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Abstract

Aspect sentiment triplet extraction (ASTE) is
a sentiment analysis task that aims to extract
views’ sentiment polarity, expression, and tar-
get (aspect). This paper proposes the first un-
supervised method for aspect sentiment triplet
extraction. Based on the previous discovery
of the pre-trained language model (PLM)’s
awareness of sentiment, we further leverage
the masked language model (MLM) to prompt
an ASTE dataset with automatically annotated
labels. Our method, PromptASTE, fills in a se-
ries of prompts to generate a dataset for related
aspects and views. The dataset is then used
to train an ASTE model for prediction. Train-
ing on PromptASTE results in models with an
outstanding capability in discerning sentiment
polarities and targeted aspects. Our model sets
the first and strong baseline on unsupervised
ASTE.

1 Introduction

Aspect sentiment triplet extraction (ASTE) is a
type of sentiment analysis task. Compared to
conventional sentiment analysis that classifies the
sentence-level sentiment polarity, ASTE is inter-
ested in aspect-based sentiment and extracts the
expression (view) and target (aspect) of sentiments,
more than just the polarity.

Some instances for ASTE are shown in Fig-
ure 1, the view and aspect are represented by spans.
Paired spans are labeled as the sentiment polarity
of the view on its targeted aspect. While many
previous works have been done for the supervised
ASTE system, unsupervised ASTE remains a blank.
As sentiment is a universal and cross-language phe-
nomenon, unsupervised ASTE is appealing to re-
duce the burden for annotation, especially for low-
source language with a limited number of skilled
annotators.

However, unsupervised ASTE is challenging as
ASTE data are structured in a complex form. The
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Figure 1: Instances for the ASTE task.

unsupervised system faces several essential prob-
lems for relationship understanding. a) Polarity
How the model understands the sentiment polarity
with no annotated knowledge? b) Relationship
How the model learns paired feature that does not
exist in sequential natural language with no anno-
tation for relationships? c¢) Boundary How the
model determines the span boundaries annotated
by human when testing?

The challenges above hinder the application of
conventional unsupervised methods, like cluster-
ing. Moreover, clustering requires collecting unan-
notated data for unsupervised training, which is
still unfriendly for low-source languages. We aim
to step even further towards a method that is free
from any ASTE-related data, no matter annotated
or unannotated ones.

Thus, we cast our attention to pre-train language
models (PLMs) (Radford et al., 2018; Devlin et al.,
2019; Liu et al., 2019; Yang et al., 2019), which
are competitive zero-shot learners (Radford et al.,
2018) with strong scalability. PLMs, like Roberta
(Liu et al., 2019), are trained on upstream masked
language model (MLM) tasks that require the lan-
guage model to fill in masked words in context.
Recent studies have shown that pre-training en-
dows PLMs with sentiment awareness to solve
conventional sentiment analysis problems, suggest-
ing the PLM is an admirable choice for unsuper-
vised ASTE. By utilizing the MLM task, we fill
in prompts to create an ASTE dataset from PLMs.
A prompt combination is used to sample kernel



spans, which are spans consisting of aspect senti-
ment triplets, from PLMs.

The annotating system comprises three prompts
for domain specification, aspect generation, and
view generation. We also propose a contrastive
prompt to prompt better sentiment expressions
by contrasting positive and negative expressions.
Based on the kernel span, PLMs are again used to
supplement the contextual background via mask
filling. The supplemented data finally form the
PromptASTE dataset.

After the dataset is created, PromptASTE is used
to train ASTE models following a supervised sce-
nario. Spans and their relationships are annotated
in graphs to train a parser for graphic pattern cap-
turing. We test the trained parser on several ASTE
datasets and compare the results with supervised re-
sults. Our method shows competitive performance
on unsupervised ASTE and sets the first and strong
baseline.

The contributions from our work are summa-
rized as follows:

e We propose the first unsupervised method for
ASTE and set a strong baseline for the task.

e We verify the plausibility of prompting a
dataset for a task with a complex data structure.

e We implement a novel contrastive prompting
procedure to generate sentiment expressions better.

