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Abstract

Public health surveillance and tracking virus
via social media can be a useful digital tool
for contact tracing and preventing the spread
of the virus. Nowadays, large volumes of
COVID-19 tweets can quickly be processed in
real-time to offer information to researchers.
Nonetheless, due to the absence of labeled
data for COVID-19, the preliminary super-
vised classifier or semi-supervised self-labeled
methods will not handle non-spherical data
with adequate accuracy. With the seasonal in-
fluenza and novel Coronavirus having many
similar symptoms, we propose using few shot
learning to fine-tune a semi-supervised model
built on unlabeled COVID-19 and previously
labeled influenza dataset that can provide in-
sights into COVID-19 that have not been in-
vestigated. The experimental results show the
efficacy of the proposed model with an accu-
racy of 86%, identification of Covid-19 related
discussion using recently collected tweets.

1 Introduction

The typical seasonal influenza virus and the current
development of COVID-19 have multiple similar-
ities from symptoms to how the virus is spread.
Both viruses attack the respiratory system, can be
spread through asymptomatic carriers, cases can
range from mild to severe cases, and are transmitted
by contact and/or droplets. Influenza and COVID-
19 both can impact a community negatively due
to the contagious nature of the virus and the high
number of deaths caused by the viruses.

Public health surveillance like digital contact
tracing (Ferretti et al., 2020; Ekong et al., 2020),
epidemiological studies (Salathé et al., 2013), and
monitoring the prevalence of vaccinations (Huang
et al., 2017) can be used to help contain the virus
and prevent its spread to the masses. These tools
and techniques range from cellphone applications

installed personal phones that track the exact spread
of a virus (Ekong et al., 2020) to the development
of machine learning-based techniques to study the
spread of a virus using social media (Lamb et al.,
2013; Corley et al., 2009, 2010; Santillana et al.,
2015; Broniatowski et al., 2013; Signorini et al.,
2011). Similarly, machine learning-based meth-
ods have been developed to monitor the public’s
view on vaccines to combat the anti-vaccine narra-
tive (Huang et al., 2017).

Using large sources of public information from
social media to mine influenza and COVID-19 data
allows researchers to help gain insight about the
viruses. Just using a search word like ”flu” and
”coronavirus” with the Twitter API will return mil-
lions of tweets with information about vaccines, ru-
mors, symptoms, and family/friends who have con-
tracted the virus. Classifying tweets in to smaller
subsets including categories like ”Self vs Other”
and ”Awareness vs Infection” provides a deeper un-
derstanding on how the the influenza and COVID-
19 are affecting the communities. Example tweets
of each category can be found in Table 1

While other researchers aim to use unsupervised
learning to cluster and perform topic modeling
on COVID-19 tweets (Mackey et al., 2020; Med-
ford et al., 2020), we decided to combine self-
supervised learning combined with few shot learn-
ing to produce more accurate predictions for spe-
cific categories.

The major road block for using deep learning
models on the COVID-19 tweets is the lack of
annotated data. With millions of tweets related
to COVID-19 flooding social media, researchers
have a difficult time performing supervised learn-
ing on the data. We propose a method to attack this
problem by transferring knowledge learned in in-
fluenza data and integrating it with latent variables
obtained from the unlabeled dataset of COVID-19
to preform a deeper understanding through self-
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COVID-19 Tweets
Category Tweet Importance
Related - Is US using this HIV antiretroviral drug to treat corona. Seems

this is very successful in treating patients in Kerala, India and
they have high success rate #coronavirus #CoronavirusUSA

Be able to classify the tweets into Related tweets allows re-
searchers to filter out tweets that mention COVID-19 in order
to attract consumers (Click Bait).

- GREAT NEWS! Mom just woke up and asked for soup. She’s
eating soup and drinking water, dad is still on the vent fighting
the fight #COVID19

Awareness - U.S. Citizens that are NOT showing #COVID19 symptoms
are PLEADING to be let off cruise ship that has #Coronavirus
infected passengers on it. I Wonder if these same passengers
spoke up when all those images of Mothers &amp; Kids being
seperated &amp;

Tweets that are classified as Awareness is beneficial to re-
searchers when not wanting to look at information regarding
users actually becoming infected with the virus. These topics
can include perception of masks, rumors of vaccines, etc.

