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Abstract

Graph Neural Networks (GNNs) have demon-
strated remarkable utility across diverse applica-
tions, and their growing complexity has made
Machine Learning as a Service (MLaaS) a vi-
able platform for scalable deployment. How-
ever, this accessibility also exposes GNN to se-
rious security threats, most notably model ex-
traction attacks (MEAs), in which adversaries
strategically query a deployed model to construct
a high-fidelity replica. In this work, we eval-
uate the vulnerability of GNNs to MEAs and
explore their potential for cost-effective model
acquisition in non-adversarial research settings.
Importantly, adaptive node querying strategies
can also serve a critical role in research, partic-
ularly when labeling data is expensive or time-
consuming. By selectively sampling informa-
tive nodes, researchers can train high-performing
GNNs with minimal supervision, which is partic-
ularly valuable in domains such as biomedicine,
where annotations often require expert input. To
address this, we propose a node querying strat-
egy tailored to a highly practical yet underex-
plored scenario, where bulk queries are prohibited,
and only a limited set of initial nodes is avail-
able. Our approach iteratively refines the node
selection mechanism over multiple learning cy-
cles, leveraging historical feedback to improve
extraction efficiency. Extensive experiments on
benchmark graph datasets demonstrate our supe-
riority over comparable baselines on accuracy,
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fidelity, and F1 score under strict query-size con-
straints. These results highlight both the suscepti-
bility of deployed GNNs to extraction attacks and
the promise of ethical, efficient GNN acquisition
methods to support low-resource research environ-
ments. Our implementation is publicly available
at https://github.com/LabRAI/CEGA.

1. Introduction
Graph Neural Networks (GNNs) have achieved remarkable
performance in a variety of applications powered by graph
learning, such as molecular graph structure analysis (Sun
et al., 2022; Wang et al., 2023; Zang et al., 2023; Zhao et al.,
2024), fraud detection (Qin et al., 2022; Cheng et al., 2024;
Motie & Raahemi, 2024; Lou et al., 2025), and healthcare
diagnostics (Ahmedt-Aristizabal et al., 2021; Lu & Uddin,
2021; Zafeiropoulos et al., 2023; Paul et al., 2024). How-
ever, as GNNs grow in complexity and computational de-
mands, training them from scratch becomes increasingly
prohibitive due to rising computational costs (Abbahaddou
et al., 2024; Kose et al., 2024). To address this, graph-based
Machine Learning as a Service (MLaaS) has emerged as a
cost-effective alternative, allowing users to access power-
ful pre-trained GNN models via APIs provided by service
providers (Liu et al., 2022; Wu et al., 2023a; 2024).

Nevertheless, despite the advantages of graph-based MLaaS,
such an inference paradigm also exposes GNN models to
serious security risks, with GNN-based model extraction
attacks (MEAs) posing a particularly significant threat (Wu
et al., 2023a; 2024). Specifically, the goal of a model ex-
traction attacker is to replicate the functionality of a GNN
model owned by the service provider (i.e., the target model)
by strategically querying it and using the responses to con-
struct a local replica (i.e., the extracted model) (Shen et al.,
2022; Wu et al., 2022). Such graph-based MEAs can lead
to severe consequences such as copyright violations and
patent infringement, especially in high-stake applications.
For example, in the pharmaceutical industry, GNNs are
widely used to predict molecular-level drug-target interac-
tions (DTIs) (Wieder et al., 2020; Zhang et al., 2022; Tran
et al., 2022). In this context, graph-based MLaaS provides
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pharmaceutical companies with a cost-effective and efficient
platform for conducting related studies (Ahmedt-Aristizabal
et al., 2021; Lu & Uddin, 2021; Vora et al., 2023). How-
ever, MEAs targeting such GNNs pose a serious risk to
proprietary data, threatening trade secrets and potentially
enabling unauthorized redistribution and unfair competition.
These concerns may ultimately result in substantial financial
and reputational damage (Bessen & Meurer, 2008; Nealey
et al., 2015; Armstrong, 2016). Consequently, appropriately
understanding and managing the threat of MEAs against
GNNs has become a pressing concern (Zhao et al., 2025).

Beyond malicious uses, the research-driven acquisition of
GNN functionality offers significant value, particularly for
tailoring models to specialized downstream applications. A
compelling example is the analysis of knowledge graphs
(KGs) constructed from electronic health records (EHRs),
where nodes represent clinical concepts—such as diagnoses,
medications, and procedures—and edges capture relation-
ships based on medical ontologies or empirical patterns of
co-occurrence (Wang et al., 2014; Hong et al., 2021). In
EHR-based KG research, deploying graph-based models
for specific inference tasks within local health systems is
often hampered by practical constraints, including the in-
completeness of local database, limitations on data sharing
across institutions, and heterogeneity in clinical practice pat-
terns and patient populations, which can significantly limit
model generalizability (Zhou et al., 2022; 2025). In such
settings, effectively extracting and acquiring a well-trained
target model developed on large-scale EHR data presents
a powerful alternative to the costly and often impractical
process of training from scratch using local EHR data (Lin
et al., 2023a; Gan et al., 2025). This strategy not only im-
proves computational efficiency but also enables advanced
applications such as non-linear statistical inference on clini-
cal knowledge graphs and ontology-informed learning for
downstream applications (Xu et al., 2023; Liu et al., 2024).

In response to the pressing need outlined above, it is es-
sential to systematically investigate strategies for extracting
and acquiring graph-based model functionality. On the one
hand, such efforts enable rigorous assessment of the severity
of MEA threats to MLaaS platforms and inform the develop-
ment of robust defense mechanisms (Zhang & Zitnik, 2020;
Mujkanovic et al., 2022; Ennadir et al., 2023; Dong et al.,
2024; Cheng et al., 2025). On the other hand, they also
support the efficiency and feasibility of research-oriented
GNN acquisition, as demonstrated in recent work on sur-
rogate learning and transfer-based GNN extraction (Huo
et al., 2023; Oloulade et al., 2023). However, despite the
urgency and potential impact of such research, designing
systematic strategies for extracting and acquiring GNN func-
tionality remains a non-trivial task. In particular, we face
two fundamental challenges:

(1) Stringent budget and query batch size constraints. First,
excessive querying incurs substantial computational and
financial costs under the pay-per-query basis, making large-
scale extraction on well-trained MLaaS models economi-
cally unfeasible (Hou et al., 2019; Gong et al., 2020; Wu
et al., 2023b). Second, querying in bulky batches risks vio-
lating MLaaS user agreements or triggering security alerts,
as many providers implement monitoring mechanisms to
identify and block potentially adversarial queries (Brundage
et al., 2018; Juuti et al., 2019).

(2) Structural dependency between nodes. First, nodes can
naturally exhibit various types of dependencies between
each other in real-world graphs, depending on what types
of semantics the edges encode (Zhou et al., 2020; Wu et al.,
2021). Second, these dependencies across a broad localized
area in the graph topology can collectively influence the
information that the extracted model can acquire (Ju et al.,
2024; Kahn et al., 2025).

