
Published at the DeLTa workshop, ICLR 2025

GUMBEL-SOFTMAX SCORE AND FLOW MATCHING
FOR DISCRETE BIOLOGICAL SEQUENCE GENERATION

Sophia Tang1,2, Yinuo Zhang1,3, Alexander Tong4,5, Pranam Chatterjee1,6,7,†
1Department of Biomedical Engineering, Duke University
2Department of Computer and Information Science, University of Pennsylvania
3Center of Computational Biology, Duke-NUS Medical School
4Mila, Quebec AI Institute, 5Université de Montréal
6Department of Computer Science, Duke University
7Department of Biostatistics and Bioinformatics, Duke University

†Corresponding author: pranam.chatterjee@duke.edu

ABSTRACT

Flow matching on the simplex has emerged as a promising strategy for sequence
generation, but struggles with tasks that require stochastic interpolants and
inference-time guidance. We introduce Gumbel-Softmax Flow and Score
Matching, a generative framework built on a novel Gumbel-Softmax interpolant
defined on the interior of the simplex. Using this interpolant, we introduce
Gumbel-Softmax Flow Matching by deriving a parameterized velocity field
that transports from noisy categorical distributions to one-hot distributions via a
time-dependent temperature parameter. We alternatively present Gumbel-Softmax
Score Matching, which learns to regress the gradient of the probability density.
Our framework enables high-quality, diverse generation and scales efficiently
to higher-dimensional simplices. To enable training-free guidance, we propose
Straight-Through Guided Flows (STGFlow), a classifier-based guidance method
that leverages straight-through estimators to steer the unconditional velocity field
toward optimal vertices of the simplex. STGFlow enables efficient inference-time
guidance using classifiers pre-trained on clean sequences, and can be used with
any discrete flow method. Together, these components form a robust framework
for controllable de novo sequence generation. We demonstrate competitive
performance in conditional DNA promoter design, target-binding peptide design
for rare disease treatment, and de novo protein sequence design.

1 INTRODUCTION

Discrete diffusion [35, 33, 6] and flow-matching [17, 29] models, iteratively reconstruct sequences
by modeling forward and reverse noise processes in a Markovian framework. These approaches have
demonstrated success in DNA sequence design [38, 29], protein generation [44, 18], and recently,
multi-objective generation of therapeutic peptides [42]. However, they operate in the fully discrete
state space, meaning that the noisy sequence at each time step is a fully discrete sequence of one-hot
vectors sampled from continuous categorical distributions. This can result in discretization errors
during sampling when abruptly restricting continuous distributions to a single token, which raises
the question: Can we generate discrete sequences by iteratively fine-tuning continuous probability
distributions? This is the motivation behind discrete flow matching models on the simplex [38, 14],
which defines a smooth interpolation from a uniform prior over the simplex to a unitary distribution
concentrated at a single vertex.

Despite these advances, previous discrete simplex-based flow matching methods have yet to be
applied to de novo design tasks such as protein and target-specific peptide design that require learning
diverse flow trajectories that scale to higher simplex dimensions. Furthermore, there remains a lack
of controllability at inference time due to strictly deterministic paths and the absence of modular

1

mailto:pranam.chatterjee@duke.edu

Published at the DeLTa workshop, ICLR 2025

training-free guidance methods. To address these gaps, we introduce Gumbel-Softmax Flow and
Score Matching, a novel framework for discrete generation on the simplex.

Our key contributions are as follows:

1. Gumbel-Softmax Flow Matching leverages temperature-controlled Gumbel-softmax inter-
polants defining a velocity field that smoothly transports from noisy to clean distributions on the
simplex. By applying Gumbel noise during training, Gumbel-Softmax FM avoids overfitting to
the training data, increasing the exploration of diverse flow trajectories. (Section 3).

2. Gumbel-Softmax Score Matching is an alternative framework that estimates the gradient of
probability density at varying temperatures to enable sampling from high-density regions on
the simplex (Section 4).

3. Straight-Through Guided Flow Matching (STGFlow) is a novel training-free classifier-based
guidance algorithm for discrete flow matching that leverages straight-through gradients to guide
the flow trajectory towards high-scoring sequences (Section 5).

4. Biological Sequence Generation; we show competitive performance against discrete diffusion
and flow matching baselines in conditional DNA promoter design, target-binding peptide design
(Section 6), and de novo protein sequence generation (Appendix G.2).

2 PRELIMINARIES

We consider a noisy uniform distribution over the (V − 1)-dimensional simplex p0(x0) and a clean
distribution p1(x1) over discrete samples x1 ∼ D from a dataset D. One challenge of generative
modeling on the simplex is defining a time-dependent flow ψt that smoothly transforms p0 to p1.
Given ψt, we can generate samples from p1 by first sampling from p0 and applying a learned velocity
field ut = d

dtψt that transports distributions from p0 to p1.

2.1 THE GUMBEL-SOFTMAX DISTRIBUTION

The Gumbel-Softmax distribution or Concrete distribution [20, 26] is a relaxation of discrete random
variables onto the interior of the simplex ∆V−1 = {x ∈ RV |xi ∈ [0, 1],

∑V
j=1 xj = 1}. This

continuous relaxation is achieved by adding i.i.d. sampled Gumbel noise gi = − log(− logUi)),
where Ui ∼ Uniform(0, 1), scaling down by the temperature parameter τ > 0, and applying the
differentiable softmax function across the distribution such that the probabilities sum to 1. Given
parameters πi ∈ (ϵ,∞) representing the unnormalized logits of each category, where ϵ is a small
constant to avoid undefined logarithms, the Gumbel-Softmax random variable is given by

xi = SM
(
log πi + gi

τ

)
=

exp
(

log πi+gi
τ

)
∑V

j=1 exp
(

log πj+gj
τ

) (1)

where SM(·) denotes the softmax function. We observe that as τ → 0, the distribution converges
to a one-hot vector where xk → 1 and xj → 0 for j ̸= k given that k = argmaxk (log πk + gk).
Conversely, as τ → ∞, the distribution approaches a uniform distribution where xj → 1

V for all
j ∈ [1, V].

2.2 DISCRETE FLOW MATCHING

Flow matching [31, 24, 5] is a simulation-free generative framework that aims to transform noisy
samples from a source distribution x0 ∼ p0 to clean samples from the data distribution x1 ∼ p1
by learning to predict the marginal velocity field ut(xt) that transports p0 to p1 as a mixture of
conditional velocity fields uθt (xt|x1) parameterized by a neural network. The interpolant ψt(x1) is a
function that transforms the one-hot distribution x1 to an intermediate noisy distribution xt at time t,
which satisfies the boundary constraints ψ0(x1) ≈ x0 and ψ1(x1) ≈ x1. Therefore, the conditional
velocity field is given by the time derivative of ψt(x1).

ut(xt|x1) =
d

dt
ψt(x1) (2)

2

Published at the DeLTa workshop, ICLR 2025

where ut ∈ Txt
∆V−1 is in the set of tangent vectors on the simplex at point xt. For a velocity field

ut to generate pt, it must satisfy the continuity equation given by

∂

∂t
pt(xt) = −∇ · (pt(xt)ut(xt)) (3)

where ∇· is the divergence operator that describes the total outgoing flux at a point xt along the flow
trajectory. Intuitively, the continuity equation states that the rate of change of probability mass at a
point in time is equal to the outgoing flux from that point, ensuring that probability mass is conserved
across all points along the trajectory.

The flow matching (FM) objective is to train a parameterized model uθt (xt) to approximate ut given
a noisy sample xt at time t ∈ [0, 1] by minimizing the squared norm

LFM = Et,xt

∥∥uθt (xt)− ut(xt)
∥∥2 (4)

But since computing ut(xt) requires marginalizing over all possible trajectories and is intractable,
we condition the velocity field on each data point x1 and compute the conditional flow-matching
(CFM) objective given by

LCFM = Et,xt

∥∥uθt (xt)− ut(xt|x1)
∥∥2 (5)

which is tractable and has the same gradient as the unconditional flow-matching loss ∇θLFM =
∇θLCFM [23, 43]. Among existing discrete flow matching methods, there are two methods of defining
a discrete flow: defining the interpolant ψt(x1) that connects a noisy sample x0 to a clean one-hot
sample x1 and defining the probability path which pushes density from the prior distribution p0 to
the target data distribution p1. In this work, we define a new temperature-dependent interpolant and
derive the corresponding velocity field.

2.3 SCORE MATCHING GENERATIVE MODELS

Score matching [36] is another generative matching framework that learns the gradient of the
conditional probability density path∇xt

log pt(xt) (defined as the score) of the interpolation between
noisy and clean data. By parameterizing the score function with sθ(xt, t), we can minimize the score
matching loss given by

Lscore = Ept(xt) ∥∇xt
log pt(xt)− sθ(xt, t)∥2 (6)

Similarly to flow-matching, directly learning∇xt
log pt(xt) is intractable, so we learn the conditional

probability path∇xt
log pt(xt|x1) conditioned on x1 ∼ p1 by minimizing

Lscore = Ept(xt|x1),p1(x1) ∥∇xt
log pt(xt|x1)− sθ(xt, t)∥2 (7)

which we show in Appendix D.1 equals the unconditional score function by expectation over x1.

3 GUMBEL-SOFTMAX FLOW MATCHING

In this work, we present Gumbel-Softmax Flow Matching (FM), a novel simplex-based flow match-
ing method that defines the noisy logits at each time step with the Gumbel-Softmax transformation,
enabling smooth interpolation between noisy and clean data by modulating the temperature τ(t),
which changes as a function of time.

3.1 DEFINING THE GUMBEL-SOFTMAX INTERPOLANT

We define a novel interpolant that transforms near uniform to one-hot distributions by decreasing
the temperature parameter in the Gumbel-Softmax function over time. Since the Gumbel-Softmax
distribution is undefined at τ = 0, we define the monotonically decreasing function τ(t) as

τ(t) = τmax exp(−λt) (8)

where τmax is the initial temperature set to a large number which produces a near uniform distribution,
λ controls the decay rate, and t ∈ [0, 1] is the time period.

3

Published at the DeLTa workshop, ICLR 2025

Figure 1: Overview of Gumbel-Softmax Flow Matching. Gumbel-softmax transformations are applied to
clean one-hot sequences for varying time-dependent temperatures to learn to transform noisy to clean sequences.
The full algorithm is detailed in Algorithm 1 and 2.

Now, we define the conditional interpolant xt = ψt(x1 = ek) with t ∈ [0, 1] and Gumbel-noise
scaled by a factor β as

ψt(x1 = ek) =
exp

(
δik+(gi/β)

τ(t)

)
∑V

j=1 exp
(

δjk+(gj/β)
τ(t)

) (9)

where τ(t) = τmax exp(−λt) and πi = exp(δik). δik is the Kronecker delta function that returns 1
when i = k and 0 otherwise. This decaying time-dependent temperature function τ(t) ensures that
the distribution becomes more concentrated at the target vertex as t→ 1. Gumbel noise is applied
during training to ensure that the model learns to reconstruct a clean sequence given contextual
information.

Proposition 1 (Continuity). The proposed conditional vector field and conditional probability path
together satisfy the continuity equation (Equation 3) and thus define a valid flow matching trajectory
on the interior of the simplex.

We provide the proof of continuity in Appendix C.2. This definition of the flow satisfies the boundary
conditions. For t = 0, τ(t) = τmax which produces a near-uniform distribution ψ0(x0|x1) ≈ 1

V .
For t = 1, exp(−λt) → 0 (faster decay for larger λ) and τ(t) → 0, meaning the flow trajectory
converges to the vertex of the simplex corresponding to the one-hot vector ψ1(x0|x1) ≈ x1.

3.2 REPARAMETERIZING THE VELOCITY FIELD

From our definition of the Gumbel-Softmax interpolant, we derive the conditional velocity field
ut(x0|x1) by taking the derivative of the flow (Appendix C.1).

ut,i(x|x1 = ek) =
λ

τ(t)
xt,i

V∑
j=1

xt,j ·
(
(δik + gi)− (δjk + gj)

)
(10)

Proposition 2 (Probability Mass Conservation). The conditional velocity field preserves the proba-
bility mass and lies in the tangent bundle at point xt on the simplex Txt

∆V−1.

Proof in Appendix C.3. Instead of directly regressing ut(xt|x1) by minimizing LCFM defined in
Equation 5, we train a denoising model that predicts the probability vector xθ(xt, t) ∈ ∆V−1 given
the noisy interpolant xt by minimizing the negative log loss.

Lgumbel = Ept(xt|x1=ek),p1(x1) [− log⟨xθ(xt, t),x1⟩] (11)

4

Published at the DeLTa workshop, ICLR 2025

During inference, we compute the predicted marginal velocity field as the weighted sum of the
conditional velocity fields scaled by the predicted token probabilities.

uθt (xt) =

V∑
k=1

ut(x|x1 = ek)⟨xθ(xt, t), ek⟩ (12)

Proposition 3 (Valid Flow Matching Loss). If pt(xt) > 0 for all xt ∈ Rd and t ∈ [0, 1], then the
gradients of the flow matching loss and the Gumbel-Softmax FM loss are equal up to a constant not
dependent on θ such that∇θLFM = ∇θLgumbel

Proof in Appendix C.3. By our definition of the Gumbel-Softmax interpolant, the intermediate
distributions during inference represent a mixture of learned conditional interpolants ψt(x1) from
the training data. Since the denoising model is trained to predict the true clean distribution, we can
set the Gumbel-noise random variable in the conditional velocity fields to 0 during inference, as we
want the velocity field to point toward the predicted denoised distribution. Therefore, the conditional
velocity field becomes

ut(xt|x1 = ek) =
λ

τ(t)
xt,k (ek − xt) (13)

which points toward the target vertex ek at a magnitude proportional to xt,k(1− xt,k) and away from
all other vertices at a magnitude proportional to−xt,ixt,k. We observe that the velocity field vanishes
both at the vertex and the (V − 2)-dimensional face directly opposite to the vertex and increases as
t→ 1 and τ(t)→ 0, accelerating towards the target vertex at later time steps.

