Under review as submission to TMLR

ParaBlock: Communication-Computation Parallel Block Co-
ordinate Federated Learning for Large Language Models

Anonymous authors
Paper under double-blind review

Abstract

Federated learning (FL) has been extensively studied as a privacy-preserving training
paradigm. Recently, federated block coordinate descent scheme has become a popular option
in training large-scale models, as it allows clients to train only a subset of the model locally
instead of the entire model. However, in the era of large language models (LLMs), even a
single block can contain a significant number of parameters, posing substantial communication
latency, particularly for resource-constrained clients. To address this challenge in federated
training/fine-tuning LLMs, we propose ParaBlock, a novel approach that establishes two
parallel threads for communication and computation to enhance communication efficiency.
We theoretically prove that the proposed ParaBlock achieves the same convergence rate
as the standard federated block coordinate descent methods. Empirical evaluations on
fine-tuning LLMs on general instruction following and mathematical reasoning confirm
that ParaBlock not only maintains strong performance but also significantly improves
communication efficiency.

1 Introduction

Federated learning (FL) (McMahan et all,2017)) is known as a promising privacy-preserving paradigm, as
it keeps data on local clients without exposing sensitive information. A typical FL framework consists of a
central server and multiple local clients operating in a single-threaded design. In this setup, clients repeatedly
train local models, transmit the updates to the server for aggregation, and wait for the updated model from
the server to continue training in the next round. While standard FedAvg type frameworks (McMahan et al.
2017; [Karimireddy et al., [2020} [Li et al.l 2020; |Wang & Jil 2023; |Wang et al., |2024b)) have demonstrated
success across various applications (Koutsoubis et al., 2024; Beutel et al., [2020), federated block coordinate
descent schemes (Liu et al.l |2019; |Wu et al.| [2021; |Liu et al., [2024; Wang et al.| |2024a)) have recently gained
increasing attention. Such schemes integrate local block coordinate descent (BCD) update strategies into FL,
allowing clients to train only a subset of the model (commonly a block) locally instead of the entire model.
Although federated BCD still operates in a single-thread manner, where clients need to wait for the model
transmission to complete before the next computation step, such communication time is often negligible when
models are smaller and the block size is limited.

However, with the recent trend of billion-scale large language models (LLMs), such as GPT-3 (Brown et al.|
2020), Llama 3 (AI@Meta, [2024) and Gemma 2 (Team et al., 2024))), even a single layer can encompass
tens to hundreds of millions of parameters. This massive scale significantly increases the communication
time between the server and clients. While such communication time was considered negligible in traditional
federated block coordinate methods, it has now become a notable factor when fine-tuning LLMs on edge
clients. This raises a critical bottleneck for fine-tuning LLMs with federated block coordinate descent methods:
for clients with limited network bandwidth or those requiring long-distance transmission, the communication
latency significantly impacts the overall efficiency of FL deployment. This inefficiency of such a single-thread
approach hinders the scalability of federated block coordinate descent methods for LLMs, underscoring the
need for solutions to reduce communication latency for clients.

Under review as submission to TMLR

To address the aforementioned challenge, we propose ParaBlock, a federated communication-computation
Parallel Block coordinate descent method that provides a simple yet effective way to improve the communi-
cation efficiency of BCD updates for fine-tuning large-scale models on resource-constrained clients. The key
contributions of this paper are summarized as follows:

o We propose ParaBlock, a novel method designed to address communication latency during the
fine-tuning of LLMs using federated block coordinate descent. ParaBlock replaces the traditional
single-threaded design with two parallel threads for communication and computation, effectively
reducing communication delays and improving efficiency.

« We rigorously show that the proposed ParaBlock algorithm achieves a convergence rate of O(1/v/T)
for non-convex objectives. This rate is consistent with that of standard federated block coordinate
descent methods, ensuring that the improvements of ParaBlock in communication efficiency do not
compromise its convergence performance.

e We conduct extensive experiments across various models and tasks to empirically validate the
effectiveness of ParaBlock. Specifically, we evaluate the downstream performance of ParaBlock
on general instruction following and mathematical reasoning tasks. Our results demonstrate that
ParaBlock significantly reduces wall-clock runtime while maintaining performance on par with
standard federated block coordinate descent baselines, highlighting its ability to enhance efficiency
without compromising utility.

2 Related Works

BCD for FL Block Coordinate Descent (BCD) has been extensively studied for optimization problems
[2001}; Nesterov}, 2012} Beck & Tetruashvili, |2013)), particularly due to its efficiency in solving large-scale
optimization tasks. Recent advancements in BCD variants, such as those proposed by [Luo et al.| (2024); Pan|
, further highlight its adaptability and effectiveness, especially in the context of large language
models. Federated BCD schemes (Liu et al., 2019; 2024; Wu et all |2021)) enhance communication efficiency
by assigning each client the responsibility for a partition of the model in a collaborative training framework.
FedCyBGD (Wang et all, [2024a)) focuses on fine-tuning large language models by cyclically electing one client
at a time to train its assigned block of the model, enabling efficient fine-tuning with limited computational
resources.

Communication-efficiency for FL Various methods have been proposed to improve communication effi-
ciency in federated learning, focusing on techniques such as quantization and update compression (Reisizadeh

et all 2020; [Haddadpour et all, [2019; Jin et al., [2020; Jhunjhunwala et al 2021} Wang et all [2022} [Li

et al [2024), model pruning (Li et al) 2021} [Jiang et al., [2022} Isik et all, [2022), and model distillation (Wul
et al.L 2022)). Several existing works have been shown to enhance communication efficiency specifically in

the context of federated fine-tuning of LLMs. For example, many applications of PEFT in FL help reduce
communication costs (Liu et al.,[2019; |2024). Additionally, FedMKT leverages a mutual
knowledge transfer framework, where clients and the server exchange knowledge datasets instead of model
updates. Similarly, CG-FedLLM introduces an encoder on clients to compress gradient
features, with a corresponding decoder on the server to reconstruct the transmitted features.

FL for LLMs In the era of LLMs, FL has evolved to develop more complex fine-tuning and deployment
of large language models (Zhang et al, |2024; [Ye et al.|, 2024). Several existing approaches explore the use
of Parameter Efficient Fine-Tuning (PEFT) techniques for federated fine-tuning of LLMs. These include
leveraging low-rank adapters (LoRA) in methods such as FedIT (Zhang et al., [2024), the OpenFedLLM
framework (Ye et al.,[2024), HetLoRA 2024)), SLoRA (Babakniya et al., [2023), FLoRA (Wang
et al., 2024d), FlexLoRA (Bai et al. as well as employing adapters and bias-tuning in FedPEFT @
et al 2022). In addition to the widely adopted PEFT methods in FL, recent work, such as FedCyBGD
(Wang et all |2024a)), also highlights the potential of BCD in improving federated fine-tuning performance
while managing resource limitations.

Under review as submission to TMLR

3 Preliminaries and Motivations

We start with a standard federated learning objective with N total workers:

N N
min £(6) i= - > 146) = - D Ee-nfi0:60] M
where @ € R? indicates the model parameter with d dimensions, f;(@) represents the loss function associated
with client 7, and D; denotes the local data distribution for client i. FedAvg (McMahan et al., [2017)) is widely
used for solving . In t-th global round, each participating client ¢ performs local training using standard
SGD optimizers. The server periodically collects and aggregates the local models or updates to obtain a new
global model.

BCD and Block-wise update for FL BCD usually has the same optimization objective as (stochastic)
gradient descent. It iteratively optimizes over a small subset of parameters, while keeping the remaining
parameters fixed. This approach makes BCD practical for large-scale model training. Federated BCD is then
applied in FL by substituting BCD for the SGD optimizer in FedAvg. Consider a block partitioning of the
model parameters 0 into B blocks, i.e., 8 = [[0]1, 0]z, .., [O]B] In federated BCD schemes, the goal is to
approximately optimize the objective in by updating only one block during local training, while keeping
the remaining blocks unchanged across clients. For example, if block b; is assigned for training at global
round ¢, the block-wise optimization for [6];, is defined as:

N
. 1
argmin f(6) = - > (001, B, [0]5),
615, i=1

where [0],, € R%: and d;, denotes the dimension for block b; and there is Zle dy = d. We summarize the
key component of the local BCD update for federated BCD in Algorithm [I] Specifically, during global round
t, client ¢ approximately optimizes local objective f; with the stochastic gradient of f;:

o= [2f of; afi 1"
V0.0~ [3) ®

where the partial stochastic gradient for block b; is denoted as [g]s, = [V fi(0;&)]s,- The local model
training could be summarized in Line 4 in Algorithm After completing K local steps of training, the
client calculates the difference in local updates as shown in Line 6. The client then sends A? to the server to
update the global model, and the server sends back the global model to clients for next round of local training.

The communication bottleneck for fed-
erated BCD While federated BCD has been
applied to large-scale FL training, it still faces
subsequent communication inefficiency in the
era of LLMs. With the significantly larger 1: Initialize model 8 = 6 on client i

model size and the accompanied large commu- 2: for k =0to K —1 do

nication time, the current single-thread design 3: Compute local partial stochastic gradient [g,i]b =
in the federated BCD method (communication- [V £:(65;)]s

computation-communication, as shown in Fig- 4: Local update: 0,i+1 — 0, [0};_5_1]17 — (0] — mlgpls
ure , has led to increased overall runtime 5: end for

due to the outstanding communication latency. 6: Client gets A’ = [0%], — [67],

This prolonged communication time forces Output: Al

clients to wait extensively before receiving the
latest global information and proceeding to the next round of local computation. Such communication latency
poses a critical bottleneck during the deployment of federated BCD, motivating us to explore new methods
for improving communication efficiency and the scalability of federated BCD. Drawing inspiration from
distributed training paradigms, if clients can change from the single thread design to two parallel threads
that overlap the local computation with the model communication, then the communication latency can be
ideally eliminated.

