
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Learning What Matters First: Sequential Adaptation of Time Series Foundation
Models for Robust Financial Forecasting

Anonymous Authors1

Abstract
Foundation models like TimesFM hold strong
promise for financial forecasting, yet adapting
them to noisy, low-resource domains such as eq-
uities remains a challenge. Through fine-tuning
on S&P100 price data, we observe a trade-off be-
tween in-domain performance and generalization
to unseen stocks. To better understand this be-
havior, we analyze layer-wise weight dynamics
and find that early components contribute more
consistently to adaptation, while later layers ex-
hibit noisier and less effective updates. Guided
by these findings, we propose a sequential fine-
tuning strategy that updates one layer at a time,
following an order determined by each layer’s
contribution to the overall adaptation trajectory as
measured by both direction and magnitude. This
targeted approach improves generalization to un-
seen financial data while reducing the number of
trainable parameters at each stage.

1. Introduction
Foundation models have demonstrated impressive perfor-
mance across domains such as language, vision, and, more
recently, time series forecasting(Min et al., 2024). Among
them, TimesFM (Cao et al., 2024) is a decoder-only trans-
former pretrained on a large corpus of real and synthetic
time series, designed to support general-purpose forecasting
across diverse domains.

However, their behavior when adapted to complex envi-
ronments like financial markets remains poorly understood.
Financial time series often exhibit irregular dynamics, dis-
tributional shifts, and limited supervision, making direct
adaptation challenging.

In such settings, it becomes crucial to move beyond black-
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box fine-tuning and ask: how does the model actually adapt
internally? Which components are driving learning, and
which may introduce instability? A deeper understanding of
layer-wise adaptation is necessary to improve both efficiency
and robustness

In this work, we explore the internal adaptation dynamics
of TimesFM during fine-tuning on equity market data. For
each model component, we measure how strongly its weight
updates contribute toward the final adapted solution, cap-
turing both the direction and scale of progress. We find
that early layers tend to make more coherent and decisive
contributions, while deeper layers produce smaller or more
erratic changes.

Motivated by this, we introduce a sequential fine-tuning
strategy that updates one layer at a time based on its con-
tribution to the adaptation process. This method reduces
unnecessary parameter drift, improves generalization to un-
seen stocks, and enables efficient learning in data-scarce
financial settings

2. Related Work
2.1. Time Series Foundation Models

Recent time series foundation models such as
Chronos(Ansari et al., 2024), Lag-Llama (Rasul et al.,
2024), MOIRAI(Woo et al., 2024), and TimeGPT(Garza
et al., 2023) introduce architectural innovations like
memory-augmented attention and probabilistic decoding.
However, they are often trained on broad time series
corpora with limited exposure to real financial dynam-
ics(Zeng et al., 2023; Fan & Shen, 2024; Cao et al.,
2024). Adapting them to domains like equity markets,
which are noisy, non-stationary, and data-scarce requires
methods that balance generalization and stability while
remaining computationally efficient. As these models grow
larger, fine-tuning must avoid overfitting and excessive
resource demands(Jia et al., 2024). This calls for a more
transparent understanding of what changes internally during
adaptation and how each layer contributes to learning under
distribution shift.
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2.2. Fine-Tuning and Generalization in Time Series
Models

In adapting foundation models to domains like finance, char-
acterized by limited data and distributional volatility full
fine-tuning is not only prone to overfitting but also com-
putationally expensive. This has motivated growing inter-
est in parameter-efficient tuning (PEFT) methods such as
LoRA(Hu et al., 2022), BitFit(Ben Zaken et al., 2022), and
LayerNorm(Qi et al., 2022) tuning, which aim to reduce cost
by updating only a small subset of weights. However, these
techniques remain underexplored in time series contexts.
In this work, we systematically evaluate their effectiveness
and find that, while they may perform well in-domain, they
often fail to generalize out-of-domain.

2.3. Layer-Wise Adaptation and Learning Dynamics

Recent work in vision and language modeling has shown
that different layers in deep networks contribute unequally
during adaptation: early layers tend to capture general pat-
terns, while deeper layers are more task-specific (Han et al.,
2019). Tracking weight changes across training has proven
useful for understanding such dynamics (Agrawal et al.,
2021), yet similar analysis remains scarce in time series
foundation models. Our work extends this direction by
studying layer-wise weight updates in TimesFM and using
the results to design a more efficient fine-tuning strategy.

A widely used heuristic in transfer learning is Gradual Un-
freezing (GU), which incrementally unfreezes layers from
output to input with decaying learning rates (Howard &
Ruder, 2018). GU assumes deeper layers should adapt ear-
lier, but this assumption may not hold in time series models.
Moreover, GU incurs two key drawbacks: (1) the num-
ber of trainable parameters grows cumulatively, leading to
computational cost similar to full fine-tuning, and (2) this
cumulative update process increases the risk of overfitting in
low-resource domains. Motivated by these limitations, we
analyze actual learning dynamics and propose a layer-wise
fine-tuning strategy that updates one component at a time
in a fixed, data-driven order, reducing both overfitting and
training cost.