4 GUMBEL-SOFTMAX SCORE MATCHING

As an alternative to our flow matching framework, we propose Gumbel-Softmax Score Matching
(SM), a score-matching method that learns the gradient of the probability density path∇xt log pt(xt)
associated with the Gumbel-Softmax interpolant.

4.1 THE EXPONENTIAL CONCRETE DISTRIBUTION

When computing Gumbel-Softmax random variables, the exponentiation of small values associated
with low-probability tokens can result in numerical underflow. Since the logarithm of 0 is undefined,
this could result in numerical instabilities when computing the log probability density. To avoid
instabilities, we take the logarithm of the Gumbel-Softmax probability distribution (known as the
EXPCONCRETE distribution [26]) given by xi = log

(
SM

(
log πi+gi

τ

))
. Expanding the logarithm,

we get that the ith element EXPCONCRETE random variable is defined as

xi =
log πi + (gi/β)

τ
− log

V∑
j=1

exp

(
log πj + (gj/β)

τ

)
(14)

Translating this into our time-dependent interpolant where πi = exp(δik), we define

ψt(x1 = ek) =
δik + (gi/β)

τ(t)
− log

V∑
j=1

exp

(
δjk + (gj/β)

τ(t)

)
(15)

By our derivation in Appendix D.1, the score defined as the gradient of the log-probability density of
the EXPCONCRETE interpolant with respect to the ith element xt,i is given by

∇xt,i log pt(xt|x1) = −τ(t) + τ(t)V · SM
(
δik − τ(t)xt,i

)
(16)

4.2 LEARNING THE GUMBEL-SOFTMAX PROBABILITY DENSITY

Given that the Gumbel-Softmax interpolant naturally converges towards the one-hot target token
distribution, it follows that learning the evolution of probability density across training samples would

5

Published at the DeLTa workshop, ICLR 2025

enable generation in regions with high probability density. Our goal is to train a parameterized model
to learn to estimate the gradient of the log-probability density of the Gumbel-Softmax interpolant
such that the gradient converges at regions with high probability density. To achieve this, we define
the score parameterization similar to [27], given by

sθ(xt, t) = −τ(t) + τ(t)V · SM
(
fθ(xt, t)

)
where sθ(xt, t) ≈ ∇xt,j

log pt(xt) (17)
where θ minimizes the reparameterized score-matching loss given by

Lscore = Ept(xt|x1),p1(x1)

∥∥∥∥[− τ(t) + τ(t)V · SM(δik − τ(t)xt,i)
]
−
[
− τ(t) + τ(t)V · SM(fθ(xt, t)

]∥∥∥∥2
= τ(t)2V 2Ept(xt|x1),p1(x1)∥SM

(
δik − τ(t)xt,i

)
− SM(fθ(xt, t)

)
∥2 (18)

The softmax function applied after parameterization ensures dependencies are preserved across
the predicted output vector, which defines the rate of probability flow towards each vertex. Since
τ(t)→ 0 when t→ 1, we remove the scaling term to ensure the losses are evenly scaled over time.

Lscore = Ept(xt|x1),p1(x1)∥SM
(
δik − τ(t)xt,i

)
− SM(fθ(xt, t)

)
∥2 (19)

Proposition 4. The gradient of the EXPCONCRETE log-probability density is proportional
to the gradient of the Gumbel-softmax log-probability density such that ∇GS

xj
log pθ(xt|x1) ∝

∇ExpConcrete
xj

log pθ(xt|x1).

Proof in Appendix D.2. Therefore, by minimizing Lscore, we obtain a model that effectively transports
intermediate Gumbel-Softmax distributions towards clean distributions in high-probability regions of
the discrete state space.

5 STRAIGHT-THROUGH GUIDED FLOWS (STGFLOW)

In this section, we introduce Straight-Through Guided Flows (STGFlow), a classifier-based
guidance method that guides the pre-trained conditional flow velocities towards sequences with
higher classifier probabilities pϕ(y|xt) which does not require training a time-dependent classifier or
classifier-guided velocity field. STGFlow leverages straight-through gradient estimators to compute
gradients of classifier scores from discrete sequence samples with respect to the continuous logits
from which they were sampled.

5.1 STRAIGHT-THROUGH GRADIENT ESTIMATORS

Figure 2: Straight-Through Guided Flows
(STGFlow). The gradients of the classifier function
with respect to M discrete sequences sampled from the
intermediate token distribution xt act as a guided flow
velocity that steers the unconditional trajectory towards
sequences with optimal scores. The full algorithm is
detailed in Algorithm 5.

Straight-through gradient estimators aim to
solve the problem of taking gradients with re-
spect to discrete random variables. Consider a
reward function R(z) that takes a discrete se-
quence z of length L sampled from a learned
distribution pθ(z), and our goal is to maximize
the reward

max
θ
R = min

θ
Ez∼pθ

[
R(z)

]
(20)

Given the non-differentiability ofR(z) with re-
spect to the parameters θ, the Straight-Through
Gumbel-Softmax estimator (ST-GS) [20] evalu-
ates the gradient of the reward function through
a surrogate of the discrete random variable z
defined as the tempered softmax distribution
over the continuous logits from which z was
sampled.

∇θR =
∂R(z)
∂z

d

dθ
SMτ (pθ(z)) (21)

ST-GS preserves the forward evaluation of the reward function while enabling low-variance gradient
estimation for back-propagation of the gradient that does not need to be defined over continuous
relaxations of discrete variables over the simplex. Instead, they only need to be defined for discrete
sequences, which is the case for most pre-trained classifier models.

6

Published at the DeLTa workshop, ICLR 2025

5.2 STRAIGHT-THROUGH GUIDED FLOW MATCHING

We extend the idea of ST-GS to define a novel post-training guidance method. At each time step t, we
compute the Gumbel-Softmax velocity field uθt (xt) and take a step. Then, from the updated logits,
we sample M discrete sequences {x̃1,1, . . . , x̃1,M} from the top k logits in xt re-normalized with
the softmax function. For each sequence x̃1,m, we compute a classifier score using our pre-trained
classifier pϕ(y|x̃1,m). Since the gradient through the argmax function is either 0 or undefined, we
compute the gradient of the classifier model with respect to the surrogate softmax distribution.

∇xtpϕ(y|x̃1,m) =
∂pϕ(y|x̃1,m)

x̃1,m

d

dxt
SM
(
xt

)
(22)

Evaluating the straight-through gradient with respect to the probability of each token, we have

∇xt,i
pϕ(y|x̃1,m) =

{
∂pϕ(y|x̃1,m)

x̃1
·
[
SM(xt,i) (1− SM(xt,k))

]
i = k

∂pϕ(y|x̃1,m)
x̃1

·
[
− SM(xt,i)SM(xt,k)

]
i ̸= k

(23)

where k denotes the index of the sampled token such that x̃1,m = ek. During inference, the partial
derivative term ∂pϕ(y|x̃1,m)

x̃1,m
is computed with automatic differentiation with respect to each sequence

position, enabling position-specific guidance. Finally, we guide the flow trajectory by adding the
aggregate gradient across all M sequences, scaled by a constant γ to get

xt = xt + γ

M∑
m=1

∇xt
pϕ(y|x̃1,m) (24)

Proposition 5 (Conservation of Probability Mass of Straight-Through Gradient). The straight-through
gradient∇xtpϕ(y|x̃1,m) preserves probability mass and lies on the tangent bundle at xt.

Proof in Appendix E. Conceptually, the straight-through gradient acts as a guiding velocity that steers
the unconditional velocity toward valid, optimal sequences. Pseudocode for STGFlow is provided in
Algorithm 5.

6 EXPERIMENTS

6.1 SIMPLEX-DIMENSION TOY EXEPRIMENT

Setup. Following Stark et al. [38], we conduct a toy experiment that evaluates the KL divergence
between the empirically-generated distribution and a random distribution of sequence length 4 over
the (V − 1)-dimensional simplex (∆V−1)4 for K = {20, 40, 60, 80, 100, 120, 140, 160, 512}. The
sequence length is set to 4, and the number of integration steps was set to 100 across all experiments.

Training. We trained Linear FM [38], Dirichlet FM [38], Fisher FM [14], and Gumbel-Softmax FM
each for 50K steps on 100K sequences from a randomly generated distribution. We evaluated the KL
divergence KL(q̃∥pdata) where q̃ is the normalized distribution from 51.2K sequences generated by
the model and pdata is the distribution from which the training data was sampled.

Results. As shown in Table 5, Gumbel-Softmax FM achieves superior performance to Dirichlet
FM when scaled to dimensions K ≥ 60, with stable KL divergence in the range 0.02− 0.05 for all
simplex dimensions up to K = 512. Although Gumbel-Softmax FM achieves higher KL divergence
than Fisher FM, we note that the use of optimal transport in Fisher FM results in learning straight,
deterministic flows that can result in overfitting to the training data. This can be observed when
comparing the curves of the validation mean-squared error loss between the predicted and true
conditional velocity fields summed over the simplex and sequence length dimensions (Figure 5).

6.2 PROMOTER DNA SEQUENCE DESIGN

Following the procedures of previous works [7, 38], we evaluate Gumbel-Softmax FM for conditional
DNA promoter design and show superior performance to discrete diffusion and flow-matching
baselines.

7

Published at the DeLTa workshop, ICLR 2025

Figure 3: Gumbel-Softmax FM generated peptide binders for three targets with no known binders. (A) 10
a.a. designed binder to JPH3 (structure generated with AlphaFold3) involved in Huntington’s Disease-Like 2.
(B) 10 a.a. designed binder to GFAP (PDB: 6A9P) involved in Alexander Disease. (C) 7 a.a. designed binder
to eIF2B (PDB: 6CAJ) involved in Vanishing White Matter Disease. Docked with AutoDock VINA and polar
contacts within 3.5 Å are annotated. Additional targets are shown in Table 2.

Setup. Promoter DNA is the strand of DNA adjacent to a gene that binds to RNA polymerase
and transcription factors to promote gene transcription and expression. The objective is to train
a conditional flow model with the regulatory signal concatenated to the noisy input sequence to
minimize the mean squared error (MSE) between the predicted regulatory activity of the generated
sequence with the true sequence, predicted with a pre-trained Sei model [11].

Model MSE (↓)

Bit Diffusion (Bit Encoding)* 0.041
Bit Diffusion (One-Hot Encoding)* 0.040
D3PM-Uniform* 0.038
DDSM* 0.033
Language Model* 0.033

Dirichlet Flow Matching 0.029
Fisher Flow Matching 0.030
Gumbel-Softmax Flow Matching (Ours) 0.029

Table 1: Evaluation of promoter DNA generation con-
ditioned on transcription profile. MSE was evaluated
across all validation batches between the predicted sig-
nal of a conditionally generated sequence and the true
sequence. Regulatory signals were predicted with a pre-
trained Sei model [11]. Numbers with * are from Stark
et al. [38]

Training. Following Stark et al. [38],
we trained on a train/test/validation split of
88, 470/3, 933/7, 497 promoter sequences that
are 1,024 base pairs in length. For each batch
of size 256, we applied the Gumbel-Softmax
transformation according to Equation 9 with
τmax = 10.0 and λ = 3.0 for uniformly dis-
tributed time steps t ∈ [0, 1] over each training
batch. The models were parameterized with a
20-layer 1D CNN architecture for 150K steps
and evaluated the MSE across all validation
batches.

Results. We show that Gumbel-Softmax FM
produces lower signal MSE compared to diffu-
sion and autoregressive language model base-
lines [7, 12, 6] and similar MSE to Dirichlet and
Fisher FM [38, 14].

6.3 PEPTIDE BINDER DESIGN

Finally, we show that Gumbel-Softmax FM cou-
pled with STGFlow is capable of generating de
novo peptide binders with similar or higher binding affinity to proteins with known peptide binders
and diverse, rare disease-associated proteins without known peptide binders.

Setup. We generated de novo peptide binders protein targets with existing an no existing peptide
binders following Algorithm 5. To guide the flow paths, we train a target-binding cross-attention-
based regression model (Appendix F.2) that takes the ESM2 [22] representations of a peptide and
protein sequence pair and predicts the Kd/Ki/IC50 score. Using a dataset of 1781 experimentally
validated peptides, our model achieved a strong Spearman correlation coefficient of 0.96 on the
training set and 0.64 on the validation set.

8

Published at the DeLTa workshop, ICLR 2025

Table 2: Top: Comparison of ipTM (AF3) and VINA docking scores for existing and designed peptide binders
to protein targets. Bottom: Comparison of scores for scrambled and designed peptide binders to proteins with
no existing binders. *Contains unnatural amino acid X, which cannot be processed by AlphaFold3. **No PDB
structure available. Used AlphaFold3 predicted structure for docking.

