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Abstract

Aspect sentiment triplet extraction (ASTE) is001
a sentiment analysis task that aims to extract002
views’ sentiment polarity, expression, and tar-003
get (aspect). This paper proposes the first un-004
supervised method for aspect sentiment triplet005
extraction. Based on the previous discovery006
of the pre-trained language model (PLM)’s007
awareness of sentiment, we further leverage008
the masked language model (MLM) to prompt009
an ASTE dataset with automatically annotated010
labels. Our method, PromptASTE, fills in a se-011
ries of prompts to generate a dataset for related012
aspects and views. The dataset is then used013
to train an ASTE model for prediction. Train-014
ing on PromptASTE results in models with an015
outstanding capability in discerning sentiment016
polarities and targeted aspects. Our model sets017
the first and strong baseline on unsupervised018
ASTE.019

1 Introduction020

Aspect sentiment triplet extraction (ASTE) is a021

type of sentiment analysis task. Compared to022

conventional sentiment analysis that classifies the023

sentence-level sentiment polarity, ASTE is inter-024

ested in aspect-based sentiment and extracts the025

expression (view) and target (aspect) of sentiments,026

more than just the polarity.027

Some instances for ASTE are shown in Fig-028

ure 1, the view and aspect are represented by spans.029

Paired spans are labeled as the sentiment polarity030

of the view on its targeted aspect. While many031

previous works have been done for the supervised032

ASTE system, unsupervised ASTE remains a blank.033

As sentiment is a universal and cross-language phe-034

nomenon, unsupervised ASTE is appealing to re-035

duce the burden for annotation, especially for low-036

source language with a limited number of skilled037

annotators.038

However, unsupervised ASTE is challenging as039

ASTE data are structured in a complex form. The040

Burger   Queen   – just   brought   a    delicious   hamburger

Positive

View Aspect

The   ice   cream   is   disgusting   .   #   Covensky Ice

Negative

ViewAspect

Figure 1: Instances for the ASTE task.

unsupervised system faces several essential prob- 041

lems for relationship understanding. a) Polarity 042

How the model understands the sentiment polarity 043

with no annotated knowledge? b) Relationship 044

How the model learns paired feature that does not 045

exist in sequential natural language with no anno- 046

tation for relationships? c) Boundary How the 047

model determines the span boundaries annotated 048

by human when testing? 049

The challenges above hinder the application of 050

conventional unsupervised methods, like cluster- 051

ing. Moreover, clustering requires collecting unan- 052

notated data for unsupervised training, which is 053

still unfriendly for low-source languages. We aim 054

to step even further towards a method that is free 055

from any ASTE-related data, no matter annotated 056

or unannotated ones. 057

Thus, we cast our attention to pre-train language 058

models (PLMs) (Radford et al., 2018; Devlin et al., 059

2019; Liu et al., 2019; Yang et al., 2019), which 060

are competitive zero-shot learners (Radford et al., 061

2018) with strong scalability. PLMs, like Roberta 062

(Liu et al., 2019), are trained on upstream masked 063

language model (MLM) tasks that require the lan- 064

guage model to fill in masked words in context. 065

Recent studies have shown that pre-training en- 066

dows PLMs with sentiment awareness to solve 067

conventional sentiment analysis problems, suggest- 068

ing the PLM is an admirable choice for unsuper- 069

vised ASTE. By utilizing the MLM task, we fill 070

in prompts to create an ASTE dataset from PLMs. 071

A prompt combination is used to sample kernel 072
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spans, which are spans consisting of aspect senti-073

