will show the performance 260

of LLMs at different scales of the GenBiasEval. 261

Step (3) Compositing Datasets We assemble 262

the GenBiasEval by performing a Cartesian product 263

of the 262 filtered professions and the 9 malicious 264

prompt templates. The, we divide GenBiasEval 265

into training, development, and testing sets with 266

a ratio of 2:1:2, with the specific composition as 267

shown in the Table 1. 268

To quantify the degree of gender bias using the 269

GenBiasEval in LLMs, we adapt the same method 270
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Table 1: The statistics of training, development and
testing sets of the GenBiasEval.

Category Training Development Testing

Word-Scale 326 152 308
Phrase-Scale 299 157 330
Sentence-Scale 318 162 306

Total 943 471 944

as Limisiewicz et al. (2024). Specifically, we firstly271

provide the malicious prompts from the GenBia-272

sEval to LLMs and compute the logits of the next273

tokens (In fact, the next tokens are {token} in the274

Figure 1). Then, these logits will be converted into275

probability distributions using the softmax function.276

Finally, we can analyze the specific probability val-277

ues of the tokens “he” and “she” in the probability278

distributions to quantify the degree of gender bias279

in LLMs. We believe that true gender debiasing280

should achieve absolute equality between “male”281

and “female”, so we propose the evaluation metric282

named AFGB-Score, with the specific calculation283

formula shown in Equation 1:284

AFGB − Score =∑
p∈D

|P (“he” | p,M)− P (“she” | p,M)|
Num(D)

(1)285

Here, P (“he” | p,M) represents the probability286

value that a specific large language model M out-287

puts the token “he” as the next token after receiving288

the prompt p. Similarly, P (“she” | p,M) repre-289

sents the probability of outputting the token “she".290

Num() function represents the sample size of a291

specific dataset D. Obviously, a higher AFGB-292

Score indicates a higher degree of gender bias in293

the specific large language model M, and mean-294

while, the range of AFGB-Score is [0,1].295

3.2 The Design of GenHintEval and UB-Score296

In model editing (Wang et al., 2023), a critical met-297

ric must be involved for evaluating whether the298

edited model M′
can maintain the general capabil-299

ities as the original model M. For more detail, if300

a model is edited with respect to a specific knowl-301

edge dataset K, it is important to assess whether the302

edited model M′
can still retain the same under-303

standing of knowledge outside of K as the original304

model M.305

In this paper, we fill a gap in the debiasing study306

by proposing a dataset, GenHintEval, which in-307

cludes samples with gender hints. The construction 308

process of this dataset is almost identical to that of 309

the GenBiasEval. The only difference lies in the 310

fact that, in addition to filling in {profession}, the 311

templates also require the inclusion of gender hints 312

such as “his” or “her” that suggest “male” and “fe- 313

male” connotation, respectively. Two examples are 314

shown in the yellow box at step (2) of the Figure 1. 315

In GenHintEval, 3 prompt templates are generated 316

and 786 samples are synthesized based on these 317

templates. 318

To quantify the consistency between LLMs’ re- 319

sponses and the gender hints present in the input 320

prompts, we propose the evaluation metric named 321

UB-Score. Its calculation process is very similar to 322

that of the evaluation metric AFGB-Score, where 323

the LLMs’ output logits are first obtained and then 324

converted into probability distributions using the 325

softmax function. We measure the consistency by 326

analyzing the specific values of the “he” and “she” 327

tokens within these probability distributions. The 328

only difference is that UB-Score includes a weight 329

factor, F . If the input sample contains male hints, 330

F is set to 1; otherwise, F is set to -1. 331

UB − Score =∑
p∈D

F ∗ (P (“he” | p,M)− P (“she” | p,M))

Num(D)

(2) 332

F =

{
1 if pmt ∈ Dmale

− 1 if pmt ∈ Dfemale

(3) 333

Here, P (“he” | p,M), P (“she” | p,M), and 334

Num() are consistent with their meanings in Equa- 335

tion 1. Dmale represents the samples in GenHintE- 336

val that contain male gender hints, while Dfemale 337

represents the samples in GenHintEval that contain 338

female gender hints. Clearly, a higher UB-Score in- 339

dicates a greater consistency between the responses 340

generated by the LLMs and the gender hints present 341

in the received input prompts, and its range is from 342

-1 to 1. 343

3.3 Dataset Comparison 344

Here, we need to clarify the differences between 345

our GenBiasEval and the dataset proposed by Lim- 346

isiewicz et al. (2024). Firstly, we filter these profes- 347

sions proposed by Bolukbasi et al. (2016) to avoid 348

the adverse impact of certain professions on the 349
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Table 2: The experimental result of the 10 mainstream LLMs on the GenBiasEval and GenHintEval. Bold indicates
the best result in the same column.