PDB ID existing binder ipTM (↑) pTM (↑) VINA Docking Score (kcal/mol) (↓)

existing designed existing designed existing designed

GLP-1R (3C5T) HXEGTFTSDVSSYLEGQAAKEFIAWLVRGRG * 0.65 * 0.66 -5.7 -7.5
1AYC ARLIDDQLLKS 0.68 0.67 0.88 0.88 -5.3 -4.6
2Q8Y ALRRELADW 0.44 0.70 0.83 0.84 -6.7 -6.8
3EQS GDHARQGLLALG 0.80 0.71 0.88 0.86 -4.4 -4.7
3NIH RIAAA 0.85 0.86 0.91 0.90 -6.2 -5.7
4EZN VDKGSYLPRPTPPRPIYNRN 0.54 0.59 0.85 0.87 -4.1 -6.5
4GNE ARTKQTA 0.89 0.76 0.76 0.76 -5.0 -4.8
4IU7 HKILHRLLQD 0.93 0.79 0.91 0.94 -4.6 -5.9
5E1C KHKILHRLLQDSSS 0.83 0.80 0.91 0.91 -4.3 -5.1
5EYZ SWESHKSGRETEV 0.73 0.81 0.77 0.78 -2.9 -6.9
5KRI KHKILHRLLQDSSS 0.83 0.77 0.91 0.91 -3.5 -5.5
7LUL RWYERWV 0.94 0.91 0.93 0.92 -6.5 -7.6
8CN1 ETEV 0.90 0.86 0.72 0.82 -6.0 -6.9

Protein Name (PDB ID) Disease ipTM (↑) pTM (↑) VINA Docking Score (kcal/mol) (↓)

scrambled designed scrambled designed scrambled designed

GFAP (6A9P) Alexander Disease 0.38 0.62 0.29 0.31 -3.7 -5.9
eIF2B (6CAJ) Vanishing White Matter Disease 0.39 0.61 0.76 0.77 -9.0 -9.1
Gigaxonin (3HVE) Giant Axonal Neuropathy 0.54 0.75 0.82 0.83 -6.2 -6.8
NPC2 (6W5V) Niemann-Pick Disease Type C 0.34 0.80 0.77 0.79 -5.6 -6.5
JPH3 (**) Huntington’s Disease-Like 2 (HDL2) 0.60 0.72 0.49 0.49 -7.8 -7.9
2CKL BMI1 Medulloblastoma 0.43 0.71 0.73 0.81 -6.2 -6.8

Training. We fine-tuned our Gumbel-Softmax FM protein generator (Appendix G.2) for 600 epochs
on 17, 479 peptides (0.8/0.2 train/validation split) between 6 − 50 amino acids in length curated
from the PepNN [1], BioLip2 [45], and PPIRef [8] datasets.

Results. First, we compare peptide binders generated by Gumbel-Softmax FM coupled with STGFlow
guidance to existing peptide binders to 13 protein targets (Table 2). After generating 20 de novo
peptides of the same length as the existing binders, we computed the ipTM and pTM scores using
AlphaFold3 to evaluate the predicted confidence of the peptide-protein complexes and the docking
scores using AutoDock VINA to evaluate the free energy of the binding interaction (See Appendix
H.3 for details on evaluation metrics). From the final de novo generated peptides with optimized
classifier scores against each target, we show consistent generation of peptides with superior ipTM
(↑) and VINA docking scores (↓) compared to experimentally-validated binders (Table 2), indicating
the efficacy of guided flow matching strategy in generating peptides with high binding affinity.

To further validate the versatility of our framework, we evaluated peptide binders guided for six
proteins involved in various diseases with no pre-existing peptide binders (Figure 7; Table 2). We
generated 20 peptide binders that are 5− 15 amino acids in length with Gumbel-Softmax FM and
STGFlow guidance and randomly permuted the sequence to generate a scrambled negative control
for comparison. Notably, our designed binders demonstrate strong ipTM higher than 0.62 and VINA
docking scores below −5.9. Despite the short sequence length, we also show that scrambling the
order of amino acids consistently decreases the binding affinity compared to the unscrambled binder,
indicating that our guidance strategy effectively captures dependencies across tokens that lead to
higher-affinity peptides (Table 2). Furthermore, the docked peptides show complementary structures
to the target protein with several polar contacts within 3.5 Å (Figure 7).

Since pTM (↑) scores are dominated by the confidence in the protein target structure, there are no
significant differences in the scores between the designed binders and control peptides; however, we
still observe slightly higher scores, indicating that our designed binders enhance the stability of the
protein structure. Plotting the predicted binding affinity scores over the iteration or time step, we
consistently see sharp upward curves, which proves the efficacy of STGFlow in optimizing classifier
scores (Figure 4).

7 CONCLUSION

In this work, we introduce Gumbel-Softmax Flow and Score Matching, a novel discrete gener-
ative framework that learns interpolations between noisy and clean sequences by modulating the
temperature of the Gumbel-Softmax distribution. By parameterizing a straight continuous-time
interpolation with stochastic Gumbel noise, we overcome limitations in discrete sampling errors,

9

Published at the DeLTa workshop, ICLR 2025

scalability to higher simplex dimensions, and deterministic flows of existing discrete generative
frameworks. In addition, we close the gap in training-free guidance for discrete flow matching
with STGFlow, an algorithm that leverages straight-through gradient estimators to steer the flow
trajectory. Future directions include extending the approach to multi-objective sequence optimization,
incorporating task-specific priors to enhance design constraints, and applying Gumbel-Softmax FM
to other structured biological design problems, such as RNA sequence engineering and regulatory
circuit design.

8 DECLARATIONS

Acknowledgments. We thank the Duke Compute Cluster, Pratt School of Engineering IT department,
and Mark III Systems, for providing database and hardware support that has contributed to the
research reported within this manuscript.

Author Contributions. S.T. devised and developed model architectures and theoretical formulations,
and trained and benchmarked models. Y.Z. advised on model design and theoretical framework,
trained and benchmarked models, and performed molecular docking. S.T. drafted the manuscript and
S.T. and Y.Z. designed the figures. A.T. reviewed mathematical formulations and provided advising.
P.C. designed, supervised, and directed the study, and reviewed and finalized the manuscript.

Data and Materials Availability. The codebase will be freely accessible to the academic community
at https://huggingface.co/ChatterjeeLab/GumbelFlow.

Funding Statement. This research was supported by NIH grant R35GM155282 as well as a grant
from the EndAxD Foundation to the lab of P.C.

Competing Interests. P.C. is a co-founder of Gameto, Inc. and UbiquiTx, Inc. and advises companies
involved in peptide therapeutics development. P.C.’s interests are reviewed and managed by Duke
University in accordance with their conflict-of-interest policies. S.T., Y.Z., and A.T. have no conflicts
of interest to declare.

REFERENCES

[1] Osama Abdin, Satra Nim, Han Wen, and Philip M. Kim. Pepnn: a deep attention model for
the identification of peptide binding sites. Communications Biology, 5(1), May 2022. ISSN
2399-3642. doi: 10.1038/s42003-022-03445-2. URL http://dx.doi.org/10.1038/
s42003-022-03445-2.

[2] Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel,
Olaf Ronneberger, Lindsay Willmore, Andrew J. Ballard, Joshua Bambrick, Sebastian W.
Bodenstein, David A. Evans, Chia-Chun Hung, Michael O’Neill, David Reiman, Kathryn
Tunyasuvunakool, Zachary Wu, Akvilė Žemgulytė, Eirini Arvaniti, Charles Beattie, Ottavia
Bertolli, Alex Bridgland, Alexey Cherepanov, Miles Congreve, Alexander I. Cowen-Rivers,
Andrew Cowie, Michael Figurnov, Fabian B. Fuchs, Hannah Gladman, Rishub Jain, Yousuf A.
Khan, Caroline M. R. Low, Kuba Perlin, Anna Potapenko, Pascal Savy, Sukhdeep Singh, Adrian
Stecula, Ashok Thillaisundaram, Catherine Tong, Sergei Yakneen, Ellen D. Zhong, Michal
Zielinski, Augustin Žídek, Victor Bapst, Pushmeet Kohli, Max Jaderberg, Demis Hassabis, and
John M. Jumper. Accurate structure prediction of biomolecular interactions with alphafold 3.
Nature, 630(8016):493–500, May 2024. ISSN 1476-4687. doi: 10.1038/s41586-024-07487-w.
URL http://dx.doi.org/10.1038/s41586-024-07487-w.

[3] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD international conference on knowledge discovery & data mining, pp. 2623–2631,
2019.

[4] Sarah Alamdari, Nitya Thakkar, Rianne van den Berg, Neil Tenenholtz, Robert Strome, Alan M.
Moses, Alex X. Lu, Nicolò Fusi, Ava P. Amini, and Kevin K. Yang. Protein generation with
evolutionary diffusion: sequence is all you need. September 2023. doi: 10.1101/2023.09.11.
556673. URL http://dx.doi.org/10.1101/2023.09.11.556673.

10

https://huggingface.co/ChatterjeeLab/GumbelFlow
http://dx.doi.org/10.1038/s42003-022-03445-2
http://dx.doi.org/10.1038/s42003-022-03445-2
http://dx.doi.org/10.1038/s41586-024-07487-w
http://dx.doi.org/10.1101/2023.09.11.556673

Published at the DeLTa workshop, ICLR 2025

[5] Michael S. Albergo, Nicholas M. Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A
unifying framework for flows and diffusions. arXiv preprint 2303.08797, 2023.

[6] Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg.
Structured denoising diffusion models in discrete state-spaces. Advances in Neural Information
Processing Systems, 2021. doi: 10.48550/ARXIV.2107.03006. URL https://arxiv.org/
abs/2107.03006.

[7] Pavel Avdeyev, Chenlai Shi, Yuhao Tan, Kseniia Dudnyk, and Jian Zhou. Dirichlet diffusion
score model for biological sequence generation, 2023. URL https://arxiv.org/abs/
2305.10699.

[8] Anton Bushuiev, Roman Bushuiev, Petr Kouba, Anatolii Filkin, Marketa Gabrielova, Michal
Gabriel, Jiri Sedlar, Tomas Pluskal, Jiri Damborsky, Stanislav Mazurenko, and Josef Sivic.
Learning to design protein-protein interactions with enhanced generalization, 2023. URL
https://arxiv.org/abs/2310.18515.

[9] Andrew Campbell, Joe Benton, Valentin De Bortoli, Tom Rainforth, George Deligiannidis, and
Arnaud Doucet. A Continuous Time Framework for Discrete Denoising Models. October 2022.
URL https://openreview.net/forum?id=DmT862YAieY.

[10] Andrew Campbell, Jason Yim, Regina Barzilay, Tom Rainforth, and Tommi Jaakkola. Gener-
ative flows on discrete state-spaces: Enabling multimodal flows with applications to protein
co-design. arXiv, 2024. doi: 10.48550/ARXIV.2402.04997. URL https://arxiv.org/
abs/2402.04997.

[11] Kathleen M. Chen, Aaron K. Wong, Olga G. Troyanskaya, and Jian Zhou. A sequence-
based global map of regulatory activity for deciphering human genetics. Nature Genetics,
54(7):940–949, July 2022. ISSN 1546-1718. doi: 10.1038/s41588-022-01102-2. URL
http://dx.doi.org/10.1038/s41588-022-01102-2.

[12] Ting Chen, Ruixiang Zhang, and Geoffrey Hinton. Analog bits: Generating discrete data using
diffusion models with self-conditioning, 2022. URL https://arxiv.org/abs/2208.
04202.

[13] Andre Cornman, Jacob West-Roberts, Antonio Pedro Camargo, Simon Roux, Martin Be-
racochea, Milot Mirdita, Sergey Ovchinnikov, and Yunha Hwang. The omg dataset: An
open metagenomic corpus for mixed-modality genomic language modeling. 2024. doi:
10.1101/2024.08.14.607850. URL https://www.biorxiv.org/content/early/
2024/08/17/2024.08.14.607850.

[14] Oscar Davis, Samuel Kessler, Mircea Petrache, Ismail Ilkan Ceylan, Michael Bronstein, and
Avishek Joey Bose. Fisher flow matching for generative modeling over discrete data. Advances
in Neural Information Processing Systems, 2024. doi: 10.48550/ARXIV.2405.14664. URL
https://arxiv.org/abs/2405.14664.

[15] Jerome Eberhardt, Diogo Santos-Martins, Andreas F Tillack, and Stefano Forli. Autodock vina
1.2. 0: New docking methods, expanded force field, and python bindings. Journal of chemical
information and modeling, 61(8):3891–3898, 2021.

[16] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised lan-
guage model for protein design. Nature Communications, 13(1), July 2022. ISSN 2041-
1723. doi: 10.1038/s41467-022-32007-7. URL http://dx.doi.org/10.1038/
s41467-022-32007-7.

[17] Itai Gat, Tal Remez, Neta Shaul, Felix Kreuk, Ricky T. Q. Chen, Gabriel Synnaeve, Yossi
Adi, and Yaron Lipman. Discrete flow matching. Advances in Neural Information Processing
Systems, 2024. doi: 10.48550/ARXIV.2407.15595. URL https://arxiv.org/abs/
2407.15595.

[18] Shrey Goel, Vishrut Thoutam, Edgar Mariano Marroquin, Aaron Gokaslan, Arash Firouzbakht,
Sophia Vincoff, Volodymyr Kuleshov, Huong T. Kratochvil, and Pranam Chatterjee. Memdlm:
De novo membrane protein design with masked discrete diffusion protein language models.