ment triplets, from PLMs.074

The annotating system comprises three prompts075

for domain specification, aspect generation, and076

view generation. We also propose a contrastive077

prompt to prompt better sentiment expressions078

by contrasting positive and negative expressions.079

Based on the kernel span, PLMs are again used to080

supplement the contextual background via mask081

filling. The supplemented data finally form the082

PromptASTE dataset.083

After the dataset is created, PromptASTE is used084

to train ASTE models following a supervised sce-085

nario. Spans and their relationships are annotated086

in graphs to train a parser for graphic pattern cap-087

turing. We test the trained parser on several ASTE088

datasets and compare the results with supervised re-089

sults. Our method shows competitive performance090

on unsupervised ASTE and sets the first and strong091

baseline.092

The contributions from our work are summa-093

rized as follows:094

• We propose the first unsupervised method for095

ASTE and set a strong baseline for the task.096

• We verify the plausibility of prompting a097

dataset for a task with a complex data structure.098

• We implement a novel contrastive prompting099

procedure to generate sentiment expressions better.100

2 Background and Related Work101

Triplets in ASTE are formalized in (V,A, P ) where102

V , A, P refer to view (expression) span, aspect103

(target) span, and sentiment polarity respectively.104

ASTE models are trained to determine the bound-105

ary of spans and label the polarity held by the view106

towards the aspect.107

Since the annotation of a variety of ASTE108

datasets (Peng et al., 2020; Xu et al., 2020) based109

on aspect based sentiment analysis (ABSA) data110

(Pontiki et al., 2014, 2015, 2016), many supervised111

methods have been proposed for ASTE. (Peng et al.,112

2020) tests a wide range of previous triplet extract-113

ing method on ASTE and propose a new tagging114

model to set the first supervised baseline. (Xu et al.,115

2020) incorporates position information and CRF116

inference into the tagging system to boost the per-117

formance. (Wu et al., 2020) formalizes ASTE in118

a grid tagging scheme. Though supervised ASTE119

has been under heated discussion since the task’s120

proposal, so far no attention has been cast to solve121

ASTE with no supervision.122

However, unsupervised ASTE is a fairly chal- 123

lenging task. Besides its complex structured na- 124

ture, the difficulty also comes from the incapability 125

of existing unsupervised system to build a com- 126

plete pipeline, from span extraction to relation- 127

ship labeling. For unsupervised relation extrac- 128

tion, current models have only limited capability 129

to label the relationships between paired already 130

extracted spans (Tran et al., 2020; Yuan and Eldard- 131

iry, 2021). These methods use conventional unsu- 132

pervised method like clustering to assign closely 133

distributed span pairs the same labels. Thus, the 134

prerequisite of annotated spans makes these unsu- 135

pervised methods unfriendly to the real zero-shot 136

learning. 137

Thus, we abandon the conventional unsupervised 138

methods and turn towards leveraging PLMs, which 139

are powerful zero-shot learners via training on 140

super-large corpora. The long training procedure 141

endows PLMs with the understanding of seman- 142

tic relationships between tokens, which makes the 143

PLM a desirable tool for unsupervised downstream 144

tasks. Also, mask filling on prompts has been ver- 145

ified to be a power way to extract commonsense 146

knowledge (Petroni et al., 2019), relationship un- 147

derstanding (Goswami et al., 2020), and sentiment 148

awareness (Wu et al., 2019) of the PLM. Our work 149

further leverages the endowed sentiment awareness 150

in PLMs to build a complete unsupervised pipeline 151

for ASTE. 152

3 Prompting ASTE Dataset 153

3.1 The Pipeline 154

We first give a rough description of our method and 155

how it deals with the challenges in unsupervised 156

ASTE before introducing the specific implementa- 157

tion. The pipeline comprises two main procedures: 158

kernel span generation and context supplement. 159

Kernel span refers to the span that consists of 160

the aspect sentiment triplet. To obtain kernel spans, 161

our prompt involves masked view spans (v-mask) 162

and masked aspect spans (a-mask). V-masks and 163

a-masks are both common mask tokens used in 164

the upstream MLM pre-training, and their only 165

difference is representing views or aspects. The 166

PLM fills the masked spans, and the kernel span is 167

seized from the span for context supplement. 168

Polarity We add hints for polarity to the prompt 169

in order to generate view expressions with the cor- 170

responding sentiment polarity. 171
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In   the   restaurant   ,   I   think   <a-mask>   is   <pol>   :   “   It   is   a   <v-mask>   <a-mask>   .   ”

Domain Prompt Aspect Prompt View Prompt

In   the   restaurant   ,   I   think   <a-mask>   is   good :   “   It   is   a   <v-mask>   <a-mask>   .   ”

In   the   restaurant   ,   I   think   hamburger is   good   :   “   It   is   a   <v-mask>   hamburger .   ”
Coreference

In   the   restaurant   ,   I   think   hamburger   is   good   :   “   It   is   a   <v-mask>   hamburger   .   ”

In   the   restaurant   ,   I   think   hamburger   is   bad :   “   It   is   a   <v-mask>   hamburger   .   ”

Contrast

hamburger

delicious

In   the   restaurant   ,   I   think   hamburger   is   good   :   “   It   is   a   delicious hamburger   .   ”

Kernel Span

Polarity

Positive

Positive

Positive

Positive

Positive

Figure 2: Prompting steps for the generation of PromptASTE.