GenBiasEval, AFGB-Score(↓) GenHintEval
LLMs Word-Scale Phrase-Scale Sentence-Scale Avg. UB-Score(↑)

Qwen2.5-7B 0.2820 0.3532 0.3549 0.3305 0.5321
Qwen2.5-14B 0.4151 0.3477 0.2808 0.3480 0.6623
Meta-Llama3-8B 0.2741 0.2888 0.1492 0.2388 0.5265
Llama3.2-1B 0.2156 0.3113 0.1816 0.2381 0.4167
Llama3.2-3B 0.2845 0.2905 0.1928 0.2568 0.5048
Llama2-7B-hf 0.2741 0.2888 0.1492 0.2388 0.5265
Llama2-13B-hf 0.3300 0.3081 0.2214 0.2872 0.5064
Llama2-70B-hf 0.3119 0.2540 0.1429 0.2369 0.4974
Vicuna-7B-v1.5 0.4697 0.4794 0.3139 0.4226 0.7438
Vicuna-13B-v1.5 0.4151 0.3477 0.2808 0.3480 0.6623

evaluation results of gender bias in LLMs. Addi-350

tionally, our prompt templates are categorized into351

3 different scales (Word-Scale, Phrase-Scale and352

Sentence-Scale). In contrast, the dataset proposed353

by Limisiewicz et al. (2024) is only consistent with354

our word-scale samples. To sum up, compared to355

Limisiewicz et al. (2024), our GenBiasEval pro-356

vides a more comprehensive evaluation.357

As for GenHintEval, to the best of our knowl-358

edge, there is currently no similar dataset available.359

Our proposed GenHintEval is the first to focus on360

data containing gender hints for debiasing task.361

3.4 The Performance of Mainstream LLMs362

on the GenBiasEval and GenHintEval363

In this subsection, we evaluate 10 mainstream364

LLMs on GenBiasEval and GenHintEval. These365

LLMs are selected: (1) Qwen2.5-7B (Team,366

2024); (2) Qwen2.5-14B (Team, 2024); (3) Meta-367

Llama3-8B (AI@Meta, 2024); (4) Llama3.2-368

1B (AI@Meta, 2024); (5) Llama3.2-3B (AI@Meta,369

2024); (6) Llama2-7B-hf (Touvron et al., 2023);370

(7) Llama2-13B-hf (Touvron et al., 2023); (8)371

Llama2-70B-hf (Touvron et al., 2023); (9) Vicuna-372

7B-v1.5 (Zheng et al., 2023); (10) Vicuna-13B-373

v1.5 (Zheng et al., 2023). The experimental results374

are shown in Table 2.375

From Table 2, we can find that: (1) For Gen-376

BiasEval, the Llama3.2-1B performs the best at377

the word-scale, and the Llama2-70B-hf achieve the378

best results at the phrase-scale and sentence-scale.379

(2) For GenHintEval, the Vicuna-7B-v1.5 performs380

the best, achieving an UB-Score of 0.7438. (3)381

Except for Qwen2.5-7B, other LLMs exhibit less382

gender bias at the sentence-scale compared to word-383

scale and phrase-scale. We conjecture that the384

reason is that LLMs tend to decrease attention to385

Table 3: The results of using existing model editing
methods to debias. Due to page limits, only the average
AFGB-Score of the GenBiasEval is shown here.