Multiple research works have taken early steps to explore
model extraction against GNNs for node-level graph learn-
ing tasks (DeFazio & Ramesh, 2019; Shen et al., 2022; Wu
et al., 2022). However, these studies overlook the practi-
cal constraints on budget and batch size. More recently,
several research works attempted to handle query budget
limitations on MEAs (Shi et al., 2017; Liu et al., 2023;
Karmakar & Basu, 2023). However, these approaches can
hardly be generalized to graph learning tasks, as they often
overlook the fact that GNNs can embed deeper information
to the graph data during processing, even when certain fea-
tures are absent or filtered out from the input (Dong et al.,
2025). Therefore, the study of addressing the two practical
challenges above specifically tailored for node-level graph
learning tasks remains nascent.

To address the aforementioned challenges, we propose a
targeted approach for the extraction and acquisition of GNN
functionality, termed Cost-Efficient Graph Acquisition
(CEGA). Our framework is specifically designed to bal-
ance effectiveness and efficiency in acquiring GNNs under
realistic constraints. Without loss of generality, we focus
on GNNs performing node classification, one of the most
widely studied and fundamental tasks in node-level graph
learning. Specifically, to overcome the challenge of budget
and query batch size constraints, CEGA is designed to incor-
porate historical information from the initial and previous
queries, starting with a very limited number of queries, in
each of its iterations to improve its informativeness in node
selection. To overcome the challenge of structural depen-
dency between nodes, we prioritize nodes with high struc-
tural centrality to ensure queries can capture information
that aligns with the localized graph topology. Furthermore,
we introduce a diversity metric to prevent query cluster-
ing at the structural level and improve stability. Extensive
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empirical experiments on real-world benchmark datasets
demonstrated the superiority of the proposed CEGA frame-
work in extracting the target GNN models under realistic
query constraints, delivering key practical significance over
existing alternatives.

In summary, the contributions of this paper are three-fold:

• Novel Problem Formulation: We introduce the prob-
lem of GNN Model Extraction With Limited Budgets
specifically within the context of node-level graph learn-
ing tasks. This formulation offers a more realistic and
practical setting for GNN model extraction compared to
prior work in model extraction.

• Comprehensive Methodology Design: We present a
novel framework for GNN model extraction and acqui-
sition that dynamically identifies the most informative
queries throughout the training process. Our approach in-
tegrates guidance based on three complementary criteria:
representativeness, uncertainty, and diversity, enabling
efficient and effective query selection.

• Extensive Empirical Evaluation. We conduct com-
prehensive experiments on real-world graph datasets to
demonstrate the effectiveness of the proposed CEGA
framework. Evaluation metrics include both model faith-
fulness and downstream utility, showing CEGA’s superi-
ority over existing alternatives.

2. Preliminaries
Notations. Suppose that we have a GNN model fT trained
on the target graph GT =

{
VT, ET

}
, where ET denotes

the edges of GT. In the acquisition process, we assume
knowledge to a pool of candidate nodes for querying, de-
noted as Va, and a respective graph structure, denoted as
Ga. We consider an iterative node querying approach with Γ
learning cycles in total. We denote the initial query set as
V0, with budget I = |V0|. On the γth iterative cycle with
γ ∈ {1, 2, ...,Γ}, we use Vγ−1 to denote the collection of
nodes queried in previous cycles, where V0 ⊊ V1 ⊊ V2 ⊊
... ⊊ VΓ ⊊ Va. In this cycle, we query κ nodes from the can-
didate set Va\Vγ−1, with capacity nγ−1 =

∣∣Va\Vγ−1

∣∣. The
attributes of the nodes belonging to Va\Vγ−1 are denoted
as Xγ−1 =

{
x
(1)
γ−1,x

(2)
γ−1, ...,x

(nγ−1)
γ−1

}
, where each x

(j)
γ−1 is

an attribute vector with d-dimensions. For convenience, we
denote the respective attribute of some node v ∈ Va\Vγ−1

as x
(v)
γ−1. The respective outcome for node v in a model

f is denoted as ŷv = f(x(v),Ga) =
{
ŷ
(1)
v , ŷ

(2)
v , ..., ŷ

(C)
v

}
,

where ŷv is a probability vector of length C representing
the softmax scores for each class. Our notation system is
compatible with existing works in the context of MEAs
against GNNs, as highlighted by existing work such as (Wu
et al., 2022; Shen et al., 2022; Wu et al., 2023a).

Background. Existing research works have rarely discussed
GNN-based MEA contexts in real-world settings. In our
paper, we expect to gain practical significance by consid-
ering a realistic setup to extract GNNs. In our setting, we
pose upper limits on (1) the initial query budget I, (2) the
per-cycle query budget κ, and (3) the overall budget B. Our
setting is more realistic compared with existing ones that
rely on simultaneous high-volume queries since excessive
queries impose significant costs, and frequent large-scale
queries are likely to alert the maintainers of the target model.
We focus on node classification tasks, which are among the
most widely studied problems in node-level graph learning,
as previously investigated by (Dong et al., 2023; Luan et al.,
2023; Zhang et al., 2023; Li et al., 2024).

Goal of Acquisition. The researchers aim to extract a model
fa that closely replicates the behavior of target GNN model
fT using a limited number of queries constrained by an
initial query budget I, a per-cycle query budget κ, and
an overall query budget B. Here, the similarity in their
behavior is generally measured by the ratio of the same
input-output pairs.

We then formulate the problem of GNN Model Extraction
With Limited Budgets in Problem 1.

Problem 1. (GNN Model Extraction With Limited Bud-
gets). Given a target GNN model fT and available prior
knowledge {Xa,Ga}, the objective is to achieve an extracted
model fa with behaviors being as similar to fT as possible
for any given test node v ∈ VT, while adhering to the con-
straints of limited initial query budget I, per-cycle query
budget κ, and total query budget B.

3. Methodology
3.1. Overview

In this section, we introduce CEGA, an active sampling
framework designed to extract and acquire GNN behaviors
efficiently. CEGA employs a multilevel analysis strategy
that iteratively selects informative nodes by leveraging prior
heuristics derived from the initial query set V0 and the γ− 1
batches of previously queried nodes. these historical insights
are summarized by an interim model fγ−1, which guides
the selection process in iteration γ.

Specifically, CEGA is designed to conduct node selection by
incorporating three key objectives: (1) Representativeness:
The queried nodes should capture the structural essence of
the graph, facilitating an accurate reconstruction of model
behavior across the network. (2) Uncertainty: Nodes with
high uncertainty, as indicated by historical predictions, are
prioritized, as they likely reside near decision boundaries
of the interim prediction model fγ . (3) Diversity: To avoid
excessive clustering, selected nodes should be diverse in
their distribution across the graph, ensuring a comprehensive
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exploration of the underlying structure.

To achieve these goals, CEGA is equipped with three ob-
jectives, Lγ

1(v,Ga), Lγ
2(v,Ga), and Lγ

3(v,Ga), evaluating
the tendency of selecting a node v from the candidate set
Va\Vγ−1 in each querying cycle γ. Nodes are adaptively
ranked and selected based on their combined ranking across
these three criteria, ensuring an efficient and cost-effective
querying strategy.