Algorithm 1 LocalBlockTraining

Input: local learning rate n;, global model 8 with B blocks,
number of local steps K, assigned block b

Under review as submission to TMLR

4 ParaBlock: A new federated fine-tuning method

To achieve this communication computation overlapping in federated BCD methods, we introduce
ParaBlock, a Parallel Block coordinate descent method designed for fine-tuning LLMs in federated
learning. ParaBlock aims to parallelize the communication thread and computation thread on local
clients (as shown in Figure [1)), enabling clients to perform local updates while concurrently commu-
nicating with the server. This design ensures that clients no longer need to wait for communication
to finish, significantly reducing clients’ idle time and accelerating the federated fine-tuning process.
We summarize the proposed ParaBlock in Al-

gorithm In a nutshell, the communica- Downlink | Gomputation’| [1Upink| Model block [1][2][Z]
tion thread and computation thread proceed -.--o oo T

in parallel. Specifically, for each client i, the Time
computation thread fine-tunes block b; using Single-Thread ... |01| G |Ui[D]| C |U2|D3| Cs |U3|
the LocalBlockTraining summarized in Algo- : latency R
rithm [} During this computation, except for e
the first round when ¢t = 0, client 7 proceeds Time i
the communication thread to synchronize with Comm. Thread E IDz Uy |D3 |Uz | Dy |Us
the server regarding the model update variables : Comp. Thread G [G | G | G —

from the previous round (one round behind).
This involves sending A!_; to the server and
receiving the aggregated A;_; from the server.
Once both threads are completed, client 7 im-
mediately updates its local model for the next
round of training, as illustrated in Line 9. Note
that the new local model 6 ; inherits most of
the parameters from the current model 6; but
incorporates two key update steps:

Figure 1: Comparison between the original federated BCD
and the proposed ParaBlock. The original BCD’s single-
thread approach leads to higher runtime due to commu-
nication latency, while ParaBlock improves efficiency by
overlapping communication and computation.

is updated

t

1. The latest fine-tuned block b; of the local model is updated with A}, ensuring that [0},],
with the latest local information before starting the next computation thread.

2. The client uses the received global variable A;_; to correct the previous update on the local block b;_q
by applying a correction [0},]s, , < [0;]s,_, + n(A¢—1 — Aj_;). This is because the previous update on
block b;_; only used the local update A}_; (since the global update A;_; is one round behind and has not
arrived yet at that time), and now we want it to be consistent with the global model by replacing the local

update with the global one.

After two blocks are updated in 6, client i begins the new communication and computation thread for
global round ¢ + 1. Therefore, unlike standard federated BCD methods and most traditional single-thread
FL paradigms, the two-thread parallel design of ParaBlock allows client to continue local fine-tuning while
conducting communication. Although the global information is updated to the local model with one-round
delay, the impact caused by this delay can be effectively mitigated by correction of ParaBlock.

Moreover, while clients update the local model, the server simultaneously updates the global model using
the aggregated A;_; (Line 10 in Algorithm . Compared with standard federated BCD methods, here the
global model @; at round ¢ exhibits one-round staleness because the most recently trained block b; has not
yet been incorporated into the global model. Due to this staleness, an extra communication and aggregation
step is required at the end of the fine-tuning (Line 12-14) to ensure that the final computation results are
aggregated and updated to the global model, then the server obtains the final model 8.

In the following, we will mathematically demonstrate how the correction in Line 9 addresses the inconsistency
in local models and we provide an analysis of the relationship between the global and local models.

Recursive derivation of local and global models We begin with round ¢ — 1, where client ¢ continues
fine-tuning using the local model 8}, where [0i]p, , < [0i_1]p, , +nAL_;. At this stage, the model parameters
of block b;_; differ across all clients, as they have not yet finished the synchronizing the latest updates with
the server. Then by global round ¢, as the synchronization between the server and clients regarding block

Under review as submission to TMLR

Algorithm 2 ParaBlock
Input: local learning rate 7;, global learning rate 7, number of block partition B

1: Initialize global model 8y and generate a block partition b=1,2,...,B
2: fort=0toT —1do
3: Each client 7 runs a compute thread and a communication thread in parallel:
4: Compute thread:
Al < LocalBlockTraining (6,1, K, b;)

5: Communication thread:

6: if t>0 then

7: Client i sends A!_; to the server and waits for the aggregated A;_;
8 end if

9: // When both threads finishes, client i process:

updating local model: 6}, « 6}, [0,]s, < [0;]s, + nA}
if ¢ >0 then _ _
[9§+1]bt_1 A [Oﬂbt—l + 77At—1 - WA2—1

10: Server maintains the global model

0; < 0;_1, [0, = [0i—1]p,_, + A1
11: end for
12: Client i send A%, to the server and wait for the aggregated Ap_;
13: Server updates the global model

Or < 071, [0r]p,_, = [O7 1]pr_, +NAT

14: Output 67

bi—1 is completed, clients can correct block b;—1 in 0}, using Ay — A}_;:

[i+1]bt—1 = [Oz]bt71 + 77<At71 - AIZ‘:71> = [eifl]bt71 + 77At71

t—1 t—1

el = [eé]bt—l + nZHS(btfl)As = [0olp,_, + nZHS(btfl)ASv (3)
s=0 s=0

where I;(b;—1) is an indicator function that equals to 1 if block b;_; is assigned for round s, and 0 otherwise.
This recursive derivation shows that the local model for block b; 1 can be expressed as the initial global model
6y combined with all relevant global updates. Thus, the one-round delayed A;_; corrects the inconsistent
parameters in block b;_1 of local models. This ensures that the inconsistent parameters in block b;_1 are
effectively corrected after one global round, making sure that most of the parameters across local models
align in a consistent direction for subsequent local training/fine-tuning.

Similarly, for the global model 8;, there is

t—1

[0,y = [O-1loe s +nA¢1 = =[O0l + 1) Ls(bi-1) A, (4)

s=0

This indicates that the global model’s block b;_; can also be recursively expressed as the initial global model
with relevant updates. Based upon the result in Eq. and Eq. , the block b;_; of local model OZH
exactly matches the block b;_1 in global model 8;. This demonstrates the effectiveness of the model correction

mechanism in ParaBlock.

Discussion about privacy protection While FL ensures data ownership protection (raw data stays
local), it does not automatically prevent the model from learning and outputting sensitive patterns. This
privacy protection is a known challenge in generative language models. ParaBlock primarily addresses the
efficiency and communication bottlenecks of training LLMs in this distributed setting. Thus, ParaBlock
would be orthogonal to advanced privacy protection techniques like data anonymization or differential privacy
to minimize the risk of data privacy leakage.

Under review as submission to TMLR

5 Theoretical Analysis

In this section, we delve into the convergence guarantee of the proposed ParaBlock algorithm. We begin by
outlining the key assumptions necessary for the analysis. Following this, we present the convergence rate and
provide a detailed discussion of the results.

Assumption 5.1 (Smoothness). The local objective function f;(@) is L-smooth, i.e., V81,80, € R?,
[V £i(01) — Vfi(62)| < L[|61 — 62|

Assumption 5.2 (Bounded Variance). The stochastic gradient computed on local client is unbiased and has
a bounded local variance, i.e., for all @ and i € [N], we have E[||V f;(8;&) — Vf;(8)||?] < o?, and the loss

functions has a global variance bound, & SN |V £;(8) — Vf(8)? < ol

Assumption [5.1] and [5.2] are common assumptions in analyzing federated non-convex optimization methods
et all [2019; [Yang et all 2021} [Reddi et all 2021} Wang et al.| [2022; [Wang & Ji, [2023} [Wang et all [2024c).
The global variance upper bound of 03 in Assumption measures the data heterogeneity across clients,

where 02 = 0 indicates i.i.d. data distribution across clients.

In the following, we present the theoretical convergence analysis of ParaBlock. For clarity and fair comparison
with existing analyses of FedBCD methods, we conduct the analysis under the local SGD optimizer. Extensions
to local adaptive optimizers, along with additional discussions on the connection between general and block-wise
properties are provided in Appendix

Theorem 5.3. Under Assumptions let T represent the total number of global rounds, K be the
number of local SGD training steps and N be the number of the clients. If the learning rate n and n; satisfy
m < gopr and m < g7, then the global iterates {031 of Algorithm@ satisfy

S
—

1
T 4

8F
E[| Vs, f(0:)]°] < 7 HAOP LK (0” + 6K o)

J;M

L
+ <8n2mL2K + =

m
5)02 + 64nn*L*K[o® + 100/ L* K (0” + 6K o)), (5)

N

where F = f(6y) — f« and f. = ming f(0) > —o0.

Corollary 5.4. If we choose the global learning rate n = O(vV KN) and n; = @(%K) mn Theorem then
for sufficiently large T, the global iterates {Ot}tT:_Ol of Algom'thm@ satisfy

— F + o2 N02+02)
— Vo, f(04) + 2). 6
Tgo 19706017 < 0 T2 4 20 ©)

Remark 5.5. Compared with the existl ¢ federated BCD methods such as FedBCD (Liu et al. m; -
and FedBCGD 02 , our proposed method obtains the same (’)(1 /VT) convergence
rate under general non-convex Settings This demonstrates that the one round staleness introduced by
the communication-computation parallel thread in ParaBlock does not compromise its overall convergence
guarantee.