- #COVID19 is such a public health threat because the virus
can be transmitted by individuals who are infected, but are not
showing symptoms.

Infection - I’m absolutely broken! This morning I found out my bio
mom (who lives in the UK) is infected; also has pneumonia.
Her medical team has said to “prepare for worst case scenario.”
Well, here we are! She’s going to die alone with her entire
family in another country. F YOU #COVID19

When using Social Media for public health surveillance and
contract tracing. Having a classifier that can accurately classify
tweets as a positive case can be extremely beneficial in discov-
ering hotspots for the virus as well as other people they may
have came in contact with

- So my 80yo old dad tested positive. He is now on a ventilator.
I need all your prayers that he pulls through this. #Covid19
#CoronaVirus

Vaccine - @siggyflicker I understand that, but unless the clinical studies
are throughly completed (hopefully sped up), we have to con-
tinue to be cautious - even then, unfortunately it’s still not a vac-
cine that will prevent the contraction and spread of #COVID19

Tweets aimed around the topic of Vaccines has present and
future applications. In the present it allows researchers to inves-
tigate misinformation and/or the public perception of vaccines.
In future research we can further classify these tweets into Intent
to Receive or Already has Received a vaccine.

- I’m tired of hearing all the scary stuff about the virus. The
news needs to include what strides we are making in treatments,
a vaccine, or even a cure. #COVID-19 #coronavirus #Coron-
avirusUSA

Table 1: Example COVID-19 Tweets from the Coronavirus Tweets Dataset (Lamsal, 2020). Also provided in the
table is a brief explanation of why the specific category is important to understanding multiple aspects of COVID-
19. These categories allow researchers to study the virus at a more granular level.

supervised classification. The main contribution of
this paper is three-fold:

• We propose a self-supervised learning algo-
rithm to monitor COVID-19 Twitter using an
autoencoder to learn the latent representations
and then transfer the knowledge to COVID-19
Infection classifier by fine-tuning the Multi-
Layer Perceptron (MLP) using few shot learn-
ing.

• We evaluate the utility of Twitter data for
COVID-19 surveillance by training the model
to classify tweets into 4 different categories,
related to COVID-19, COVID-19 Infection,
COVID-19 Self/Others Infection, and COVID-
19 Vaccine.

• Lastly but not least, we transfer a pre-trained
influenza MLP classifier to fine-tune the accu-
racy of the self-supervised model.

2 Methodology

In this section, we explain the set-up of our study
and motivate the core components of the proposed
COVID-19 self-supervised learning with less la-
beled COVID-19 data. We begin with the intro-
duction of our three datasets and data annotation
strategy in Section 2.1 and follow by describing the
core components of our self-supervised learning, as
shown in Figure 1. We first learn how to generate
the latent representation of unlabeled COVID-19
tweets using self-supervised Convolutional Autoen-
coder model in Section 2.2. Subsequently, design
our COVID-19 supervised downstream task with
a pre-trained Influnza classification, due to symp-
tom similarities, and fine-tuning of the model using
COVID-19 Few shot learning in Section 2.3 and
2.4. We finally present our results and evaluation
metrics in Section 3 followed by discussion and
conclusion in Section 4.
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Figure 1: The proposed pipeline of self-supervised learning for COVID-19. The COVID-
19 latent features are learned through the Autoencoder Convolution network to solve a pre-
defined pretext objective. After self-supervised pretext training finished, the learned latent
variables serve as a pre-trained model and are transferred to the downstream tasks by fine-
tuning the Multi-Layer Perceptron(MLP) using few shot learning models after transferring
knowledge learned from Influenza labeled dataset. The performance on the downstream
objective is used to evaluate the quality of the learned features.