2 Background and Related Work

Triplets in ASTE are formalized in (V, A, P) where
V, A, P refer to view (expression) span, aspect
(target) span, and sentiment polarity respectively.
ASTE models are trained to determine the bound-
ary of spans and label the polarity held by the view
towards the aspect.

Since the annotation of a variety of ASTE
datasets (Peng et al., 2020; Xu et al., 2020) based
on aspect based sentiment analysis (ABSA) data
(Pontiki et al., 2014, 2015, 2016), many supervised
methods have been proposed for ASTE. (Peng et al.,
2020) tests a wide range of previous triplet extract-
ing method on ASTE and propose a new tagging
model to set the first supervised baseline. (Xu et al.,
2020) incorporates position information and CRF
inference into the tagging system to boost the per-
formance. (Wu et al., 2020) formalizes ASTE in
a grid tagging scheme. Though supervised ASTE
has been under heated discussion since the task’s
proposal, so far no attention has been cast to solve
ASTE with no supervision.

However, unsupervised ASTE is a fairly chal-
lenging task. Besides its complex structured na-
ture, the difficulty also comes from the incapability
of existing unsupervised system to build a com-
plete pipeline, from span extraction to relation-
ship labeling. For unsupervised relation extrac-
tion, current models have only limited capability
to label the relationships between paired already
extracted spans (Tran et al., 2020; Yuan and Eldard-
iry, 2021). These methods use conventional unsu-
pervised method like clustering to assign closely
distributed span pairs the same labels. Thus, the
prerequisite of annotated spans makes these unsu-
pervised methods unfriendly to the real zero-shot
learning.

Thus, we abandon the conventional unsupervised
methods and turn towards leveraging PLMs, which
are powerful zero-shot learners via training on
super-large corpora. The long training procedure
endows PLMs with the understanding of seman-
tic relationships between tokens, which makes the
PLM a desirable tool for unsupervised downstream
tasks. Also, mask filling on prompts has been ver-
ified to be a power way to extract commonsense
knowledge (Petroni et al., 2019), relationship un-
derstanding (Goswami et al., 2020), and sentiment
awareness (Wu et al., 2019) of the PLM. Our work
further leverages the endowed sentiment awareness
in PLMs to build a complete unsupervised pipeline
for ASTE.

3 Prompting ASTE Dataset

3.1 The Pipeline

We first give a rough description of our method and
how it deals with the challenges in unsupervised
ASTE before introducing the specific implementa-
tion. The pipeline comprises two main procedures:
kernel span generation and context supplement.
Kernel span refers to the span that consists of
the aspect sentiment triplet. To obtain kernel spans,
our prompt involves masked view spans (v-mask)
and masked aspect spans (a-mask). V-masks and
a-masks are both common mask tokens used in
the upstream MLM pre-training, and their only
difference is representing views or aspects. The
PLM fills the masked spans, and the kernel span is
seized from the span for context supplement.

Polarity We add hints for polarity to the prompt
in order to generate view expressions with the cor-
responding sentiment polarity.
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Figure 2: Prompting steps for the generation of PromptASTE.

Relationship The relationships are pre-defined
between views and aspects in the prompt.

Boundary Words near the span boundaries help
control the generated span to have boundaries as
pre-defined in the prompt.

Based on the kernel spans, we again use the
PLM to supplement the contextual background for
the sentiment via mask filling. The supplemented
results are the final PromptASTE dataset.

3.2 Domain Prefix Prompt

The domain prefix prompt is used to specify the
domain for kernel span generation. As in the green
frame in Figure 2, the domain prefix prompt deter-
mines the contextual environment for the prompt-
ing generation. As the testing datasets are in dif-
ferent domains, the domain prefix prompt will help
generate more relevant training data to improve the
performance of trained models.

3.3 Aspect Prompt

The aspect prompt is the blue frame in Figure 2,
which is responsible for polarity selection and as-
pect generation. The prompt contains a-masks and
a polarity token <pol> that provides hints for the
later generation.