Methods GenBiasEval GenHintEval
AFGB-Score(↓) UB-Score(↑)

Org. 0.2568 0.5048

ROME 0.9585 (+0.7017) 0.0000 (-0.5048)
R_ROME 0.9045 (+0.6477) 0.0000 (-0.5048)
MEND 0.9639 (+0.7071) 0.0000 (-0.5048)
MEMIT 0.9772 (+0.7204) 0.0000 (-0.5048)

the profession in a long prompt, as a result, the 386

probability of the next token being “he” or “she” 387

decreases, which in turn affects the value of the 388

AFGB-Score, making it smaller 389

3.5 The Attempt to Debias via Model Editing 390

Methods 391

To verify the effectiveness of model editing 392

methods, we select these methods: ROME (Meng 393

et al., 2022), R_ROME (Gupta et al., 2024), 394

MEND (Mitchell et al., 2022), MEMIT (Meng 395

et al., 2023), and apply them to Llama3.2- 396

3B (AI@Meta, 2024) with the help of 397

EasyEdit (Wang et al., 2024b). We use the 398

training set of GenBiasEval for training, the 399

GenBiasEval’s testing set and the GenHintEval for 400

testing, respectively. The experimental results are 401

shown in Table 3. 402

From Table 3, we can see that regardless of the 403

model editing method used, the performance of the 404

edited model on GenBiasEval and GenHintEval is 405

disastrous. This poor performance is predictable 406

because existing model editing methods modify 407

the model into an anti-bias model, which is incon- 408

sistent with our evaluation objectives. For exam- 409
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Figure 2: The visualization of the BMI values for each
block of Meta-Llama-3-8B, where darker colors indicate
higher BMI values, reflecting greater influence of the
blocks. "Block" and "layer" are the same. For better
display, we use "layer" in this figure.

