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Abstract

Communication is one of the key bottlenecks in the
distributed training of large-scale machine learning
models, and lossy compression of exchanged in-
formation, such as stochastic gradients or models,
is one of the most effective instruments to alleviate
this issue. Among the most studied compression
techniques is the class of unbiased compression
operators with variance bounded by a multiple of
the square norm of the vector we wish to com-
press. By design, this variance may remain high,
and only diminishes if the input vector approaches
zero. However, unless the model being trained is
overparameterized, there is no a-priori reason for
the vectors we wish to compress to approach zero
during the iterations of classical methods such as
distributed compressed SGD, which has adverse
effects on the convergence speed. Due to this is-
sue, several more elaborate and seemingly very
different algorithms have been proposed recently,
with the goal of circumventing this issue. These
methods are based on the idea of compressing the
difference between the vector we would normally
wish to compress and some auxiliary vector that
changes throughout the iterative process. In this
work we take a step back, and develop a unified
framework for studying such methods, both con-
ceptually and theoretically. Our framework incor-
porates methods compressing both gradients and
models, using unbiased and biased compressors,
and sheds light on the construction of the auxiliary
vectors. Furthermore, our general framework can
lead to the improvement of several existing algo-
rithms, and can produce new algorithms. Finally,
we performed several numerical experiments to
illustrate and support our theoretical findings.

1 INTRODUCTION

We consider the distributed optimization problem

min
x∈Rd

[
f(x) :=

1

n

n∑
i=1

fi(x)

]
, (?)

where n is the number of workers/clients and fi : Rd → R
is a smooth function representing the loss of the model
parametrized by x ∈ Rd for data stored on node i. This
formulation has become very popular in recent years due to
the increasing need for training large-scale machine learning
models (Goyal et al., 2018).

Communication bottleneck. Compute nodes have to ex-
change information in a distributed learning process. The
size of the sent messages (usually gradients or model up-
dates) can be very large, which creates a significant bottle-
neck (Luo et al., 2018; Peng et al., 2019; Sapio et al., 2021)
to the whole training procedure. One of the main practical
solutions to this problem is lossy communication compres-
sion (Seide et al., 2014; Konečný et al., 2016; Alistarh et al.,
2017). It suggests applying a (possibly randomized) map-
ping C to a vector/matrix/tensor x before it is transmitted in
order to produce a less accurate estimate C(x) : Rd → Rd
and thus save bits sent per every communication round.

Compression operators. The topic of gradient compres-
sion in distributed learning has been studied extensively
over the last years from both practical (Xu et al., 2020) and
theoretical (Beznosikov et al., 2020; Safaryan et al., 2021c;
Albasyoni et al., 2020) approaches. Compression operators
are typically divided into two large groups: unbiased and
biased operators. The first group includes methods based on
some sort of rounding or quantization: Random Dithering
(Goodall, 1951; Roberts, 1962), Ternary quantization (Wen
et al., 2017), Natural (Horváth et al., 2019a), and Integer
(Mishchenko et al., 2022) compression. Another popular
example is random sparsification – Rand-K (Wangni et al.,
2018; Stich et al., 2018; Konečný and Richtárik, 2018),
which preserves only a subset of the original vector coordi-
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Table 1: Overview of results for methods obtained as special cases of our general framework DCGD-SHIFT (Alg. 1).
Iteration complexities are presented in Õ-notation to omit log 1/ε factors and for the simplified case ωi ≡ ω, δi ≡ δ, Li ≡ L,
pi ≡ p. More refined statements are in theorems with links in the last column. Complexities for DCGD-SHIFT and GDCI
are shown in the interpolation regimes:∇fi(x?) = 0 = x? − γ∇fi(x?).