After the polarity of triplets in the kernel span
is selected, the polarity token is substituted by a
token with sentiment information. In the instances
in Figure 2, the word good substitutes <pos> and
indicates the positive sentiment in the kernel span.

Then we fill in the a-masks via a beam search.
Notice that the masked aspect span might consist
of multiple mask tokens.

X =[z1, - ,Tic1, <mask>,- -, <mask>,Tj41, + ,Tn]
J

p(xu ,CL’ng) = Hp(l’t‘X7l’u 7xt71)
t=i

p(ze| X, i, -+, 2e—1) = softmax(R:/T)

R =PLM(z¢| X, @4, -+ ,x4—1)

where T refers to the temperature for sampling.
R € R™° is the output representation from the
PLM, and o refers to the dictionary size. We sum-
marize the beam searching procedure as Beam(-).
After we get the existing probability of each beam,
we sample an aspect span following the predicted
distribution.

3.4 Contrastive View Prompt

After generating the aspect span, we also fill in
the coreferenced masked aspect span in the view
prompt. Then we introduced our contrastive gener-
ation for view span.

For the prompt in this step X/, we shift the
word in the position of polarity token to create
an opposite prompt X °PP°. We first use X *°/ to
sample k£ view span beams by prompting and then
calculate the probability distribution of the view
span in X °PP°,

P — Beam(X '), P°PP° = Beam(X °PF°)
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Figure 3: Supplement procedures that transform kernels
into training data.

Finally, the log probability of P*¢!/ is subtracted
by the weighted log probability of P*¢!f and passed
through a softmax function for the contrastive dis-
tribution.

peontrast softmax(log(Pself) — wlog(PPP?))

The view span is likely sampled following the
predicted distribution as the aspect span.

After aspect and view spans are completely filled,
we seize the kernel span and build the triplets using
pre-defined relationships.

3.5 Context Supplement

Based on the collected kernel spans, we supplement
the contextual background for them by continuing
to utilize mask filling. We use two supplement
scenarios in our experiments: prefix filling and
kernel merging as in Figure 3.

Prefix filling is to attach several mask tokens to
the beginning of the sentence. Then the PLM fills
in the masks following a greedy strategy.

Kernel merging is to merge multiple kernel
spans together. We insert several mask tokens
between two collected kernels and use the PLM to
fill in the mask, still following the greedy strategy.

We avoid adding mask tokens after the kernel
span since the generated contents are more likely to
break the aspect boundary and generate data with
low quality. As a result, we do not apply postfix
filling for the context supplement.

4 ASTE Model

4.1 Graph Annotation

We formalized the collected data as parsing graphs
to train the ASTE model. We attach a question
as the prefix prompt to each sentence, like in the
dataset prompting step.

... good ... Burger Queen — just brought a delicious hamburger

...bad ... The ice cream is disgusting . # Covensky Ice

Figure 4: Transformed parsing graphs from ASTE in-
stances.

Is this comment good, bad or common? [SEP]

For each triplet (V, A, P), we first build an
edge from a sentiment token in the prefix prompt
to the syntactic headword of the view span. We
select the word with minimal depth in the syntactic
dependency tree as the headword. The connected
sentiment word indicates the polarity of view.
Then, an edge with the view-on label is built from
the headword of the view span to the headword
of the aspect span, indicating the relationship
between spans. Finally, for spans with more than
one token, edges are built from the headword
to the boundaries of the span. We show some
transformed instances in Figure 4.