6 Experiments

In general, the proposed method leverages local block updates combined with a communication-computation
parallel scheme during fine-tuning. This section presents a series of experiments to evaluate both the
performance and efficiency of our approach. First, we assess the performance of ParaBlock and compare it
against several existing federated fine-tuning algorithms. Next, we analyze the time efficiency of ParaBlock
under varying network conditions and computational demands. Finally, we perform ablation studies to gain
deeper insights into the key factors influencing the effectiveness of ParaBlock.

Under review as submission to TMLR

6.1 Experimental settings

We summarize some crucial implementation details in the following, and we leave some additional results and
experiment details to Appendix [A]

Datasets, models, and evaluations We utilize the Alpaca-GPT4 dataset (Peng et al., |2023)) for general
instruction following tasks, and we use 50000 data samples sampling from MathInstruct dataset (Yue et al.|
2023)) for mathematical reasoning task. We fine-tune two models, Llama 3-8B (Dubey et al., [2024; AlQ@Metal,
2024)) and a lightweight Llama 3.2-3B (Al@QMeta, 2024) designed for on-device uses. To assess the performance
when fine-tuning on instruction following task, we utilize MT-Bench (Zheng et al., |2023) with GPT-40 as
a judge model. For evaluating the performance on mathematical reasoning, we employ the widely used
OpenLLM Leaderboard (Beeching et al. [2023) as the evaluation benchmark and we report the evaluation
score on GSM8K (Cobbe et al.| 2021)) to show the math problem solving capability.

Table 1: Fine tune Llama 3-8B and Llama 3.2-3B (AI@Meta, [2024) on Alpaca-GPT4 dataset (Peng et al.,
2023)) and MathInstruct dataset (Yue et al., 2023)). In our results, we highlight the best score in bold and
the second-best score with an underline.

‘ Alpaca-GPT4 ‘ Math Instruct
Method Llama 3-8B Llama 3.2-3B Llama 3-8B Llama 3.2-3B

MT-Bencht RT(m) | MT-Bencht RT(m) || GSM8K?T RT(m) | GSM8Kt RT(m) }
Base 4.72 - 4.18 - 51.55 - 27.98 -
Fed full FT 5.33 16.0 4.36 12.5 55.80 15.5 32.22 12.3
FedIT 5.11 34.5 4.31 23.8 54.60 23.1 29.87 15.4
FFA-LoRA 5.08 30.2 4.25 23.3 54.59 21.2 30.55 14.9
FLoRA 4.95 65.4 4.23 34.0 52.54 64.9 28.51 29.3
FedCyBGD 4.87 59.9 4.29 57.8 51.40 63.2 27.60 53.3
FedBCD 5.14 30.2 4.33 19.1 54.74 24.9 31.84 17.3
ParaBlock 5.14 21.1 4.40 11.9 55.88 15.8 31.77 10.1

Baselines We compare the ParaBlock with several federated fine-tuning baselines including 1) Federated full
model fine-tuning (Fed full FT), 2) FedIT (Zhang et al., [2024)), which is one of the most commonly used
federated fine-tuning methods that integrates LoRA (Hu et al.,|2021) into standard FedAvg (McMahan et al.|
2017) method, 3) FFA-LoRA (Sun et al., |2024), which fixes the LoRA matrix B and fine-tunes the LoRA
matrix A to reduce server aggregation bias, 4) FLoRA (Wang et al., |2024d), a recent method for federated
fine-tuning with LoRA, 5) FedCyBGD (Wang et al. [2024al), which employs the cyclic update for block
coordinate federated fine-tuning, and 6) FedBCD, a standard federated BCD scheme that directly integrates
local BCD updates into the original FedAvg aggreagation schemes. We provide the GPU consumption of all
baselines in Table [0]in Appendix [A]

Implementation details We implement federated fine-tuning of LLMs by setting up an FL framework
with 10 clients, each assigned a local dataset. Notably, we perform heterogeneous data partitioning for both
datasets. For the Alpaca-GPT4 dataset, we adopt a text clustering method similar to the one used in |Lin
et al| (2021) to get a cluster label. For the MathInstruct dataset, we use the “source” from the original
dataset as a label and follow traditional data partitioning using a Dirichlet distribution as described in
Wang et al.| (2020bga). Specifically, we adopt Dirichlet(0.1) for the Alpaca-GPT4 dataset and Dirichlet(0.6)
for the MathInstruct dataset. Regarding LoRA-related methods, the LoRA rank is set to 32 for FedIT,
FFA-LoRA and FLoRA. For FedCyBGD, the model is partitioned into 10 blocks, with each block assigned to
a corresponding client, and clients perform fine-tuning sequentially. For FedBCD and the proposed ParaBlock,
the model is partitioned into 16 blocks for Llama 3-8B and 14 blocks for Llama 3.2-3B. The block partition is
based on the default layer of the language model. During each global round, the server randomly selects one
block for fine-tuning. We conduct 32 global rounds for fine-tuning Llama 3-8B and 28 rounds for fine-tuning
Llama 3.2-3B for all BCD-based and LoRA-based baselines, and we conduct 3 global rounds for Fed full FT.
We adopt AdamW as the local optimizer, i.e., conducting local block training via AdamW, as it is the default
optimizer for most of LLMs training and fine-tuning. The default effective batch size in our experiment is set

Under review as submission to TMLR

to 4. The random seeds for all libraries is 42. All experiments are conducted on NVIDIA A100 GPUs. To
fully support reproducibility, our code will be released later.

6.2 Main results

Results on general instruction following task We begin by evaluating the performance of the proposed
ParaBlock on the general instruction-following dataset, Alpaca GPT-4 (Peng et al., 2023)), for language model
fine-tuning. We report the MT-bench score for evaluation. As shown in the results for Alpaca-GPT4 in
Table [T} ParaBlock achieves lower score than Fed full FT but consistently outperforms most LoRA-based and
BCD-based PEFT methods across two models. For the Llama 3-8B model, ParaBlock achieves an MT-bench
score of 5.14, which is the same score as the FedBCD, and ParaBlock shows substantial improvement over
FedCyBGD, another federated block-coordinate method. Additionally, ParaBlock significantly outperforms
LoRA-based FL methods such as FedIT, FFA-LoRA and FLoRA. A key highlight of ParaBlock is its superior
runtime efficiency, as it requires outstanding less runtime compared to other baselines, particularly LoRA-
based FL methods, while achieving notable performance improvements. Similarly, when fine-tuning the
lightweight Llama 3.2-3B model, ParaBlock achieves the best performance among all baselines. Its ability to
surpass competing methods in both performance and time efficiency highlights the effectiveness of ParaBlock
in fine-tuning LLMs for general instruction-following tasks.

Results on mathematical reasoning task We evaluate ParaBlock on mathematical reasoning tasks
using the MathInstruct (Yue et al., [2023)) dataset, with GSM8K (Cobbe et al.l [2021)) as the benchmark for
evaluation. As shown in the right main columns of Table[I] ParaBlock outperforms all baseline methods with
achieves the second-best runtime on the 8B model, and outperforms most baselines with the less runtime on
the 3B model. For 8B model, ParaBlock demonstrate improvements over FedBCD, while for 3B model, it
shows slighly less accurate than FedBCD. This indicates that while the communication thread of ParaBlock
exists one round behind, it does not compromise overall performance. ParaBlock also consistently exhibits
strong performance compared to other baselines, with a notable 11.7% improvement over FedCyBGD when
fine-tuning the lightweight 3B model. Furthermore, ParaBlock keeps its advantage of runtime saving among
all baselines, highlighting its ability to reduce communication latency for federated BCD schemes and achieve
communication efficiency in fine-tuning LLMs.

Time efficiency We conduct a detailed comparison of the runtime and emphasize the time efficiency
benefits achieved by leveraging communication-computation parallelism, as illustrated in Figure[2] To evaluate
the necessity and benefits of this scheme, we measure wall-clock time across different network bandwidth
conditions (50M/s, 100M/s, and 150M/s) and varying effective batch sizes (2, 4, and 8) on each client. []
Among the LoRA-based federated fine-tuning methods, FFA-LoRA requires slightly less runtime than FedIT,
while FLoRA incurs significantly more runtime than FedIT. Due to space limitations, we include only the
detailed runtime comparison results for FedIT here, with a comprehensive discussion of all methods provided
in Appendix [A]

s FedBCD
ParaBlock

= FedCyBGD: communication

m— FedCYBGD: C

0 4 8 12 16 20 24 28
#Rounds

(a) Llama 3-8B (b) Llama 3.2-3B (¢) Training loss comparison

Figure 2: Time efficiency: wall-clock runtime for various network communication bandwidths and effective
batch sizes

1Due to deployment constraints, we can only simulate the communication bandwidth with three network bandwidth conditions,
which were frequent settings in FL and decentralized learning.