3.2. The Proposed Framework of CEGA

The CEGA framework begins by building a primitive ini-
tial GNN-based prediction model f0 with I initial queried
nodes. In each learning cycle, CEGA selects κ nodes with
the highest comprehensive rank through an adaptive node se-
lection method based on the representativeness, uncertainty,
and diversity of the nodes. A new interim model fγ involv-
ing all nodes queried in the past and new nodes selected for
query in the same cycle is trained as a summarization of
existing historical information to guide further queries. We
perform such cycles iteratively until the budget limit B is
reached. Finally, we evaluate the performance of CEGA by
training GNN models with queried nodes.

Initialization. In CEGA, we randomly select I initial nodes
from the node pool for acquisition Va. A random selection
of initial nodes reduces systematic bias and ensures compa-
rability between CEGA and other approaches mentioned in
the existing literature (Cai et al., 2017; Zhang et al., 2021).

Graph Structure-Based Analysis for Representativeness.
To ensure that the queried nodes in each cycle are represen-
tative of the overall graph structure, we rank nodes based
on structural indices that capture their relative importance
within the network. Among such indices, we specifically in-
corporate PageRank (Page et al., 1999), where the objective
function Lγ

1 is given as

Lγ
1(v,Ga) =

1− ξ

N
+ ξ

∑
w∈in(v)

Lγ
1(w,Ga)

L(w)
. (1)

In (1), N =
∣∣Va

∣∣ represents the total number of nodes in the
extraction subgraph Ga, in(v) represents the collection of
nodes with edges pointing to node v, L(w) represents the
number of outbound edges from node w, and ξ represents a
damping factor typically set at 0.85. The evaluation of Lγ

1

is inherently recursive in computation, relying on iterative
processes to update the scores of the nodes given their neigh-
borhood until convergence. The rank of nodes according to
their representativeness in the γth cycle is denoted as Rγ

1 .

History-Based Analysis for Uncertainty. To evaluate the
uncertainty of nodes in an interim GNN model fγ−1 on
the classification task, we evaluate the entropy of the nodes
in the pool Va\Vγ−1 as their sensitivity against changes in
the attributes of its neighbors. In particular, we give the

objective function as

Lγ
2(v,Ga) = −

C∑
i=1

ŷ
(i)
v;γ−1 log(ŷ

(i)
v;γ−1). (2)

In (2), ŷ(i)v;γ−1 is the ith entry of ŷv;γ−1 = fγ−1(x
(v)
γ−1,Ga).

For downstream tasks that are less sensitive to time and
space complexity, we propose a theory-backed alternative
ranking mechanism that measures a node’s resilience in
maintaining its predicted label under moderate Gaussian
perturbation. In practice, we consider a series of pertur-
bation τ (j) i.i.d∼ N (0, ϵ2I) where I ∈ Rd×d is an identity
matrix, and obtain the perturbed version of the attributes
Xγ−1, denoted as

Tγ−1 =
{
x
(1)
γ−1+τ (1),x

(2)
γ−1+τ (2), ...,x

(nγ−1)
γ−1 +τ (nγ−1)

}
.

We repeat the perturbation S times and obtain the perturb
data T ℓ

γ−1 where ℓ ∈ [S]. For any node v, the respective

probability for T ℓ
γ−1 is denoted as ŷℓ

v;γ−1 = fγ−1(x
(v)
γ−1 +

τ
(v)
ℓ ,Ga), where ℓ ∈ [S]. The alternative objective function

Lγ
2;alt(v,Ga) is given as

Lγ
2;alt(v,Ga) =

S∑
ℓ=1

I{
argmax{ŷv;γ−1}=argmax{ŷℓ

v;γ−1}
},
(3)

where ŷv;γ−1 and ŷℓ
v;γ−1 are outputs of fγ−1, which takes

the subgraph Ga as an input. The rank of nodes based on
their uncertainty on the prediction of the interim model fγ−1

in the γth cycle of CEGA is denoted as Rγ
2 .

In Section 3.3, we provide theoretical insights into the time
and space complexity of CEGA to further justify its suitabil-
ity to measure uncertainty in node selection. Furthermore,
we present the theoretical guarantee for the existence of an
appropriate perturbation parameter ϵ involved in the alterna-
tive approach. The parameter ϵ is expected to be sufficiently
large to capture the sensitivity of the interim model’s predic-
tions while remaining small enough to preserve the stability
and effectiveness of the interim model.

Distance-Based Analysis for Diversity. Finally, we evalu-
ate the diversity of a node in the pool Va\Vγ−1 compared
to the queried nodes Vγ−1. To start, we apply the K-Means
algorithm for the embedding of queried nodes with K = C,
where C is the number of classes for the graph dataset.
We then compare the embeddings of the nodes belong to
Va\Vγ−1 with the clusters formed by the queried nodes to
determine whether they align with a category that is over-
represented in Vγ−1. To do this, we measure the distance
between some node v ∈ Va\Vγ−1 and the C centroids. We
assign node v to the class j ∈ {1, 2, ..., C} such that the
distance between its embedding Ev and the centroid Cj is
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minimized. Here, Ev is an output of the interim model fγ−1,
with the graph structure Ga serving as a necessary input. We
then establish the objective function Lγ

3(v,Ga) as

Lγ
3(v,Ga) = ρφ[0,1]

( 1

1 + δv

)
+(1−ρ)φ[0,1]

( 1

1 + |Qv|

)
.

(4)
Here δv is the minimal distance between the embedding Ev
for node v and centroids C1, C2, ..., CC , and we have

δv = min
c∈{1,2,...,C}

∥∥Ev − Cc
∥∥
2
.

On the other hand, Qv represents the collection of queried
nodes that belong to the same centroid Cc∗ as node v, where

c∗ = argmin
c∈{1,2,...,C}

∥∥Ev − Cc
∥∥
2
.

The number of nodes belong to Qv is denoted as |Qv|.
φ[0,1](·) represents the min-max scaling function. ρ is a
hyperparameter subject to tuning. The rationale behind the
setup of Lγ

3 is to guide the selection of nodes from Va\Vγ−1

that represent the embedding patterns of labels that are un-
derrepresented in the queried nodes. By using Lγ

3 , we rank
the nodes v ∈ Va\Vγ−1 in the order Rγ

3 .

Adaptive Node Selection Method. Once we obtain the
ranking of all candidate nodes according to the objective
functions Lγ

1 , Lγ
2 , and Lγ

3 , we compute a weighted average
ranking of the nodes in the three categories and query the
top-κ nodes VQ

γ based on this weighted average, as those
nodes are expected to guide further informative queries to
the target GNN model.

The weighted average ranking for cycle γ is expressed as

Rγ = ω1(γ)Rγ
1 + ω2(γ)Rγ

2 + ω3(γ)Rγ
3 .

The cycle-specific weights ω1, ω2, and ω3 are subject to
adaptive optimization according to the principle, as inspired
by (Cai et al., 2017), that the representativeness rank R1

does not rely on the interim model fγ−1, while R2 and R3

rely on the fγ−1. The weight ω1 is assigned a higher value
when γ is small, reflecting the relatively poor performance
of the interim model during the earlier stages of querying.
As γ increases, ω2 and ω3 are progressively raised, resonat-
ing the improved performance of the interim model in later
querying cycles. The dynamic node selection ensures that
the weights can fit CEGA’s progressive querying process.