4.2 The Parser

We describe the training procedure of our parser in
this section. For an input sentence, we concatenate
the pre-trained word embedding and representa-
tion from the PLM to build the initial represen-
tation. Then we pass the representation through
a multi-layer bidirectional long short term mem-
ory (BiLSTM) network (Hochreiter and Schmid-
huber, 1997) for contextualization. The contex-
tualized representations are then fed into four
MLPs to get the head and dependent represen-

tations for edges X ¢ad-edge  xdep.edge and Jabels
head,label y-dep,label
X ea,ae’X ep,label

The representations above are in shape R®*™*4
where b, m, d respectively represent the batch size,
the sentence length, and the hidden dimension. To
produce edge and label scores, we pass the repre-
sentations through two scorers with second-order
CRF inference (Wang et al., 2019). Instead of con-
ventional biaffine (Dozat and Manning, 2017) and
triaffine (Wang et al., 2019) scorers, we use the
AQOI scorer (Anonymous, 2021), a newly-proposed
dot product scorer with global attention. The spe-
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Figure 5: Kernel spans used in our experiments.

cific scoring process is omitted here and can be
found in Appendix A.

d head,ed dep,ed
§€49¢ = Scorer(X e etIe X 1P a9y

Slabel )(head,lmbel7 Xdepﬁlabel)

= Scorer(

After getting the scores S¢%9¢ ¢ Rbxmxm,
Glabel ¢ Rbxexmxm we calculate the training loss
by the cross entropy function. Here c refers to the
number of label classes.

Z CrossEntropy(Sfﬁg ‘ Si‘;g e.goldy

)

[flabel = Z

J,Sedge gold_4

= (1 - )ﬁedge + )\[flabel

[:edge =

CrossEntropy (S:2¢!, glabeloold)

S Experiment

5.1 Testing Data and Metric

We use the ASTE datasets annotated in (Xu et al.,
2020) for testing. The datasets include three restau-
rant review datasets and a laptop review dataset. To
compare with previous supervised methods, we use
the test datasets for evaluation. Besides, we also
create a subset without boundary determination and
neutral views to test the model’s understanding of
relationship and polarity. We first drop all triplets
with neutral sentiment polarity. Then, we remove
triplets that consist of spans in length > 1.

For evaluation, we use the F1 score that consid-
ers the exact matching of triplets as applied for pre-
vious supervised ASTE models. A triplet matches
the golden triplet only when their views, aspects,
and sentiment polarities are all matched.

5.2 Dataset Configuration

To build the PromptASTE dataset, we design six
kernel spans as shown in Figure 5. The whole
prompts for kernel construction are shown in Ap-
pendix B. Considering the domain variation in

the testing dataset, we create two PromptASTE
datasets with two different domain prefix prompts
as follows.

In the restaurant, ...
For the laptop, ...

The contrastive prompting for neutral view
span is a little different from positive and negative
view. The neutral sentiment does not have a
semantically opposite sentiment. Thus, we set both
the positive and negative sentiment as the opposite
to eliminate the view’s polarity. The formula for
contrastive generation is rewritten for the neutral
view as follows.

peontrast _ softmax(log(Pself)

— 5 log(P™*)) = 2 log(P"*"))

For the generation, we use Roberta-large as the
PLM. The beam size is set to 256 to cover a wide
range of candidates. Tokens good, bad, and av-
erage are used to substitute the polarity token to
indicate positive, negative and neutral sentiment
polarities. We set temperature 7" to 1.0 for aspect
span generation and 2.5 for context supplement.
The temperature for view span generation varies
from kernels to kernels to balance the generation’s
diversity and correctness. The specific setup for
these temperatures is included in Appendix C. The
weight w for contrastive prompting is 0.6. The max
length of mask token series for context supplement
is 6.

5.3 Model Configuration

Model We use BERT-large-uncased to produce
the contextual representation. The pre-trained rep-
resentation (projected to 600 hidden dimensions)
is then concatenated by pre-trained word embed-
ding from GloVe (Pennington et al., 2014) with 100
dimensions. A 2-layer BiLSTM with 400 hidden
dimensions for each direction is applied for con-
textualization. The hidden size for edge and label
representations are 600 and 300. A more detailed
configuration for scorers and second-order CRF
inference is in Appendix C.

Training The hyperparameter A for loss weight
balancing is 0.1. We apply the Adam optimizer
(Kingma and Ba, 2015) for parameter updating.
The learning rate is set to 3 X 1074 initially, with a
3 x 10~ weight decay.