Under review as submission to TMLR

Figure a) illustrates the runtime when fine-tuning Llama 3-8B model using Alpaca GPT-4 dataset under
various conditions. In scenarios with low network bandwidth and minimal client-side computation, such as a
bandwidth of 50M /s and an effective batch size of 2, the communication time cannot be fully overlapped by
client computation. This results a significantly extra communication overhead for ParaBlock, represented by
the dark yellow portion of the histogram in Figure a). As the effective batch size grows, requiring more
client-side computation, a greater portion of the computation time can be overlapped with communication.
We notice that for faster communication networks (100M /s and 150M/s), the computation time for ParaBlock
does not introduce extra communication during fine-tuning. The negligible dark yellow portion in Figure a)
represents the final communication process, as described in Line 12 of Algorithm [2}

Figure (a) also demonstrates that ParaBlock significantly reduces runtime compared to other baselines.
Notably, we emphasize the time savings achieved over block-coordinate baselines, including vanilla FedBCD
and FedCyBGD. The overall runtime reduction can exceed 30% for network bandwidths of 50M/s and 100M /s
with an effective batch size (ebs) of 2, with efficiency gains over FedCyBGD being particularly pronounced. It
is important to note that the higher runtime costs for FedCyBGD can be attributed to several factors. First,
FedCyBGD employs a cyclic update approach that selects only one client at a time, inherently prolonging the
fine-tuning process. Additionally, FedCyBGD introduces extra communication overhead, as all clients must
periodically synchronize to receive model updates. Thus FedCyBGD’s design results in increased latency and
contributes to the overall longer runtime observed in our evaluations.

The runtime savings over the LoRA-based FedIT are also notable. Figure (a) indicates that ParaBlock
achieves comparable, and slightly better, time efficiency than FedIT under conditions of low computational
cost and high communication overhead (e.g., 50M/s network and ebs=2). This is primarily due to the
additional communication time associated with ParaBlock. Moreover, under most other settings, ParaBlock
consistently reduces runtime by approximately 40% compared to FedIT. This improvement is attributed
to the communication-computation parallelism of ParaBlock and the computational efficiency of the block
coordinate method.

Figure (b) illustrates the fine-tuning runtime of the Llama 3.2-3B model under conditions similar to those
previously described. In addition to highlighting the superior time efficiency of ParaBlock, we observe that
parameter communication constitutes a larger proportion of the total runtime during the fine-tuning of the
Llama 3.2-3B model. This is reflected in the increased size of the dark yellow portion in Figure 2{(b), which
represents a greater share of the overall runtime. These underscore the critical need to reduce communication
latency for clients. By mitigating the impact of increased communication overhead, ParaBlock achieves
even greater time savings. These results further demonstrate the effectiveness of ParaBlock in enhancing
fine-tuning efficiency by minimizing the influence of communication delays.

We verify the convergence of the proposed ParaBlock through the training loss as shown in Figure (c)
From an optimization perspective, ParaBlock and FedBCD exhibit very similar convergence behavior, with
ParaBlock showing only a marginally slower convergence than FedBCD in the initial stages, while this gap
diminishes significantly in later rounds. Note that the primary distinction between FedBCD and ParaBlock
lies in the global model of ParaBlock, which introduces one-step staleness. Nevertheless, the results from
Figure c) indicate that this staleness has a minimal impact on the fine-tuning convergence of ParaBlock.

6.3 Ablation studies

We analyze several aspects of the proposed ParaBlock, includ-
ing: 1) How many blocks should ParaBlock use to balance mTaple 2: Ablation for the block assignment
utility and time efficiency? 2) Is there any block scheduling the number of layers.

strategy can achieve better fine-tuning results? 3) How does the

data distribution among clients impact the fine-tuning perfor- Models IMT-Bt RT(m)] GSM8KT RT(m){

mance? We further study staleness beyond one round, extend Ppartial layer| 5.12 20.3 53.22 15.0

the analysis beyond LLaMA architectures, and evaluate under 1 layer 5.08 204 53.90 15.1
cross-silo partial participation. Additional results are provided 2 layers 5.14 21.1 55.88 158
in Appendix [A] 4 layers 513 22,7 55.04 194

Under review as submission to TMLR

Ablation for block partition In our experiments, as previ-

ously mentioned, we partition blocks based on the default layers in language models. To investigate the impact
of block partitioning, we explore different configurations by varying the number of layers within each block in
the proposed ParaBlock approach. As shown in Table 2] we evaluate configurations where each block contains
partial, 1, 2, or 4 layers during fine-tuning of the Llama 3-8B model on both general and math tasks. The results
in Table[2]indicate that the runtime gets longer as there are more layers assigned to one block. Note that the in-
crease in runtime encompasses the growth of both computation and communication runtime, and we notice that
assigning 2 layers per block yields slightly better performance compared to other configurations in both tasks.

Ablation for block scheduling We investigate how vari-
ous block partitions would impact on the overall performance.
We compare the default random scheduling which randomly
select two layers based on the default layers in Llama 3-8B, Table 3: Ablation for block scheduling
the sequentially, reverse sequentially layer scheduling and a

gradient-guided scheduling based on the original gradient. As Models ‘ MT-BT GSM8KY
shown in Table 3] we found that Random scheduling can achieve Random 5.14 55.88
best result in math reasoning but with a little bit worse than Seq. 5.03 54.21
gradient-based in general instruction tuning. However, the Rev. seq. 5.06 54.59
Gradient based 5.19 53.60

gradient-based approach incurs extra computational cost, as
it requires a full-model backward pass prior to fine-tuning in
order to determine the scheduling.

Ablation for heterogeneous distribution on clients We
compare the i.i.d. and non-i.i.d. data partitions when fine- Taple 4: The results for fine-tuning LLaMA
tuning on the general instruction dataset Alpaca-GPT4 (Peng 3.8B on two datasets, considering i.i.d., non-
et al. |2023)) and math reasoning dataset Math Instruct (Yue| ;i d. and extreme non-i.i.d. partitions.

et al., 2023)), as shown in Table [4] We further conduct exper- .

iments under an extreme non-i.i.d. setting with Dirichlet(0.01) Data distribution ‘ MT-BT GSM8KY

applied to both datasets. Our observations indicate that i.i.d. i.i.d. 5.21 56.14
data sampling consistently results in higher evaluation scores ~ Non-i.i.d. 5.14 55.88
for both general instruction tuning and mathematical reasoning ~ Extreme non-i.i.d. 5.13 94.66
tasks.

Ablation for the number of staleness rounds The

one-round staleness in the original ParaBlock can be readily extended to multi-round staleness set-
tings. For example, if we assume that all clients in the network experience lower communication
bandwidth, leading to communication-computation parallelism with two rounds of staleness, we ob-
tain the following results as shown in Table [5| . It shows a slight performance degradation when all
clients incur two-round staleness; however, the performance remains comparable to the base model score.

Experiments beyond Llama model architectures We

4 ;) . Table 5: Ablation for the number of stale-
conduct mathematical reasoning experiments using the same

ness rounds.

MathInstruct dataset as in the main experiments with the

Qwen-2.5-1.5B-Instruct model (Team), 2024)), and evaluate the Method ‘ GSM8KT RT(m)
fine-tuned models on GSMSK. The results in Table [6l demon- Base 51.55 -
strate that ParaBlock consistently outperforms other baselines one-round staleness 55.88 15.8
in terms of accuracy, while also achieving the second-best run- two-round staleness 54.74 16.1

time, highlighting the effectiveness of our design.

10

Under review as submission to TMLR

Table 6: Fine tune Qwen-2.5-1.5B-Instruct
model on MathInstruct dataset. We high-
light the best score in bold and the second-

best score with an underline.
Table 7: Fine tune Llama 3-8B model on MathInstruct

Method ‘ GSMSKT RT(m)] dataset with 50 clients cross-silo settings.
Base 54.28 - Method | MT-B+ RT(m), GSMSKt RT(m))
Fed full FT | 60.58 9.3

FedIT 5.06 49.31 53.75 44.15
FedIT 62.32 19.76 FedBCD 5.08 55.36 53.60 52.16
FFA-LoRA | 61.56 17.12 ParaBlock | 5.10 28.45 53.90 28.44
FLoRA 57.77 52.42
FedCyBGD | 54.51 42.01
FedBCD 61.79 18.48
ParaBlock 62.70 10.56

Extension to cross-silo partial participation settings ParaBlock is fully compatible with partial
participation, and we have conducted experiments demonstrating its effectiveness under such settings.
Specifically, we consider a cross-silo setup where 20% of 50 clients are randomly selected in each round, and
we fine-tune the Llama-3 8B model on Alpaca-GPT4 and Math Instruct dataset. We compare this cross-silo
ParaBlock with FedBCD and FedIT. As shown in Table [7] ParaBlock outperforms FedIT and FedBCD while
retaining its computation time-saving advantage.

Extension to heterogeneous communication bandwidth The proposed ParaBlock is natural to extend
to heterogeneous communication bandwidth. For example, assume one client was significantly slower than the
others. This extremely slow client incurs a three-round staleness, while other clients maintain the original one
round of staleness. The results in Table [§] illustrate this scenario. Note that in this heterogeneous bandwidth
setting, slow clients with significant latency may degrade overall performance. We believe it requires a
non-trivial design for better performance and conclude this as future work.

Table 8: Fine tune Llama 3-8B model on MathInstruct dataset with heterogeneous communication bandwidth.