2.1 Datasets and Data Annotation

We make use of three datasets: Coronavirus (Lam-
sal, 2020) for self-supervised pre-task learning us-
ing Convolution Autoencoder, FluTrack (Lamb
et al., 2013), and FluVacc (Huang et al., 2017) for
training the influenza classifiers.

In order to use few-shot learning, an annotated
COVID-19 dataset must be used to fine tune the
overall model. The dataset collect by Lamsal et
al (Lamsal, 2020) provides us with a large amount
of data for analysis and predictions. To obtain
accurate annotations for this dataset, all tweets are
shuffled and randomly sampled 25 times with a
size of 100 tweets. Each sample is then distributed
to 3 different annotators. Each annotator is asked to
answer 5 questions about the tweet corresponding
to the 5 categories we hope to classify. Only tweets
where at least 2 annotators agree on the label are
used for training and testing.

The previous work done by Lamb et al. and
Huang et al. provided annotated datasets that allow
us to implement supervised deep learning models.
The FluTrack dataset provides 3 different classifi-
cation labels: is the tweet related to the influenza
or not, is the tweet talking about awareness or in-
fection of the flu, and finally is the tweet about the
user or about someone else. The FluVacc dataset
also has 3 classification labels: is the tweet about
the vaccine or not, does the tweet contain intent to

get the vaccine or not, and lastly is the tweet have
information saying the user already received the
vaccination or not.

2.2 Convolutional Autoencoder
Most of the self-supervised techniques for latent
text representation rely on Transformer architec-
tures that predict the next token. In this study, we
generate Coronavirus (Lam-sal, 2020) latent text
representation by utilizing Convolutional Autoen-
coder. Autoencoders are a special category of deep
neural networks that are deliberately programmed
to make output as close as possible to input. Instead
of training to predict y given input x, the network
will be trained in an unsupervised approach to repli-
cate its own input x. The autoencoder, in figure 1, is
composed of 2 parts, the encoder and decoder. The
job of the encoder is to compress the data into the
latent space and the decoder takes the latent space
as its input and attempts to reconstruct the original
input. To simplify the autoencoder, we define it as
a composite function, Equation 1, with the encoder
E and decoder D with a loss function defined to
minimize the difference between the input, X , and
the output, X̄ .

min (X̄ −X) = D(E(X)) (1)

Once an autoencoder is trained for Coronavirus
dataset, the latent variable z can be used to ex-
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tract important features for COVID-19 tweets. As
shown in figure 1, both the encoder and decoder
are convolutional neural networks. We pass the
vectorized tweet through a word embedding, the
word embedding layer converts every word of the
tweet into an n-dimensional vector. This converts
the input dimensions into 2-D that can be fed to the
Convolutional Autoencoders for our task.

Hadifar et al. (Hadifar et al., 2019) also uses an
Autoencoder in order to help classify text. They
also use the Autoencoder to pre-train the encoder,
but instead of classifying text, they use KNN for
clustering similar text with the learned latent space.
Their claims support the use of Autoencoders to
achieve a deeper understanding of short texts such
as tweets.

The word embedding used in our research was
the GloVe 50d trained on 6 billion words from
Wikipedia(Pennington et al., 2014) with a max
tweet length of being 50 words. The max length
of the tweet was decided by calculating 2 standard
deviation greater than the mean allowing more than
95% of the tweets to not be altered in size. And
tweets that are less than 50 words are post padded
with 0’s, representing no word being present.

The next step in the encoder consists of three dif-
ferent 1 dimensional convolutions with kernel sizes
of 2,3 and 4. These three operations are grouped
together in Table 2. This allows the encoder to
learn 2,3 and 4 word relationships which is impor-
tant in encoding meaning and semantics into the
latent space. The outputs from each of the 3 con-
volutional layers are passed through an activation
function (ReLU) and concatenated together. One
more convolutional layer is used as well as a ReLU
layer before flattening the output. The output of the
flattened layer is the latent space which is half the
size of the original input. The encoder ends at the
Flatten layer in Table 2 and thus start the process
of the decoder.