Instance of DCGD-SHIFT Shift Previous Our result Theorem

DCGD-FIXED (this work) (6) − κ
(
1 + ω

n

)
1

DCGD-STAR (this work) (8) − κ
(
1 + ω

n (1− δ)
)

2

DIANA (Mishchenko et al., 2019) (10) max
{
κ
(
1 + ω

n

)
, ω
}

max
{
κ
(
1 + ω

n (1− δ)
)
, ω(1− δ)

}
3

Rand-DIANA (this work) (12) − max
{
κ
(
1 + ω

n (1− δ)
)
, 1p

}
4

GDCI (Khaled and Richtárik, 2019) (13) κ2
(
1 + ω

n

)
κ
(
1 + ω

n

)
5

nates. These two approaches can also be combined (Basu
et al., 2019) for even more aggressive compression. There
are also many other approaches based on low-rank approx-
imation (Vogels et al., 2020; Wang et al., 2018; Safaryan
et al., 2021b), vector quantization (Gandikota et al., 2021),
etc. The second group of biased compressors mainly in-
cludes greedy sparsification – Top-K (Alistarh et al., 2018;
Stich et al., 2018) and various sign-based quantization meth-
ods (Seide et al., 2014; Bernstein et al., 2018; Safaryan
and Richtárik, 2021). For a more complete review of com-
pression operators, one can refer to the surveys by Xu et al.
(2020) and Beznosikov et al. (2020); Safaryan et al. (2021c).

Optimization algorithms. Compression operators on their
own are not sufficient for building a distributed learning sys-
tem because they always go along with optimization algo-
rithms. Distributed Compressed Gradient Descent (DCGD)
(Khirirat et al., 2018) is one of the first theoretically ana-
lyzed methods which considered arbitrary unbiased com-
pressors. The issue with DCGD is that it was proven to
converge linearly only to a neighborhood of the optimal
point with constant step-size. DIANA (Mishchenko et al.,
2019) fixed this problem by compressing specially designed
gradient differences. Later DIANA was generalized (Con-
dat and Richtárik, 2021), combined with variance reduction
(Horváth et al., 2019b), accelerated (Li et al., 2020) in Nes-
terov’s sense (Nesterov, 1983) and by using smoothness
matrices (Safaryan et al., 2021a) with a properly designed
sparsification technique.

On the other side are methods working with biased com-
pressors, which require the use of the error-feedback (EF)
mechanism (Seide et al., 2014; Alistarh et al., 2018; Stich
and Karimireddy, 2020). Such algorithms were often con-
sidered to be better in practice due to the smaller variance
of biased updates (Beznosikov et al., 2020). However, it
was recently demonstrated that biased compressors can be
incorporated into specially designed unbiased operators,

and show superior to error-feedback results (Horváth and
Richtárik, 2021). In addition, error-feedback was recently
combined with the DIANA trick (Gorbunov et al., 2020),
which led to the first linearly converging method with EF.
Later Condat et al. (2022) proposed a unified framework for
methods with biased and unbiased compressors.

Compressed iterates. Most of the existing literature (in-
cluding all methods described above) focuses on compres-
sion of the gradients, while in applications like Federated
Learning (McMahan et al., 2017; Konečný et al., 2016; by:
Peter Kairouz and McMahan, 2021), it is vital to reduce
the size of the broadcasted model parameters (Reisizadeh
et al., 2020). This demand gives rise to optimization algo-
rithms with compressed iterates. The first attempt to analyze
such methods was done by Khaled and Richtárik (2019)
for Gradient Descent with Compressed iterates (GDCI) in a
single node set up. Later GDCI was combined with variance-
reduction for noise introduced by compression and gener-
alized to a much more general setting of distributed fixed-
point methods (Chraibi et al., 2019).

Summary of contributions. The obtained results are sum-
marized in Table 1, with the improvements over previous
works highlighted. The main contributions include:

1. Generalizations of existing methods. We introduce the
concept of a Shifted Compressor, which generalizes a com-
mon definition of compression operators used in distributed
learning. This technique allows to study various strategies
for updating the shifts using both biased and unbiased com-
pressors, to recover and improve such previously known
methods as DCGD and DIANA. Additionally, as a byproduct,
a new algorithm is obtained: DCGD-STAR, which achieves
linear convergence to the exact solution if we know the local
gradients at the optimum.

2. Improved rates. The notion of a shifted compressor al-
lows us to revisit existing analysis of distributed methods



with compressed iterates and improve guarantees in both
cases: with and without variance-reduction. Obtained results
indicate that algorithms with model compression can have
the same complexity as compressed gradient methods.

3. New algorithm. We present a novel distributed algorithm
with compression, called Randomized DIANA, with linear
convergence rate to the exact optimum. It has a significantly
simpler analysis than the original DIANA method. Via ex-
amination of its experimental performance we highlight the
cases when it can outperform DIANA in practice.