Method | GSM8K?T RT(m)]
homogeneous bandwidth (orignal) 55.88 38.72
heterogeneous bandwidth 52.46 20.16

Discussion on the comparison with asynchronous FL baselines ParaBlock is significantly different
from asynchronous FL, although both share the motivation of addressing communication delays and efficiency.
The efficiency in asynchronous FL comes from letting clients update the server at their own pace, so it
may happen that one client is conducting communication while another is computing gradients. ParaBlock,
however, sets up a two-thread parallel scheme for every single client. Thus, it may not be fair to directly
compare asynchronous FL approaches with ParaBlock, as they are designed for full-parameter training.
Nevertheless, we compare one representative asynchronous FL baseline, FedBuff (Nguyen et al., [2022)), with
ParaBlock for fine-tuning the LLaMA-3 8B model on mathematical reasoning tasks. In a setting where 2 out
of 10 clients experience extreme delays, and the FedBuff algorithm is applied, the GSM8K score drops to
52.24, which is significantly lower than ParaBlock’s score of 55.88. We believe this degradation is due to
the impact of slow clients in FedBuff. While asynchronous training remains a promising direction, it would
require a non-trivial redesign to be effective.

11

Under review as submission to TMLR

7 Conclusion

In this paper, we propose ParaBlock, a communication-computation parallel block coordinate methods for
federated BCD to enhance communication efficiency. To better support this two thread parallel method, we
adjust the local model initialization and global model update based on the FL-BCD schemes. We theoretically
show the convergence rate for the proposed ParaBlock under general non-convex settings, which indicates our
design does not sacrifice the convergence of the standard FL-BCD. We perform extensive experiments on
diverse models and tasks to empirically assess the effectiveness of ParaBlock. The results show that ParaBlock
significantly improves communication efficiency while achieving performance comparable to standard FL-BCD
baselines, highlighting its effectiveness in enhancing efficiency in FL deployments.

References

Al@Meta. Llama 3 model card. 2024. URL https://github.com/meta-1lama/llama3/blob/main/MODEL_
CARD.md.

Sara Babakniya, Ahmed Roushdy Elkordy, Yahya H Ezzeldin, Qingfeng Liu, Kee-Bong Song, Mostafa
El-Khamy, and Salman Avestimehr. Slora: Federated parameter efficient fine-tuning of language models.
arXiwv preprint arXiv:2308.06522, 2023.

Jiamu Bai, Daoyuan Chen, Bingchen Qian, Liuyi Yao, and Yaliang Li. Federated fine-tuning of large language
models under heterogeneous language tasks and client resources. arXiv e-prints, pp. arXiv—2402, 2024.

Amir Beck and Luba Tetruashvili. On the convergence of block coordinate descent type methods. STAM
journal on Optimization, 23(4):2037-2060, 2013.

Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar
Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard, 2023.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao, Lorenzo Sani,
Hei Li Kwing, Titouan Parcollet, Pedro PB de Gusméao, and Nicholas D Lane. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390, 2020.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiw:2005.14165, 2020.

Yae Jee Cho, Luyang Liu, Zheng Xu, Aldi Fahrezi, and Gauri Joshi. Heterogeneous low-rank approximation
for federated fine-tuning of on-device foundation models. arXiv preprint arXiv:2401.06432, 2024.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser, Matthias
Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve math word
problems. arXiv preprint arXiv:2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.217883, 2024.

Tao Fan, Guoqiang Ma, Yan Kang, Hanlin Gu, Yuanfeng Song, Lixin Fan, Kai Chen, and Qiang Yang. Fedmkt:
Federated mutual knowledge transfer for large and small language models. arXiv preprint arXiv:2406.0222/,
2024.

Farzin Haddadpour, Mohammad Mahdi Kamani, Mehrdad Mahdavi, and Viveck Cadambe. Local SGD
with periodic averaging: Tighter analysis and adaptive synchronization. Advances in Neural Information
Processing Systems, 32, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, and
Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint arXiv:2106.09685,
2021.

12

https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md
https://github.com/meta-llama/llama3/blob/main/MODEL_CARD.md

Under review as submission to TMLR

Berivan Isik, Francesco Pase, Deniz Gunduz, Tsachy Weissman, and Michele Zorzi. Sparse random networks
for communication-efficient federated learning. arXiv preprint arXiv:2209.15328, 2022.

Divyansh Jhunjhunwala, Advait Gadhikar, Gauri Joshi, and Yonina C Eldar. Adaptive quantization of
model updates for communication-efficient federated learning. In ICASSP 2021-2021 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3110-3114. IEEE, 2021.

Yuang Jiang, Shigiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and Leandros Tassiulas.
Model pruning enables efficient federated learning on edge devices. IEEE Transactions on Neural Networks
and Learning Systems, 34(12):10374-10386, 2022.

Richeng Jin, Yufan Huang, Xiaofan He, Huaiyu Dai, and Tianfu Wu. Stochastic-sign SGD for federated
learning with theoretical guarantees. arXiv preprint arXiv:2002.10940, 2020.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In Inter-
national Conference on Machine Learning, pp. 5132-5143. PMLR, 2020.

Nikolas Koutsoubis, Yasin Yilmaz, Ravi P Ramachandran, Matthew Schabath, and Ghulam Rasool. Pri-
vacy preserving federated learning in medical imaging with uncertainty estimation. arXiv preprint
arXiw:2406.12815, 2024.

Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran Chen. Fedmask: Joint computation and
communication-efficient personalized federated learning via heterogeneous masking. In Proceedings of the
19th ACM Conference on Embedded Networked Sensor Systems, pp. 42-55, 2021.

Shiwei Li, Wenchao Xu, Haozhao Wang, Xing Tang, Yining Qi, Shijie Xu, Weihong Luo, Yuhua Li, Xiuqgiang
He, and Ruixuan Li. Fedbat: Communication-efficient federated learning via learnable binarization. arXiv
preprint arXiv:2408.03215, 2024.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated
optimization in heterogeneous networks. Proceedings of Machine Learning and Systems, 2:429-450, 2020.

Xiang Li, Wenhao Yang, Shusen Wang, and Zhihua Zhang. Communication-efficient local decentralized SGD
methods. arXiv preprint arXiv:1910.09126, 2019.

Bill Yuchen Lin, Chaoyang He, Zihang Zeng, Hulin Wang, Yufen Huang, Christophe Dupuy, Rahul Gupta,
Mahdi Soltanolkotabi, Xiang Ren, and Salman Avestimehr. Fednlp: Benchmarking federated learning
methods for natural language processing tasks. arXiv preprint arXiv:2104.08815, 2021.

Junkang Liu, Fanhua Shang, Yuanyuan Liu, Hongying Liu, Yuangang Li, and YunXiang Gong. Fedbcgd:
Communication-efficient accelerated block coordinate gradient descent for federated learning. In Proceedings
of the 32nd ACM International Conference on Multimedia, pp. 2955-2963, 2024.

Yang Liu, Yan Kang, Xinwei Zhang, Liping Li, Yong Cheng, Tianjian Chen, Mingyi Hong, and Qiang
Yang. A communication efficient collaborative learning framework for distributed features. arXiv preprint
arXiw:1912.11187, 2019.

Qijun Luo, Hengxu Yu, and Xiao Li. Badam: A memory efficient full parameter training method for large
language models. arXiv preprint arXiv:2404.02827, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-
efficient learning of deep networks from decentralized data. In Artificial intelligence and statistics, pp.
1273-1282. PMLR, 2017.

Yu Nesterov. Efficiency of coordinate descent methods on huge-scale optimization problems. SIAM Journal
on Optimization, 22(2):341-362, 2012.

13

Under review as submission to TMLR

John Nguyen, Kshitiz Malik, Hongyuan Zhan, Ashkan Yousefpour, Mike Rabbat, Mani Malek, and Dzmitry
Huba. Federated learning with buffered asynchronous aggregation. In International Conference on Artificial
Intelligence and Statistics, pp. 3581-3607. PMLR, 2022.

Rui Pan, Xiang Liu, Shizhe Diao, Renjie Pi, Jipeng Zhang, Chi Han, and Tong Zhang. Lisa: Layerwise
importance sampling for memory-efficient large language model fine-tuning. arXiv preprint arXiv:2403.17919,
2024.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning with gpt-4.
arXiv preprint arXiw:2304.03277, 2023.

Sashank J. Reddi, Zachary Charles, Manzil Zaheer, Zachary Garrett, Keith Rush, Jakub Kone¢ny, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive federated optimization. In International Conference on
Learning Representations, 2021.

Amirhossein Reisizadeh, Aryan Mokhtari, Hamed Hassani, Ali Jadbabaie, and Ramtin Pedarsani. Fed-
paq: A communication-efficient federated learning method with periodic averaging and quantization. In
International Conference on Artificial Intelligence and Statistics, pp. 2021-2031. PMLR, 2020.

Guangyu Sun, Umar Khalid, Matias Mendieta, Taojiannan Yang, Pu Wang, Minwoo Lee, and Chen Chen.
Conquering the communication constraints to enable large pre-trained models in federated learning. arXiv
preprint arXiv:2210.01708, 2022.

Youbang Sun, Zitao Li, Yaliang Li, and Bolin Ding. Improving lora in privacy-preserving federated learning.
arXiv preprint arXiv:2403.12313, 2024.

Gemma Team, Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2: Improving open
language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

Qwen Team. Qwen2.5: A party of foundation models, September 2024. URL https://qwenlm.github.io/
blog/qwen2.5/.

Paul Tseng. Convergence of a block coordinate descent method for nondifferentiable minimization. Journal
of optimization theory and applications, 109:475-494, 2001.

Hongyi Wang, Mikhail Yurochkin, Yuekai Sun, Dimitris Papailiopoulos, and Yasaman Khazaeni. Federated
learning with matched averaging. In International Conference on Learning Representations, 2020a. URL
https://openreview.net/forum?id=BkluqlSFDS|

Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H Vincent Poor. Tackling the objective inconsistency
problem in heterogeneous federated optimization. arXiv preprint arXiv:2007.07481, 2020b.