Learning to Guide Queries and Output. After obtaining
queried nodes Vγ in the γth cycle, we train the new interim
model fγ based on {Vγ ,Ga} and the previous interim model
fγ−1 for E epochs. The updated model fγ then guides node
selection for further queries in the (γ + 1)th cycle. After
completion of the Γ querying cycles, CEGA returns the
collection of queried nodes {V1,V2, ...,VΓ}. We summarize
the algorithmic routine of CEGA in Algorithm 1.

Algorithm 1 The Proposed Framework of CEGA
Initialization: Query initial nodes V0, where |V0| = I,
from Va.
Train the initial model f0 on {V0,Ga}.
for Cycle γ from 1 to Γ do

if I + (γ − 1)κ < B then
Evaluate the representativeness score Lγ

1 , uncer-
tainty score Lγ

2 , and diversity score Lγ
3 for all candi-

date nodes in Va\Vγ−1.
Obtain node ranks Rγ

1 , Rγ
2 , and Rγ

3 .
Select and query top-κ nodes VQ

γ via the adaptive
selection method.
Set Vγ = Vγ−1 ∪ VQ

γ .
else

Set Vγ = Vγ−1.
end if
Train the new interim model fγ based on {Vγ ,Ga} and
fγ−1 for E epochs.

end for
Return the nodes collection {V1,V2, ...,VΓ}.

3.3. Theoretical Analysis

In this section, we summarize the theoretical results for
CEGA’s measurements with respect to the uncertainty of
candidate nodes indicated by history-inspired interim mod-
els. As outlined in Section 3.2, we address two core aspects:
CEGA’s efficiency in referring to the history guide and the
existence of an appropriate perturbation parameter ϵ for the
alternative. The detailed proofs are given in Appendix A.

First, we provide a thorough analysis of the time and space
complexity of CEGA’s uncertainty measurement approach.
Proposition 3.1 highlights the feasibility of our approach,
indicating its resource-friendly feature required for graph
data with complex attributes and subgraph structure.

Proposition 3.1 (Evaluation of Complexity). Suppose that
the base model of CEGA is a L-layer GCN. Under the
conditions such that

1. The number of nodes queried by CEGA in each cycle,
indicated by κ, is Θ(1);

2. d ≫ h = Θ(C), where d indicates the dimension of the
attributes for the graph data, h indicates the dimension
of the node embeddings, and C indicates the number of
classes in the softmax score output,

CEGA’s entropy-based approach introduces an additional
time complexity of O(CN+N logN) and space complexity
of O(CN), building on the O(LN2d + LNd2) time com-
plexity and O(N2+Ld2+LNd) space complexity required
for CEGA to compute embeddings and softmax scores via
forward propagation for the analysis in Section 3.2.
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Remarks for Proposition 3.1. CEGA’s entropy-based ap-
proach provides superior scalability and adaptability for
large, complex graph datasets, introducing minimal addi-
tional time and space complexity beyond attribute propaga-
tion through the interim model for embeddings and softmax
scores. Notably, these added complexities are of signifi-
cantly lower order than the training and forward propagation
costs of the interim model.

In Theorem 3.2, we show the existence of an appropriate
perturbation intensity ϵ that is sufficiently small to maintain
the overall stability of the history guide fγ . This ensures
the feasibility of perturbation-based alternative uncertainty
evaluation in CEGA by guaranteeing that the approach can
reliably capture prediction uncertainty from history with-
out causing inconsistency in the interim model, even when
random noise is applied to the node attributes.
Theorem 3.2 (Existence of Feasible Perturbation). Con-
sider the perturbation scheme for the evaluation of node
uncertainty under the interim GNN model fγ in CEGA.
We show that there exists some perturbation intensity ϵ
such that

∥∥fγ(xi,Ga) − fγ(x̃i,Ga)
∥∥
2

holds the stability
conditions, where x̃τ is the perturbation of xτ where
x̃τ−xτ ∼ N (0, ϵ2). Specifically, for any ζ > 0, there exists
some ϵ = ϵ(ζ, δ) such that

∥∥fγ(xi,Ga)−fγ(x̃i,Ga)
∥∥
2
≤ ζ

with probability at least 1−O(δ).

4. Experimental Evaluation
In this section, we present an in-depth experimental eval-
uation of CEGA, addressing three key research questions:
RQ1: How effective is CEGA in graph-based model extrac-
tion and acquisition tasks compared to baseline methods on
a fixed querying budget? RQ2: How well does CEGA re-
cover the target model on a limited query budget, as opposed
to querying all nodes that can be queried? RQ3: What is
the contribution of each evaluation module of CEGA to its
overall performance?

4.1. Experimental Settings

Graph Learning Task and Datasets. We evaluate CEGA
on the extraction task for graph-based node classification
models, assuming that the extraction side has access to the
attributes of the candidate nodes Va and the structure of
subgraph Ga that involves Va. This setup is categorized as
Attack 0 in MEA literature such as (Wu et al., 2022). Our
experiments are conducted on 6 widely used benchmark
datasets: (1) Coauthorship networks where nodes are au-
thors and edges represent collaboration, including Coauthor-
CS and Coauthor-Physics; (2) Co-purchase graphs with
nodes as products and edges as items frequently purchased
together, including Amazon-Computer and Amazon-Photo;
and (3) Academic citation and collaboration network, in-
cluding Cora-Full and DBLP. These datasets vary in size,

complexity, and formality of node attributes, providing a
comprehensive basis for evaluating CEGA’s performance.
The dataset statistics are provided in Appendix B.1.

Training Protocol. In our experiment, we consider two
models trained on the datasets of interest. The full subgraph
model is trained on

{
Va,Ga

}
, where the subgraph known to

the extractors Ga satisfies Ga ⊊ GT, to establish the upper
limit of performance that model extraction approaches can
achieve in their respective task under our assumptions. In
the budget-constrained model trained on

{
VΓ,Ga

}
, where

|VΓ| ≪ |Va| in many practices, the model extraction task is
conducted on a more restrictive but realistic scenario with
budget constraints, as we have defined in Section 2. In
response to the constraints, CEGA and the baseline models,
as detailed in the following sections, progressively select
and query the most informative nodes from the pool of
candidate nodes for optimal performance. To show the
superiority of CEGA, we compare the performance of all
models tested under a budget-constrained setup and examine
the performance incrementation of the full subgraph model
over the budget-constrained model for each approach.

Evaluation Metrics. We evaluate the accuracy and F1 score
of budget-constrained models built under nodes selectively
queried by all the tested approaches. Furthermore, we eval-
uate the faithfulness of these models to the target model fT,
using fidelity as the metric. The measurements on accuracy,
F1 score, and fidelity are further compared between the full
subgraph model and the budget-constrained model to high-
light the relative efficiency of the strategies tested. Finally,
we evaluate the mean and standard deviation of accuracy,
fidelity, and F1 score for budget-constrained models trained
on nodes queried using CEGA and its variants with certain
components ablated. All empirical evaluations are based on
consistent settings with commonly used ones. The query
budget is set as the number of label classes for each graph
dataset multiplied by a fixed factor, ranging from 2C to
20C, following widely accepted prior work, such as (Yang
et al., 2016; Cai et al., 2017; Zhang et al., 2021).