Relationship The relationships are pre-defined172

between views and aspects in the prompt.173

Boundary Words near the span boundaries help174

control the generated span to have boundaries as175

pre-defined in the prompt.176

177

Based on the kernel spans, we again use the178

PLM to supplement the contextual background for179

the sentiment via mask filling. The supplemented180

results are the final PromptASTE dataset.181

3.2 Domain Prefix Prompt182

The domain prefix prompt is used to specify the183

domain for kernel span generation. As in the green184

frame in Figure 2, the domain prefix prompt deter-185

mines the contextual environment for the prompt-186

ing generation. As the testing datasets are in dif-187

ferent domains, the domain prefix prompt will help188

generate more relevant training data to improve the189

performance of trained models.190

3.3 Aspect Prompt191

The aspect prompt is the blue frame in Figure 2,192

which is responsible for polarity selection and as-193

pect generation. The prompt contains a-masks and194

a polarity token <pol> that provides hints for the195

later generation.196

After the polarity of triplets in the kernel span197

is selected, the polarity token is substituted by a198

token with sentiment information. In the instances199

in Figure 2, the word good substitutes <pos> and200

indicates the positive sentiment in the kernel span.201

Then we fill in the a-masks via a beam search. 202

Notice that the masked aspect span might consist 203

of multiple mask tokens. 204

X = [x1, · · · , xi−1,<mask>, · · · ,<mask>, xj+1, · · · , xn]

p(xi, · · · , xj |X) =

j∏
t=i

p(xt|X,xi, · · · , xt−1)

p(xt|X,xi, · · · , xt−1) = softmax(Rt/T )

R = PLM(xt|X,xi, · · · , xt−1)

205

where T refers to the temperature for sampling. 206

R ∈ Rn×o is the output representation from the 207

PLM, and o refers to the dictionary size. We sum- 208

marize the beam searching procedure as Beam(·). 209

After we get the existing probability of each beam, 210

we sample an aspect span following the predicted 211

distribution. 212

3.4 Contrastive View Prompt 213

After generating the aspect span, we also fill in 214

the coreferenced masked aspect span in the view 215

prompt. Then we introduced our contrastive gener- 216

ation for view span. 217

For the prompt in this step Xself , we shift the 218

word in the position of polarity token to create 219

an opposite prompt Xoppo. We first use Xself to 220

sample k view span beams by prompting and then 221

calculate the probability distribution of the view 222

span in Xoppo. 223

P self = Beam(Xself ), P oppo = Beam(Xoppo) 224
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Positive

View Aspect

Negative

ViewAspect

delicious   hamburger <mask>   <mask>    ice   cream   is   disgusting

<mask>   <mask>   <mask>   delicious   hamburger

Positive

View Aspect

Prefix Filling

Merging

Figure 3: Supplement procedures that transform kernels
into training data.

Finally, the log probability of P self is subtracted225

by the weighted log probability of P self and passed226

through a softmax function for the contrastive dis-227

tribution.228

P contrast = softmax(log(P self )− w log(P oppo))229

The view span is likely sampled following the230

predicted distribution as the aspect span.231

After aspect and view spans are completely filled,232

we seize the kernel span and build the triplets using233

pre-defined relationships.234

3.5 Context Supplement235

Based on the collected kernel spans, we supplement236

the contextual background for them by continuing237

to utilize mask filling. We use two supplement238

scenarios in our experiments: prefix filling and239

kernel merging as in Figure 3.240

Prefix filling is to attach several mask tokens to241

the beginning of the sentence. Then the PLM fills242

in the masks following a greedy strategy.243

Kernel merging is to merge multiple kernel244

spans together. We insert several mask tokens245

between two collected kernels and use the PLM to246

fill in the mask, still following the greedy strategy.247

248

We avoid adding mask tokens after the kernel249

span since the generated contents are more likely to250

break the aspect boundary and generate data with251

low quality. As a result, we do not apply postfix252

filling for the context supplement.253

4 ASTE Model254

4.1 Graph Annotation255

We formalized the collected data as parsing graphs256

to train the ASTE model. We attach a question257

as the prefix prompt to each sentence, like in the258

dataset prompting step.259

… bad … The   ice   cream   is   disgusting   .   #   Covensky Ice

span

view-on

view

… good … Burger   Queen   – just   brought   a    delicious   hamburger

view

view-on

Figure 4: Transformed parsing graphs from ASTE in-
stances.