2 GENERAL FRAMEWORK

In this section we introduce compression operators and the
framework of shifted compressors.

2.1 STANDARD COMPRESSION

At first recall some basic definitions.

Definition 1 (General contractive compressor). A (possi-
bly) randomized mapping C : Rd → Rd is a compression
operator (C ∈ B(δ) for brevity) if for some δ ∈ (0, 1] and
∀x ∈ Rd

E ‖C(x)− x‖2 ≤ (1− δ)‖x‖2,

where the expectation is taken w.r.t. (possible) randomness
of operator C.

One of the most known operators from this class is greedy
sparsification (Top-K for K ∈ {1, . . . , d}):

CTop-K(x) :=

d∑
i=d−K+1

x(i)e(i),

where coordinates are ordered by their magnitudes so that
|x(1)| ≤ |x(2)| ≤ · · · ≤ |x(d)|, and e1, . . . , ed ∈ Rd are
the standard unit basis vectors. This compressor belongs to
B (K/d).

Definition 2 (Unbiased compressor). A randomized map-
ping Q : Rd → Rd is an unbiased compression operator
(Q ∈ U(ω) for brevity) if for some ω ≥ 0 and ∀x ∈ Rd

(a)EQ(x) = x, (Unbiasedness)

(b)E ‖Q(x)− x‖2 ≤ ω‖x‖2 (Bounded variance)

The last inequality implies that

E ‖Q(x)‖2 ≤ (1 + ω)‖x‖2. (1)

A notable example from this class is the random sparsifica-
tion (Rand-K for K ∈ {1, . . . , d}) operator:

QRand-K(x) :=
d

K

∑
i∈S

xiei, (2)

where S is a random subset of [d] := {1, . . . , d} sampled
from the uniform distribution on the all subsets of [d] with
cardinality K. Rand-K belongs to U (d/K − 1).

Notice that property (a) from Definition 2 is “uniform”
across all vectors x, while property (b) is not. Namely, vector
x = 0 is treated in a special way because E ‖Q(0)− 0‖2 =
0, which means that the compressed zero vector has zero
variance. In other words, zero is mapped to itself with prob-
ability 1.

2.2 COMPRESSION WITH SHIFT

We can generalize the class of unbiased compressors U(ω)
to a class of operators with other (not only 0) “special”
vectors. Specifically, this class allows for shifts away from
the origin, which is formalized in the following definition.

Definition 3 (Shifted compressor). A randomized mapping
Qh : Rd → Rd is a shifted compression operator (Qh ∈
U(ω;h) in short) if exists ω ≥ 0 such that ∀x ∈ Rd

(a)EQh(x) = x

(b)E ‖Qh(x)− x‖2 ≤ ω‖x− h‖2.

Vector h ∈ Rd is called a shift. Note that class of unbiased
compressors U(ω) is equivalent to U(ω; 0).

The next lemma shows that shifts add up and all shifted
compression operators Qh ∈ U(ω;h) arise by a shift of
some operator Q0 from U(ω; 0).

Lemma 1 (Shifting a shifted compressor). Let Qh ∈
U(ω;h) and v ∈ Rd. Then the (possibly) randomized map-
ping Q defined by

Q(x) := v +Qh(x− v)

satisfies Q ∈ U(ω;h+ v).

The shifted compressor concept allows us to construct a
shifted compressed gradient estimator Qh ∈ U(ω;h)
given by

gh(x) = Qh (∇f(x)) = h+Q(∇f(x)− h), (3)

which is the main focus of this work. In particular, we are
going to study different mechanisms for choosing this shift
vector throughout the optimization process.

Note: The estimator (3) is clearly unbiased, as soon as the
operator Q satisfies EQ(x) = x.

Estimator (3) uses operator Q from class of unbiased com-
pressors U(ω), which are usually easier to analyze but have
higher empirical variance than their biased counterparts
(Beznosikov et al., 2020). In an attempt to kill two birds



with one stone, we can incorporate the (possibly) biased
compressor C ∈ B(δ) into h using a similar shift trick:

h = s+ C(∇f(x)− s), (4)

as gh(x) allows for virtually any shift vector. This leads to
the following estimator1

gh(x) = h+Q (∇f(x)− h)

= s+ C(∇f(x)− s)
+Q (∇f(x)− s− C(∇f(x)− s)) .