11

https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2107.03006
https://arxiv.org/abs/2305.10699
https://arxiv.org/abs/2305.10699
https://arxiv.org/abs/2310.18515
https://openreview.net/forum?id=DmT862YAieY
https://arxiv.org/abs/2402.04997
https://arxiv.org/abs/2402.04997
http://dx.doi.org/10.1038/s41588-022-01102-2
https://arxiv.org/abs/2208.04202
https://arxiv.org/abs/2208.04202
https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850
https://www.biorxiv.org/content/early/2024/08/17/2024.08.14.607850
https://arxiv.org/abs/2405.14664
http://dx.doi.org/10.1038/s41467-022-32007-7
http://dx.doi.org/10.1038/s41467-022-32007-7
https://arxiv.org/abs/2407.15595
https://arxiv.org/abs/2407.15595

Published at the DeLTa workshop, ICLR 2025

arXiv, 2024. doi: 10.48550/ARXIV.2410.16735. URL https://arxiv.org/abs/2410.
16735.

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. NeurIPS 2021 Workshop on
Deep Generative Models and Downstream Applications, 2022. doi: 10.48550/ARXIV.2207.
12598. URL https://arxiv.org/abs/2207.12598.

[20] Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax.
International Conference on Learned Representations, 2017. doi: 10.48550/ARXIV.1611.01144.
URL https://arxiv.org/abs/1611.01144.

[21] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan dos Santos Costa, Maryam Fazel-Zarandi,
Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science, 379(6637):1123–1130, March 2023.
ISSN 1095-9203. doi: 10.1126/science.ade2574. URL http://dx.doi.org/10.1126/
science.ade2574.

[22] Zeming Lin, Halil Akin, Roshan Rao, Brian Hie, Zhongkai Zhu, Wenting Lu, Nikita Smetanin,
Robert Verkuil, Ori Kabeli, Yaniv Shmueli, Allan Dos Santos Costa, Maryam Fazel-Zarandi,
Tom Sercu, Salvatore Candido, and Alexander Rives. Evolutionary-scale prediction of atomic-
level protein structure with a language model. Science, 379(6637):1123–1130, March 2023.

[23] Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow
matching for generative modeling. International Conference on Learning Representations, 2023.
doi: 10.48550/ARXIV.2210.02747. URL https://arxiv.org/abs/2210.02747.

[24] Qiang Liu. Rectified flow: A marginal preserving approach to optimal transport. arXiv preprint
2209.14577, 2022.

[25] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating
the ratios of the data distribution. International Conference on Machine Learning, 2024. doi:
10.48550/ARXIV.2310.16834. URL https://arxiv.org/abs/2310.16834.

[26] Chris J. Maddison, Andriy Mnih, and Yee Whye Teh. The concrete distribution: A continuous
relaxation of discrete random variables, 2016. URL https://arxiv.org/abs/1611.
00712.

[27] Ahsan Mahmood, Junier Oliva, and Martin Andreas Styner. Anomaly detection via gumbel
noise score matching. Frontiers in Artificial Intelligence, 7, September 2024. ISSN 2624-8212.
doi: 10.3389/frai.2024.1441205. URL http://dx.doi.org/10.3389/frai.2024.
1441205.

[28] Erik Nijkamp, Jeffrey A. Ruffolo, Eli N. Weinstein, Nikhil Naik, and Ali Madani. Progen2:
Exploring the boundaries of protein language models. Cell Systems, 14(11):968–978.e3,
November 2023. ISSN 2405-4712. doi: 10.1016/j.cels.2023.10.002. URL http://dx.doi.
org/10.1016/j.cels.2023.10.002.

[29] Hunter Nisonoff, Junhao Xiong, Stephan Allenspach, and Jennifer Listgarten. Unlocking
guidance for discrete state-space diffusion and flow models. International Conference on
Learning Representations, 2025. doi: 10.48550/ARXIV.2406.01572. URL https://arxiv.
org/abs/2406.01572.

[30] William Peebles and Saining Xie. Scalable diffusion models with transformers. IEEE/CVF
International Conference on Computer Vision (ICCV), 2023. doi: 10.48550/ARXIV.2212.09748.
URL https://arxiv.org/abs/2212.09748.

[31] Stefano Peluchetti. Non-denoising forward-time diffusions, 2022. URL https://
openreview.net/forum?id=oVfIKuhqfC.

[32] Aram-Alexandre Pooladian, Heli Ben-Hamu, Carles Domingo-Enrich, Brandon Amos, Yaron
Lipman, and Ricky T. Q. Chen. Multisample flow matching: Straightening flows with minibatch
couplings. International Conference on Machine Learning, 2023. doi: 10.48550/ARXIV.2304.
14772. URL https://arxiv.org/abs/2304.14772.

12

https://arxiv.org/abs/2410.16735
https://arxiv.org/abs/2410.16735
https://arxiv.org/abs/2207.12598
https://arxiv.org/abs/1611.01144
http://dx.doi.org/10.1126/science.ade2574
http://dx.doi.org/10.1126/science.ade2574
https://arxiv.org/abs/2210.02747
https://arxiv.org/abs/2310.16834
https://arxiv.org/abs/1611.00712
https://arxiv.org/abs/1611.00712
http://dx.doi.org/10.3389/frai.2024.1441205
http://dx.doi.org/10.3389/frai.2024.1441205
http://dx.doi.org/10.1016/j.cels.2023.10.002
http://dx.doi.org/10.1016/j.cels.2023.10.002
https://arxiv.org/abs/2406.01572
https://arxiv.org/abs/2406.01572
https://arxiv.org/abs/2212.09748
https://openreview.net/forum?id=oVfIKuhqfC
https://openreview.net/forum?id=oVfIKuhqfC
https://arxiv.org/abs/2304.14772

Published at the DeLTa workshop, ICLR 2025

[33] Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin,
Justin T Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked
diffusion language models. Advances in Neural Information Processing Systems, 2024. doi:
10.48550/ARXIV.2406.07524. URL https://arxiv.org/abs/2406.07524.

[34] Schrödinger, LLC. The PyMOL molecular graphics system, version 1.8. November 2015.

[35] Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
generalized masked diffusion for discrete data. Advances in Neural Information Processing
Systems, 2024. doi: 10.48550/ARXIV.2406.04329. URL https://arxiv.org/abs/
2406.04329.

[36] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. Advances in Neural Information Processing Systems, 2019. doi: 10.48550/ARXIV.
1907.05600. URL https://arxiv.org/abs/1907.05600.

[37] Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon,
and Ben Poole. Score-based generative modeling through stochastic differential equations.
International Conference on Learning Representations, 2021. doi: 10.48550/ARXIV.2011.
13456. URL https://arxiv.org/abs/2011.13456.

[38] Hannes Stark, Bowen Jing, Chenyu Wang, Gabriele Corso, Bonnie Berger, Regina Barzilay,
and Tommi Jaakkola. Dirichlet flow matching with applications to dna sequence design. ICML,
2024.

[39] Martin Steinegger and Johannes Söding. Clustering huge protein sequence sets in linear time.
Nature communications, 9(1):2542, 2018.

[40] Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. Roformer:
Enhanced transformer with rotary position embedding, 2021. URL https://arxiv.org/
abs/2104.09864.

[41] Baris E Suzek, Hongzhan Huang, Peter McGarvey, Raja Mazumder, and Cathy H Wu. Uniref:
comprehensive and non-redundant uniprot reference clusters. Bioinformatics, 23(10):1282–
1288, 2007.

[42] Sophia Tang, Yinuo Zhang, and Pranam Chatterjee. Peptune: De novo generation of therapeutic
peptides with multi-objective-guided discrete diffusion. arXiv, 2024. doi: 10.48550/ARXIV.
2412.17780. URL https://arxiv.org/abs/2412.17780.

[43] Alexander Tong, Kilian Fatras, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-
Brooks, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative
models with minibatch optimal transport. Transactions on Machine Learning Research, 2024.
doi: 10.48550/ARXIV.2302.00482. URL https://arxiv.org/abs/2302.00482.

[44] Mingyang Wang, Shuai Li, Jike Wang, Odin Zhang, Hongyan Du, Dejun Jiang, Zhenxing Wu,
Yafeng Deng, Yu Kang, Peichen Pan, Dan Li, Xiaorui Wang, Xiaojun Yao, Tingjun Hou, and
Chang-Yu Hsieh. Clickgen: Directed exploration of synthesizable chemical space via modular
reactions and reinforcement learning. Nature Communications, 15(1), November 2024. ISSN
2041-1723. doi: 10.1038/s41467-024-54456-y. URL http://dx.doi.org/10.1038/
s41467-024-54456-y.

[45] Chengxin Zhang, Xi Zhang, Lydia Freddolino, and Yang Zhang. Biolip2: an updated structure
database for biologically relevant ligand–protein interactions. Nucleic Acids Research, 52
(D1):D404–D412, July 2023. ISSN 1362-4962. doi: 10.1093/nar/gkad630. URL http:
//dx.doi.org/10.1093/nar/gkad630.

[46] Ruochi Zhang, Haoran Wu, Yuting Xiu, Kewei Li, Ningning Chen, Yu Wang, Yan Wang, Xin
Gao, and Fengfeng Zhou. Pepland: a large-scale pre-trained peptide representation model for a
comprehensive landscape of both canonical and non-canonical amino acids. arXiv, 2023. doi:
10.48550/ARXIV.2311.04419. URL https://arxiv.org/abs/2311.04419.

13

https://arxiv.org/abs/2406.07524
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/2406.04329
https://arxiv.org/abs/1907.05600
https://arxiv.org/abs/2011.13456
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2412.17780
https://arxiv.org/abs/2302.00482
http://dx.doi.org/10.1038/s41467-024-54456-y
http://dx.doi.org/10.1038/s41467-024-54456-y
http://dx.doi.org/10.1093/nar/gkad630
http://dx.doi.org/10.1093/nar/gkad630
https://arxiv.org/abs/2311.04419

Published at the DeLTa workshop, ICLR 2025

[47] Xi Zhang, Yuan Pu, Yuki Kawamura, Andrew Loza, Yoshua Bengio, Dennis L. Shung, and
Alexander Tong. Trajectory flow matching with applications to clinical time series modeling,
2024. URL https://arxiv.org/abs/2410.21154.

[48] Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky T. Q. Chen.
Guided flows for generative modeling and decision making, 2023. URL https://arxiv.
org/abs/2311.13443.

14

https://arxiv.org/abs/2410.21154
https://arxiv.org/abs/2311.13443
https://arxiv.org/abs/2311.13443

Published at the DeLTa workshop, ICLR 2025

A EXTENDED BACKGROUND

A.1 FLOW MATCHING ON THE SIMPLEX

Here, we discuss the motivation behind discrete flow matching [10, 17], and specifically on the
interior of the simplex [38, 14]. This discussion will help motivate the contribution of our work from
past iterations.

Discrete diffusion models [6, 25, 9] operate by applying categorical noise in the form of
xt ∼ Cat(·|Q⊤

t x0) that convert the clean sequence of one-hot categorical distributions x0 to
a noisy sequence zt. Then, a parameterized model learns to iteratively reconstruct the clean
sequence x0 from the noisy sequence zt by taking t discrete backward transitions given by

zs ∼ Cat
(
·|Qs|tzt⊙Q⊤

s xθ(zt,t)

z⊤
t Q⊤

t xθ(zt,t)

)
. However, this method operates in the fully discrete state space,

meaning that the noisy sequence at each time step is a fully discrete sequence of one-hot vectors
sampled from continuous categorical distributions. This can result in discretization errors during sam-
pling when abruptly restricting continuous distributions to a single token. This presents the question:
Can we generate discrete sequences by iteratively fine-tuning continuous probability distributions?

This is the motivation behind discrete flow matching models on the simplex [38, 14], which defines
a smooth interpolation ψt(x1) from a prior uniform distribution over the simplex x0 to a unitary
distribution concentrated at a single vertex x1 over the time interval t ∈ [0, 1]. To ensure that noisy
can be transformed into valid, clean sequences at inference, the interpolant must satisfy the boundary
conditions given by ψ0(x1) ≈ 1

V where V is the size of the token vocabulary. The advantage of
this approach over fully discrete methods is the ability to refine probability distributions given the
neighboring distributions rather than noisy discrete tokens that accumulate discretization errors at
each time step.

A.2 DETERMINISTIC VS. STOCHASTIC INTERPOLANTS

The linear interpolant [23, 32] defines a a deterministic flow ψt(xt|x0,x1) = tx0 + (1 − t)x1

between a pair of fixed endpoints (x0,x1). Optimal transport [43] further defines an optimal mapping
π(x0,x1) that minimizes a cost function c(x0,x1)— often a squared distance cost c(x0,x1) =
d2(x0,x1)—between paired endpoints. Although the deterministic perspective is optimal for tasks
like matching trajectories [47], it lacks expressivity and diversity for de novo design tasks like protein
or peptide-binder design. This approach also prevents the flow model from effectively learning to
redirect specific token trajectories that do not reflect the data distribution during inference, given the
sequence context.

By defining a stochastic interpolant with Gumbel-noise where each token has a small probability of
being transformed into a distribution where the token with the highest probability does not match
the true token during training, the model still needs to predict the clean distribution xθ(xt, t) or the
target generating velocity field uθt (xt) but with more ambiguity given that not all distributions are
on the deterministically biased towards the target token. This pushes the model to place a greater
weight on the global context of each token and learn dependencies across tokens to generate a valid,
clean sequence despite the increased ambiguity. Furthermore, this approach injects path variability to
improve generalization and exploration of diverse flows for de novo design tasks.

A.3 GUIDED FLOW MATCHING

A key limitation of current discrete flow matching techniques is the lack of training-free guidance
strategies. Flow matching guidance [48, 19] is performed either with classifier-based or classifier-free
guidance.