260

Is this comment good, bad or common? [SEP] 261

262

For each triplet (V,A, P ), we first build an 263

edge from a sentiment token in the prefix prompt 264

to the syntactic headword of the view span. We 265

select the word with minimal depth in the syntactic 266

dependency tree as the headword. The connected 267

sentiment word indicates the polarity of view. 268

Then, an edge with the view-on label is built from 269

the headword of the view span to the headword 270

of the aspect span, indicating the relationship 271

between spans. Finally, for spans with more than 272

one token, edges are built from the headword 273

to the boundaries of the span. We show some 274

transformed instances in Figure 4. 275

4.2 The Parser 276

We describe the training procedure of our parser in 277

this section. For an input sentence, we concatenate 278

the pre-trained word embedding and representa- 279

tion from the PLM to build the initial represen- 280

tation. Then we pass the representation through 281

a multi-layer bidirectional long short term mem- 282

ory (BiLSTM) network (Hochreiter and Schmid- 283

huber, 1997) for contextualization. The contex- 284

tualized representations are then fed into four 285

MLPs to get the head and dependent represen- 286

tations for edges Xhead,edge, Xdep,edge and labels 287

Xhead,label, Xdep,label. 288

The representations above are in shape Rb×m×d 289

where b, m, d respectively represent the batch size, 290

the sentence length, and the hidden dimension. To 291

produce edge and label scores, we pass the repre- 292

sentations through two scorers with second-order 293

CRF inference (Wang et al., 2019). Instead of con- 294

ventional biaffine (Dozat and Manning, 2017) and 295

triaffine (Wang et al., 2019) scorers, we use the 296

AOI scorer (Anonymous, 2021), a newly-proposed 297

dot product scorer with global attention. The spe- 298
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<v-mask>   <a-mask> satisfying service
Polarity

<a-mask>   is   <v-mask> screen is fuzzy
Polarity

<a-mask>   is   <v-mask>   and   <v-mask> atmosphere is warm and welcoming
Polarity Polarity

<a-mask>   and   <a-mask>   are   <v-mask> smell and taste are good
Polarity

<v-mask>   <a-mask>   and   <v-mask> <a-mask> nice product and helpful staff
PolarityPolarity

<v-mask>   the   <a-mask> love the rose
Polarity

Kernel Example

Figure 5: Kernel spans used in our experiments.

cific scoring process is omitted here and can be299

found in Appendix A.300

Sedge = Scorer(Xhead,edge, Xdep,edge)

Slabel = Scorer(Xhead,label, Xdep,label)
301

After getting the scores Sedge ∈ Rb×m×m,302

Slabel ∈ Rb×c×m×m, we calculate the training loss303

by the cross entropy function. Here c refers to the304

number of label classes.305

Ledge =
∑
i,j

CrossEntropy(Sedge
i,j , Sedge,gold

i,j )

Llabel =
∑

i,j,S
edge,gold
i,j =1

CrossEntropy(Slabel
i,j , Slabel,gold

i,j )

L = (1− λ)Ledge + λLlabel

306

5 Experiment307

5.1 Testing Data and Metric308

We use the ASTE datasets annotated in (Xu et al.,309

2020) for testing. The datasets include three restau-310

rant review datasets and a laptop review dataset. To311

compare with previous supervised methods, we use312

the test datasets for evaluation. Besides, we also313

create a subset without boundary determination and314

neutral views to test the model’s understanding of315

relationship and polarity. We first drop all triplets316

with neutral sentiment polarity. Then, we remove317

triplets that consist of spans in length > 1.318

For evaluation, we use the F1 score that consid-319

ers the exact matching of triplets as applied for pre-320

vious supervised ASTE models. A triplet matches321

the golden triplet only when their views, aspects,322

and sentiment polarities are all matched.323

5.2 Dataset Configuration324

To build the PromptASTE dataset, we design six325

kernel spans as shown in Figure 5. The whole326

prompts for kernel construction are shown in Ap-327

pendix B. Considering the domain variation in328

the testing dataset, we create two PromptASTE 329

datasets with two different domain prefix prompts 330

as follows. 331

332

In the restaurant, ... 333

For the laptop, ... 334

335

The contrastive prompting for neutral view 336

span is a little different from positive and negative 337

view. The neutral sentiment does not have a 338

semantically opposite sentiment. Thus, we set both 339

the positive and negative sentiment as the opposite 340

to eliminate the view’s polarity. The formula for 341

contrastive generation is rewritten for the neutral 342

view as follows. 343

P contrast = softmax(log(P self )

− w

2
log(P pos))− w

2
log(Pneg))