Method l4res 14lap 15res l6res

P. R. F1 P. R. F1 P. R. F1 P. R. F1
(supervised)
CMLA+ 39.18  47.13 4279 | 30.09 3692 33.16 | 3456 39.84 37.01 | 41.34 42,10 41.72
RINANTE+ 3142 3938 3495 | 21.71 18.66 20.07 | 29.88 30.06 29.97 | 25.68 2230 23.87
Li-unified-R 41.04 6735 51.00 | 40.56 4428 4234 | 44772 5139 4782 | 3733 5451 4431
(Peng et al., 2020) 4324 63.66 5146 | 37.38 5038 42.87 | 48.07 57.51 5232 | 4696 6424 5421
OTE-MTL 63.07 5825 60.56 | 5426 41.07 46.75 | 60.88 42.68 50.18 | 65.65 54.28 59.42
JET' 63.44 5412 5841 | 53.53 4328 47.86 | 68.20 42.89 52.66 | 6528 5195 57.85
JET® 70.56 5594 6240 | 5539 4733 51.04 | 6445 5196 57.53 | 7042 5837 63.83
GTS 7176 59.09 64.81 | 57.12 5342 5521 | 5471 55.05 54.88 | 6589 6627 66.08
(Huang et al., 2021) 63.59 7344 68.16 | 57.84 59.33 5858 | 54.53 6330 5859 | 63.57 7198 67.52
(unsupervised)
PromptASTE (res) 68.12 3254 4405 | 3846 19.89 2622 | 5597 33.88 4221 | 63.09 38.99 48.19
PromptASTE (lap) 5295 31.24 3930 | 51.49 18.81 27.55 | 44.00 29.55 3535 | 5571 38.01 45.19
PromptASTE (res + lap) 64.04 34.73 45.03 | 47.81 1971 2791 | 54.05 33.06 41.03 | 64.72 41.13 50.30

Table 1: Main results from our experiments on PromptASTE

Method 14res 14lap 15res 16res

P. R. F1 P. R. F1 P. R. F1 P. R. F1
Supervised 86.07 7854 82.14 | 7488 71.03 7290 | 75.83 71.43 73.56 | 80.60 78.83 79.70
PromptASTE (res) 76.07 51.67 61.54 | 55.62 4393 49.09 | 67.58 5491 60.59 | 69.26 6496 67.04
PromptASTE (lap) 61.98 4958 55.09 | 51.10 4346 4697 | 57.78 4643 5149 | 63.64 5620 59.69
PromptASTE (res + lap) 75.61 4521 56.58 | 61.59 39.72 48.30 | 74.13 4732 57.77 | 7246 54774 62.37

Table 2: Experiment results on the testing data in sampled subsets.

5.4 Experiment Result

The results from our experiments are presented in
Tables 1 and 2. We report the highest results in the
experiment. As no unsupervised baseline has been
built before, we retrieve results from supervised
baselines to evaluate our method’s effectiveness.

Main result As in Table 1, we train and test
parsers on PromptASTE datasets constructed in
different domains. The experiment results verify
the effectiveness of our method. PromptASTE
achieves precision comparable to supervised re-
sults on all ASTE test datasets. For F1 score,
PromptASTE outperforms supervised baselines
like CMLA+ and RINANTE+-. The recall is the
weakness of PromptASTE as the limited patterns
of kernel spans only endow the parser with par-
tial recognition of aspect sentiment triplets. This
weakness results from the trade-off with generality
and simplicity and can be overcome by involving
more patterns during prompting. But we want to
propose a more general paradigm to prompt unsu-
pervised datasets. Though there still exists a gap
between PromptASTE and the highest supervised
baseline, the outstanding performance establishes
our method as a strong unsupervised baseline.