Classifier-Free Guidance. In classifier-free guided flow matching [48], the guided velocity field is
obtained by training a guided flow model uϕt (x|y) and an unconditional flow model uθt (x) and taking
the linear combination of the guided and unconditional velocities scaled by a parameter γ.

ũθt (x|y) = (1− γ)uθt (x) + γuθt (x|y) (25)

15

Published at the DeLTa workshop, ICLR 2025

This strategy requires training an additional guided flow model on quality-labeled data, which is often
scarce. Given that flow models require more training data than simple regression and classification
models, classifier-based guidance is preferred for scalability.

Classifier-Based Guidance. In classifier-based guided flow matching [37], a time-dependent classifier
pϕt (y|xt) that predicts a classifier score given noisy samples xt separately from the unconditional
generator. Then, we sample with a guided velocity field given by

uθ,ϕt (xt) = uθt (xt) + γ∇xt
log pϕt (y|xt) (26)

which requires projection back to the simplex for guided discrete flows. For simplex-based flows,
this approach typically involves additional training of noisy classifiers that predict the classifier score
given intermediate distributions over the simplex at each time step. Not only are these noisy classifiers
less accurate than large pre-trained classifiers on clean sequences, but they also require extensive
training, as all noise levels need to be included in the training task.

STGFlow overcomes these limitations by defining a guided flow velocity using the straight-through
gradients of the scoring model on discrete sequences sampled with respect to the relaxed Gumbel-
softmax probabilities. To ensure that the scores of sampled sequences are representative of the relaxed
distribution, we sample M sequences and take the aggregate gradient as the guided velocity. This
provides a modular training-free strategy for discrete flow matching guidance that conserves the
probability mass constraint (Proof in Appendix E).

B RELATION TO PRIOR SIMPLEX-BASED FLOW MATCHING MODELS

In this section, we discuss and compare Gumbel-Softmax FM with two related methods for discrete
flow matching on the simplex: Dirichlet Flow Matching [38] and Fisher Flow Matching [14].

B.1 DIRICHLET FLOW MATCHING

The Dirichlet distribution is an extension of the Beta distribution B for multiple variables and models
the probability of the next variable x being in one of V discrete categories given a parameter vector
α⃗ = (α1, . . . , αV). Intuitively, it acts as a distribution of smooth categorical vectors x ∈ ∆V−1 that
lie on the probability simplex given that each category i ∈ [1 . . . V] was observed with frequency αi.
Increasing αi for a given category i would increase the probability of sampling x near the ith vertex
of the simplex. Dirichlet FM [38] defines the conditional probability path as

pt(x|x1 = ek) = Dir(x; α⃗ = 1+ t · ek) =
1

B(α1, . . . , αV)

V∏
i=1

xαi−1
t,i (27)

At t = 0, the distribution reduces to a uniform prior over ∆V−1, with an equal probability of
sampling x near any vertex. As t → ∞, αk increases while αj for all j ̸= k remain constant, so
the probability density converges to the kth vertex. As shown in [38], this distribution satisfies the
boundary constraints.

To compute the target vector field, we start with the following equation

ut(xt|x1 = ek) = −Ĩxt,k(t+1,V−1)
B(t+ 1, V − 1)

(1− xt,k)V−1 · xt,k
(ek − xt) (28)

Similar to our approach, Dirichlet FM trains a denoising model by minimizing a negative log loss and
computes the velocity field as the linear combination of the conditional velocity fields as in Equation
12.

Although the Dirichlet probability path provides support over the entire simplex at all time steps, it
suffers from high variance during training due to the stochastic nature of sampling from the Dirichlet
distribution. Since flow matching learns a mixture of conditional velocity fields, there exists inherent
variability during inference. Our definition of a Gumbel-Softmax interpolant ensures straighter flow
paths and lower variance during training, as Gumbel noise largely preserves the relative probabilities
between categories.

16

Published at the DeLTa workshop, ICLR 2025

B.2 FISHER FLOW MATCHING

Fisher FM [14] overcomes the instability of the Fisher-Rao metric at the vertices of the simplex via a
sphere map φ : ∆V−1 → SV−1

+ where φ(x) =
√
x that maps a point in the interior of the (V − 1)-

dimensional simplex to a point on the positive orthant of the (V − 1)-dimensional hypersphere. The
conditional velocity field ut(xt|x1) of the linear interpolant on the sphere is given by

ψt(x1) = expx0

(
t logx0

(x1)
)

ut(xt|x1) =
logxt

(x1)

1− t
(29)

During inference, the parameterized velocity field ũθ(xt) ∈ RV is projected onto the tangent bundle
of the hypersphere TxtSV+ via the following mapping

uθt (xt) = ũθ(xt)− ⟨xt, ũθ(xt)⟩2xt (30)
which minimizes the mean-squared error with the true conditional velocity field given by

Lfisher = Et∼U(0,1),pt(xt|x1),p1(x1)

∥∥∥∥uθ(t,xt)−
logxt

(x1)

1− t

∥∥∥∥2
SV+

(31)

Fisher FM addresses the high training variance of Dirichlet FM without the pathological properties
of linear flows on the simplex by projecting the linear interpolant to the positive orthant of the
V -dimensional hypersphere, which is isometric to the (V − 1)-dimensional simplex. However,
projecting velocity fields to and from the tangent space of the hypersphere can lead to inconsistencies
when applying guidance methods. Empirically, we found that the Fisher FM exhibits significantly
high validation MSE loss during training, especially for increasing simplex dimensions, suggesting
that the parameterization easily overfits to training data and is not optimal for de novo design tasks
such as protein generation or peptide design.

C FLOW MATCHING DERIVATIONS

C.1 DERIVING THE CONDITIONAL VELOCITY FIELD

We derive the conditional velocity field at a point xt denoted as ut(x|x1 = ei) by taking the derivative
of the interpolant ψt(x1 = ei) with respect to time t.

ut,i(xt|x1 = ek) =
d

dt
ψt,i(x0|x1 = ek)

=
d

dt

exp
(

log πi+gi
τmax exp(−λt)

)
∑V

j=1 exp
(

log πj+gj
τmax exp(−λt)

) (32)

Letting zi = exp
(

log πi+gi
τmax exp(−λt)

)
, we have

ut(xt|x1 = ek) =
d

dt

exp(zi)∑V
j=1 exp(zj)

=

(
d
dt exp(zi)

) (∑V
j=1 exp(zj)

)
− exp(zi)

(
d
dt

∑V
j=1 exp(zj)

)
(∑V

j=1 exp(zj)
)2 (33)

First, we compute d
dt exp(zi)

d

dt
exp

(
log πi + gi

τmax exp(−λt)

)
= exp(zi) ·

d

dt

(
log πi + gi

τmax exp(−λt)

)
= exp(zi) ·

log πi + gi
τmax

· d
dt

exp(λt)

= exp(zi) ·
log πi + gi
τmax

· λ exp(λt)

(34)

17

Published at the DeLTa workshop, ICLR 2025

Then, we compute d
dt

∑
j exp(zj)

d

dt

V∑
j=1

exp

(
log πj + gj

τmax exp(−λt)

)
=

V∑
j=1

d

dt
exp

(
log πj + gj

τmax exp(−λt)

)

=

V∑
j=1

(
exp(zj) ·

log πj + gj
τmax

· λ exp(λt)
)

(35)

Then, substituting these terms back into the expression for ut, we get

ut,i(xt|x1 = ek)

=

(∑V
j=1 exp (zj)

)
· exp(zi) · log πi+gi

τmax
· λ exp(λt)− exp (zi) ·

∑V
j=1

(
exp(zj) · log πj+gj

τmax
· λ exp(λt)

)
(∑V

j=1 exp (zj)
)2

=
exp(zi) · λ exp(λt)

τmax

(∑V
j=1 exp (zj)

)2
[(

V∑
j=1

exp(zj)

)
· (log πi + gi)−

V∑
j=1

(
exp(zj) · (log πj + gj)

)]

=
exp(zi) · λ exp(λt)

τmax

(∑V
j=1 exp (zj)

)2
[

V∑
j=1

exp(zj)

(
(log πi + gi)− (log πj + gj)

)]

=
exp(zi)∑V

j=1 exp (zj)

λ exp(λt)

τmax

[
V∑

j=1

(
exp(zj)∑
j′ exp (zj)

·
(
(log πi + gi)− (log πj + gj)

))]

= ψt,i(x1) ·
λ exp(λt)

τmax

[
V∑

j=1

(
ψt,j(x1) ·

(
(log πi + gi)− (log πj + gj)

))]

=
λ

τ(t)
xt,i

V∑
j=1

xt,j ·
(
(log πi + gi)− (log πj + gj)

)
(36)

By our definition of the Gumbel-Softmax interpolant, the intermediate distributions during inference
represent a mixture of learned conditional interpolants ψt(x1) from the training data. Since the
denoising model is trained to predict the true clean distribution, we can set the Gumbel-noise random
variable in the conditional velocity fields to 0 during inference, as we want the velocity field to point
toward the predicted denoised distribution.

Substituting in πi = exp(δik), we have

ut,i(xt|x1 = ek) =
λ

τ(t)
xt,i

V∑
j=1

xt,j · (δik − δjk)

Since δij = 1 only when i is the index of the target token i = k and 0 otherwise, the velocity field
can be rewritten as

ut,i(x0|x1 = ek) =

{
λ

τ(t)
xt,i

∑V
j=1

(
xt,j · (1− δjk)

)
i = k

λ
τ(t)

xt,i
∑V

j=1

(
xt,j · (−δjk)

)
i ̸= k

=

λ exp(λt)

τmax
xt,i

(∑V
j=1 xt,j −

∑V
j=1 xt,jδjk

)
i = k

λ exp(λt)
τmax

xt,i
(
−
∑V

j=1 xt,jδjk
)

i ̸= k

=

{
λ exp(λt)

τmax
xt,i (1− xt,k) i = k

λ exp(λt)
τmax

xt,i (−xt,k) i ̸= k
(37)

Rewriting in vector form, we get

ut(xt|x1 = ek) =
λ

τ(t)
xt,k (ek − xt) (38)

which points toward the target vertex ek.

18

Published at the DeLTa workshop, ICLR 2025

C.2 PROOF OF CONTINUITY

Proposition 1. The proposed conditional vector field and conditional probability path satisfy the
continuity equation and thus define a valid flow-matching trajectory in the interior of the simplex.

∂

∂t
pt(x) = −∇ · (pt(x)ut(xt)) (39)

Proof of Proposition 1. During training, each clean sequence x1 is transformed into some noisy
interpolant ψt(xt) with a sampled Gumbel-noise vector g ∼ Gumbel(0, 1). Therefore, we can rewrite
the interpolant as a deterministic path conditioned on the one-hot distribution x1 and Gumbel-noise
vector g

ψt(x1) = ψt(x1,g) = SM
(
x1 + g

τ(t)

)
(40)

With this definition, we can define a deterministic probability path as the Dirac delta function along
the interpolant xt = ψt(x1) as

pt(x|x1) = δ(x− ψt(x1)) (41)

So, we can rewrite the continuity equation as

∂

∂t
pt(x|x1) = −∇ ·

(
δ(x− ψt(x1))

∂

∂t
ψt(x1)

)
= −∇δ(x− ψt(x1)) ·

∂

∂t
ψt(x1) (42)

First, we will simplify the right-hand side (RHS) of the continuity equation. Taking the derivative
with respect to t, we get

∂

∂t
pt(x|x1) =

∂

∂t
δ(x− ψt(xt))

Taking the distributional derivative with an arbitrary test function f(x) independent of t, we have

=

∫
f(x)

∂

∂t
δ(x− ψt(xt,g))dx

=
∂

∂t

∫
f(x)δ(x− ψt(xt))dx

=
∂

∂t
f(ψt(x1)) (43)

Since ψt(x1) ∈ RV , we apply the multivariable chain rule to get

∂

∂t
pt(x|x1) = ∇f(ψt(x1)) ·

∂

∂t
ψt(x1) (44)

Now, we integrate the left-hand side (LHS) of the continuity equation with an arbitrary test function.∫
f(x)

[
−∇δ(x− ψt(x1)) ·

∂

∂t
ψt(x1)

]
dx = −

[∫
f(x)∇δ(x− ψt(x1))dx

]
· ∂
∂t
ψt(x1) (45)

Using integration by parts, we can write the term inside the bracket as∫ ∞

−∞
f(x)∇δ(x− ψt(x1))dx = f(x)δ(x− ψt(x1))

∣∣∣∣∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞

−∞
δ(x− ψt(x1))∇f(x)

= −
∫ ∞

−∞
δ(x− ψt(x1))∇f(x) (46)

19

Published at the DeLTa workshop, ICLR 2025

Substituting this back into the LHS, we get∫
f(x)

[
−∇δ(x− ψt(x1)) ·

∂

∂t
ψt(x)

]
dx = −

[
−
∫ ∞

−∞
δ(x− ψt(x1))∇f(x)

]
· ∂
∂t
ψt(x1)

= ∇f(ψt(x1)) ·
∂

∂t
ψt(x1) (47)

We have shown that both sides of the continuity equation produce the same expression when integrated
against any arbitrary test function f(x). So, we can conclude

∂

∂t
pt(x|x1) = −∇δ(x− ψt(x1)) ·

∂

∂t
ψt(x1)

= ∇ · (pt(x|x1)ut(xt|x1)) (48)

Now that we have shown the continuity equation holds for the conditional probability density and
flow velocities, it follows that the continuity equation holds for the unconditional flow. Following the
proof in [43], we have

d

dt
pt(xt) =

d

dt

∫
x1

pt(xt|x1)p1(x1)dx1

=

∫
x1

d

dt
pt(xt|x1)p1(x1)dx1

=

∫
x1

−∇ ·
(
pt(xt|x1)ut(xt|x1)p1(x1)

)
dx1 (substitute conditional continuity)

= −∇ ·
(∫

x1

pt(xt|x1)ut(xt|x1)p1(x1)dx1

)
= −∇ · (pt(xt)ut(xt)) (49)

which concludes the proof.