Baselines. In our experiment, the performance of CEGA
is compared against the Random baseline, where all the
queried nodes are selected randomly from Va. Furthermore,
we compare CEGA with the state-of-the-art active learning
(AL) techniques specially designed for GNN in a query-by-
training process consistent with CEGA for fair comparison,
including AGE ((Cai et al., 2017)), GRAIN (NN-D), and
GRAIN (ball-D) (Zhang et al., 2021). To ensure consistency,
all baseline models adhere to the same query constraints
initialization setup. Details on the hyperparameter setup for
all baseline methods and the proposed framework CEGA
are included in Appendix B.2.
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Table 1. Test accuracy, fidelity, and F1 score on different datasets using 20C queried nodes. Dataset abbreviations: CoCS (Coauthor-CS),
CoP (Coauthor-Physics), AmzC (Amazon-Computer), AmzP (Amazon-Photo), Cora-Full, and DBLP. All numerical values are reported in
percentage. The best results are in bold.

CoCS CoP AmzC AmzP Cora Full DBLP

Accuracy

Random 88.75 ± 0.7 91.50 ± 1.3 83.79 ± 0.9 90.15 ± 2.6 49.73 ± 0.3 69.14 ± 1.9
GRAIN(NN-D) 89.77 ± 0.6 93.37 ± 0.8 83.89 ± 1.7 90.98 ± 0.3 51.57 ± 1.0 68.37 ± 0.9
GRAIN(ball-D) 89.43 ± 0.6 93.37 ± 1.0 82.48 ± 2.1 90.01 ± 1.2 51.27 ± 1.3 68.57 ± 1.0
AGE 90.68 ± 0.4 93.69 ± 0.3 85.13 ± 0.6 90.79 ± 2.6 50.59 ± 0.3 72.41 ± 2.2
CEGA 90.57 ± 0.5 93.90 ± 0.4 85.98 ± 0.4 91.95 ± 0.3 52.74 ± 0.6 73.29 ± 0.9

Fidelity

Random 91.43 ± 0.8 93.15 ± 1.4 88.45 ± 1.0 93.31 ± 2.7 74.06 ± 0.8 73.86 ± 2.2
GRAIN(NN-D) 92.41 ± 0.8 95.11 ± 0.9 88.65 ± 2.0 94.17 ± 0.6 76.65 ± 1.6 72.71 ± 1.1
GRAIN(ball-D) 92.00 ± 0.7 95.19 ± 1.2 86.89 ± 2.4 92.93 ± 1.4 76.18 ± 1.5 73.35 ± 1.2
AGE 93.61 ± 0.5 95.55 ± 0.4 90.10 ± 0.7 93.97 ± 2.9 75.67 ± 0.8 77.18 ± 2.4
CEGA 93.40 ± 0.6 95.83 ± 0.5 90.81 ± 0.4 95.33 ± 0.5 77.90 ± 0.9 78.50 ± 0.9

F1

Random 81.44 ± 1.6 87.70 ± 2.4 78.95 ± 1.8 86.54 ± 5.3 27.56 ± 0.3 57.46 ± 5.0
GRAIN(NN-D) 85.61 ± 1.4 90.93 ± 1.0 80.29 ± 3.5 88.06 ± 0.8 28.93 ± 1.0 58.72 ± 3.7
GRAIN(ball-D) 85.38 ± 0.9 90.97 ± 1.4 74.47 ± 5.9 86.99 ± 2.0 28.62 ± 1.1 60.87 ± 3.5
AGE 87.65 ± 0.4 91.58 ± 0.5 78.37 ± 3.5 89.14 ± 3.2 29.28 ± 0.5 65.72 ± 3.2
CEGA 87.41 ± 0.5 91.78 ± 0.7 82.57 ± 1.4 90.06 ± 0.6 31.20 ± 0.8 67.35 ± 1.5
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Figure 1. The trajectory of test accuracy, fidelity, and F1 score on different datasets using 2C to 20C queried nodes. The performance
trajectory of CEGA is bolded in green, showing significant superiority over the alternatives across different number of queried nodes.

4.2. Evaluation on Budget-Constrained Model

To answer RQ1, we evaluate the performance of CEGA and
various AL-based baseline methods on history-based pro-
gressive node querying in all the 6 datasets under different
labeling budget scenarios. We incrementally raise the query
budget from 2C to 20C. Our evaluation primarily focuses

on the fidelity of the budget-constrained subgraph model to
the target model, while also considering accuracy and F1
score as supplementary metrics. To account for variability
due to randomized initialization, each method is evaluated
five times, and the mean performance is reported.

Figure 1 presents the trajectory of measured metrics with
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the extracted model trained with 2C to 20C queried nodes.
Table 1 presents a direct comparison between the perfor-
mance of CEGA and the baseline models using 20C queried
nodes in the 6 datasets of interest. We summarize the key ob-
servations below: (1) From the perspective of comparative
performance, CEGA consistently achieves significant im-
provements in accuracy, fidelity, and F1 score across varying
budget levels, demonstrating its capability to closely mimic
the target model under stringent query budget constraints.
CEGA also shows strong adaptability to the graph datasets
being tested, which is considered one of its main advantages
over the baselines. (2) From the perspective of the progres-
sive nature of the models, as the budget increases from 2C to
10-15C, CEGA further extends its advantage over baseline
methods among all the metrics tested, particularly for the
Amazon-Computer and Cora-Full datasets. This indicates
that CEGA’s node selection strategy effectively identifies
the most informative nodes throughout the iterative query-
ing process, leading to superior alignment with the target
model as more queries become available.

4.3. Comparison between Full Subgraph Model and
Budget-Constrained Model

To answer RQ2, we highlight the effectiveness of CEGA in
detecting the most informative nodes by comparing the ac-
curacy, fidelity, and F1 score recovery performance between
the budget-constrained model and the full subgraph model,
as specified in Section 4.1. Specifically, we define a perfor-
mance gap as the performance discrepancy between the full
subgraph model and budget-constrained models following
different querying approaches.

We visualize the performance gap measured by accuracy, fi-
delity, and F1 score across all 6 datasets of interest in Figure
2. Further results on the performance gap are presented in
Table 4 and discussed in Appendix B.3. We summarize the
key observations below: (1) From the perspective of mea-
surement, CEGA consistently exhibits a lower performance
gap across all the metrics tested (accuracy, fidelity, F1 score)
compared to the baselines, indicating its superior ability to
recover as much information as possible under stringent
budget constraints. (2) From the perspective of adaptabil-
ity, CEGA maintains a consistently lower gap across all
the datasets we tested by a notifiable margin (e.g., 1-2%)
despite variations in node attributes and graph structures.
This reveals that CEGA is more robust and effective than
baselines in conducting model extraction and acquisition on
graph data with different levels of intrinsic complexity.

4.4. Ablation Study

To answer RQ3, we perform an ablation study by system-
atically removing the contribution of each one out of the 3
evaluation modules of CEGA. We then compare the perfor-
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Figure 2. Model performance gaps between budget-constrained
and full subgraph models, measured by accuracy, fidelity, and F1
score, across datasets. The gap indicates the negative impact of the
budget constraints on the model performances. Therefore, lower
gaps (i.e., less negative impact) are preferred.