Domain analysis The main results also show
how domain specification in dataset prompting af-
fects the training result. Table 1 presents that the
parser trained on restaurant PromptASTE dataset
performs better on restaurant test datasets, and
the phenomenon remains the same for the lap-
top domain. According to the comparison be-
tween parsers trained on datasets with different
domain prefix prompts, parsers perform better on
in-domain test datasets. Thus, the effect of do-
main specification for parser training is convinced.
Moreover, the merging of PromptASTE datasets in
different domains can result in better performance
on some datasets. Thus, the combination of more
domains during prompting might result in a further
improvement in the performance.

Subset result Table 2 presents the results tested
on the sampled datasets. PromptASTE achieves
much higher results on the subset due to the dif-
ficulty of the unsupervised method to determine
boundaries annotated by human. Free from bound-
ary determination, the gap between PromptASTE
and the supervised method is narrowed down in the
subset, which better reflects the potential of PLMs
for sentiment understanding.



Aspect Frequency w/ Restaurant Prompt

0 1000 2000 3000 4000 5000 6000
Aspect Frequency w/ Laptop Prompt

screen

0 1000 2000 3000 4000 5000 6000
Aspect Frequency w/o Domain Prompt

they

It
things
news
results
food
life
This
you

0 1000 2000 3000 4000 5000 6000

Figure 6: Sampled aspect (top 10) distribution with
different domain prefix prompts.

6 Further Analysis

In this section, we conduct further experiments to

analyze the components in our prompting pipeline.

Our aim is to figure out how our design affects the
generated results and trained models. Thus, we
analyze our pipeline via ablation experiments and
statistics. We also use case studies to discuss the
capacity and limitation of our method.

How domain prefix affects aspect prompting?
To analyze the contribution of the domain prefix

Method P. R. F1

PromptASTE 76.07 51.67 61.54
w/o Domain Prefix 58.60 4542 51.17
w/o Contrastive Prompting  59.26  50.00 54.24
w/ Postfix Filling 72.31 4896 58.39

Table 3: Ablation Study on PromptASTE. The subset
of res14 is selected as the test dataset.

prompt, we sample 20000 instances by using our
pipeline with different prefix prompts. We count
the frequency of the collected aspects and present
the statistics in Figure 6.

The results verify the capability of the pre-
fix prompts for domain determination. With the
prompt, our pipeline will generate more in-domain
aspects, like food, service, drinks for the restaurant
domain and keyboard, screen, battery for the laptop
domain. The results above also verify the capabil-
ity of our system to adapt to different domains by
adjusting the prefix prompt.

In contrast, without the domain prefix prompt,
the generated aspects are mostly some trivial pro-
nouns that are not even considered by the ASTE
task. We thus conclude that the prefix prompt ac-
tivates the sampling for non-trivial data interested
by the task.

Metrics from the ablation study in Table 3 also
supports our conclusion. We reconstruct a dataset
without the domain prefix prompt and train a parser
on it. With the removal of domain prefix prompts,
both precision and recall drop sharply. The phe-
nomenon verifies the quality improvement on the
generated data from the application of our domain
prefix prompt.

How contrast affects view prompting? Con-
trastive prompting is a key component in our
pipeline, which guarantees the polarity of gener-
ated views. To analyze how contrast affects view
prompting, we respectively sample 10000 instances
for positive and negative sentiment, with or without
contrastive prompting. We depict the statistics of
collected views in Figure 7, comparing between
sampled results with or without contrast.

The comparison shows that the views from the
contrastive prompt enjoy higher quality. First, the
10 most common views sampled by contrastive
prompts are all in correct polarities, whereas the
views sampled from conventional prompts include
non-sentiment words, like + and the. Also, consid-
ering the 10 most common views, generation from
contrastive prompt have 31.94% and 32.31% prob-
abilities of falling in a correct view for positive and
negative sentiments, respectively. In comparison,
the probabilities for conventional prompts are only
18.55% and 15.96%.

The ablation result in Table 3 further support our
conclusion. The removal of contrastive prompting
leads to a dramatic drop in precision, recall, and F1
score.
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Figure 7: Sampled view (top 10) distribution with and
without contrastive prompting.

How postfix filling affects training result? We
test a pipeline with postfix filling. The performance
drop in the ablation study suggests postfix filling is
not a beneficial context supplement method.