C.3 PROOF OF FLOW MATCHING PROPOSITIONS

Proposition 1 (Probability Mass Conservation) The conditional velocity field preserves probability
mass and lies on the tangent bundle at point xt on the simplex Txt

∆V−1 = {ut ∈ RV |⟨1, ut⟩ = 0}.
Proof of Proposition 1. We show that the conditional velocity field derived from the Gumbel-Softmax
interpolant preserves probability mass such that

V∑
i=1

ut,i(xt|x1 = ek) = 0 (50)

Summing up the velocities for all i ∈ [1 . . . V], we have

V∑
i=1

ut(x0|x1 = ek) =

V∑
i=1

[
λ

τ(t)
xt,i

V∑
j=1

xt,j ·
(
(log πi + gi)− (log πj + gj)

)]

=
λ

τ(t)

V∑
i=1

[
xt,i

[
V∑

j=1

xt,j(log πi + gi)−
V∑

j=1

xt,j(log πj + gj)

]]

=
λ

τ(t)

V∑
i=1

[
xt,i

[
(log πi + gi)

V∑
j=1

xt,j −
V∑

j=1

xt,j(log πj + gj)

]]

=
λ

τ(t)

[
V∑

i=1

xt,i(log πi + gi)−
V∑

i=1

xt,i

V∑
j=1

xt,j(log πj + gj)

]

=
λ

τ(t)

[
V∑

i=1

xt,i(log πi + gi)−
V∑

j=1

xt,j(log πj + gj)

]
= 0 (51)

20

Published at the DeLTa workshop, ICLR 2025

which proves that our velocity field always preserves the probability mass t.

Proposition 3. (Valid Flow Matching Loss) If pt(xt) > 0 for all xt ∈ Rd and t ∈ [0, 1], then the
gradients of the flow matching loss and the Gumbel-Softmax FM loss are equal up to a constant not
dependent on θ such that∇θLFM = ∇θLgumbel

Proof of Proposition 3. We can rewrite the conditional velocity field derived in Appendix C.1 as

ut(xt|x1 = ek) =
λ

τ(t)
xt,k (ek − xt)

=
λ

τ(t)

V∑
i=1

xt,i (ei − xt) ⟨ei,x1⟩ (52)

Furthermore, the predicted velocity field is given by

uθt (xt) =

V∑
i=1

ut(xt|x1 = ei) ⟨ei,xθ⟩

=
λ

τ(t)

V∑
i=1

xt,i(ei − xt) ⟨ei,xθ⟩ (53)

Substituting the velocity field expressions into the flow-matching loss, we obtain

Ept(xt)∥ut(xt|x1)− uθ
t (xt)∥2

= Ept(xt)

∥∥∥∥∥ λ

τ(t)

V∑
i=1

xt,i (ei − xt) ⟨ei,x1⟩ −
λ

τ(t)

V∑
i=1

xt,i(ei − xt) ⟨ei,xθ⟩

∥∥∥∥∥
2

=
λ2

τ(t)2
Ept(xt)

∥∥∥∥∥
V∑

i=1

[
xt,i (ei − xt) ⟨ei,x1⟩ − xt,i(ei − xt) ⟨ei,xθ⟩

]∥∥∥∥∥
2

=
λ2

τ(t)2
Ept(xt)

∥∥∥∥∥
V∑

i=1

xt,i (ei − xt)

[
⟨ei,x1⟩ − ⟨ei,xθ⟩

]∥∥∥∥∥
2

=
λ2

τ(t)2
Ept(xt)

∥∥∥∥∥
V∑

i=1

xt,i (ei − xt) ⟨ei,x1 − xθ⟩

∥∥∥∥∥
2

=
λ2

τ(t)2
Ept(xt)

∥∥∥∥∥
V∑

i=1

xt,i (ei − xt) (x1 − xθ)i

∥∥∥∥∥
2

=
λ2

τ(t)2
Ept(xt)

∥∥∥∥∥
V∑

i=1

xt,i(x1 − xθ)iei −
V∑

i=1

xt,i(x1 − xθ)ixt

∥∥∥∥∥
2

=
λ2

τ(t)2
Ept(xt) ∥xt ⊙ (x1 − xθ)− xt⟨xt,x1 − xθ⟩∥2 (54)

The remainder of the proof extends that of [23, 43], which proved that the conditional flow matching
loss∇θLCFM = ∇θLFM under similar constraints.

First, we further expand the conditional flow-matching loss as follows

Ept(xt)∥ut(xt|x1)− uθ
t (xt, t)∥2

=
λ2

τ(t)2
Ept(xt) ∥xt ⊙ (x1 − xθ)− xt⟨xt,x1 − xθ⟩∥2

=
λ2

τ(t)2
Ept(xt) ∥xt ⊙ x1 − xt ⊙ xθ − xt⟨xt,x1 − xθ⟩∥2

=
λ2

τ(t)2
Ept(xt) ∥xt ⊙ x1 − xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)∥2

=
λ2

τ(t)2
Ept(xt)

[
∥xt ⊙ x1∥2 − 2

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)

〉
+ ∥xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)∥2

]

21

Published at the DeLTa workshop, ICLR 2025

Then, taking the gradient with respect to θ, we have

∇θEpt(xt)∥ut(xt|x1)− uθt (xt, t)∥2

=
λ2

τ(t)2
∇θEpt(xt)

[
∥xt ⊙ x1∥2 − 2

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)

〉
+ ∥xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)∥2

]
=

λ2

τ(t)2

[
− 2∇θEpt(xt)

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)

〉
+∇θEpt(xt)

∥∥∥∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)
∥∥∥∥2]

(55)

Now, we rewrite x1 as the expectation over noisy samples xt learned by the model. By Bayes’
theorem, we have

p(x1|x1) =
pt(xt|x1)p1(x1)

pt(xt)
(56)

Then, defining x1 as an expectation over pt(xt), we get

x1 = Ep(x1|xt) [x1]

=

∫
x1

x1p(x1|xt)dx1

=

∫
x1

x1
pt(xt|x1)p1(x1)

pt(xt)
dx1 (57)

Now, we substitute this into the first expectation in the gradient to get

Ept(xt)

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)

〉
=

∫
xt

〈
xt ⊙

∫
x1

x1
pt(xt|x1)p1(x1)

pt(xt)
dx1,xt ⊙

(
xθ −

〈
xt

∫
x1

x1
pt(xt|x1)p1(x1)

pt(xt)
dx1,−xtxθ

〉)〉
pt(xt)dxt

=

∫
xt

〈
xt ⊙

∫
x1

x1pt(xt|x1)p1(x1)dx1,xt ⊙
(
xθ −

〈
xt

∫
x1

x1pt(xt|x1)p1(x1)dx1,−xtxθ

〉)〉
dxt

=

∫
xt

〈
xt ⊙

∫
x1

x1pt(xt|x1)p1(x1)dx1,xt ⊙
(
xθ −

∫
x1

⟨xtx1,−xtxθ⟩ pt(xt|x1)p1(x1)dx1

)〉
dxt

=

∫
xt

∫
x1

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)

〉
pt(xt|x1)p1(x1)dx1dxt

=

∫
x1

∫
xt

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)

〉
pt(xt|x1)p1(x1)dxtdx1

= Ept(xt|x1),p1(x1)

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)

〉
(58)

where we use the linearity properties of integration.

Following similar logic, we have

Ept(xt)∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)∥2

=

∫
xt

∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)∥2pt(xt)dxt

=

∫
xt

∥∥∥∥xt ⊙
(
xθ −

〈
xt

∫
x1

x1
pt(xt|x1)p1(x1)

pt(xt)
dx1,−xtxθ

〉)∥∥∥∥2 pt(xt)dxt

=

∫
xt

∫
x1

∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)∥2 pt(xt|x1)p1(x1)dx1dxt

=

∫
x1

∫
xt

∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)∥2 pt(xt|x1)p1(x1)dxtdx1

= Ept(xt|x1),p1(x1)∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)∥2 (59)

using the fact that the squared norm can be expressed as a bilinear inner product.

22

Published at the DeLTa workshop, ICLR 2025

Substituting these terms back into the gradient of the flow-matching loss, we get

∇θEpt(xt)∥ut(xt|x1)− uθ
t (xt, t)∥2

=
λ2

τ(t)2

[
− 2∇θEpt(xt)

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)

〉
+∇θEpt(xt)

∥∥∥∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)
∥∥∥∥2]

=
λ2

τ(t)2

[
− 2∇θEpt(xt|x1),p1(x1)

〈
xt ⊙ x1,xt ⊙ (xθ − ⟨xt,x1 − xθ⟩)

〉
+∇θEpt(xt|x1),p1(x1)

∥∥∥∥xt ⊙ (xθ − ⟨xtx1,−xtxθ⟩)
∥∥∥∥2]

= ∇θEpt(xt)

[
λ2

τ(t)2
∥xt ⊙ (x1 − xθ)− xt⟨xt,x1 − xθ⟩∥2

]
=

λ2

τ(t)2
∇θEpt(xt) ∥xt ⊙ (x1 − xθ)− xt⟨xt,x1 − xθ⟩∥2 (60)

which concludes the proof that∇θLgumbel = ∇θLFM.

D SCORE MATCHING DERIVATIONS

D.1 DERIVATION OF THE SCORE FUNCTION

We start by showing that the score function of the marginal probability density ∇xt
log pt(xt)

is proportional to the conditional probability density ∇xt
log pt(xt|x1) given that pt(xt) =

Ex1∼p1(x1)

[
pt(xt|x1)

]
.

Taking the gradient of the marginal log probability density and substituting in the definition of pt(xt),
we have

∇xt
log pt(xt) =

∇xt
pt(xt)

pt(xt)

=
∇xtEx1∼pdata

[
pt(xt|x1)

]
pt(xt)

=
∇xt

∫
x1

[
p(x1)pt(xt|x1)

]
dx1

pt(xt)

=

∫
x1
p(x1)∇xt

pt(xt|x1)dx1

pt(xt)

=

∫
x1
p(x1)pt(xt|x1)

∇xtpt(xt|x1)

pt(xt|x1)
dx1

pt(xt)

=

∫
x1

pt(xt|x1)p(x1)

pt(xt)︸ ︷︷ ︸
=pt(x1|xt)

∇xt log pt(xt|x1)dx1

= Ex1∼pt(x1|xt) [∇xt log pt(xt|x1)] (61)

which proves that with the perfect model such that pt(x1) = p(x1|xt), the gradient of the marginal
log-probability density is exactly the expectation of the conditional log-probability density over the
training data∇xt log pt(xt) = Ex1∼p1(x1) [∇xt

log pt(xt|x1)].

Theorem 2. The gradient of the log-probability density of the EXPCONCRETE distribution is given
by

∇xt,i
log pt(xt|x1) = τ(t)− τ(t)V · SM

(
δik − τ(t)xt,i

)
(62)

Proof of Theorem 2. First, we start by defining the probability density of the EXPCONCRETE
distribution. From [26], integrating out the Gumbel-noise random variable, we have

pt(x) = (V − 1)!τV−1

(
V∑
i=1

πj exp(−τxt,j)

)(
V∏
i=1

πi exp(−τxt,i)

)
(63)

23

Published at the DeLTa workshop, ICLR 2025

where xt,i is defined as a logit from the EXPCONCRETE distribution

xt,i =
log πi + gi

τ
− log

V∑
j=1

exp

(
log πj + gj

τ

)
(64)

Taking the logarithm of the probability path, we have

log pt(xt|x1) = log[(V − 1)!] + (V − 1) log τ + log

(
V∏

i=1

πi exp(−τxt,i)

)
− V log

V∑
j=1

πj exp(−τxt,j)

= log[(V − 1)!] + (V − 1) log τ +

V∑
i=1

log (πi exp(−τxt,i))− V log

V∑
j=1

exp (log (πj exp(−τxt,j)))

= log[(V − 1)!] + (V − 1) log τ +

V∑
i=1

(log πi − τxt,i)− V log

V∑
j=1

exp

(
log πj − τxt,j

)

= log[(V − 1)!] + (V − 1) log τ +

V∑
i=1

log πi −
V∑

i=1

τxt,i − V log

V∑
j=1

exp

(
log πj − τxt,j

)
(65)

Then, diferentiating with respect to the logit of a single token xt,j , we get

∇xt,j log pt(xt|x1) = −∇xt,i

V∑
i=1

τxt,i −∇xt,iV log

V∑
j=1

exp

(
log πj − τxt,j

)

= −τ − V

(
1∑V

j=1 exp(log πj − τxt,j)

)
exp(log πi − τxt,i)(−τ)

= −τ + τV

(
exp(log πi − τxt,i)∑V
i=1 exp(log πj − τxj)

)

= −τ + τV · SM
(
log πi − τxt,i

)
(66)

Introducing time-dependence with τ(t) = τmax exp(−λt) and target token dependence with πi =
exp(δik), we have

∇xt,i
log pt(xt|x1) = τ(t)− τ(t)V · SM

(
δik − τ(t)xt,i

)
(67)

D.2 PROOF OF SCORE MATCHING PROPOSITIONS

Proposition 4. The gradient of the EXPCONCRETE log-probability density is proportional to
the gradient of the Gumbel-softmax log-probability density such that ∇GS

xt,j
log pθ(xt|x1) ∝

∇ExpConcrete
xt,j log pθ(xt|x1).