344

For the generation, we use Roberta-large as the 345

PLM. The beam size is set to 256 to cover a wide 346

range of candidates. Tokens good, bad, and av- 347

erage are used to substitute the polarity token to 348

indicate positive, negative and neutral sentiment 349

polarities. We set temperature T to 1.0 for aspect 350

span generation and 2.5 for context supplement. 351

The temperature for view span generation varies 352

from kernels to kernels to balance the generation’s 353

diversity and correctness. The specific setup for 354

these temperatures is included in Appendix C. The 355

weight w for contrastive prompting is 0.6. The max 356

length of mask token series for context supplement 357

is 6. 358

5.3 Model Configuration 359

Model We use BERT-large-uncased to produce 360

the contextual representation. The pre-trained rep- 361

resentation (projected to 600 hidden dimensions) 362

is then concatenated by pre-trained word embed- 363

ding from GloVe (Pennington et al., 2014) with 100 364

dimensions. A 2-layer BiLSTM with 400 hidden 365

dimensions for each direction is applied for con- 366

textualization. The hidden size for edge and label 367

representations are 600 and 300. A more detailed 368

configuration for scorers and second-order CRF 369

inference is in Appendix C. 370

Training The hyperparameter λ for loss weight 371

balancing is 0.1. We apply the Adam optimizer 372

(Kingma and Ba, 2015) for parameter updating. 373

The learning rate is set to 3× 10−4 initially, with a 374

3× 10−9 weight decay. 375
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Method 14res 14lap 15res 16res

P. R. F1 P. R. F1 P. R. F1 P. R. F1

(supervised)
CMLA+ 39.18 47.13 42.79 30.09 36.92 33.16 34.56 39.84 37.01 41.34 42.10 41.72
RINANTE+ 31.42 39.38 34.95 21.71 18.66 20.07 29.88 30.06 29.97 25.68 22.30 23.87
Li-unified-R 41.04 67.35 51.00 40.56 44.28 42.34 44.72 51.39 47.82 37.33 54.51 44.31
(Peng et al., 2020) 43.24 63.66 51.46 37.38 50.38 42.87 48.07 57.51 52.32 46.96 64.24 54.21
OTE-MTL 63.07 58.25 60.56 54.26 41.07 46.75 60.88 42.68 50.18 65.65 54.28 59.42
JETt 63.44 54.12 58.41 53.53 43.28 47.86 68.20 42.89 52.66 65.28 51.95 57.85
JETo 70.56 55.94 62.40 55.39 47.33 51.04 64.45 51.96 57.53 70.42 58.37 63.83
GTS 71.76 59.09 64.81 57.12 53.42 55.21 54.71 55.05 54.88 65.89 66.27 66.08
(Huang et al., 2021) 63.59 73.44 68.16 57.84 59.33 58.58 54.53 63.30 58.59 63.57 71.98 67.52

(unsupervised)
PromptASTE (res) 68.12 32.54 44.05 38.46 19.89 26.22 55.97 33.88 42.21 63.09 38.99 48.19
PromptASTE (lap) 52.95 31.24 39.30 51.49 18.81 27.55 44.00 29.55 35.35 55.71 38.01 45.19
PromptASTE (res + lap) 64.04 34.73 45.03 47.81 19.71 27.91 54.05 33.06 41.03 64.72 41.13 50.30

Table 1: Main results from our experiments on PromptASTE

Method 14res 14lap 15res 16res

P. R. F1 P. R. F1 P. R. F1 P. R. F1

Supervised 86.07 78.54 82.14 74.88 71.03 72.90 75.83 71.43 73.56 80.60 78.83 79.70

PromptASTE (res) 76.07 51.67 61.54 55.62 43.93 49.09 67.58 54.91 60.59 69.26 64.96 67.04
PromptASTE (lap) 61.98 49.58 55.09 51.10 43.46 46.97 57.78 46.43 51.49 63.64 56.20 59.69
PromptASTE (res + lap) 75.61 45.21 56.58 61.59 39.72 48.30 74.13 47.32 57.77 72.46 54.74 62.37

Table 2: Experiment results on the testing data in sampled subsets.