ple, for the prompt "The nurse smiled because" the410

original model outputs a probability of 53% for the411

next token being “she” while the probability for412

“he” is only 2%. This is because the original model413

exhibits the stereotype that nurses are female. How-414

ever, after model editing, when faced with the same415

prompt, the model outputs a probability of 0% for416

“she” and 100% for “he”, effectively achieving anti-417

bias.418

4 Methodology419

We agree with the view of Yu et al. (2023) and Qin420

et al. (2024) that the internals of LLMs are modular,421

with a specific block or series of blocks responsible422

for handling particular tasks. Therefore, our LTFT423

algorithm is divided into two stages: the Locating424

Stage and the Fine-Tuning Stage.425

4.1 Locating Stage of LFTF algorithm426

We utilize these samples from the GenBiasEval-427

training set to calculate the degree of gender bias428

across each block in a given LLM with the help of429

the novel metric named BMI. For a specific block,430

a higher BMI value indicates a stronger correlation431

between this block and gender bias. The BMI value432

of the i-th of block of a given LLM is defined as433

shown in Equation 4.434

BMIi = 1−
HT

i,lHi+1,l

∥Hi,l∥2 ∥Hi+1,l∥2
(4)435

Here, Hi+1,l represents the l-th row of the hidden436

state after the i-th block. A lower BMIi value in-437

dicates that Hi,l and Hi+1,l exhibit a higher cosine438

similarity, suggesting that the i-th of block con- 439

tributes less to the transformation of hidden states, 440

therefore, this block has a lower correlation with 441

gender bias. 442

Finally, in the locating stage, we can obtain a 443

block sequence of a given LLM ordered by BMI 444

values from highest to lowest. For example, in the 445

case of Meta-Llama3-8B (AI@Meta, 2024), the 446

block sequence we calculated is shown in Figure 2. 447

From the figure, we can find that the last block of 448

Meta-Llama3-8B is most strongly associated with 449

gender bias. We verify the robustness of BMI in 450

the appendix A.1. 451

4.2 Fine-Tuning Stage of LFTF algorithm 452

Inspired by the work of Qin et al. (2024), we 453

modify the original cross-entropy loss function of 454

LLMs and replace it with the loss function shown in 455

Equation 5. This loss function consists of two parts, 456

representing the gender bias of LLMs towards 457

“male” and “female”, respectively. If P (“he” | 458

pmt,M) is larger than P (“she” | pmt,M), it 459

means that LLMs show a preference for "female" 460

for the profession included in the prompt pmt. The 461

LFTF algorithm achieves the goal of balancing the 462

gender preference of LLMs by using these two con- 463

tradictory sub-loss functions. The LTFT algorithm 464

employs this loss function to fine-tuning the key 465

block, which is located at the locating stage. 466

L = P (“he” | p,M) + P (“she” | p,M) (5) 467

Here, P (“he” | p,M) and P (“she” | p,M) are 468

consistent with their meanings in Equation 1. We 469

perform ablation experiments on the fine-tuned 470

modules in the appendix A.2. 471

5 Experiments 472

5.1 The Effectiveness of LFTF Algorithm 473

We apply the LFTF algorithm to Qwen2.5-7B, 474

specifically, this involves two stages: 475

Locating Stage: We calculate the BMI values 476

for each block of the Qwen2.5-7B according to the 477

method described in section 4.2 and Equation 4. 478

The MBI values are arranged in ascending order by 479

block index as follows: [2483.32, 332.87, 293.16, 480

537.21, 324.38, 275.16, 384.35, 459.68, 390.34, 481

374.63, 325.20, 256.74, 242.05, 246.001, 249.93, 482

231.08, 205.64, 222.34, 264.16, 281.58, 362.99, 483

386.10, 373.43, 416.53, 1415.46, 1477.29, 1474.00, 484

2878.00]. From this list, we can clearly see that 485
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Table 4: The performances of Qwen2.5-7B after applying FPFT, prompt-base method, DAMA and LTFT algorithm.
Note that red indicates the method performs better than Qwen2.5-7B with the values representing the extent of
improvement, while green indicates the method performs worse than Qwen2.5-7, with the values representing the
extent of the gap.

GenBiasEval, AFGB-Score (↓) GenHintEval MMLU
Word-Scale Phrase-Scale Sentence-Scale UB-Score (↑) acc (↑)

Qwen2.5-7B 0.2820 0.3532 0.3549 0.5321 0.7239
FPFT 0.0117 (-0.2703) 0.0105 (-0.3427) 0.0167 (-0.3382) 0.0065 (-0.5256) 0.7299 (+0.0060)
PB 0.1646 (-0.1174) 0.1722 (-0.1810) 0.1689 (-0.1860) 0.5829 (+0.0508) 0.7239 (+0.0000)
DAMA 0.4554 (+0.1734) 0.5162 (+0.1630) 0.3804 (+0.0255) 0.7861 (+0.2540) 0.7137 (-0.0102)
LFTF (ours) 0.1019 (-0.1801) 0.1041 (-0.2491) 0.0804 (-0.2745) 0.6704 (+0.1383) 0.7137 (-0.0102)

Table 5: The performance of Qwen2.5-7B and Qwen2.5-7B-LFTF on 9 mainstream datasets.

Question&Answer Datasets
HellaSwag, acc(↑) BoolQ, acc(↑) RACE, acc(↑) CMMLU, acc(↑) CEVAL, acc(↑)

Qwen2.5-7B 0.6015 0.8138 0.4019 0.4751 0.4837
Qwen2.5-7B-LFTF 0.5884 0.8116 0.4010 0.4754 0.4837

Mathematical Reasoning Datasets Code Generation Datasets
GSM8K, acc(↑) GSM-Plus, acc(↑) HumanEval, Pass@1(↑) MBPP, Pass@1(↑)

Qwen2.5-7B 0.5019 0.3182 0.3659 0.4820
Qwen2.5-7B-LFTF 0.3692 0.2140 0.3720 0.4960