Lin Wang, Zhichao Wang, and Xiaoying Tang. Save it all: Enabling full parameter tuning for federated large
language models via cycle black gradient descent. arXiv preprint arXiv:2406.11187, 2024a.

Shigiang Wang and Mingyue Ji. A lightweight method for tackling unknown participation probabilities in
federated averaging. arXiv preprint arXiv:2306.03401, 2023.

Yujia Wang, Lu Lin, and Jinghui Chen. Communication-efficient adaptive federated learning. In Proceedings
of the 39th International Conference on Machine Learning, pp. 22802-22838. PMLR, 2022.

Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen. Tackling the data heterogeneity in
asynchronous federated learning with cached update calibration. In The Twelfth International Conference
on Learning Representations, 2024b. URL https://openreview.net/forum?id=4aywmeb97I.

Yujia Wang, Shigiang Wang, Songtao Lu, and Jinghui Chen. Fadas: Towards federated adaptive asynchronous
optimization. arXiv preprint arXiv:2407.18365, 2024c.

14

https://qwenlm.github.io/blog/qwen2.5/
https://qwenlm.github.io/blog/qwen2.5/
https://openreview.net/forum?id=BkluqlSFDS
https://openreview.net/forum?id=4aywmeb97I

Under review as submission to TMLR

Ziyao Wang, Zheyu Shen, Yexiao He, Guoheng Sun, Hongyi Wang, Lingjuan Lyu, and Ang Li. Flora:
Federated fine-tuning large language models with heterogeneous low-rank adaptations. arXiv preprint
arXiv:2409.05976, 2024d.

Chuhan Wu, Fangzhao Wu, Lingjuan Lyu, Yongfeng Huang, and Xing Xie. Communication-efficient federated
learning via knowledge distillation. Nature communications, 13(1):2032, 2022.

Huiwen Wu, Xiaohan Li, Deyi Zhang, Xiaogang Xu, Jiafei Wu, Puning Zhao, and Zhe Liu. Cg-fedllm: How
to compress gradients in federated fune-tuning for large language models. arXiv preprint arXiv:2405.13746,
2024.

Ruiyuan Wu, Anna Scaglione, Hoi-To Wai, Nurullah Karakoc, Kari Hreinsson, and Wing-Kin Ma. Federated
block coordinate descent scheme for learning global and personalized models. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 35, pp. 10355-10362, 2021.

Haibo Yang, Minghong Fang, and Jia Liu. Achieving linear speedup with partial worker participation in
non-I11D federated learning. In International Conference on Learning Representations, 2021.

Rui Ye, Wenhao Wang, Jingyi Chai, Dihan Li, Zexi Li, Yinda Xu, Yaxin Du, Yanfeng Wang, and Siheng
Chen. Openfedllm: Training large language models on decentralized private data via federated learning.
In Proceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp.
6137-6147, 2024.

Xiang Yue, Xingwei Qu, Ge Zhang, Yao Fu, Wenhao Huang, Huan Sun, Yu Su, and Wenhu Chen. Mammoth:
Building math generalist models through hybrid instruction tuning. arXiv preprint arXiv:2309.05653, 2023.

Jianyi Zhang, Saeed Vahidian, Martin Kuo, Chunyuan Li, Ruiyi Zhang, Tong Yu, Guoyin Wang, and Yiran
Chen. Towards building the federatedgpt: Federated instruction tuning. In ICASSP 2024-2024 IEEE
International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 6915-6919. IEEE,
2024.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric. P Xing, Hao Zhang, Joseph E. Gonzalez, and Ion Stoica. Judging
llm-as-a-judge with mt-bench and chatbot arena, 2023.

15

Under review as submission to TMLR

A Additional Experiments

A.1 Additional Results

Additional experiments on multilingual settings We conducted multilingual experiments by fine-
tuning both the Spanish and the original English Alpaca-GPT4 models, and evaluated them on the ARC
challenge. Due to time and space constraints, we only compare ParaBlock with FedBCD here to demonstrate
that ParaBlock can still achieve performance comparable to FedBCD.

GPU memory consumption We first present the peak GPU memory consumption for all baselines in
Table |§| when fine-tuning on the Alpaca-GPT4 dataset (Peng et al.l[2023)). The results indicate that ParaBlock
and FedBCD incur the lowest GPU memory costs among the fine-tuning methods. FedCyBGD exhibits a
relatively higher memory cost compared to FedBCD and ParaBlock due to differences in block assignment.
Furthermore, the proposed ParaBlock consistently consumes less memory than LoRA-based methods.

Table 9: GPU peak consumption when fine-tuning the Alpaca-GPT4 dataset.
Methods | Llama 3-8B Llama 3.2-3B

FedLoRA 27.0G 14.3G
FFA-LoRA 26.8G 14.2G
FLoRA 27.0G 14.3G
FedCyBGD 29.6G 13.9G
FedBCD 23.3G 10.0G
ParaBlock 23.3G 10.0G

Orthogonal to existing communication efficient FL methods Previous studies in FL have explored
various communication-efficient techniques, such as model/update compression, quantization, and prun-
ing (Reisizadeh et al [2020; [Haddadpour et al.| [2019; Wang et al.| [2022; |Jiang et al., 2022). These approaches
primarily aim to reduce the number of communication bits, thereby improving the communication efficiency
in FL systems. In contrast, our proposed ParaBlock targets the latency inherent in the communication
process, making ParaBlock orthogonal to existing communication-reduction methods. In Table 1)we
compare ParaBlock with existing communication-reduction method applied to FedBCD, and 2) we show
that for those computation time cannot overlap the communication time, we can further apply existing
communication-reduction methods to improve the communication efficiency.

The top part of Table it shows that ParaBlock achieves superior performance compared to directly
applying top-k compression (as utilized in (Wang et al., [2022; |Li et all [2024))) with top 20% ratio to the
standard FedBCD baseline, while also requiring less runtime. This is because top-k compression, despite
reducing communication bits, still necessitates transmitting compressed model at each global round. In
contrast, ParaBlock directly reduces the communication latency, resulting in better overall performance than
applying compression to the vanilla FedBCD baseline. Moreover, ParaBlock is compatible with existing
communication reduction techniques, as shown in the bottom lines in Table By further integrating top-k
compression, ParaBlock can effectively reduce the extra communication time with still achieving reasonable
performance in both tasks.

Hyper-parameter details We conduct learning rate searches to find the best learning rate for each baseline.
We grid the learning rate 7; from {3e-7, 1e-6, 3e-6, le-5, 3e-5 }, and the global learning n = 1 for
all experiments. The extra hyper-parameters for AdamW optimizer is following the default parameter in
Trainer, i.e., 31 = 0.9, 83 = 0.999, ¢ = 10~6. Table [11| summarize the learning rates in our experiments.

16

Under review as submission to TMLR

Table 10: Comparison with Top-k compression methods, where MT-B is the abbreviation for MT-Bench.
Method ‘MT—BT Runtime(m) | GSM8K? Runtime(m) |

100M/s, ebs=4

FedBCD 5.14 30.2 54.74 24.9
+Top-20%| 5.00 26.4 54.12 21.1
ParaBlock 5.14 21.1 55.88 15.8
+Top-20%| 5.11 21.0 55.27 15.6
50M/s, ebs=2
FedBCD 5.03 30.0 54.66 26.8
+Top-20%| 4.99 22.5 53.90 19.2
ParaBlock 4.99 19.4 53.53 19.4
+Top-20%| 4.98 11.6 54.14 11.6

Table 11: Learning rates in our experiments

Alpaca-GPT4 Math Instruct
Llama 3-8B Llama 3.2-3B Llama 3-8B Llama 3.2-3B
FFT 3e-7 le-7 le-7 le-6
FedIT 3e-6 3e-7 3e-6 3e-5
FFA-LoRA 3e-6 3e-7 3e-6 3e-5
FLoRA 3e-6 3e-7 3e-6 3e-5
FedCyBGD le-5 le-6 3e-6 3e-5
FedBCD le-5 le-6 3e-6 3e-5
ParaBlock le-5 le-6 3e-6 3e-5

B Theoretical Analysis

B.1 Additional Discussions about Assumptions

Discussion about Assumption [5.1 The block-wise smoothness property could be naturally implied
by the general smoothness of objective function. Given to the non-negativity of the norm operation, there
is [Vof(01) — Vuf(02)] < |[Vf(61) — Vf(02)|] = L||0; — 62]]. We adopt the general smoothness for
convenience and notational clarity. Alternatively, if we assume block-wise smoothness: for each block b, there
is |V f(01) — Vuf(62)| < Ly|01 — 0]|, and with L = max;, Ly, the convergence analysis can be modified
accordingly. The convergence rate will maintain O(1/v/T) but depend on L instead of L.

Discussion about Assumption The block-wise heterogeneity naturally follows from the original
bounded heterogeneity in Assumption as well. Using the property of partial derivatives, V,f(0;) =
[Vf(6:)], and following the argument in Lemma C.3, we have

B N
5 YT O) ~ V@I = 5 S IV/0) - VO < o2 7

i=1 b=1

Therefore, for simplicity, we adopts a general bounded variance assumption on the full gradient. Moreover, if
we instead assume bounded variances for each block, the convergence rate of O(1/+/T) remains valid. We
will discuss this in the revision.