The output (latent space) of the encoder is then
used as the input to the decoder. Similar operations
are performed in order to reverse the operations and
reconstruct the original vector/tweet. If the decoder
can accurately reconstruct the original input than
the latent space has learned and encoded the right
information in a compressed format.

The decoder begins with the latent space being
reshaped into a 2 dimensional vector. A convolu-
tion of 2,3,4 are performed on the latent space. The
outputs are passed through the ReLU activation and

Auto Encoder
Layer (type) Output Shape Param #
Input Layer (None, 50) 0

Embedding Layet (None, 50, 50) 750050

Conv1D (bigrams) (None, 50, 16) 1616
Conv1D (trigrams) (None, 50, 16) 2416
Conv1D (4-grams (None, 50, 16) 3216

Concatenate (None, 50, 48) 0

Conv1D (None, 50, 25) 3625

Flatten (None, 1250) 0

Reshape (None, 50, 25) 0

Conv1D (bigrams) (None, 50, 16) 816
Conv1D (trigrams) (None, 50, 16) 1216
Conv1D (4-grams (None, 50, 16) 1616

Concatenate (None, 50, 48) 0

Conv1D (None, 50, 32) 4640

Conv1D (None, 50, 15000) 1455000

Softmax

Table 2: The architecture, output shapes, and number
of trainable parameters for the Auto Encoder.

concatenated in the same manner as the encoder.
Where the decoder differs from the encoder is the
final layer. The output of the final convolutional
layer is passed through the softmax activation func-
tion. By minimizing the difference between the
input vector and reconstructed vector we achieve
our goal of generating Tweet latent representation.
Once the Autoencoder is trained on Cornonavirus
data,the decoder can be removed from the network,
leaving the encoder and latent space to be used as
its own model.

2.3 Influenza Classification

Once a second Autoencoder on influenza data has
been trained, the decoder can be removed from
the network, leaving the encoder and latent space
to be used as its own model. Then the influenza
tweet X is passed through the trained encoder Wi

and latent space. A Multi-Layer Perceptron, MLPi,
is appended to the latent space and is trained with
supervision to predict the correct label Y . In Figure
1, this can be seen on the lower section of the image.
A description of each label is discussed in detail in
Section 2.1. The encoder Wi and Influenza latent
space weights Zi are frozen during training in order
for the MLP to learn as much as possible from the
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influenza tweets for each category. The accuracy
of the influenza classifier is discuss in Section 3.4
as well as Table 3.

2.4 Few-Shot Classification

A large influence for our research comes from Bow-
man et al. (Bowman et al., 2015). Bowman et al.
takes the parameters of a model that was trained
on one dataset and trains a new model using a por-
tion of the new dataset. Bowman et al. suggests
that by introducing a corpus that is high quality, it
can be used to transfer knowledge and learn sen-
tence meanings that can improve downstream text
classification tasks.

At this point we have 2 trained models, the au-
toencoder for COVID-19 tweets and the influenza
tweet classifier for the 6 categories. We want to
use as much knowledge learned in the COVID-19
latent representation and Influenza MLP layer to ac-
curately predict on COVID-19 classification tasks,
with limited COVID-19 labeled data. We accom-
plish this task with few-shot learning with a warm
start. This is a similar methodology to Dirkson et
al. (Dirkson and Verberne, 2019). They use the
ULMfit to transfer knowledge between health and
twitter data (Howard and Ruder, 2018). Where we
differ from the ULMfit learning is we completely
freeze the encoders parameters and only allow the
MLP to be trained.

The same process used for the influenza clas-
sifier is used for the COVID-19 classifier. The
encoder We and latent variable z are frozen and
the decoder is removed. MLPi,c is appended to
z and used to classify COVID-19 tweets. If this
model were trained from a cold start, the weights
of MLPi,c would be randomly assigned during the
first epoch of training and adjusted from there. This
prevents any classification knowledge being trans-
ferred from the influenza to the COVID-19 tweets.
Instead, the weights of MLPi are used to initialize
the weights of MLPi,c. This warm start training
allows the model to use knowledge from the the in-
fluenza training. We can then train the model with
the few labeled COVID-19 tweets and fine tune the
model for the downstream task of classifying all
COVID-19 tweets.