Table 2. Ablation study results on fidelity for CEGA and variants
with one evaluation module removed. Cen stands for Centrality,
UnC stands for Uncertainty, Div stands for Diversity. The best
results are in bold.

CEGA No Cen No UnC No Div
CoCS 93.4 ± 0.6 93.2 ± 0.2 91.9 ± 0.5 93.4 ± 0.6
CoP 95.8 ± 0.5 94.9 ± 0.4 90.2 ± 3.3 95.7 ± 0.5
AmzC 90.8 ± 0.4 90.0 ± 1.2 87.1 ± 2.2 90.7 ± 0.7
AmzP 95.3 ± 0.5 95.1 ± 0.3 93.7 ± 0.9 95.3 ± 0.7
Cora Full 77.9 ± 0.9 75.3 ± 0.6 74.9 ± 0.9 78.3 ± 1.1
DBLP 78.5 ± 0.9 74.2 ± 2.4 65.1 ± 5.5 78.6 ± 1.4

mance of the resulting models with only the two remaining
modules involved with that of the full CEGA model. We
evaluate budget-constrained models with a query budget of
20C across all 6 datasets.

Table 2 compares the mean fidelity and its variance between
the original CEGA and the three ablation models in the
6 datasets of interest, while Figure 3 shows a similar pat-
tern for accuracy and F1 score is available in Appendix
B.4. We summarize the key observations below: (1) From
the perspective of model performance, CEGA demonstrates
comparable to significantly better average performance than
ablated models across different test datasets and metrics,
particularly outperforming models where centrality or un-
certainty is ablated by a large margin. This highlights the
pivotal rule of these two components in identifying infor-
mative nodes for querying in early cycles. (2) From the
perspective of consistency of estimates, CEGA provides
more stable estimates across all metrics compared to the
model with diversity ablated, especially for the Amazon-
Computer and DBLP datasets. This reveals that the diversity
component of CEGA plays a crucial role in later querying
cycles by supporting performance stability.
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5. Related Work
Query-Efficient Model Extraction Attack. (Tramèr et al.,
2016) pioneered the study of MEA with high-fidelity extrac-
tion towards target black-box MLaaS models. (Pal et al.,
2020) applies active learning techniques that dynamically
adjust query selection based on self-feedback to extract
deep classifiers in the domain of image and text, showing
that querying 10% to 30% of samples from the dataset can
yield a high-fidelity extraction model. Recent work shows
that budget-sensitive MEA is feasible even for the data-free
setting, where the attacks are performed without any in-
distribution data (Lin et al., 2023b). Another proposed way
to obtain a better query efficiency in MEA is to simultane-
ously train two clone models with the same samples and
force them to learn from mismatching samples (Rosenthal
et al., 2023). (Dai et al., 2023) employs clustering-based
data reduction to minimize information redundancy in the
query pool and realize query efficiency for the task of MEA
in NLP. However, all these works on query-efficient MEA
fail to consider graph-based model extraction.

Model Extraction Attack in Graph Learning. (Oliynyk
et al., 2023) systematizes MEA on multiple model types,
summarizes defense strategies based on available resources,
and highlights an upward trend of popularity of literature on
the attacks towards and defense for ML models. Recently,
the research interest has pivoted towards the application of
MEA on graph-related models. (DeFazio & Ramesh, 2019)
first consider an adversarial model extraction approach for a
graph-structured dataset. (Wu et al., 2022) provides a com-
prehensive analysis of GNN-based MEAs under various
categories based on the attacker’s knowledge of target graph
structure and node attributes. (Shen et al., 2022) claims a
significant contribution by proposing an inductive model
structure that allows the attack graph to add new nodes to
the existing model without the necessity of retraining. This
development overcomes a major limitation of the prevalent
GCN-based transductive approach (Kipf & Welling, 2017)
that requires model retraining with the introduction of a new
attacking or testing node. Generally, the GNN-based MEAs
can be divided into two primary categories, distinguished
by the attacker’s knowledge of the target model’s graph
structure (Oliynyk et al., 2023). Go beyond existing pub-
lications, our work addresses a serious concern regarding
the efficiency and budget limitation in model extraction on
graph learning by subsequently improving the practicality.

6. Conclusion
In this paper, we introduce CEGA, a cost-effective frame-
work specialized in node querying for graph-based model ex-
traction. In particular, we formulate and study the problem
of budget-constrained model extraction on graphs, where the
objective is to maximize the extracted model’s performance

and resemblance to the target model with a minimized query
budget. To overcome this challenge, we develop CEGA by
designing an adaptive node selection strategy that effectively
queries the most informative nodes based on incremental
history information accumulated in the training progress.
We present a theoretical guarantee on the feasibility and
efficiency of our approach in measuring the uncertainty
of history-based interim predictions for candidate nodes.
Extensive experiments on real-world graph datasets demon-
strate CEGA’s superiority over state-of-the-art baselines
across multiple key aspects. Looking ahead, two future
directions warrant further exploration. First, our current
framework is based on a transductive assumption, and we
aim to extend the CEGA framework to inductive GNNs, fol-
lowing previous investigation by (Shen et al., 2022). Second,
as suggested by (Guan et al., 2024), refining our approach
by leveraging edge information, especially in the early query
cycles when the number of selected nodes is small, could
further improve CEGA’s performance.
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Impact Statement
We introduce CEGA (Cost-Efficient Graph Acquisition), a
framework to deploy model extraction and acquisition on
Graph Neural Networks (GNNs) under realistic constraints
of limited query budgets and structural complexity.

For practitioners in high-stakes fields, CEGA formalizes the
problem of GNN Model Extraction With Limited Budgets,
laying a foundation for the development of practical de-
fenses against GNN-based model extraction attacks (MEAs)
against Machine Learning as a Service (MLaaS).

For researchers, CEGA reveals its non-adversarial potential
of GNN extraction and acquisition in domains where expert
labeling is prohibitively expensive and large-scale training
is impractical. Ethical model acquisition offers a viable path
to democratize high-performance GNNs and adapt them to
specialized downstream tasks.

We emphasize the responsible use of CEGA, as its insights
should be used to strengthen MLaaS security and advocate
ethical research under limited resources.
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A. Proofs to Theoretical Analysis
In this section, we provide the proof to the theoretical contribution of CEGA.

Proof to Proposition 3.1: Before we calculate the complexity of the γth cycle of CEGA, we need to conduct the forward
step of fγ−1 to obtain the softmax scores for each nodes of interest that are used in the subsequent procedures of CEGA.
(Blakely et al., 2021) shows that the forward step for an L-layer GCN has time complexity O(LN2d+ LNd2) and space
complexity O(N2 +Ld2 +LNd). The output takes O(CN +Nh) space and is shared among the following tasks. Here, h
is the dimension of the embeddings.

For CEGA’s entropy-based approach to evaluate the uncertainty based on historical information, the space is required for
O(Cnγ−1) softmax scores. Our task is to calculate the entropy of the O(nγ−1) nodes, which involves the computation of
O(Cnγ−1). Sorting the nodes involves O(nγ−1 log nγ−1) time complexity and O(nγ−1) space usage.