(5)

2.3 THE META-ALGORITHM

Now we are ready to present the general distributed op-
timization algorithm for solving (?) that employs shifted
gradient estimators

gh(x) =
1

n

n∑
i=1

ghi(x) =
1

n

n∑
i=1

[hi +Qi (∇fi(x)− hi)] .

Algorithm 1 Distributed Compressed Gradient Descent
with Shift (DCGD-SHIFT)

1: Parameters: learning rate γ > 0; unbiased compres-
sors Q1, . . . ,Qn; initial iterate x0 ∈ Rd, initial local
shifts h01, . . . , h

0
n ∈ Rd (stored on the n nodes)

2: Initialize: h0 = 1
n

∑n
i=1 h

0
i (stored on the master)

3: for k = 0, 1, 2 . . . do
4: Broadcast xk to all workers
5: for i = 1, . . . n do in parallel
6: Compute local gradient:∇fi(xk)
7: Compress: mk

i = Qi(∇fi(xk)− hki )

8: Update the local shift: hk+1
i

9: Send mk
i and/or (maybe) hk+1

i to the master
10: end for
11: Aggregate received messages: mk = 1

n

∑n
i=1m

k
i

12: Compute global estimator: gk = hk +mk

13: Take gradient descent step: xk+1 = xk − γgk

14: Update aggregated shift: hk+1 = 1
n

∑n
i=1 h

k+1
i

15: end for

In Algorithm 1, each worker i = 1, . . . , n queries the gra-
dient oracle ∇fi(xk) in iteration k. Then, a compression
operator is applied to the difference between the local gra-
dient and shift, and the result is sent to the master (and
also possibly the new shift). The shift is updated on both
the server and workers. After receiving the messages mk

i , a

1The resulting estimator is related to induced compressor
(Horváth and Richtárik, 2021)Qind(x) = C(x) +Q (x− C(x)),
which belongs to the U(ω(1 − δ)) class for C ∈ B(δ) and
Q ∈ U(ω).

global gradient estimator gk is formed on the server, and a
gradient step is performed.

Note that this method is not fully defined because it requires
a description of the mechanism for updating the shifts hk+1

i

(highlighted in color) throughout the iteration process on
both workers and master. In the next section, we illustrate
how the shifts can be chosen and updated.

3 CHOOSING THE SHIFTS

First, in Table 2, we show the generality of our approach by
presenting some of the existing and new distributed methods
that fall into our framework of DCGD-SHIFT with shift
updates of the form (4).

The following assumptions are needed to analyze conver-
gence and compare with previous results.

Assumption 1 (Strong convexity). Function f : Rd → R
is µ-strongly convex if

f(x) ≥ f(y) + 〈∇f(y), x− y〉+ µ

2
‖x−y‖2, ∀x, y ∈ Rd.

If µ = 0, then the function is convex.

Assumption 2 (Smoothness). Function f : Rd → R is
L-smooth if

f(x) ≤ f(y)+ 〈∇f(y), x− y〉+ L

2
‖x−y‖2, ∀x, y ∈ Rd.

Now, we can provide a general convergence guarantee for
Algorithm 1 with fixed shifts

hki ≡ hi. (6)

Theorem 1 (DCGD with fixedSHIFT). Assume each fi
is convex and Li-smooth, and f is L-smooth and µ-strongly
convex. Let Qi ∈ U(ωi) be independent unbiased compres-
sion operators. If the step-size satisfies

γ ≤ 1

L+ 2 maxi (Liωi/n)
,

then the iterates of Algorithm 1 with fixed shifts hki ≡ hi
satisfy

E
∥∥xk − x?∥∥2 ≤ (1− γµ)k‖x0 − x?‖2

+
2γ

µ

1

n

n∑
i=1

ωi
n
‖∇fi(x?)− hi‖2 .

(7)

This theorem establishes a linear convergence rate up to a
certain oscillation radius, controlled by the average distance
of shift vectors hi to the optimal local gradients ∇fi(x?)
multiplied by the step-size γ. This means that in the interpo-
lation/overparameterized regime (∇fi(x?) = 0 for all i),
method reaches exact solution with zero shifts h0i = 0.