3 Results

In table 3, the accuracy of the influenza, COVID-
19 trained on a cold start, and COVID-19 trained
with the weights initialized with the influenza MLP

(COVID*) are given for each of the 4 tasks. The
task of Received and Intent are removed from the
COVID-19 classifiers since there are no vaccines
currently available for the virus.

Accuracy
Categories Influenza COVID COVID*

Related .82/.76 .96/.83 .91/.86
Aware. vs Infect. .85/.70 .97/.70 .98/.73
Self vs Other .79/.70 .98/.81 .96/.86
Vaccine .98/.97 .96/.80 .97/.72
Intent .94/.82 N/A N/A
Received .91/.80 N/A N/A

Table 3: Results for Influenza and COVID-19 Classi-
fiers. Accuracies reported are in the format of (Train
Acc./Test Acc. COVID column is the results from train-
ing the MLP from scratch (cold start), while COVID*
is the results from training the MLP by initializing the
MLP with the influenza classifier weights.

Precision, Recall, F1
Categories COVID COVID*

Related .71/.70/.71 .69/.77/.73
Aware. vs Infect. .69/.68/.68 .73/.72/.73
Self vs Other .81/.76/.77 .86/.87/.86
Vaccine .77/.73/74 .67/.65/.66

Table 4: Macro Precision, Recall, and F1 for COVID-
19 Classifiers. Statistics are reported in the format of
P/R/F1. COVID column is the results from training the
MLP from scratch (cold start), while COVID* is the
results from training the MLP by initializing the MLP
with the influenza classifier weights.

3.1 Related
For classifying tweets into COVID-19 Related and
COVID-19 Non-Related, we took a sub sample
COVID-19 Tweets and a sub sample of influenza
related tweets and combined them into one dataset.
We trained the classifier on 1000 influenza and 400
COVID-19 tweets but, tested on 4000 influenza
and 1400 COVID-19 tweets. A training accuracy
of 91% and testing accuracy of 86% were achieved
as well as a precision score of 0.69, a recall score
of 0.77 and a F1 score of 0.73. The same train
and testing are done on the cold start model but
achieved a higher train but lower test accuracy with
a precision score 0.71, recall score 0.70 and a F1
score of 0.71. The COVID-19 MLP initialized with
the influenza MLP outperforms the the cold start
on 3 out of the 5 statistics including a 3% increase
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on test accuracy.

3.2 Awareness Vs Infection
Awareness vs Infection can be seen as a binary clas-
sification problem. We classified each COVID-19
into 2 more subcategories, is the twitter user aware
of the virus or are they talking about themselves
or others being infected. We trained the classifier
with 250 awareness and 250 infection tweets and
tested on 450 tweets in each category. An accuracy
of 98% on the train set and 73% on the test set
were achieved as well as a precision score 0.73, a
recall score of 0.72 and a F1 score 0.73. The same
training and testing were carried our on the cold
start model but achieved a lower training and lower
testing accuracy with a precision score 0.69, recall
score 0.68 and an F1 score of 0.68. The COVID-19
MLP initialized with the influenza MLP outper-
forms the the cold start on all accuracy statistics
including a 3% increase on test accuracy.

3.3 Self Vs Other
In self vs other, we try and classify the infection
tweets into further categories. We would like to
clarify whether the post is about the author, or if the
author is concerned about the COVID-19 infection
of others. We trained the classifier on 55 tweets la-
beled ”Other” and 20 tweets labeled as ”Self”. The
test set consisted of 45 tweets labeled ”Other” and
30 tweets labeled ”Self”. An accuracy of 98% on
the train set and 86% on the test set were achieved
as well as a precision score of 0.86, a recall score of
0.87, and a F1 score of 0.86. The same training and
testing were carried our on the cold start model but
achieved a lower training and lower testing accu-
racy with a precision score 0.81, recall score 0.76
and a F1 score of 0.77. The COVID-19 MLP ini-
tialized with the influenza MLP outperforms the
the cold start on 4 out of the 5 statistics including a
5% increase on test accuracy.