For the more resource-consuming perturbation-based alternative, we first consider the complexity involved each time we
redo the perturbation. For each time we take the perturbation, we prepare the perturbed attributes for the nodes in Ga, which
takes O(Nd) space and has O(Nd) time consumption. As we pass the perturbed attributes forward through the GNN model
and calculate the softmax scores for the perturbed scores, the time complexity is O(LN2d+LNd2). For each time we redo
the perturbation, the output takes O(CN) space, and a time complexity of O(Cnγ−1) is required to compare the labels
derived from the perturbed softmax score and the original score. The output is stored in a vector with O(nγ−1) dimensions,
where the space for temporarily perturbed attributes and softmax scores can be released after each perturbation. We redo the
perturbation procedure S times and sort the nodes based on Lγ

2 with O(nγ−1 log nγ−1) time complexity.

Taking summations on all the procedures implies that the additional time complexity is O(Cnγ−1 + nγ−1 log nγ−1) for
CEGA’s entropy-based approach. For the perturbation-based alternative, the additional time complexity is O(SNd +
SLN2d + SLNd2 + SCnγ−1 + nγ−1 log nγ−1). Given all the assumptions of Proposition 3.1, we summarize that the
time complexity are O(CN +N logN) and O(SLN2d+ SLNd2), respectively. Under a similar step of calculation, we
have that the space complexity of CEGA’s entropy-based approach and the perturbation-based alternative are O(CN) and
O(N2 + Ld2 + LNd), respectively.

Proof to Theorem 3.2: In the proof, we consider a generic GNN network. Taking the GCN model (Kipf & Welling, 2017) as
an example, we have that

G(1) = σ
(
f(A)XW(1)

)
; G(ℓ+1) = σ

(
f(A)G(ℓ)W(ℓ+1)

)
.

Here f(A) = D̂−1/2ÂD̂−1/2. The last layer before the output is conducted by the softmax procedure. For one specific
node τ , we consider a generic two-layer GNN model

g(1)
τ = σ

(
W(1)

sa xτ +W(1)
n

∑
µ∈Nτ

xµ

)
; g(2)

τ = Woutg
(1)
τ + b; ŷτ = softmax(g(2)

τ ). (5)

Here W
(1)
sa and W

(1)
n represents the weights assigned to the self-attention term and the neighborhood for the node τ ,

specifically. Nτ represents the neighborhood of the node τ . Substituting the node attributes xτ to x̃τ indicates that

g̃(1)
τ = σ

(
W(1)

sa x̃τ +W(1)
n

∑
µ∈Nτ

x̃µ

)
; g̃(2)

τ = Woutg̃
(1)
τ + b; ŷp

τ = softmax(g̃(2)
τ ). (6)

Aggregating (5) and (6) indicates that∥∥ŷτ − ŷp
τ

∥∥
2
≤ Csoft

∥∥g(2)
τ − g̃(2)

τ

∥∥
2
≤ Csoft

∥∥Wout

∥∥
2

∥∥g(1)
τ − g̃(1)

τ

∥∥
2

≤ Csoft Cσ
∥∥Wout

∥∥
2

∥∥W(1)
sa

∥∥
2

∥∥xτ − x̃τ

∥∥
2
+ Csoft Cσ

∥∥Wout

∥∥
2

∥∥W(1)
n

∥∥
2

∥∥∥∥ ∑
µ∈Nτ

(
xµ − x̃µ

)∥∥∥∥
2

.

Here Csoft and Cσ denotes the Lipschitz constant for softmax function and the activation function σ(·), respectively. The
norms

∥∥Wout

∥∥
2
,
∥∥W(1)

sa

∥∥
2
, and

∥∥W(1)
n

∥∥
2

are bounded from above given that the estimation function is bounded after one
step of model fitting. For simplicity, we re-arrange the terms and form the inequality such that∥∥ŷτ − ŷp

τ

∥∥
2
≤ η1

∥∥xτ − x̃τ

∥∥
2
+ η2

∥∥∥∥ ∑
µ∈Nτ

(
xµ − x̃µ

)∥∥∥∥
2

,
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for some positive constants η1, η2 < ∞. Given that xµ − x̃µ ∼ N (0, ϵ2) for any µ ∈ Nτ , we can apply Hoeffding’s
inequality, which implies that

P
( ∑

µ∈Nτ

(
xµ − x̃µ

)
≥ t

)
≤ exp

(
− t2

2 |Nτ |ϵ2

)
.

We then select

ϵ = min

{
ζ

η1
√
2 log(1/δ)

,
ζ

η2
√
2|Nτ | log(1/δ)

}
,

where we guarantee that the difference of the outcome label probability has an upper bound with a large probability.

B. Supplementary Results and Discussion
In this section, we elaborate the discussion of the additional results of the experiment based on our implementation of CEGA,
which is available at https://github.com/LabRAI/CEGA, to a series of widely studied benchmark graph datasets.

B.1. Datasets

Dataset #Nodes #Edges #Features #Classes

AmzComputer 13,752 491,722 767 10
AmzPhoto 7,650 238,163 745 8
CoauthorCS 18,333 163,788 6,805 15
CoauthorPhysics 34,493 495,924 8,415 5
Cora Full 19,793 126,842 8,710 70
DBLP 17,716 105,734 1,639 5

Table 3. Dataset statistics

Table 3 presents the statistics of six benchmark datasets used in our study, covering a range of node, edge, feature, and
class distributions. Amazon-Computer and Amazon-Photo are e-commerce co-purchase networks characterized by dense
connectivity. Coauthor-CS and Coauthor-Physics represent academic collaboration graphs with a larger number of features.
Cora Full and DBLP are citation network datasets where nodes represent academic papers and edges denote citation
relationships. Cora Full spans diverse machine learning subfields with 70 classes, while DBLP focuses on computer science
publications with five broad research categories. These datasets provide diverse graph structures and feature distributions for
evaluating model performance.

B.2. Setup of Hyperparameters

Setup of GNN Model Extraction We follow the Attack 0 framework of (Wu et al., 2022) to perform GNN model
extraction. Initially, we train a target model, fT, for 1000 epochs with a learning rate of 1e-3, which provides predictions for
surrogate model training. If training and test sets are not provided, we randomly select 60% of the nodes for training and use
the remaining 40% for testing. This serves as the initial setup; however, following the Attack 0 framework, these masks are
later adjusted based on whether the nodes are subject to queries for extraction.

Setup of Node Selection Models For our experiments, we randomly set the candidate node pool Va comprising 10% of
the nodes in graphs with fewer classes, including Amazon-Computer, Amazon-Photo, Coauthor-CS, Coauthor-Physics, and
DBLP. For graph with significantly higher number of classes (e.g., Cora-Full, which has 70 classes), the pool includes 25%
of the nodes. Our setup is inspired by widely accepted works, such as (Wu et al., 2022; Shen et al., 2022). In the initialization
step, we randomly select 2 nodes from each class across all the tested datasets, resulting in a total of 2C nodes, where C is
the number of classes. In practice, this procedure remains feasible as the extractors can attain partial knowledge of the class
distribution through domain expertise or external sources, especially when such knowledge offers strategic advantages in
building a high-fidelity extracted model. For the remaining budget, we employ different node selection methods, with the
total budget capped at 20C.
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For the baseline node selection methods, hyperparameters are set as follows. In GRAIN (Ball-D), the radius r is fixed at
0.005 for all datasets, while in GRAIN (NN-D), γ is set to 1. For AGE, we adopt the time-sensitive parameter setting, where
γt ∼ Beta(1, nt), with nt increasing as iterations progress, defined as nt = 1.05− 0.95t. Here, t denotes the number of
iterations. The parameters αt and βt are set as αt = βt =

1−γt

2 .