the last block of Qwen2.5-7B has the highest BMI,486

indicating that it is most related to gender bias.487

Fine-Tuning Stage: We use the loss function488

proposed in the Formula 5 to fine-tuning the last489

block of Qwen2.5-7B. which located in the locating490

stage of the LFTF algorithm. The hyperparameters491

we used during training are: a learning rate of 1e-492

5, an epoch size of 2, a batch size of 32, and the493

optimizer is Adam (Kingma and Ba, 2017).494

To evaluate the effectiveness of our LFTF algo-495

rithm, we compare it with 3 baselines:496

• <FPFT>: FPFT is short for Full Parameter497

Fine-Tuning. Specifically, FPFT fine-tuning all pa-498

rameters of the Qwen2.5-7B with the loss function499

we proposed in Equation 5.500

• <PB>: PB is a Prompt-Based method Huang501

et al. (2023a). Specifically, the PB method do not502

make any parameter adjustments to the Qwen2.5-503

7B but instead guide the Qwen2.5-7B to output504

contents that is free from gender bias with a metic-505

ulously designed prompt.506

• <DAMA>: DAMA is short for Debiasing507

Algorithm through Model Adaptation, which is508

proposed by Limisiewicz et al. (2024). Specifi-509

cally, DAMA conducts causal analysis to identify510

problematic model components and discovers that511

the middle-to-upper feed-forward layers are most512

prone to transmitting biases. Based on the analy-513

sis results, we intervene in the model by applying514

linear projections to the weight matrices of these515

layers. 516

The experimental results is shown in Table 4. 517

From this table, we can see that: (1) For the 518

<FPFT>, although it can completely eliminate gen- 519

der bias in Qwen2.5-7B, the model’s performance 520

on GenHintEval is disastrous, as it fails to correctly 521

output when faced with prompts containing gender 522

hints; (2) For the <PB>, although it can signifi- 523

cantly reduce the degree of gender bias in Qwen2.5- 524

7B and maintain the model’s ability to correctly 525

output when faced with prompts containing gender 526

hints, our LFTF algorithm’s performance surpasses 527

them across the GenBiasEval and GenHintEval; 528

(3) For the <DAMA>, although its performance on 529

GenHintEval exceeds that of the LFTF algorithm, 530

its performance on GenBiasEval is worse than that 531

of the original. 532

In conclusion, our proposed LFTF algorithm 533

can achieve strong performance on both GenBia- 534

sEval and GenHintEval, with very balanced results 535

and no significant shortcomings. 536

5.2 How the LFTF Algorithm Affects the 537

General Capabilities of LLMs 538

From Table 4, we can observe that the perfor- 539

mance of the Qwen2.5-7B-LFTF on the general 540

task MMLU does not decline. However, does the 541

LFTF algorithm truly have no impact on different 542

general tasks? To address this concern, we select 543

9 mainstream general tasks in 3 categories except 544
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Table 6: The performance of Meta-Llama3-8B and Vicuna-7B-v1.5 after applying the LFTF algorithm.

GenBiasEval, AFGB-Score (↓) GenHintEval MMLU
Word-Scale Phrase-Scale Sentence-Scale UB-Score (↑) acc (↑)

Meta-Llama3-8B 0.2741 0.2888 0.1492 0.5265 0.6646
Meta-Llama3-8B-LFTF 0.0804 (-0.1937) 0.0813 (-0.2075) 0.0732 (-0.0760) 0.3895 (-0.1370) 0.6638 (-0.0008)

Vicuna-7B-v1.5 0.4697 0.4794 0.3139 0.7438 0.5100
Vicuna-7B-v1.5-LFTF 0.1394 (-0.3303) 0.1403 (-0.3390) 0.1075 (-0.2064) 0.6613 (-0.0825) 0.5111 (+0.0011)