5.4 Experiment Result376

The results from our experiments are presented in377

Tables 1 and 2. We report the highest results in the378

experiment. As no unsupervised baseline has been379

built before, we retrieve results from supervised380

baselines to evaluate our method’s effectiveness.381

Main result As in Table 1, we train and test382

parsers on PromptASTE datasets constructed in383

different domains. The experiment results verify384

the effectiveness of our method. PromptASTE385

achieves precision comparable to supervised re-386

sults on all ASTE test datasets. For F1 score,387

PromptASTE outperforms supervised baselines388

like CMLA+ and RINANTE+. The recall is the389

weakness of PromptASTE as the limited patterns390

of kernel spans only endow the parser with par-391

tial recognition of aspect sentiment triplets. This392

weakness results from the trade-off with generality393

and simplicity and can be overcome by involving394

more patterns during prompting. But we want to395

propose a more general paradigm to prompt unsu-396

pervised datasets. Though there still exists a gap397

between PromptASTE and the highest supervised398

baseline, the outstanding performance establishes399

our method as a strong unsupervised baseline.400

Domain analysis The main results also show 401

how domain specification in dataset prompting af- 402

fects the training result. Table 1 presents that the 403

parser trained on restaurant PromptASTE dataset 404

performs better on restaurant test datasets, and 405

the phenomenon remains the same for the lap- 406

top domain. According to the comparison be- 407

tween parsers trained on datasets with different 408

domain prefix prompts, parsers perform better on 409

in-domain test datasets. Thus, the effect of do- 410

main specification for parser training is convinced. 411

Moreover, the merging of PromptASTE datasets in 412

different domains can result in better performance 413

on some datasets. Thus, the combination of more 414

domains during prompting might result in a further 415

improvement in the performance. 416

Subset result Table 2 presents the results tested 417

on the sampled datasets. PromptASTE achieves 418

much higher results on the subset due to the dif- 419

ficulty of the unsupervised method to determine 420

boundaries annotated by human. Free from bound- 421

ary determination, the gap between PromptASTE 422

and the supervised method is narrowed down in the 423

subset, which better reflects the potential of PLMs 424

for sentiment understanding. 425
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Figure 6: Sampled aspect (top 10) distribution with
different domain prefix prompts.

6 Further Analysis426

In this section, we conduct further experiments to427

analyze the components in our prompting pipeline.428

Our aim is to figure out how our design affects the429

generated results and trained models. Thus, we430

analyze our pipeline via ablation experiments and431

statistics. We also use case studies to discuss the432

capacity and limitation of our method.433

How domain prefix affects aspect prompting?434

To analyze the contribution of the domain prefix435

Method P. R. F1

PromptASTE 76.07 51.67 61.54
w/o Domain Prefix 58.60 45.42 51.17
w/o Contrastive Prompting 59.26 50.00 54.24
w/ Postfix Filling 72.31 48.96 58.39

Table 3: Ablation Study on PromptASTE. The subset
of res14 is selected as the test dataset.

prompt, we sample 20000 instances by using our 436

pipeline with different prefix prompts. We count 437

the frequency of the collected aspects and present 438

the statistics in Figure 6. 439

The results verify the capability of the pre- 440

fix prompts for domain determination. With the 441

prompt, our pipeline will generate more in-domain 442

aspects, like food, service, drinks for the restaurant 443

domain and keyboard, screen, battery for the laptop 444

domain. The results above also verify the capabil- 445

ity of our system to adapt to different domains by 446

adjusting the prefix prompt. 447

In contrast, without the domain prefix prompt, 448

the generated aspects are mostly some trivial pro- 449

nouns that are not even considered by the ASTE 450

task. We thus conclude that the prefix prompt ac- 451

tivates the sampling for non-trivial data interested 452

by the task. 453

Metrics from the ablation study in Table 3 also 454

supports our conclusion. We reconstruct a dataset 455

without the domain prefix prompt and train a parser 456

on it. With the removal of domain prefix prompts, 457

both precision and recall drop sharply. The phe- 458

nomenon verifies the quality improvement on the 459

generated data from the application of our domain 460

prefix prompt. 461

How contrast affects view prompting? Con- 462

trastive prompting is a key component in our 463

pipeline, which guarantees the polarity of gener- 464

ated views. To analyze how contrast affects view 465

prompting, we respectively sample 10000 instances 466

for positive and negative sentiment, with or without 467

contrastive prompting. We depict the statistics of 468

collected views in Figure 7, comparing between 469

sampled results with or without contrast. 470

The comparison shows that the views from the 471

contrastive prompt enjoy higher quality. First, the 472

10 most common views sampled by contrastive 473

prompts are all in correct polarities, whereas the 474

views sampled from conventional prompts include 475

non-sentiment words, like + and the. Also, consid- 476

ering the 10 most common views, generation from 477

contrastive prompt have 31.94% and 32.31% prob- 478

abilities of falling in a correct view for positive and 479

negative sentiments, respectively. In comparison, 480

the probabilities for conventional prompts are only 481

18.55% and 15.96%. 482

The ablation result in Table 3 further support our 483

conclusion. The removal of contrastive prompting 484

leads to a dramatic drop in precision, recall, and F1 485

score. 486
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Figure 7: Sampled view (top 10) distribution with and
without contrastive prompting.

How postfix filling affects training result? We487

test a pipeline with postfix filling. The performance488

drop in the ablation study suggests postfix filling is489

not a beneficial context supplement method.490

What is current boundary of PromptASTE’s491

capability in ASTE? We enumerate and analyze492

several cases in Figure 8 to answer the question.493

In the first case, the instance pattern is covered494

by our prompting pipeline. The instance can be495

generated by the prompt via kernel merging be-496

tween two defined kernel spans. As a result, the497

instance is easily solved by the parser trained with498

ViewAspect

Negative

View

Negative

ViewAspect

Negative

View Aspect

Negative

ViewAspect

Positive

ViewAspect

Positive

AspectView

Positive Negative

ViewAspect

ViewAspect

Negative

Great food but the service was dreadful !