Proof of Proposition 4. As derived in [26], the explicit probability density of the Gumbel-Softmax
distribution is defined as

p(x) = (V − 1)!τV−1

(
V∑
i=1

πi
xτt,i

)−V V∏
i=1

(
πi

xτ+1
t,i

)
(68)

We now derive the log-probability density of the Gumbel-Softmax distribution as

log p(x) = log[(V − 1)!] + (V − 1) log τ − V log

V∑
i=1

πi

xτt,i
+

V∑
i=1

log

(
πi

xτ+1
t,i

)

= log[(V − 1)!] + (V − 1) log τ − V log

V∑
i=1

πi

xτt,i
+

V∑
i=1

log (πi)− (τ + 1)

V∑
i=1

log(xt,i) (69)

24

Published at the DeLTa workshop, ICLR 2025

Taking the gradient with respect to a single token xt,j , we have

∇GS
xt,j

log pt(xt|x1) = ∇xt,j

(
−V log

V∑
i=1

πi

xτt,i

)
−∇xt,j

(
(τ + 1)

V∑
i=1

log(xt,i)

)

= −V

 1∑V
i=1

πi
xτ
t,i

(−πjτ

xτ+1
t,j

)
− τ + 1

xt,j

=
τV

xt,j

(
πjx

−τ
t,j∑V

i=1 πix
−τ
t,i

)
− τ + 1

xt,j

=
τV

xt,j

(
exp(log(πjx

−τ
t,j))∑V

i=1 exp(log(πix
−τ
t,i))

)
− τ + 1

xt,j

=
τV

xt,j

(
exp(log πj − τxt,j)∑V
i=1 exp(log πi − τxt,i)

)
− τ + 1

xt,j

=
τV

xt,j
SM
(
log πi − τxt,i

)
− τ + 1

xt,j

=
1

xt,j

(
− τ + τV · SM

(
log πi − τxt,i

))
− 1

xt,j

=
1

xt,j

(
∇ExpConcrete

xt,j
log pt(xt|x1)

)
− 1

xt,j
(70)

Therefore, we show that the gradients of the Gumbel-Softmax and EXPCONCRETE distributions are
proportional to each other. Furthermore, we derive that the score of Gumbel-Softmax distribution
further amplifies the scores for tokens with low probabilities by dividing by xt,j and subtracting x−1

t,j .

E STRAIGHT-THROUGH GUIDED FLOW DERIVATIONS

Proposition 5. (Probability Mass Conservation of Straight-Through Gradient) The straight through
gradient ∇xt

pϕ(y|x̃1,m) preserves probability mass and lies on the tangent bundle at point xt on the
simplex Txt∆

V−1 = {∇xtpϕ(y|x̃1,m) ∈ RV |⟨1,∇xtpϕ(y|x̃1,m)⟩ = 0}.
Proof of Proposition 5. First, we recall our definition of the straight-through gradient of the classifier
score pϕ(y|x̃1,m) as

∇xt,i
pϕ(y|x̃1,m) =

{
∂pϕ(y|x̃1,m)

x̃1
·
[
SM(xt,i) (1− SM(xt,k))

]
i = k

∂pϕ(y|x̃1,m)
x̃1

·
[
− SM(xt,i)SM(xt,k)

]
i ̸= k

Taking the sum over the simplex dimensions, we have
V∑

i=1

∇xt,ipϕ(y|x̃1,m) =
∂pϕ(y|x̃1,m)

x̃1

SM(xt,k) (1− SM(xt,k))−
∑
i̸=k

SM(xt,i)SM(xt,k)

=
∂pϕ(y|x̃1,m)

x̃1

SM(xt,k) (1− SM(xt,k))− SM(xt,k)
∑
i̸=k

SM(xt,i)

=
∂pϕ(y|x̃1,m)

x̃1

[
SM(xt,k) (1− SM(xt,k))− SM(xt,k) (1− SM(xt,k))

]
= 0

which concludes the proof. In addition, it follows that the sum of straight-through gradients also
preserves probability mass and lies on the tangent space of the simplex at any point.

F MODEL ARCHITECTURE

F.1 DIFFUSION TRANSFORMER

To parameterize our flow and score matching models for the protein and peptide sequence generation
tasks, we leverage the Diffusion Transformer (DiT) architecture [30] which integrates time condition-

25

Published at the DeLTa workshop, ICLR 2025

Figure 4: Predicted binding-affinity scores over iteration of Gumbel-Softmax FM guided with STGFlow
for target-binding peptide generation. The predicted binding affinity is the mean regression scores across
the M discrete sequences sampled at each integration step. The gradients of the scores are used to compute the
guided velocity.

ing with adaptive layer norm (adaLN) and positional information with Rotary Positional Embeddings
(RoPE) [40]. Our model consists of 32 DiT blocks, 16 attention heads, a hidden dimension of 1024,
and dropout of 0.1.

Table 3: Diffusion Transformer Architecture

Layers Input Dimension Output Dimension
Sequence Distribution Embedding Module vocab size 1024

Feed-Forward + GeLU vocab size 1024
DiT Blocks ×32

Adaptive Layer Norm (time conditioning) 1024 1024
Multi-Head Self-Attention (h = 16)

+ Rotary Positional Embeddings 1024 1024
Dropout + Residual 1024 1024
Adaptive Layer Norm (time conditioning) 1024 1024
FFN + GeLU 1024 1024

DiT Final Block
Adaptive Layer Norm (time conditioning) 1024 1024
Linear 1024 vocab size

F.2 PEPTIDE-BINDING AFFINITY CLASSIFIER

We trained a multi-head cross-attention network with ESM-2 650M [22] protein and peptide sequence
embeddings to predict the binding affinity of a peptide to a protein sequence. We trained on 1781
sequences from the PepLand [46] protein-peptide binding dataset containing the protein-target
sequence, peptide sequence, and the experimentally-validated Kd/Ki/IC50 binding affinity score,
where higher values indicate stronger binding.

In addition to the normalized binding affinity scores, we also classified affinities into three categories:
low (< 6.0), medium (6.0− 7.5), and tight (≥ 7.5) binding, with thresholds based on mean and Q3
quantile from the data distribution. The combined classification and regression approach helped the
model better capture relationships between protein embeddings and binding affinities. Data was split
in a 0.8/0.2 ratio with stratification preserving the score distribution.

We used OPTUNA [3] for hyperparameter optimization, tracking validation correlation, and F1 scores
across 10 trials, resulting in an optimal learning rate of 3.84e− 05 and a dropout rate of 0.15. We
retrain the whole classifier (Table 4) with the optimized set of parameters. After training for 50
epochs with early stopping based on validation Spearman correlation, the model achieved a Spearman

26

Published at the DeLTa workshop, ICLR 2025

correlation of 0.96 on training data and 0.64 on validation data, with F1 scores of 0.97 and 0.61,
respectively.

Table 4: Peptide-Binding Affinity Classifier

Layers Protein Dimension Peptide Dimension
Embedding Module 1280 1280
CNN Layers ×3 (Kernel Sizes: 3,5,7) (1280, L) (64× 3, L) per kernel

ReLU Activation (64, L) per kernel (64, L) per kernel
Global Pooling (Max + Avg) (64× 3, L) 64× 3× 2
Linear Layer 384 384
Layer Norm 384 384
Cross-Attention ×4

Multi-Head Attention (h = 8) 384 384
Linear Layer 2048 2048
ReLU 2048 2048
Dropout 2048 2048
Linear Layer 384 384

Shared Prediction Head
Linear Layer 1024
ReLU 1024
Dropout 1024

Regression Head 1

G ADDITIONAL EXPERIMENTS

G.1 SIMPLEX-DIMENSION TOY EXPERIMENT

We reproduce the experimental setup of the toy experiment in Davis et al. [14]. We train 100, 000
sequences sampled from a randomly generated distribution over the (K − 1)-dimensional simplex
for K = {20, 40, 60, 80, 100, 120, 140, 160, 512}. We extend the experiment to dimension 512 to
evaluate performance in a higher simplex dimension.

For the model architecture, we follow Stark et al. [38] and parameterize all benchmark models with a
5-layer CNN with approximately 1M parameters that vary slightly with simplex dimension. After
50K steps, we evaluate the KL divergence KL(q̃∥pdata) where q̃ is the normalized distribution from
51.2K sequences generated by the model and pdata is the distribution from which the training data
was sampled.

Table 5: KL divergences of toy experiment for increasing simplex dimensions compared to benchmark
models. The sequence length is set to a constant of 4 across all experiments. The toy models are trained on 100K
sequences from a random distribution. KL divergence is evaluated for 51.2K sequences after 50K training steps.

Simplex Dimension K 20 40 60 80 100 120 140 160 512

Linear FM 0.013 0.046 0.070 0.100 0.114 0.112 0.156 0.146 0.479
Dirichlet FM 0.007 0.017 0.032 0.035 0.028 0.024 0.039 0.053 0.554
Fisher FM (Optimal Transport) 0.0004 0.007 0.007 0.007 0.008 0.043 0.013 0.013 0.036
Gumbel-Softmax FM (Ours) 0.029 0.027 0.025 0.027 0.030 0.029 0.035 0.038 0.048

G.2 De Novo PROTEIN SEQUENCE DESIGN

Next, we evaluate the quality of unconditionally-generated de novo protein sequences with Gumbel-
Softmax SM and Gumbel-Softmax FM. Despite operating in the continuous simplex space with a
considerably smaller backbone model, we demonstrate competitive generative quality compared to
discrete diffusion and autoregressive baselines.

27

Published at the DeLTa workshop, ICLR 2025

Figure 5: Validation MSE loss over training step of simplex-dimension toy experiment. Fisher FM exhibits
significantly higher validation MSE loss during training than Gumbel-Softmax FM despite the same loss
calculation, suggesting that the parameterization easily overfits to training data.

Table 6: Evaluation metrics for generative quality of protein sequences. Metrics were calculated on 100
unconditionally generated sequences from each model, including EvoDiff and ProtGPT2. The arrow indicates
whether (↑) or (↓) values are better.

Model Params (↓) pLDDT (↑) pTM (↑) pAE (↓) Entropy (↑) Diversity (%) (↑)

Test Dataset (random 1000) - 74.00 0.63 12.99 4.0 71.8

EvoDiff 640M 31.84 0.21 24.76 4.05 93.2
ProtGPT2 738M 54.92 0.41 19.39 3.85 70.9
ProGen2-small 151M 49.38 0.28 23.38 2.55 89.3
Gumbel-Softmax Flow Matching (Ours) 198M 52.54 0.27 16.67 3.41 86.1
Gumbel-Softmax Score Matching (Ours) 198M 49.40 0.29 15.71 3.37 82.5

Figure 6: Predicted structures of de novo generated proteins from Gumbel-
Softmax FM. The structures, pLDDT, pAE, and pTM scores are predicted
with ESMFold [22]

Setup. Given the larger vo-
cabulary size of protein se-
quences, we compared both
the performance of Gumbel-
Softmax FM and Gumbel-
Softmax SM for this task.
For both models, we ap-
plied the Gumbel-Softmax
transformation with vary-
ing temperatures τ(t) for
time steps t ∼ U(0, 1) and
τmax = 10.0. The decay
rates were set to λ = 3.0 for
both models, and the noise
scale was set to β = 2.0. The models were trained following Algorithm 1 for Gumbel-Softmax FM
and 3 for Gumbel-Softmax SM. Sampling was performed following Algorithm 2 and Algorithm 4.

Training. We collected 68M Uniref50 and 207M OMG_PROT50 data [41, 13]. A total of 275M
protein sequences were first clustered to remove singletons using MMseqs2 linclust [39] (parameters
set to -min-seq-id 0.5 -c 0.9 -cov-mode 1). We keep the sequences between lengths
of 20 to 2500 and entries with only wild-type residues to avoid effects from outliers. The singleton
sequences are removed. The resulting representative sequences undergo random 0.8/0.1/0.1 data
splitting. We trained for 5 epochs on 7 NVIDIA A100 GPUs.

Results. We compare the quality of our protein generation method against state-of-the-art de novo
protein sequence generation models including the discrete diffusion model EvoDiff [4], large language
model ProtGPT2 [16], and the autoregressive model ProGen2-small [28]. For 100 unconditionally
generated sequences per model, we compute the pLDDT, pTM, and pAE scores using ESMFold
[21] as well as the token entropy and sequence diversity. Additional details on evaluation metrics
are given in Appendix H.2. BLASTp runs for the proteins we generated indicate no homologous
hits, highlighting again the novelty of the proteins we generated and indicating that our model is

28

Published at the DeLTa workshop, ICLR 2025

not subsampling from known homologous protein sequences. As summarized in Table 6, both
Gumbel-Softmax SM and Gumbel-Softmax FM produce proteins with comparable pLDDT, pTM,
and pAE scores to discrete baselines without significantly compromising sequence entropy and
diversity. We believe further optimization of hyperparameters, leveraging informative priors, or
functional/structural guidance would improve the generative quality of Gumbel-Softmax FM.