17

Under review as submission to TMLR

B.2 Convergence Analysis

For the global model of two consecutive steps, there is

(O141]6, — [0e]n, = nA:. (8)

For A; =[0,---,0,A,,0,---,0], where [A;],, = A;. Given the fact that [V £(0;)], = Vi f(8;), for each time
step ¢,

E[f(0t1) — f(64)]
= E[f(9t+1)] - f(at)

< E[(V(80), s — 00)] + TE[|0011 — 0,17

— E[(V5, (6. nA)] + SE{lna|?)

= (V5 (00, AN+ TEE A7),)
Il T

where the first inequality follows Assumption and the second equation holds by [V f(0;)]y = Vi f(6;) and
Eq. . For the first term I, there is

I = nE[(Vs, f(6:), Ay)]
= nE[(Ve, f(0:), Ay + mE Vs, f(0:) — mE Vs, f(6:))]

= —iKE[[|Vy, £(0:)|%] + nE[(Vy, £(0:), A¢ + mK Vb, f(6:))). (10)

Then

77EKvbtf(9t)v At + anVbtf(at)”

<Vbtf(9t)7 % i_v: Af+ % X_: vbtf(gt)>]
(V000,23 3 ghict i Vi.f6))]

N
(V0000 -5 3 Y Vo0 + Y- Vision)|

= nE_
= nE-
= 'r]E_
=i { VR - V1160, - S V) + YK ivbtf¢<et>>]
| - =
:
|

} (11)

N
= BRI 0]+ gt | 3 X 90 — V00

N K-1

Z Z vbt fZ(QZk)

i=1 k=0

Ul
— E
IN2K {

18

Under review as submission to TMLR

where the third equation holds by the unbiased-ness of stochastic gradient, and the last one holds by the fact
of (a,b) = 1[||la]|® + ||b]|> + |l@ — b||?]. For the second term in Eq. (TI]), there is

N K-1 2
nm
2N2KE[;;O{vm k) = Vo f(60)] }
m N K-1
1
< on 2o O ElIVe filBis) = Vo, £i(8)]1]
=1 k=0
N K-1
77771L2 i
< > E[I6], — 6u%). (12)
2N <4
i=1 k=0
Therefore, for the whole I; term, we have
2 77771K 77771L 2
Iy < —uKE[||V, £(0,)]1°] + —5—E[[| Vs, £(6:)]%] Z Z E[[|6 . — 6:%]
1=1 k=0
m N K-1 2
! i
_2N2K |: szbtfl(t,k}) :|
i=1 k=0
7777K 7777L N K-1 m N K-1 2
A 1l l %
— - BT £O)I) + T Y 3 B~ 07 - 5| | X Vnsioio)| | a3
i=1 k=0 =1 k=0

where the equation holds by Lemma [C.3]

Note that the model Hl ' is the k-th local step model for update block b; at time step ¢, thus the previous
b;—1 block has been updated yet, i.e.,

0;,C = LocalBlockTraining(Gi,07 . k),
ei,o = 02 = 0271 + 775;‘71 +nA o — 77&%72
=01+ 77Ai—17
0, =61+ nA;_y, (14)

then
(167 — 6:]°] = E[|6; x — 6 + 6} — 6:]%]

< QE[”Bi,k - 0%,0||2] + QE[HO;O — 647, (15)

19

Under review as submission to TMLR

where the first term consists of k steps of local updates, while the second term includes the updates difference
when updating the b;_1 block. For £ =0,..., K — 1, we obtain

E[]|6; 1 — 010l = B[]0} — 6; olu.|I’]
= E[H[é,k—l - 0;0 - 77192,1@]&,: ||2]

< E[||(6} 1_1]b. — (67 0lo, — m([g})b, — Vo, [i(0 k1) + Vi, fi(6} 1_1)

- Vbtfi(ai,()) =+ vbt, fi(gz,O)
—Vbtf(i)+Vbt L))

< <1+) [H tk 1 20 bt||]+]E[||nl([gz,k}bt _vbtfl tk 1 H]
+ GRE[(Vi (0 1) — V1. i(010)) [P + GKE (Vi i(0h) — V1,161)
+GKE[n 9 £8P
1
< (14 g + ORUPL L8l ~ 61l) + 0

+ 6KE[|lm(V, fi(6} 0) — Ve, f(i,o))||2]+6KE[||metf(1o)l%]

1 @
= (1+ Sqe 1 T oKL) (167 5.—1 = 010l"] + e

+ GKE[||lm(Vy, £i(6}0) — Vo, £(8;.0))I°] + 6KE[ln Ve, £(87 o)1),

(16)
then by taking average over all clients i € [N],
1 Y , N ,
N L EOh~Oiol = 5 D (1 gy + 0K LI — O
i=1 i=1
6Kn? N -
+6Knio; + TIZE[IIVbtf(Oi,o)IIZ]- (17)
i=1
Since n; < ﬁ, unrolling the recursion, then we have
1 & 4 ,
¥ 2 EllOL — 0ol
k—1 1 p
2 2 2 92 l
Sp:O <1+I(1> |:'l710' +6K77l0'g+ Z]E |Vbt ||]:|
1 K 771
<(K-1) I+ =) -1 nio? + 6Knjo, + Z]E”Vbt o)lI%]
30K 2 :
< 5Knio® + 30K 0} + = 3 E[| Vs, £(6] o)) (18)
i=1
for the last item, we have
N
A i 2
*ZE (V5. £(63 0)11%] = Z [V, £(670) — Vi, f(6r) + Vo, f(6:)7]
i=1
N N
< NZ (V5. f(8i0) = Vb, f(8:)]I°] Z (V5. £ (8¢)|I°]
arz N
< 5% LBl ~ 0]+ 2511100 (19)

20

Under review as submission to TMLR

where there is

E[|6;0 — 0:l*) = E[0:-1 +nA;_y = (611 +nA¢1)|]
=n’E[Al — Ara|’]
< 2°E[| Af [P + 20°E[[| A1 %)

= 20°E[| Aj_1] + 20°E[|| A¢-1]]- (20)
Merging items together, then we obtain
1 XN ' N _ N _
~ CEl6; - 0uP) Z 167~ 017+ S =16k 01l
i=1 i=1 i=1

N
< 10Knio? + 60K277[20§

N
7 2 7
E[[[Vs, f(0;0)II°] + NZEHI(%,O — 6,|°]
= i=1
< 10Knjo® + 60Knjo? + 120Ky E[||Vbt (0]
120 K292 L% &
120K " 5~

~ [116i, — 6.1 ZEH@ —6,]%
=1
N
< 10Kn}o’® + 60K nfo2 + 120K n7E[|| Vs, f(8¢)]|] Z (1167 0 — 6:]1°]
— o
< 10Kn?0? + 60K nfo? + 120K n7E[||Vy, £(8:)[1] + 8n°E[|| A1] WZ A 4. (21)

Therefore, reorganizing the I; term, we obtain

N K-1 N

K-1
an nmL i "
1< PRS0+ T 3 3 Elloh 0] = || X Vi]
=1 k=0 1=1 k=0
K
<1 E[llvbtfwt)2]+nmL2K[5Km > + 30K} o) + GOK 0P B[V, £(8,)]

nm
FarElacl+ S war] - |
i=1

1
> Vi fi(6;)

0

>

i=1

K—
k=

o]

21

Under review as submission to TMLR

Summing up Eq. @,

T-1
BI(Vs, £(0r).)]+ 1 S ElIA?

t=0

t=0
E[|| Vs, £(6,)]]+17mL2K{5TKon-2+3OTK2771202
t=0
T—1 T-1 4772T 1N
+ 60K S B FO)IP] + 407 3 ElIA]+ G 3 S EIALI
t=0 t=0 t=0 i=1
m T—1 N K-1 77 T
1
e S| X v | + BE S s
t=0 =1 k=0 t=0
K —
<=0 D ElIVe 00" + 60K i L* Y E[||V, £(60)]°)
t=0 t=0
2L T
+ LK (5T Knjo® + 30T K*nio?) + <4n3mL2K + "2> S E[A?
t=0
1 N T—1 N K-1 2
L APm 2K mL2K i i i
t=0 i=1 t=0 i=1 k=0
By Lemma the inequality becomes
nnKT—l T—1
l
E[f(67)] — f(60) < — > E[Vy, £(8:)]1] + 60K i L2 > " E[| Vs, £(6,)]|]
t=0

t=0

ZE 1A

+ i L*K (5T Knjo? + 30T K njo)) + (477 mI2K + !)
t=0

T-1 T-1
nm K
+ 4’ LK Y B AP + = D B[V f(8)]]
t=0 t=0
+ 4P LK (2T Knfo® + 20T Ky L0 + 1207 Ky L?o?)
T-1 N K-1
[SN 6] (24)

=1 k=0

_
2N?2K -

22

Under review as submission to TMLR

By condition on

. . 1 1
learning rates, i.e., 7 < 557 and 7 < 4KLn’

T-1
E7(0r)] — £(80) < "L ST BV, £(001) + nm LK (STK o + 307 K0 o?)

Then,

t=0

(8n mi2K +) Z E[AP

+ 4P L2 K (2T Kn?o? + 20TK2 [L?0” + 120TK®n} L?0?2)

)y]

i=1

1
> Vo fi(67)

0

K-
k=

K
< -1 ZEnvbt FO)|2) + LK (5TKno® + 30T K *fo?)

t=0
L\ TKn?
+ (877 mL2K—|—2> N771 o2
+ 4P LPK (2T Knio® + 20T Ky L?0® + 1207 Ky L?0?).

8
E[[|Ve, f(80)]%] < e [£(80) — ELf(01)]] + 40T K17 L?0” + 240T K *ni Lo,

L\ Ty
8 2 LQK n 2
+ (TRt)N
+320°L? (2T Knjo® + 20T Ky L?0® + 120T K>y} L?0?).