The   fajita   we   tried   was   tasteless   and   burned   .

The   food   is   good   ,   the   teriyaki   I   recommend   . 

I   complained   to   the   waiter   ,   but   rudeness   from   him   went   up   . 

Figure 8: Case Study for the capability boundary of
PromptASTE. Grey arrow: Missing triplet (negative
false). Red arrow: Incorrect triplet (negative true).

PromptASTE. 499

The second case shows the scalability of Promp- 500

tASTE as the pattern of the instance is not covered 501

by prompting. The parser stays robust against the 502

noise from the adjective component we tried. Thus, 503

the triplets are successfully extracted from the sen- 504

tence. 505

The limitation of PromptASTE is presented in 506

the third case. While the parser correctly extracts 507

the first triplet, the recommend-teriyaki relationship 508

is ignored. As the relationship is in a casual pattern 509

that is very different from our pre-defined ones, 510

the parser fails to capture it. Incorporating this 511

casual pattern into kernel spans might well solve 512

the problem. 513

The last case includes inference based on coref- 514

erence, a thorny problem for our parse trained on 515

data with fixed patterns. The case also shows our 516

method to suffer from shortcut learning (Geirhos 517

et al., 2020). The word complained is directly rec- 518

ognized as a negative view on the word waiter, 519

without understanding the semantic relationships 520

between them. Solving these problems might re- 521

quire pre-trained models for a stronger inference 522

capability. 523

From the cases, we conclude that our method 524

has some basic understanding of ASTE and enjoys 525

some scalability from the PLM. However, hyper- 526

linguistic phenomena like coreference still remain 527

the problem for us to solve in future studies. 528

7 Conclusion 529

We propose a novel method, PromptASTE, for 530

ASTE, which is also the first unsupervised method. 531

We utilize the PLM’s understanding of sentiment 532

and apply a series of prompts to construct a training 533

dataset from the PLM. Various prompting mecha- 534

nisms guarantee the quality of the generated dataset 535

and trained parser to set a strong baseline for unsu- 536

pervised ASTE. 537
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A Scoring Procedure694

We elaborate on the scoring processing of our695

parser in this section. For the representa-696

tions for edges Xhead,edge, Xdep,edge and labels697

Xhead,label, Xdep,label. We calculate the first-order698

scores by the accumulative operation-based in-699

duction (AOI) scorer (Anonymous, 2021) and the700

second-order scores by TriAOI, which is imple-701

mented based on accumulative multi-head attention702

as in AOI.703

A.1 First-order: AOI Scorer704

We first describe the first-order scoring procedure.705

For the paired representations Xdep and Xhead,706

two linear transformations are used to get represen-707

tations for specific labels.708

X̂head = WheadXhead + bhead

X̂dep = W depXdep + bdep
709

where weights W dep,W head ∈ Rd×c×d, and710

biases bdep, bhead ∈ Rc×d. The transformed711

X̂head, X̂dep are in the shape Rb×c×d.712

Based on the label-specific representations, AOI713

uses a label-wise dot product to get the self atten-714

tion scores.715

SSelfAttn = X̂head · X̂dep716

Then the hidden dimensions of X̂head, X̂dep are717

split into a attention heads with d′ dimensions,718

where d′ and a satisfy a× d′ = d. The split repre-719

sentations X̃head, X̃dep are then concatenate with720

the sequentially average pooled results.721

X̃head,glob = X̃head ⊕ MeanPool(Xhead)

X̃dep,glob = X̃dep ⊕ MeanPool(Xdep)
722

The last hidden dimensions of X̃head,glob and723

X̃dep,glob are then projected to 1 by linear layers. A724

softmax layer is applied for the second sequential725

dimension to score the attention on heads. The final726

accumulative attention score is the max pooling on727

different attention heads.728

Ahead = Softmax(MLPhead,attn(X̃
head))

Adep = Softmax(MLPdep,attn(X̃
dep))

Âhead = MaxPool(Ahead), Âdep = MaxPool(Adep)

729

The product between self attention and accumu-730

lative attention produces the final first-order scores.731

Si,j = ASelfAttn
i,j × (Âhead

i × Âdep
j ×N) 732

where i, j refer to the element’s position in graphs 733

and sequences. N is a modifier that controls the 734

density of attention. 735

A.2 Second-order: TriAOI Scorer 736

For second-order CRF inference, we also involve 737

scorers that produce scores Q in Rn×n×n for in- 738

ference. TriAOI takes three binary representations 739

Bx, By, Bz ∈ Rb×n×d as the input. 740

Q = TriAOI(Bx, By, Bz) 741

Like in AOI, Q is also the product between self 742

attention scores and accumulative attention scores. 743

Qi,j,k = ASelfAttn
i,j,k × (Âx

i × Ây
j × Âz

k ×N)