3.4 Vaccine
The last category was Vaccine related tweets. We
would like to clarify whether the post is about vac-
cine or cure, or whether it is about certain facets of
the virus. The train set had 65 non vaccine related
tweets and 35 vaccine related tweets. The test set
had 60 non vaccine and 35 vaccine tweets. An ac-
curacy of 97% for train and 72% on the test as well
as a precision score of 0.67, a recall score of 0.65,
and a F1 score of .66. The same train and testing
are done on the cold start model but achieved a

lower train but higher test accuracy with a preci-
sion score 0.77, recall score 0.73 and a F1 score
of 0.74. The COVID-19 MLP initialized with the
influenza MLP was outperformed by the cold start
on 4 out of the 5 statistics including a 8% decrease
on test accuracy.

4 Discussion and Conclusion

Diving further into the data and investigating how
the classifiers could be improved, the first step
would be to improve the quality of the tweets labels.
Several tweets in the related category had misla-
beled gold labels. For example, ”@berniesanders
thank you so very much @berniesanders for giving
us hope as a nation for and end to this joke of a
presidency thank you for all the fund raising and
support that you have done for our country in the
age of covid19 and good sir” was given the gold
label of not related to covid when the model pre-
dicted it was. The overall theme was presidential
candidate Bernie Sanders, but it was still related
to COVID-19. Another example, ”tell congress
to put people first, demand paid sick leave for our
most vulnerable workers covid-19”. This tweet
should be labeled awareness but was given the gold
label of infected. This tweet should be labeled
as ”Awareness” but was given the gold label of
”Infected”. With more time to weed out accurate
labels and provide higher quality data to the clas-
sifier would increase overall accuracy across the
board. In future research we aim to use services
like Amazon Mechanical Turk to label more data
for us.

Our self-supervised methodology for classifying
COVID-19 tweets with fewer labeled data has been
developed to overcome the challenges of labeling
massive COVID-19 Tweet data. At the time of
this research, labeled COVID-19 datasets for super-
vised learning were not readily available. That be-
ing said, to achieve maximal results, providing the
deep learning models with large amounts of high
quality annotations for learning would be ideal.
Nevertheless, with unlabeled data available and
small amount of annotated tweets, our research
demonstrates that we can transfer knowledge from
unsupervised latent representation and high quality
datasets to similar domain classifiers using self-
supervision and few shot learning.

Lastly, our original hypothesis of influenza
tweets and COVID-19 tweets being extremely
close in context was not entirely true. While
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COVID-19 and Influenza tweets have a lot of simi-
larities there also exists differences in the themes
of the tweets. Twitter users tend to flood their
timelines with posts and re-posts of the politics, ru-
mors, misinformation and news related to COVID-
19 rather than symptoms and infections.

Looking at the results for each category, leverag-
ing the COVID-19 self-supervised pretext training
to produce COVID-19 latent representations from
unlabeled data for supervise downstream COVID-
19 classifier shows promising results. Although
the test accuracy of classifier can still be improved,
the warm start of COVID-19 outperforms the cold
start model on 3 out of 4 tasks in terms of the ex-
pected accuracy , precision , recall and f1. With
this experiment we show that using high quality an-
notated data in a similar domain, can be used with
self-supervision and few shot learning to train clas-
sifiers on data where labels are limited. Rather than
starting from scratch we can initialize the weights
on the MLP with the knowledge learned during su-
pervised training. We believe that the architecture
and methodology provided in this research show
that using self supervision and few-shot learning
can overcome some of the challenges of data with
limited annotations. Using the proposed model to
label tweets can assist future researchers to inves-
tigate COVID-19 tweets at a more granular level.
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