Table 2: List of existing and new algorithms that fit our general framework. VR – variance reduced method. O/I –
zero/identity operator, Bpi – Bernoulli2 compressor. DGD refers to Distributed Gradient Descent.

Shift hk+1
i = ski + Ci

(
∇fi(xk)− ski

)
Method Reference VR ski Ci
DCGD (Khirirat et al., 2018) 7 0 O

DCGD-SHIFT (this work) 7 s0i O

DGD (folklore) 3 0 I

DCGD-STAR (this work) 3 ∇fi(x?) any Ci ∈ B(δ)

DIANA (Mishchenko et al., 2019) 3 hki αQi, Qi ∈ U(ωi)

RAND-DIANA (this work) 3 hki Bpi
GDCI (Chraibi et al., 2019) 7 xk/γ O

In the following subsections, we study how the shifts can
be formed to guarantee linear convergence to the exact opti-
mum. We start by introducing practically useless, but theo-
retically insightful DCGD-STAR, and then move onto im-
plementable algorithms that learn the optimal shifts.

3.1 OPTIMAL SHIFTS

Assume, for the sake of argument, that we know the values
∇fi(x?) for every i ∈ [n]. Then, we can construct optimally
shifted compressed shift updates sequence using the form (4)

hk+1
i = ∇fi(x?) + Ci(∇fi(xk)−∇fi(x?)). (8)

This is enough to fully characterize the Algorithm 1 and
obtain the following convergence guarantee:

Theorem 2 (DCGD-STAR). Assume each fi is convex and
Li-smooth, and f is L-smooth and µ-strongly convex. Let
Qi ∈ U(ωi), Ci ∈ U(δi) be independent compression oper-
ators. If the step-size satisfies

γ ≤ 1

L+ maxi (Liωi(1− δi)/n)
, (9)

then the iterates of DCGD with optimally shifted com-
pressed shift update (8) satisfy

E
∥∥xk − x?∥∥2 ≤ (1− γµ)k‖x0 − x?‖2.

This is the first presented algorithm with linear convergence
to the exact solution for the general not-overparameterized
case. Notice that for zero-identity operators Ci ≡ 0 we
obtain the simplest optimal shift hi = ∇fi(x?) and the
term δi in (9) should be interpreted as zero.

The issue with the described method is that, in general, we
do not know the values h?i := ∇fi(x?) (unless the problem

is overparametrized), which makes method impractical.

3.2 LEARNING THE OPTIMAL SHIFTS

We need to design the sequences {hk1}k≥0, . . . , {hkn}k≥0 in
such a way that they all converge to the optimal shifts:

hki → ∇fi(x?) as k →∞.

However, at the same time, we do not want to send un-
compressed vectors from workers to the master. So, the
challenge is not only learning the shifts, but doing so in
a communication-efficient way. We present two different
solutions to this problem in this work.

3.2.1 DIANA-like Trick

Our first approach is based on the celebrated DIANA
(Mishchenko et al., 2019; Horváth et al., 2019b) algorithm:

hk+1
i = hki + α

[
Ci(∇fi(xk)− hki )

+Qi
(
∇fi(xk)− hki − Ci(∇fi(xk)− hki )

) ]
,
(10)

where α is a suitably chosen step-size. For Ci ≡ 0, it takes
the simplified form

hk+1
i = hki + αQi

(
∇fi(xk)− hki

)
. (11)

This recursion resolves both of the raised issues earlier.
Firstly, this sequence of hki indeed converges to the op-
timal shifts ∇fi(x?), which is formalized in the Theo-
rem 3 presented later. Moreover, the shift on the master

2Bp(x) :=

{
x with probability p
0 with probability 1− p



hk+1 = 1
n

∑n
i=1 h

k+1
i is updated as follows:

hk+1 =
1

n

n∑
i=1

{
hki + α

[
Ci(∇fi(xk)− hki )

+Qi
(
∇fi(xk)− hki − Ci(∇fi(xk)− hki )

) ]}
=

1

n

n∑
i=1

hki + α
1

n

n∑
i=1

{
cki +mk

i

}
= hk + α

(
ck +mk

)
,

which requires aggregation of the compressed vectors cki :=
Ci(∇fi(xk) − hki ) and mk

i := Qi
(
∇fi(xk)− hki − cki

)
from the workers. In the case of update (11), it is not even
needed to send anything in addition to the messages mk

i

required by default in Algorithm 1.