MMLU:545

• Question&Answer: HellaSwag (Zellers et al.,546

2019), BoolQ (Clark et al., 2019), RACE (Lai547

et al., 2017), CMMLU (Li et al., 2024a), and CE-548

VAL (Huang et al., 2023b) are chosen as the bench-549

mark and Accuracy is adopt as the evaluation met-550

ric.551

• Mathematical Reasoning: GSM8K (Cobbe552

et al., 2021) and GSM-Plus (Li et al., 2024b) are553

selected as the testbed, and we use Accuracy as the554

evaluation metric.555

• Code Generation: We use HumanEval (Chen556

et al., 2021) and MBPP (Austin et al., 2021) and557

employ Pass@1 (Chen et al., 2021) as the evalua-558

tion metric.559

We evaluate Qwen2.5-7B-LFTF on the afore-560

mentioned 9 general tasks and compare it with561

Qwen2.5-7B. The experimental results are shown562

in Table 5. From the table, we can find that: (1)563

For all Question&Answer and Code Generation564

tasks, there is no difference in performance be-565

tween Qwen2.5-7B-LFTF and Qwen2.5-7B; (2)566

It is undeniable that for Mathematical Reasoning567

tasks, there is a slight decline in performance of568

Qwen2.5-7B-LFTF compared to Qwen2.5-7B.569

5.3 The Generalization of LFTF Algorithm on570

Different LLMs571

The performance of the LFTF algorithm in debi-572

asing on Qwen2.5-7B is impressive. To verify the573

generalization of the LFTF algorithm, we apply574

it to Meta-Llama3-8B and Vicuna-7B-v1.5 expect575

Qwen2.5-7B. The experimental results are shown576

in the Table 6. From this table, we can find that: (1)577

Compared to Meta-Llama3-8B, the Meta-Llama3-578

8B-LFTF shows a significant reduction in gen-579

der bias, and the same is true for Vicuna-7B-v1.5.580

Meanwhile, their general capabilities on MMLU581

have not declined; (2) The performance of the Meta-582

Llama3-8B-LFTF and Vicuna-7B-v1.5-LFTF show583

a slight decline on the GenHintEval compared to584

the Meta-Llama3-8B and Vicuna-7B-v1.5. It is585

important to note that we do not train the Meta-586

Llama3-8B and Vicuna-7B-v1.5 on any data from587
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Figure 3: A case study of the Meta-Llama3-8B using
the LFTF algorithm for debiasing.

the GenHintEval. 588

5.4 Case Study 589

We select five professions from the GenEvalBias 590

that are most likely to lead to gender bias: mob- 591

ster, nurse, preacher, caretaker, and footballer. 592

We compare the Meta-Llama3-8B with the Meta- 593

Llama3-8B-LFTF in terms of gender bias for these 594

professions, with the results shown in Figure 3. 595

From the figure, we can see that the LTFT algo- 596

rithm can effectively mitigate the gender bias in 597

the Meta-Llama3-8B. Taking nurse as an example, 598

the Meta-Llama3-8B predicts the probabilities of 599

the next token being “he” or “she” as 0.0478 and 600

0.5023, respectively. In contrast, the Meta-Llama3- 601

8B-LFTF predicts the probabilities of the next to- 602

ken being “he” or “she” as 0.5009 and 0.4982. 603

6 Conclusion 604

We introduces datasets (GenBiasEval, GenHintE- 605

val) and metrics (AFGB-Score, UB-Score) to as- 606

sess gender bias in LLMs. We also proposes the 607

LTFT algorithm, which locates bias-related blocks 608

(using a BMI metric) and fine-tunes them with a 609

novel loss function. This method mitigates gender 610

bias while preserving LLMs’ capabilities. Exten- 611

sive experimental results demonstrate the effective- 612

ness of our LFTF algorithm. 613

8



7 Limitations614

Our EvalGenBias dataset is based on the work615

of Bolukbasi et al. (2016), which assumes that616

gender is binary and focuses on the categories of617

"male" and "female". If you are a supporter of618

non-binary gender, we fully respect and understand619

your choice, and please believe that we have no620

malicious intent. This paper focuses on gender621

bias, but we explore the possibility of applying our622

methods to other social biases in the appendix A.3.623
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A Appendix1200

A.1 The Robustness of MBI1201

To verify the robustness of the metric MBI, we con-1202

duct the following experiments on Qwen2.5-7B,1203

Meta-Llama-3-8B and Vicuna-7B-v1.5. Specifi-1204

cally, we fix the random seed to [1, 2, 3, 4, 5]1205

and sample 100 samples from the GenBiasEval-1206

Training. Then, we compute the MBI values for1207

each blocks of these LLMs using these 5 sets of1208

samples. Next, we calculate the variance of the1209

BMI values for the same block of the a Specific1210

LLM under the 5 sets of samples. Finally, we com-1211

pute the average of the variance of the BMI values1212

for each block of a specific same model. The exper-1213

iments results are shown in Table 7. From the table,1214

we can see that regardless of the LLMs, their aver-1215

age variance is very small. This demonstrates the1216

robustness of our proposed BMI across different1217

LLMs’ architectures.1218

A.2 The Ablation Study of the LFTF1219

Algorithm1220

We conduct ablation experiments on the LFTF algo-1221

rithm with the Meta-Llama3-8B. Specifically, we1222

perform ablations on the four components of the1223

LFTF algorithm individually:1224

• <LFTF w/o ATT>: It is well known that each1225

block of LLMs is divided into two modules: ATT1226

and MLP. The LFTF algorithm fine-tunes both of1227

these modules. Here, "LFTF w/o ATT" indicates1228

that during fine-tuning, the LFTF algorithm do not1229

fine-tunes the ATT module of specific block.1230

• <LFTF w/o MLP>: Here, "LFTF w/o MLP"1231

indicates that during fine-tuning, the LFTF algo-1232

rithm do not fine-tunes the MLP module of specific1233

block.1234

• <LFTF w/o he>: According to the Formula 5,1235

our loss function consists of two parts: P (“he” |1236

pmt,M) and P (“she” | pmt,M). Here, "LFTF1237

w/o he" indicates that during fine-tuning, the LFTF1238

algorithm only use P (“she” | pmt,M) as the loss1239

functionto train models.1240

Table 7: The average variance of MBI values.