H EXPERIMENTAL DETAILS

H.1 HYPERPARAMETER SELECTION

Maximum Temperature τmax. The maximum temperature controls the uniformity of the probability
distribution at t = 0 when exp(−λt) = 1. Theoretically, the probability distribution is fully uniform
ψ0(xt|x1) = 1

V when τmax → ∞. Empirically, we find that setting τmax = 10.0 ensures that the
distribution is near uniform at t = 0 even after applying Gumbel noise, satisfying the boundary
condition ψ0(xt|x1) ≈ 1

V .

Decay Rate λ. The decay rate determines how quickly the temperature drops as t → 1. A decay
rate of λ = 1 means that the function becomes exp(−t), which drops the temperature to ≈ 0.367 at
t = 1. Since we want the temperature to approach 0 to increase the concentration of probability mass
at the vertex, we set λ = 3.0 such that τ(t) = τmax exp(−3.0t). For larger decay rates λ = 10.0, the
distribution converges too quickly to a vertex, which may cause overfitting.

Stochasticity Factor β. We can tune the effect of the Gumbel noise applied during training by
scaling down by a factor β ≥ 1.0 such that gi =

− log(− log(Ui+ϵ)+ϵ)
β . For larger β, the stochasticity

decreases, and for smaller β, the stochasticity increases. For the toy experiment, we found similar
performance for noise factors ranging between β = 2.0→ 10.0. The remaining experiments were
conducted with β = 2.0.

Step Size η and Integration Steps Nsteps. For Gumbel-Softmax FM, the step size is equal to
∆t = 1

Nsteps
since we are integrating the velocity field from t = 0 → 1. For Gumbel-Softmax SM,

the step size determines the rate of convergence to high-probability density regions. Small step sizes
η ≤ 0.1 increase computation cost and the number of steps needed to converge. In contrast, larger
step sizes 0.1 ≤ η ≤ 1.0 increase the speed of convergence but may result in mode-collapse to the
high-density regions. Empirically, we found that a step size of η = 0.5 is optimal with the number of
integration steps Nsteps = 100.

Guidance Scale γ. Given that the softmax gradients tend to be small, especially for low-probability
tokens, the guidance scale γ amplifies the gradient value across all tokens to ensure effective guidance.
For the target-guided peptide design experiments, we set γ = 10.0 to scale the guidance term to be in
the order 10−1, which produced increasing classifier scores over iterations.

Number of Guidance Samples M . For STGFlow, the number of guidance samples M determines
the number of discrete sequences that are sampled from the distribution xt at each time step to
compute the aggregate straight-through gradient. Larger M enables more informed and precise
guidance based on the culmination of the classifier on various token combinations to determine tokens
that lead to enhanced classifier scores, while smaller M results in more spurious guidance that may
not lead to truly optimal sequences. We found that M = 10 maintained a good balance between
effective guidance while minimizing computational costs.

H.2 PROTEIN EVALUATION METRICS

We evaluate protein generation quality based on the following metrics computed by ESMFold [22].

1. pLDDT (predicted Local Distance Difference Test) measures residue-wise local structural
confidence on a scale of 0-100. Proteins with mean pLDDT > 70 generally correspond to
correct backbone prediction and more stable proteins.

2. pTM (predicted Template Modeling) measures global structural plausibility. High pTM corre-
sponds to a high similarity between a predicted structure and a hypothetical true structure.

29

Published at the DeLTa workshop, ICLR 2025

Figure 7: Gumbel-Softmax FM generated peptide binders for three targets with no known binders. (A) 7
a.a. designed binder to NPC2 (PDB: 6W5V) involved in Niemann-Pick Disease Type C. (B) 10 a.a. designed
binder to BMI1 (PDB: 2CKL) involved in Medulloblastoma. (C) 10 a.a. designed binder to Gigaxonin (PDB:
3HVE) involved in Giant Axonal Neuropathy. Docked with AutoDock VINA and polar contacts within 3.5 Å
are annotated. Additional targets are shown in Table 2.

3. pAE (predicted Alignment Error) measures the confidence in pair-wise positioning of residues.
Low pAE scores correspond to low predicted pair-wise error.

In addition, we compute:

1. Token entropy measures the diversity of tokens within each sequence. It is defined as the
Shannon entropy, where pi is the probability of the i-th unique token divided by the total number
of tokens N in the sequence.

E = −
N∑
i=1

pi log2(pi)

2. Diversity is calculated as 1− pairwise sequence identity within a batch of generated sequences
with equal length.

H.3 PEPTIDE EVALUATION METRICS

We evaluate our de novo peptide binders based on two metrics that measure their affinity to their
target protein.

ipTM Score. We use AlphaFold3 [2] to compute the interface predicted template modeling (ipTM)
score, which is on the scale from 0-1 and measures the accuracy of the predicted relative positions
between residues involved in the interaction between the two sequences.

pTM Score. We use AlphaFold3 [2] to compute the predicted template modeling (pTM) score,
which is on a scale from 0-1 and measures the accuracy of the predicted structure of the whole
peptide-protein complex. This score is less relevant when evaluating binding affinity since it can be
dominated by the stability of the target protein.

VINA Docking Score. We use Autodock Vina [15] (v 1.1.2) for in silico docking of the peptide
binders to their target proteins (Table 2) to confirm binding affinity. The complex was first docked
with Alphafold3 for the starting conformation [2]. The final results were visualized in PyMol [34] (v
3.1), where the residues in the protein targets with polar contacts to the peptide binder with distances
closer than 3.5 Å are annotated.

I ALGORITHMS

In this section, we provide detailed procedures for the training and inference of the flow and score-
matching models. Algorithm 1 and 2 describe training and sampling with Gumbel-Softmax FM,

30

Published at the DeLTa workshop, ICLR 2025

respectively. Algorithm 3 and 4 describe training and sampling with Gumbel-Softmax SM, respec-
tively. We consider x1 as a single token in a sequence for simplicity, but in practice, the training and
sampling are conducted on a sequence of tokens of length L.

Algorithm 1 Training Gumbel-Softmax Flow Matching

1: Inputs: Training sequences of one-hot vectors x1 ∈ D, parameterized neural network
NNθ(xt, t), maximum temperature τmax, decay rate λ, and learning rate η.

2: procedure TRAINING GUMBEL-SOFTMAX FM
3: for x1 in batch do
4: Sample t ∼ Uniform(0, 1)
5: Set τ(t)← τmax exp(−λt)
6: Sample U ∼ Uniform(0, 1)V

7: Sample Gumbel noise vector g = − log(− log(U + ϵ) + ϵ)
8: Given the clean token x1 = ek, sample noisy interpolant for time t

xt,i ←
exp

(
δik+(gi/β)

τ(t)

)
∑V

j=1 exp
(

δjk+(gj/β)
τ(t)

)
9: if denoise then

10: Predict xθ(xt, t)← NNθ(xt, t)

11: Minimize negative log loss Ldenoise ← Ex1∼D

[
− log(x

(k)
θ (xt, t))

]
12: else
13: Predict uθt (xt)← NNθ(xt, t)
14: Calculate ut(xt|x1)← λ

τ(t)xt,k (ek − xt)

15: Optimize denoising loss Lmse ← Ex1∼D∥uθt (xt)− ut(xt|x1)∥2
16: end if
17: θ ← θ + η∇θLdenoise
18: end for
19: end procedure

31

Published at the DeLTa workshop, ICLR 2025

Algorithm 2 Unconditional Sampling with Gumbel-Softmax Flow Matching

1: Inputs: Trained neural network NNθ(xt, t), number of integration steps Nstep
2: Output: Clean sequence x from learned data distribution
3: procedure SAMPLING GUMBEL-SOFTMAX FM
4: Compute step size ∆t← 1

Nstep

5: Sample uniform distribution x0 ← 1
V

6: Set xt ← x0

7: for t = 0→ 1 do
8: Compute τ(t)← τmax exp(−λt)
9: if denoise then

10: Predict xθ(xt, t)← NNθ(xt, t)
11: for all simplex dimensions k ∈ [1, V] do

ut(xt|x1 = ek) =
λ

τ(t)
xt,k (ek − xt)

12: end for
13: Calculate the conditional velocity field

uθt (xt)←
V∑

k=1

ut(x|x1 = ek) · ⟨xθ(xt, t), ek⟩

14: else
15: Directly predict conditional velocity field uθt (xt)← NNθ(xt, t)
16: end if
17: Take step xt ← xt +∆t · uθt (xt)
18: xt ← SIMPLEXPROJ(xt)
19: end for
20: Sample sequence x← argmax(xt)
21: return x
22: end procedure

Algorithm 3 Training Gumbel-Softmax Score Matching

1: Inputs: Training sequences of one-hot vectors x1 ∈ D, parameterized neural network
NNθ(xt, t), maximum temperature τmax, decay rate λ, and learning rate η.

2: procedure TRAINING GUMBEL-SOFTMAX SM
3: for x1 in batch do
4: Sample t ∼ Uniform(0, 1)
5: Set τ(t)← τmax exp(−λt)
6: Sample U ∼ Uniform(0, 1)V

7: Sample Gumbel noise vector g = − log(− log(U + ϵ) + ϵ)
8: Given the clean token x1 = ek, sample noisy interpolant for time t

xt,i ←
exp

(
δik+(gi/β)

τ(t)

)
∑V

j=1 exp
(

δjk+(gj/β)
τ(t)

)
9: Predict fθ(xt, t)← NNθ(xt, t)

10: Optimize loss given x1 = ek

Lscore ← Ex1∼D∥fθ(xt, t)− (δik + τ(t)xt,i)∥2
11: θ ← θ + η∇θLscore
12: end for
13: end procedure

32

Published at the DeLTa workshop, ICLR 2025

Algorithm 4 Unconditional Sampling with Gumbel-Softmax Score Matching

1: Inputs: Trained score model sθ(xt, t), step size ∆, noise factor β
2: Output: Clean sequence x from learned data distribution
3: procedure SAMPLING
4: x0 ← 1

V
5: Set xt ← x0

6: for t = 0→ 1 do
7: Compute τ(t)← τmax exp(−λt)
8: Predict fθ(xt, t)← NNθ(xt, t)
9: Compute predicted score sθ(xt, t)← −τ(t) + τ(t)V · SM

(
fθ(xt, t)

)
10: xt ← xt +∆ · sθ(xt, t)
11: xt ← SIMPLEXPROJ(xt)
12: end for
13: Sample sequence x← argmax(xt)
14: return x
15: end procedure

Algorithm 5 Straight-Through Guided Flow Matching (STGFlow)

1: Inputs: Trained simplex-based flow matching model uθt (xt), trained classifier model pϕ(y|x) :
VL → R that takes a sequence of length L and returns a classifier score, number of integration
steps Niter

2: Output: Clean sequence x from learned data distribution with optimized classifier score
3: procedure GUIDED SAMPLING WITH STGFLOW
4: Compute step size ∆t← 1

Nstep

5: x0 ← 1
V

6: Set xt ← x0

7: for t = 0→ 1 do
8: Predict unguided conditional velocity field uθt (xt) as in Algorithm 2
9: Take step xt ← xt +∆t · uθt (xt)

10: Compute top-k distribution SM (topk(xt))
11: Sample M sequences from topk distribution x̃1,m ∼ SM (topk(xt))

12: Initialize total guided velocity uϕt (xt|x1, y)← 0
13: for each x̃1,m do
14: Compute score y ← pϕ(y|x̃1,m)
15: Compute straight-through gradient with respect to distribution xt

∇xtpϕ(y|x̃1,m) =

{
∂pϕ(y|x̃1,m)

x̃1
· [SM(xt,i) (1− SM(xt,k))] i = k

∂pϕ(y|x̃1,m)
x̃1

· [−SM(xt,i)SM(xt,j)] i ̸= k

16: Add to total guidance uϕt (xt|x1, y)← uϕt (xt|x1, y) +∇xt
pϕ(y|x̃1,m)

17: end for
18: Add total guided velocity xt ← xt + γ · uϕt (xt|x1, y)
19: end for
20: Sample sequence x ∼ xt

21: return x
22: end procedure

33

	Introduction
	Preliminaries
	The Gumbel-Softmax Distribution
	Discrete Flow Matching
	Score Matching Generative Models

	Gumbel-Softmax Flow Matching
	Defining the Gumbel-Softmax Interpolant
	Reparameterizing the Velocity Field

	Gumbel-Softmax Score Matching
	The Exponential Concrete Distribution
	Learning the Gumbel-Softmax Probability Density

	Straight-Through Guided Flows (STGFlow)
	Straight-Through Gradient Estimators
	Straight-Through Guided Flow Matching

	Experiments
	Simplex-Dimension Toy Exepriment
	Promoter DNA Sequence Design
	Peptide Binder Design

	Conclusion
	Declarations
	Extended Background
	Flow Matching on the Simplex
	Deterministic vs. Stochastic Interpolants
	Guided Flow Matching

	Relation to Prior Simplex-Based Flow Matching Models
	Dirichlet Flow Matching
	Fisher Flow Matching

	Flow Matching Derivations
	Deriving the Conditional Velocity Field
	Proof of Continuity
	Proof of Flow Matching Propositions

	Score Matching Derivations
	Derivation of the Score Function
	Proof of Score Matching Propositions

	Straight-Through Guided Flow Derivations
	Model Architecture
	Diffusion Transformer
	Peptide-Binding Affinity Classifier

	Additional Experiments
	Simplex-Dimension Toy Experiment
	De Novo Protein Sequence Design

	Experimental Details
	Hyperparameter Selection
	Protein Evaluation Metrics
	Peptide Evaluation Metrics

	Algorithms