What is current boundary of PromptASTE’s
capability in ASTE? We enumerate and analyze
several cases in Figure 8 to answer the question.
In the first case, the instance pattern is covered
by our prompting pipeline. The instance can be
generated by the prompt via kernel merging be-
tween two defined kernel spans. As a result, the
instance is easily solved by the parser trained with

Positive__ Negative
View | ASpECt; Aspect T

v VISWE
Great] (food) but the (service] was (dreadful) !

Negative}

{ Negative
Aspect §

e View | . View
The (fajital we tried was (tasteless) and [burned |.

ive sitive

Aspect § ew] Aspect{ Ve
The [food] is (good) , the | recommend) .
Negative Negati
View | Aspect}, { Aspect i
| (complained to the (waiter] , but (rudeness] from him went up .

Figure 8: Case Study for the capability boundary of
PromptASTE. Grey arrow: Missing triplet (negative
false). Red arrow: Incorrect triplet (negative true).

PromptASTE.

The second case shows the scalability of Promp-
tASTE as the pattern of the instance is not covered
by prompting. The parser stays robust against the
noise from the adjective component we tried. Thus,
the triplets are successfully extracted from the sen-
tence.

The limitation of PromptASTE is presented in
the third case. While the parser correctly extracts
the first triplet, the recommend-teriyaki relationship
is ignored. As the relationship is in a casual pattern
that is very different from our pre-defined ones,
the parser fails to capture it. Incorporating this
casual pattern into kernel spans might well solve
the problem.

The last case includes inference based on coref-
erence, a thorny problem for our parse trained on
data with fixed patterns. The case also shows our
method to suffer from shortcut learning (Geirhos
et al., 2020). The word complained is directly rec-
ognized as a negative view on the word waiter,
without understanding the semantic relationships
between them. Solving these problems might re-
quire pre-trained models for a stronger inference
capability.

From the cases, we conclude that our method
has some basic understanding of ASTE and enjoys
some scalability from the PLM. However, hyper-
linguistic phenomena like coreference still remain
the problem for us to solve in future studies.

7 Conclusion

We propose a novel method, PromptASTE, for
ASTE, which is also the first unsupervised method.
We utilize the PLM’s understanding of sentiment
and apply a series of prompts to construct a training
dataset from the PLM. Various prompting mecha-
nisms guarantee the quality of the generated dataset
and trained parser to set a strong baseline for unsu-
pervised ASTE.
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A Scoring Procedure

We elaborate on the scoring processing of our
parser in this section.  For the representa-
tions for edges Xeadedge xdep.edge and labels
Xhead,label ' xrdep,label e calculate the first-order
scores by the accumulative operation-based in-
duction (AOI) scorer (Anonymous, 2021) and the
second-order scores by TriAOI, which is imple-
mented based on accumulative multi-head attention
as in AOL

A.1 First-order: AOI Scorer

We first describe the first-order scoring procedure.
For the paired representations X %P and X"¢2¢,
two linear transformations are used to get represen-
tations for specific labels.

Xhead _ WheadXhead + bhead
Xdep _ Wderdep + bdep

where weights TWdep Jyhead ¢ Rdxexd  apq
biases b%P phead < ReXd The transformed
Xhead X dep gre in the shape RV*€*d,

Based on the label-specific representations, AOI
uses a label-wise dot product to get the self atten-
tion scores.

SSelfAttn — Xhead . Xdep

Then the hidden dimensions of X head Xdep are
split into a attention heads with d’ dimensions,
where d’ and a satisfy a x d’ = d. The split repre-
sentations X head XdeP gre then concatenate with
the sequentially average pooled results.

Xhead,glob heari @ Meanpool(xhead)

Xdepgtob — X4P g MeanPool (X )

The last hidden dimensions of X"ead:glob apq
X dep:glob gre then projected to 1 by linear layers. A
softmax layer is applied for the second sequential
dimension to score the attention on heads. The final
accumulative attention score is the max pooling on
different attention heads.