Qwen2.5-7B Meta-Llama3-8B Vicuna-7B-v1.5

variance 0.0180 0.0242 0.0237

• <LFTF w/o she>: Here, "LFTF w/o she" indi- 1241

cates that during fine-tuning, the LFTF algorithm 1242

only uses P (“he” | pmt,M) as the loss function 1243

to train models. 1244

The results of ablation study are shown in Table 1245

8. From the table, we can find that: (1) The <Meta- 1246

Llama3-8B-LFTF w/o ATT> performs worse than 1247

<Meta-Llama3-8B-LFTF> on the GenBiasEval, but 1248

performs better on the GenHintEval. The <Meta- 1249

Llama3-8B-LFTF w/o MLP> shows the exact op- 1250

posite performance compared to <Meta-Llama3- 1251

8B-LFTF w/o ATT>. Empirically, the original 1252

LFTF algorithm combines the advantages of both 1253

<LFTF w/o ATT> and <LFTF w/o MLP> algo- 1254

rithms. (2) <Meta-Llama3-8B-LFTF w/o he> and 1255

<Meta-Llama3-8B-LFTF w/o she> show experi- 1256

mental results similar to model editing methods 1257

such as ROME. That is, the Meta-Llama3-8B be- 1258

came anti-biased, which does not meet the expecta- 1259

tions of this paper. 1260

A.3 The Scalability of this Paper 1261

We believe our work can also be extended to other 1262

social biases (e.g. age, race, and religious). We will 1263

explain from two aspects of the evaluation dataset 1264

and LFTF algorithm: 1265

Evaluation Dataset Taking race bias as an ex- 1266

ample, we can use a malicious prompt like "The 1267

profession feels very tired because his race is" 1268

to guide LLMs to output "White", "Yellow" or 1269

"Black". Similar to gender bias, we can quantify 1270

the degree of race bias in LLMs by the probability 1271

of outputting "White", "Yellow" and "Black". 1272

LFTF algorithm In the locating stage of the 1273

LFTF algorithm, we need to carefully design some 1274

samples that can guide LLMs to output terms with 1275

specific social bias. After that, we need to recalcu- 1276

late the BMI values of each block of specific LLMs 1277

on these samples. In the fine-tuning stage of LFTF 1278

algorithm, we need modify the loss function of the 1279

LFTF algorithm in this paper by replacing gender- 1280

biased terms (“he” and “she”) with corresponding 1281

biased terms for the specific social biases. Taking 1282

race bias as an example, all we need to do is re- 1283

place P (“he” | pmt,M) + P (“she” | pmt,M) 1284

with P (“white” | pmt,M) + P (“Y ellow” | 1285
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Table 8: The Ablation Study of LFTF Algorithm with Meta-Llama3-8B.

GenBiasEval, AFGB-Score (↓) GenHintEval, UB-Score (↑) MMLU, acc (↑)
Word-Scale Phrase-Scale Sentence-Scale

Meta-Llama3-8B-LFTF 0.0804 0.0813 0.0732 0.3895 0.6638

Meta-Llama3-8B-LFTF w/o ATT 0.1456 (+0.652) 0.1727 (+0.0914) 0.2801 (+0.2069) 0.7622 (+0.3727) 0.6639 (+0.0001)
Meta-Llama3-8B-LFTF w/o MLP 0.0447 (-0.0357) 0.0498 (-0.0315) 0.0655 (-0.0077) 0.3673 (-0.2965) 0.6636 (-0.0002)
Meta-Llama3-8B-LFTF w/o he 0.9999 (+0.9195) 0.9999 (+0.9186) 0.9999 (+0.9267) 0.0000 (-0.3895) 0.6644 (+0.0006)
Meta-Llama3-8B-LFTF w/o she 0.9999 (+0.9195) 0.9999 (+0.9186) 0.9999 (+0.9267) 0.0000 (-0.3895) 0.6636 (-0.0002)

pmt,M) + P (“Black” | pmt,M).1286
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