For our proposed method, in cycle γ, CEGA queries κ = 1 node and trains a 2-layer GCN model with {Vγ ,Ga} for E = 1
epoch. In the analysis for node diversity, we set the weight ρ = 0.8 to ensure that the order Rγ

3 is designed to prioritize the
nodes associated with underrepresented prediction labels. For the weighted average ranking mechanism, we set

ω1(γ) = α1 +∆e−λγ ; ω2(γ) = α2 +∆
(
1− e−λγ

)
; ω3(γ) = α3(1− e−γ). (7)

We design this weighting approach under the heuristics such that the subgraph structure is the most important information
when the information gathered in the history is not accurate enough to guide further queries. As the number of queries
increases, the contribution from history information becomes more prominent, and diversity concerns need to be considered
more seriously. In practice, we set the initial weight coefficients as α1 = α2 = α3 = 0.2, the measurement of the initial
weight gap between Rγ

1 and Rγ
2 as ∆ = 0.6, the measurement of the curvature for the weight changes as λ = 0.3. The

CEGA hyperparameters (α1, α2, α3,∆, λ) are applied uniformly across all the tested graph datasets to mitigate potential
concerns of tuning bias.

After the node selection process, we train a 2-layer GCN with a hidden dimension of 16. The model is optimized with a
learning rate of 1e-3 and trained for 1000 epochs. For AGE, we apply a warm-up period of 400 epochs. All experiments are
conducted on two NVIDIA RTX 6000 Ada GPUs. Model performance is evaluated for node selections ranging from 2C to
20C, with evaluations performed at every C. Selected nodes are trained for 1000 epochs using a learning rate of 1e-3.

B.3. Model Performance Gap

Table 4. Performance gaps between budget-constrained models and subgraph models, measured by Accuracy, Fidelity, and F1, across
various datasets. The best results are in bold.

CoCS CoP AmzC AmzP Cora Full DBLP

Accuracy

Random 2.68 ± 0.6 3.47 ± 1.0 3.60 ± 1.1 2.07 ± 1.6 1.71 ± 0.5 12.24 ± 1.3

GRAIN(NN-D) 1.69 ± 0.6 1.87 ± 0.8 3.41 ± 1.1 1.56 ± 0.4 -0.09 ± 1.1 13.14 ± 1.0

GRAIN(ball-D) 2.02 ± 0.6 1.93 ± 1.0 4.78 ± 1.3 2.58 ± 1.2 0.04 ± 1.0 12.98 ± 1.2

AGE 0.78 ± 0.4 1.56 ± 0.3 2.33 ± 0.9 1.39 ± 1.8 0.90 ± 0.4 8.98 ± 2.0

CEGA 0.91 ± 0.4 1.39 ± 0.4 1.19 ± 0.8 0.58 ± 0.3 -1.36 ± 0.2 7.79 ± 1.1

Fidelity

Random 3.20 ± 0.7 4.20 ± 1.0 4.24 ± 1.2 2.34 ± 1.6 3.84 ± 0.5 14.85 ± 1.7

GRAIN(NN-D) 2.26 ± 0.7 2.49 ± 1.0 4.01 ± 1.4 1.74 ± 0.6 1.34 ± 1.7 16.11 ± 1.2

GRAIN(ball-D) 2.61 ± 0.7 2.50 ± 1.2 5.77 ± 1.7 3.06 ± 1.4 1.68 ± 1.2 15.52 ± 1.4

AGE 1.02 ± 0.4 2.07 ± 0.4 2.70 ± 1.0 1.77 ± 2.4 2.31 ± 0.7 11.50 ± 2.2

CEGA 1.25 ± 0.5 1.84 ± 0.5 1.69 ± 0.8 0.56 ± 0.5 0.06 ± 0.4 9.98 ± 1.2

F1

Random 6.72 ± 1.6 5.44 ± 1.8 4.61 ± 2.8 3.69 ± 3.5 0.49 ± 0.3 19.78 ± 5.4

GRAIN(NN-D) 2.77 ± 1.5 2.69 ± 1.1 4.00 ± 1.2 2.87 ± 0.8 -0.97 ± 1.0 19.10 ± 4.0

GRAIN(ball-D) 3.04 ± 1.3 2.75 ± 1.5 8.53 ± 5.3 3.85 ± 1.7 -0.93 ± 0.3 16.95 ± 3.7

AGE 0.84 ± 0.6 2.13 ± 0.5 4.57 ± 5.1 1.30 ± 1.6 -1.12 ± 0.3 11.93 ± 2.9

CEGA 1.09 ± 0.7 1.89 ± 0.6 0.86 ± 2.8 0.80 ± 0.7 -3.43 ± 0.5 10.02 ± 1.0

Table 4 quantifies the performance gap between budget-constrained models and subgraph models across various datasets,
using Accuracy, Fidelity, and F1 as evaluation metrics. A smaller gap indicates a more effective node selection strategy,
with negative values suggesting cases where the budget-constrained model outperforms the subgraph model. Notably,
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Figure 3. Ablation study results on accuracy (left), fidelity (middle), and F1 score (right) for CEGA and variants with one of the three
node evaluation modules removed.

CEGA almost outperforms the benchmark models across all three metrics, demonstrating its effectiveness in maintaining
model performance under stringent budget constraints. Additionally, this table provides detailed numerical insights that
complement the trends illustrated in Figure 2.

B.4. Ablation Study

To address RQ3, an ablation study is conducted where we implement two of the three analyses proposed in Section 3.2.
Specifically, we compare the original CEGA model against three variants: (1) CEGA with Centrality Module Ablated: A
variant removing the centrality-based selection mechanism, which we expect to evaluate the contribution of the subgraph
model structure to the selection of nodes to be queried; (2) CEGA with Uncertainty Module Ablated: A variant removing
the contribution of prediction uncertainty under the guidance of history information, which we expect to evaluate the
contribution of history information extracted from previous queries; (3) CEGA with Diversity Module Ablated: A variant
removing the contribution that enhances the diversity of the selected nodes, which we expect to evaluate the contribution of
node diversity in providing a more stable estimation with a smaller variation across different random initialization setups.
The setup of our ablation study follows the standard of the most recent works on GNN node classification tasks, such
as (Lin et al., 2025). In practice, we set the respective cycle-specific weight ωi(γ) = 0, as specified in (7), among all
γ ∈ {1, 2, ...,Γ} for the specific index i ∈ {1, 2, 3}.

The results of the ablation study, as shown in Figure 3, are consistent across all three performance metrics, namely accuracy,
fidelity, and F1 score. This indicates that the ablation study yields stable findings regardless of the evaluation criterion. This
alignment reinforces the robustness of our proposed approach and suggests that each module contributes meaningfully to the
overall performance of the model.
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