3. Layer-Wise Adaptation Analysis
To inform our fine-tuning strategy, we begin with an em-
pirical analysis of how different components in TimesFM
adapt during training. The model is first fully fine-tuned on
financial data using pretrained weights as initialization. We
apply early stopping with a patience of 5 epochs and select
the checkpoint with the lowest validation loss as the target
model.

For each parameter group ℓ (frequency embedding, input
projection, transformer blocks, horizon projection), we de-

Table 1. Mean Normalized Tuning Progress (NTP) for each model
component, averaged over the initial epochs leading up to the
target. Higher values indicate more consistent contribution toward
the target.

MODULE MEAN NTP

FREQUENCY EMBEDDING 0.356
INPUT PROJECTION 0.261
TRANSFORMER STACK 0.253
HORIZON PROJECTION 0.248

fine the global adaptation vector (GAV):

GAVℓ = θℓT − θℓ0

where θ0 and θT denote the model’s parameters before and
after fine-tuning, respectively. At each epoch t, we compute
the update:

∆ℓ
t = θℓt − θℓt−1

To quantify the quality of each update, we compute the
Normalized Tuning Progress (NTP):

NTPℓ
t =

∆ℓ
t ·GAVℓ

∥GAVℓ∥2

where “·” denotes the dot product. This metric captures how
effectively each update advances the weights toward their
target configuration.

Table 1 reports the mean NTP for each module, aver-
aged over the initial epochs leading up to the target check-
point. The frequency embedding and input projection layers
achieve the highest scores (0.356 and 0.261, respectively),
indicating that they contribute most consistently during the
early stages of adaptation. In contrast, the transformer stack
and horizon projection yield lower values (0.253 and 0.248),
suggesting a weaker role in guiding the model toward the
target configuration.

To further understand the dynamics of learning over the
course of training, we analyze how NTP values evolve be-
fore and after the target epoch, defined as the checkpoint
with the lowest validation loss, selected via early stop-
ping. This distinction enables us to separately examine
the model’s behavior as it moves toward the target versus
after the optimal point has already been reached.

NTP quantifies the projection of the parameter update vector
at each epoch, ∆ℓ

t , onto the global adaptation vector GAVℓ.
In other words, it measures how much of the change made
at epoch t lies in the direction of the full trajectory from
initialization to the target. This projection captures both
direction and magnitude, providing insight into whether
an update meaningfully contributes to learning or merely
introduces noise.
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In the pre-target phase, higher NTP values are beneficial.
They indicate that updates are well-aligned with the intended
adaptation trajectory, effectively steering the model toward
the optimal configuration.

In the post-target phase, the model has already achieved
its best validation state. From this point onward, continued
updates can become counterproductive. High NTP values in
this phase no longer reflect useful progress, but rather indi-
cate overshooting the target and pushing the model beyond
the optimal solution. This behavior corresponds with rising
validation loss and reduced generalization.

Figure 1 offers a complementary view to the scalar summary
in Table 1, revealing the temporal dynamics of layer-wise
adaptation throughout training. In the pre-target phase ,
the frequency embedding and input projection layers domi-
nate the normalized tuning progress, reflecting their central
role in guiding the model toward the optimal configura-
tion. In contrast, in the post-target phase , we observe a
clear shift: contributions from deeper layers, particularly the
transformer stack and horizon projection, increase markedly.
This shift coincides with a rising validation loss, indicating
that these layers are responsible for overfitting. The figure
reinforces our key insight: early layers drive meaningful
progress toward generalization, while updates beyond the
target can degrade performance by fitting to noise rather
than signal

4. Methodology
Building on our analysis of layer-wise weight dynamics,
we propose a sequential fine-tuning strategy that updates
one layer at a time, enabling efficient and robust model
adaptation.

4.1. Forecasting Task

Let x1, x2, . . . , xT be a univariate financial time series. The
task is next-step forecasting: given a context window Xt =
(xt−63, . . . , xt) of length 64, the model predicts xt+1. The
forecasting function is parameterized as fθ, yielding:

x̂t+1 = fθ(Xt)

4.2. TimesFM Architecture Overview

TimesFM is a decoder-only transformer model pretrained
on a large corpus of real and synthetic time series. Its
architecture includes four primary modules:

• Frequency embedding layer: encodes periodic and
temporal structure.

• Input projection layer: transforms raw input patches
into a latent space.

• Transformer stack: 20 layers of causal self-attention
and feedforward sublayers for temporal modeling.

• Horizon projection layer: a final linear layer mapping
internal representations to the predicted value.

4.3. Sequential Fine-Tuning Strategy

Based on our NTP analysis, we propose a progressive fine-
tuning strategy that adapts model components one at a time,
in a fixed order determined by their empirical contribution
to adaptation. This ordering is derived from the NTP and is
denoted by:

O = [Lfreq emb,Linput,LT1, . . . ,LT20,Lhorizon]

where Lfreq emb and Linput denote the frequency embedding
and input projection layers, LTi refers to the i-th trans-
former block, and Lhorizon is the final horizon projection
layer.