A" = Softmax(MLPhead,aten (X %))
A%P = Softmax (MLP gep atin (X))
A" — MaxPool(A"**"), A%P = MaxPool(A%?)

The product between self attention and accumu-
lative attention produces the final first-order scores.

S = ASElfAttn (A?ead % A?ep % N)

where i, j refer to the element’s position in graphs
and sequences. N is a modifier that controls the
density of attention.

A.2 Second-order: TriAOI Scorer

For second-order CRF inference, we also involve
scorers that produce scores Q) in R™*™*" for in-
ference. TriAOI takes three binary representations
B*,BY, B* € Rb*™*4 a5 the input.

Q = TriAOI(B®, BY, B)

Like in AOI, @ is also the product between self
attention scores and accumulative attention scores.

SelfAttn
Ql gk = Az J.k

(Afxfl?x/lixN)

d
SelfAttn __ x x z
Azg k ZBi,u X Bj,u X Bk,u

u

where accumulative attention scores A%, AY, A
are scored as in AOL.

We project the contextualized representation to
representations for head B"°??, dependent B°P,
and middle B¢ and use TriAOIs for second-order

scoring.

Qsib _ TriAOI(Bhead7 -Bdep7 Bdep)
Qcop — TriAOI(Bhead Bdep’ Bhead)
Qg'r‘d TI'IAOI( head Bmid7Bdep)

A.3 Mean Field Variational Inference

We follow the procedure in (Wang et al., 2019) for
second-order CRF inference. For each iteration,
we update the edge scores as follows.

szb cop)
Z {Q 7,*)] i—k + Q Z*)] k—j

k#i,j
sl

(t) exp (S + g ), Arc i — j exist

Qi’j B 1, Otherwise

where ¢t denotes the step for iteration.



Kernel Temperature
{Polarity H

<v-mask> <a-mask> 3.00
O v}

<a-mask> is <v-mask> 1.50
W Polarity] Polarity

<a-mask> is <v-mask> and <v-mask> 1.50
i [ Bolarity | |

<a-mask> and <a-mask> are <v-mask> 1.50
{Polarity B {Bolariy 7

<v-mask> <a-mask> and <v-mask> <a-mask> 3.00
{Polarity '}

<v-mask> the <a-mask> 6.00

Figure 10: The configuration for temperature to generate
view spans.

B Whole Prompt for Kernel Building

We present the whole prompts used in our exper-
iments in Figure 9. Some special tokens are in
the prompts. <prefix> refers to the domain prefix
prompt. <det> refers to the determinative compo-
nent. <adv> refers to the adverb component. <be>
refers to words with the be lemma.

C Specific Configuration
C.1 Prompting Configuration

The temperature configuration for prompting is
shown in Figure 10.

C.2 Parsing Configuration

The max epoch and patient are set to 200 and 20,
respectively. The batch size is 5000. The dropout
rates for BILSTM, edge MLP, label MLP are 0.33,
0.25, 0.33. The representation from the PLM is
the average of representations in the last 4 layers.
The number of attention heads for AOI scorers is 4.
To construct dependency trees, we use the parser
provided by SpaCy'.

For the second-order CRF inference, the num-
ber of binary representation’s dimensions is 160,
projected by MLPs with a 0.25 dropout rate. The
number of attention heads for TriAOI scorers is
also 4. The max number of iterations for second-
order CRF inference is 3.

"https://spacy.io/
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D Statistical Properties of Datasets
Prop. l4res 15res l6res 14lap
Sent. Num. 2.1k 1.1k 1.4k 1.5k
Sent. Len. 169 150 149 184
Span. Num. 6.8k 3.1k 4.0k 4.1k
Span. Len. 1.3 1.3 1.3 1.4
Rel. Num. 4.0k 1.7k 2.2k 2.4k

Table 4: Statistical properties of the triplet parsing
datasets used in our experiments.

The statistical properties of the triplet parsing
datasets in our experiments are presented in Ta-
ble 4.
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Figure 9: The whole format of prompts used in our experiments.

13