Dividing by T', there is

3 8 2 2 2 2 2
f; (Vs £(8)]%] < T [£(80) — E[f(67)]] + 40Kn?L?0? + 240K *n} L2 o2

With F = f(8,) —

L\ m
82 L2K N\ o
+<77771 —1-2 NO'

+ 3202 L2 (2K ni o + 20K %y L?0® + 120K°n! L?07).

f« and f. = ming f(6) > —o0, and there is f(0y) — E[f(07)] < f(00) — f«

— 8
— £(0,) 6,) —E[f(0 40Kn; L?0® 4 240K *n] L? o,
T; IV, £8)I") < e [£(B0) — ELf(Or)]] + 40K L20® + 240Kn

2 /N
+320°L*(2Knj0® + 20Ky L?0* 4+ 120K °n/ L* o)

L
+ (8172nlL2K + 77) 52

8
< F +40Kn?L?0? + 240K %0 L% 52
> 'IYTIZTK + m o” + m Og

L
+ (8172nlL2K + 172> %02
+320°L*(2Knj0® + 20Ky L?0* + 120K °n/ L?o7)
8F

= 40’ L’ K (02 + 6K o2
T]T)ZTK+ n (0" + Ug)

= F, then

nL
+ <8n2mL2K + ’2> M52 | 4P L2K[o? + 1002 L2 K (02 + 6Ko)].

N

23

(25)

(26)

(27)

28)

Under review as submission to TMLR

This concludes the proof of Theorem

B.3 Extension to Local Adaptive Optimizer

The theoretical analysis of the proposed ParaBlock is not limited to the local SGD setting. Essentially, the

main differences between the convergence analysis under SGD and adaptive optimizers can be summarized as
follows:

o The local updates A! are aggregated to A; on the server. Hence, the most crucial part of modifying
to AdamW is to deal with these A terms.

o For A} in Adam, there is A} = 0] , — 0}, =S/ (0;, — i, ;). Thus there is

1 N 1 N 1 N K
A= 7ZA125 = *Z[Qz,K — 00l = *ZZ(HHC 0; 1)

N < N N
i=1 i=1 i=1 k=1
N K i

1 my

- D)W

i=1 k=1 vt,k+6

772 1 N K-1 - 2
B[l A7 = ;E[HNZ (1= B4~ Va 060 + Vi 5000 |
i=1 k=0
2 1 N -1 2
_ EH' Z K kL [gi 7befz()]]
i=1 k:O
0 | N K- 1 2
2 K—k+1
e[| S a- st ei)| |
i=1 k= 0
N K-1 2
Knj n
= TG + N2e2 Z vbt,fi(ef k) . (30)
i=1 k=0
o The properties about bounding ZtT;Ol + ZZ LE[||A?]|?] would be also similar to the analysis in

Lemma
« In a nutshell, adopting local Adam achieves the same convergence rate of O(1/v/T) as SGD.

24

Under review as submission to TMLR

C Supporting Lemmas

Lemma C.1. The global update parameter Ay = + vazl Al satisfies

Kn? o N K-1 2
Bllad) < 5o + 8 | % Visel)]| | (31)
1=1 k=0

Proof. By definition,

r " N K-1 2
l i
ElAd?) =E|| - 5> > gia }
=1 k=0
1

- =1 k=
r n N —1 ’ 2 m N K-1
=E|| (96 = Vo Ji(6;)] } HNZZ b fi]
- i=1 k=0 =1 k=0
_ K 2+77?]E{ ZN:IHV £(00) 2] (32)
— N N2 (2 b
i=1 k=0

where the third equation holds by the unbiased-ness of the stochastic gradient, and the inequality holds by
Assumption O

Lemma C.2. The global update parameter Al satisfies

T-1 1 N T-1 1 T-1
t=0 1:1 t=0
+ 2T Knio? + 20TK2 L202 + 120Ky L. (33)
Proof. By definition,
r K-1 2
Ellai =E|| -0 3 ot |
- k=0
r K-1 ‘ 2
=5 || 0 X ot - ufil6L) + Vi s6] |
- k=0
r K-1 2 K-1 2
=E nzgtk Vo, fi(8;, :|+E[77lzvbf(zk)]
L -0 k=0
K— 2
SKTI1202+7712E[Z Vs) } (34)
k=0

25

Under review as submission to TMLR

where the third equation holds by the unbiased-ness of the stochastic gradient, and the inequality holds by
Assumption
o]

{ K-1
vbtfz i k) = Vo fi(0]0) + Vi, fi(070) — Vo, fi(6e) + Vo, fi(6:) — Vo, f(6:) + Vo, fi(64)]
0

vatfi
k=
I:(fl 2
]+2E{ vatfl) }

]

[V, fi(07 1) — Vo, f:(6}

k=0

1
§2]E{

—1 2 2
<2 Z 28 [0t - oto| | +25% | s0t)] | (35)
where
N N
1 ; ; 30K 2n? ;
N > E[[6; — 0;ol°] < 5Enio” + 30K nio; + N L RV, £(07 0117, (36)
i=1 =1
and
N L N
Z [V, £(8:0)[1%] < TZ to = 0:1%] + 2E[[| Vs, £(8.)]1%], (37)
where there is
E[[16; 0 — 6:]°] < 20°E[[|AL_[I°] + 27°E[[|A¢—1[]. (38)
Then
N 2 N — 2
¥ L EIAN < Kifot + S| 32 v sielo |
2Kn2L2 N . 2K 22 & .
< Knjo® + > E[6f *Gt,OIIZ]+TIZE[Hme(9t,o)Il2]
=1 k=0 1=1
60K3nAL? 2K — .
< Knjo® + 10K/ L?0® + 60Ky Lo + (T) ;E[Hvbt (82,0117
120K3nAL4 4K2 al .
< Knfo® + 10Ky} L?0® + 60Ky L?c? + (N”l) ZE 1670 — 6:]%]
=1
+ (120K°n; L? + 4K 0)E[|| Vs, £(6:)1%]
< Knjo? + 10Ky} L?0® + 60Ky} L2 + (240K nn L* + 8K 7 L*) — Z E[|AL 7]
+ (40K 0 LY+ 8K 07 L*)E[| As—1 %] + (120K L + 4K})E [IIVb,, (0)11%]. (39)

First we previously assume that 7; <

SKL, and also (1) for simplicity, if we have a sequence z; < axy_1 +
ayi—1 + Bz + C, then we have

e <axi— +oyi—1 + Bz +C
<alawi—o+ayi—o+ P21+ C)+ay—1 + fz + C

t t t
<alwg+ Z o'yt + ZOZFIBZ@ + CZOZFI
i=1 i=1 i=1

26

Under review as submission to TMLR

(2) for simplicity, if we have a sequence x; < ax;—1 + ayi—1 + Bz + C, then we have

r <oz oy + Pz +C

T-1 T-1 T-1 T-1
Z-Tt Sazxt—l +a2yt_1+ﬁ22t+C*T
t=0 t=0 t=0 t=0

=
T-1 T-1 T-1
z < a :ct—i—aZyt 1+BZzt+C*T
t=0 t=0 t=0 t=0
T-1 T-1 T-1
(1—04)th§& yt71+522t+C*T
t=0 t=0 t=0

T-1
z < a(l —a) 12% 1+ 81 —a) 1Zzt+C(1—a)’1*T,
t=0 t=0 -

we want that % <1-—a«a <1, which means 0<a< é therefore, we have 1 <(1- oz)’1 < 2. Moreover, since

o = 240K3n*n! L* + 8K?n*n? L? < L, we have 240K3n} L? + 8K2 < 2n2L2

T—1 T—-1 T—1
S n <3 w283 at20eT
t=0 t=0 t=0
= (40)

N - —
| LB < S EIIAI + (a0K*3L2 + 8K202) Y BIIVh, S0

}ﬂ
L

~
I
o

+ 2TK771202 + 20T K*n/ L?0® + 120TK*n/ L*o;

T-1
< ZE AP sz 2 ElIVas @)1
- 2TKnl o? + 20TK2nl4L202 + 120TK°n/ L?a7. (41)

Lemma C.3. For @ = [0',0%,... 0], i.e., there is a block partition b= 1,2, ..., B partitioned 0 into B
blocks, then we have ||0]|?> = Zb 1 H0b\|2

Proof.

1011 + 11671 + - + |67

(Ser) o (Se2) +o ()

i=1 i=1

[
M=~

(@*)* = ||o]I*. (42)

1

.
Il

O

Lemma C.4. For @ = [0',0%,...,08) andy = [y',y?,...,y®], i.e., there is a block partitionb=1,2,..., B
partitioned 0 and y into B blocks, then we have (0,y) = EbB:1<0b,yb>.

27

Under review as submission to TMLR

Proof.

@', y") + (6%, y*) + -+ (87, y")
dq do dp

_ le,iyl,i n Zx2,iy2,i TR ZxB,in,i
=1 =1 =1

d
=Y @'y = (6,y).
i=1

28

(43)

	Introduction
	Related Works
	Preliminaries and Motivations
	ParaBlock: A new federated fine-tuning method
	Theoretical Analysis
	Experiments
	Experimental settings
	Main results
	Ablation studies

	Conclusion
	Additional Experiments
	Additional Results

	Theoretical Analysis
	Additional Discussions about Assumptions
	Convergence Analysis
	Extension to Local Adaptive Optimizer

	Supporting Lemmas