ASelfAttn
i,j,k =

d∑
u

Bx
i,u ×Bx

j,u ×Bz
k,u

744

where accumulative attention scores Âx, Ây, Âz 745

are scored as in AOI. 746

We project the contextualized representation to 747

representations for head Bhead, dependent Bcop, 748

and middle Bmid and use TriAOIs for second-order 749

scoring. 750

Qsib = TriAOI(Bhead, Bdep, Bdep)

Qcop = TriAOI(Bhead, Bdep, Bhead)

Qgrd = TriAOI(Bhead, Bmid, Bdep)

751

A.3 Mean Field Variational Inference 752

We follow the procedure in (Wang et al., 2019) for 753

second-order CRF inference. For each iteration, 754

we update the edge scores as follows. 755

G(t−1)
i,j =

∑
k ̸=i,j

{Q(t−1)
i,k S

(sib)
i→j,i→k +Q

(t−1)
k,j S

(cop)
i→j,k→j 756

+Q
(t−1)
k,i S

(gp)
k→i→j +Q

(t−1)
j,k S

(gp)
i→j→k}, 757

758

Q
(t)
i,j =

{
exp(Sarc

i→j + G(t−1)
i,j ), Arc i → j exist

1, Otherwise
759

where t denotes the step for iteration. 760
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<a-mask>   is   <v-mask> 1.50
Polarity

<a-mask>   is   <v-mask>   and   <v-mask> 1.50
Polarity Polarity

<a-mask>   and   <a-mask>   are   <v-mask> 1.50
Polarity

<v-mask>   <a-mask>   and   <v-mask> <a-mask> 3.00
PolarityPolarity

<v-mask>   the   <a-mask> 6.00
Polarity

Kernel Temperature

Figure 10: The configuration for temperature to generate
view spans.

B Whole Prompt for Kernel Building761

We present the whole prompts used in our exper-762

iments in Figure 9. Some special tokens are in763

the prompts. <prefix> refers to the domain prefix764

prompt. <det> refers to the determinative compo-765

nent. <adv> refers to the adverb component. <be>766

refers to words with the be lemma.767

C Specific Configuration768

C.1 Prompting Configuration769

The temperature configuration for prompting is770

shown in Figure 10.771

C.2 Parsing Configuration772

The max epoch and patient are set to 200 and 20,773

respectively. The batch size is 5000. The dropout774

rates for BiLSTM, edge MLP, label MLP are 0.33,775

0.25, 0.33. The representation from the PLM is776

the average of representations in the last 4 layers.777

The number of attention heads for AOI scorers is 4.778

To construct dependency trees, we use the parser779

provided by SpaCy1.780

For the second-order CRF inference, the num-781

ber of binary representation’s dimensions is 160,782

projected by MLPs with a 0.25 dropout rate. The783

number of attention heads for TriAOI scorers is784

also 4. The max number of iterations for second-785

order CRF inference is 3.786

1https://spacy.io/

D Statistical Properties of Datasets 787

Prop. 14res 15res 16res 14lap

Sent. Num. 2.1k 1.1k 1.4k 1.5k
Sent. Len. 16.9 15.0 14.9 18.4
Span. Num. 6.8k 3.1k 4.0k 4.1k
Span. Len. 1.3 1.3 1.3 1.4
Rel. Num. 4.0k 1.7k 2.2k 2.4k

Table 4: Statistical properties of the triplet parsing
datasets used in our experiments.

The statistical properties of the triplet parsing 788

datasets in our experiments are presented in Ta- 789

ble 4. 790
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<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   <det>   <adv>   <v-mask>   <a-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   <det>   <a-mask>   <be>   <adv>   <v-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   <det>   <a-mask>   <be>   <adv>   <v-mask>   and   <v-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   and   <a-mask>   are   <pol>   :   “   <det>   <a-mask>   and   <a-mask>   <be>   <adv>   <v-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   and   <a-mask>   are   <pol>   :   “   <det>   <adv>   <v-mask>   <a-mask>   and   <v-mask>   <a-mask>   .”   </s>

<s>   <prefix>   ,   the   <a-mask>   is   <pol>   :   “   I   <v-mask>   <det>   <a-mask>   .”   </s>

Coreference Polarity

PolarityCoreference

Polarity PolarityCoreference

PolarityCoreference Coreference

PolarityCoreference Coreference Polarity

Coreference Polarity

Kernel Span

Kernel Span

Kernel Span

Kernel Span

Kernel Span

Kernel Span

Figure 9: The whole format of prompts used in our experiments.
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