At each stage k, we optimize the model by updating only
the parameters Ok while freezing all others:

Θ(k) =
{
O∗

1 , . . . ,O∗
k−1,Ok,O0

k+1, . . . ,O0
n

}
Here, O∗

j indicates the frozen parameters from components
that have already been fine-tuned, O0

j represents the un-
touched pretrained parameters of components that are yet to
be updated, and only Ok remains trainable at step k.

Training continues on Ok while the validation loss improves
over the best value observed so far across all previous steps.
If the validation loss fails to improve for a fixed number of
epochs (patience = 5), optimization for Ok stops and the
process moves to Ok+1.

This formulation ensures that each component is fine-tuned
only when it yields a measurable improvement in generaliza-
tion, avoids unnecessary updates to components with lower
impact, and maintains the compactness and robustness of
the adapted model throughout the process.

5. Experiment Setup
We conduct experiments using daily closing prices for equi-
ties in the SP100 and SP500, retrieved from Yahoo Finance.
The task is framed as one-step-ahead forecasting, where the
model predicts the next value given a context window of 64
historical observations. Data is partitioned chronologically:
2000–2021 is used for training, 2022 for validation, and
2023–2024 for testing. All training and model selection are
performed exclusively on SP100 stocks, with mean squared
error used as the loss function during both optimization and
early stopping.

To evaluate out-of-domain (OOD) generalization, we con-
struct a disjoint set of 100 stocks randomly sampled from the

3
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Figure 1. Normalized Tuning Progress (NTP) contribution of each
model component across training epochs. Percentages are stacked
and sum to 100% per epoch.

SP500 (excluding the SP100). These stocks are used solely
for testing over the 2023–2024 window and remain unseen
during training and validation. Model performance is re-
ported as MSE, averaged across all stocks within each split.
To ensure robustness, all experiments are repeated with five
different random seeds, and final results are computed as
the mean across runs.

6. Results and Discussion
We evaluate the effectiveness of our layer-wise sequential
fine-tuning strategy for adapting the TimesFM foundation
model to financial forecasting tasks. Experiments are con-
ducted in both in-domain (ID) and out-of-domain (OOD) set-
tings using daily price data from the S&P100 and S&P500,
respectively. Performance is reported in terms of mean
squared error, averaged across all stocks in each split and
over five random seeds for robustness.

6.1. Compared Fine-Tuning Strategies

We compare our method against several established fine-
tuning strategies applied to the TimesFM model. These
include Low-Rank Adaptation (LoRA), which incorporates
trainable low-rank matrices into the attention layers and is
evaluated at rank 8; Bias Tuning (BitFit), where only the
bias parameters across all layers are updated; and Layer-
Norm Tuning, which restricts learning to the scale and shift
parameters of the normalization layers. We also consider
Residual-Only Tuning, which updates solely the input and
output feedforward modules while keeping the transformer
stack frozen. Lastly, we include Gradual Unfreezing (GU)
(Howard & Ruder, 2018), a technique where layers are se-
quentially unfrozen from output to input, accompanied by
aggressive learning rate decay.

Table 2. Mean Squared Error for each fine-tuning strategy on in-
domain and out-of-domain. Lower is better.

METHOD ID OOD

OURS 31.98 20.67
INPUT-FIRST GRADUAL UNFREEZING 32.48 20.74
FULL FINE-TUNING 32.83 20.79
LORA (RANK 8) 31.68 20.97
RESIDUAL-ONLY 33.04 21.02
BITFIT 32.67 21.04
LAYERNORM TUNING 32.58 21.05
GRADUAL UNFREEZING 35.27 22.08
ZERO-SHOT 39.76 24.12

6.2. Revisiting Gradual Unfreezing

We empirically evaluate Gradual Unfreezing (GU) by com-
paring its original top-down schedule, which unfreezes lay-
ers from output to input, with a reversed variant called Input-
First Gradual Unfreezing(IF-GU) that starts from early
components such as the frequency embedding and input
projection layers.

The results show that IF-GU generalizes better than the
standard version, consistent with our earlier analysis that
early layers play a more critical role in adaptation for finan-
cial time series. However, both variants suffer from high
computational cost due to cumulative updates and remain
vulnerable to overfitting. In contrast, our proposed method
fine-tunes one layer at a time based on its measured contri-
bution, achieving better out-of-domain performance with
fewer trainable parameters.

6.3. In-Domain and Out-of-Domain Evaluation

On the in-domain task, LoRA achieves the strongest per-
formance, as shown in Table 2, reflecting strong alignment
with the training distribution. However, its generalization
degrades in the out-of-domain setting, suggesting signs of
overfitting. Our sequential method is closely behind in-
domain, yet clearly outperforms LoRA and full fine-tuning
out-of-domain. Standard Gradual Unfreezing performs the
worst, while Input-First Gradual Unfreezing yields a sub-
stantial improvement. These results highlight the impor-
tance of tuning order, showing that early layers contribute
more to generalization than deeper ones.

7. Conclusion and Future Work
Our results highlight that analyzing weight dynamics en-
ables more efficient and generalizable adaptation of time
series foundation models through layer-wise fine-tuning.
Future work will explore applying this method to other time
series foundation models and incorporate more adaptive
update rules and weight change metrics.
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