Furthermore, simplified recursion (11) can be interpreted
as one step of Compressed Gradient Descent (CGD) with
step-size α applied to such optimization problem:

max
hi∈Rd

[
φki (hi) := −1

2

∥∥hi −∇fi(xk)
∥∥2] ,

which is in fact a 1-smooth and 1-strongly concave function.
In this way, hk+1

i keeps track of the latest local gradient and
produces a better estimate than the previous shift hki .

Now we present the convergence result for the Algorithm 1
with described before shift learning procedure.

Theorem 3 (Generalized DIANA). Assume each fi is con-
vex and Li-smooth, and f is µ-strongly convex. Let Qi ∈
U(ωi), Ci ∈ U(δi) be independent compression operators.
If the step-sizes for all i satisfy

α ≤ 1

1 + ωi(1− δi)
,

γ ≤ 1
2
n maxi (ωiLi) + (1 + αM)Lmax

,

where Lmax := maxi Li,M > 2/(nα) and δi should be
interpreted as zero for Ci ≡ 0, then the iterates of DCGD
with the DIANA-like shift update (10) satisfy

EV k ≤ max

{
(1− γµ)k,

(
1− α+

2ω

nM

)k}
V 0,

where the Lyapunov function V k is defined by

V k :=
∥∥xk − x?∥∥2 +Mγ2 · 1n

n∑
i=1

ωi
∥∥hki −∇fi(x?)∥∥2 .

Our result represents an improvement over the original DI-
ANA in several ways. Firstly, we use a much more general
shift updates involving Ci, which allow biased operators
to be used for learning the optimal shifts. Secondly, one

can use different compressors Qi, which can be particu-
larly beneficial when different workers have various band-
widths/connection speeds to the master. Thus, the slower
workers can compress more, and therefore use operators
with higher ωi. At the same, time the opposite makes sense
for “faster” workers.

3.2.2 Randomized DIANA (Rand-DIANA)

Recalling the original issue stated in Section 3.2 that we are
dealing with:

design sequences {hki }k≥0 such that hki → ∇fi(x?).

The simplest possible solution would be just to set hki to
∇fi(xk) because if xk → x? in the optimization process,
then∇fi(xk) converges to the optimal local shift. However,
this approach is not efficient, as workers have to transfer
full (uncompressed) vectors hki = ∇fi(xk). Our alternative
to the DIANA solution is to update a reference point wki
for calculating the shift hki = ∇fi(wki ) infrequently (with
a small probability pi ∈ (0, 1]), so that hki needs to be
communicated very rarely:

hki = ∇fi(wki )

wk+1
i =

{
xk with probability pi
wki with probability 1− pi

(12)

This method has a remarkably simpler analysis than DIANA,
but can solve the original problem of eliminating the vari-
ance introduced by gradient compression. Next, we state
the convergence result for DCGD with shifts updated in
a randomized fashion (12). We named it Randomized-
DIANA (Rand-DIANA in short) to acknowledge the original
method (Mishchenko et al., 2019) to first solve this problem.

Theorem 4 (Rand-DIANA). Assume that fi are convex, Li-
smooth for all i and f is µ-convex. If the step-size satisfies

γ ≤ 1(
1 + 2ω

n

)
Lmax +M maxi(piLi)

,

where M > 2ω
npm

and pm := mini pi. Then, the iterates of
DCGD with Randomized-DIANA shift update (12) satisfy

EV k ≤ max

{
(1− γµ)k,

(
1− pm +

2ω

nM

)k}
V 0,

where the Lyapunov function V k is defined by

V k :=
∥∥xk − x?∥∥2 +Mγ2 · 1

n

n∑
i=1

∥∥hki −∇fi(x?)∥∥2 .
Though appropriate choice of the parameters M = 4ω

npm

and pi ≡ p = 1
ω+1 for every i, we can obtain basically the

same iteration complexity as the original DIANA (Horváth
et al., 2019b)

max

{
1

γµ
,

1

pm − 2ω
nM

}
= max

{
Lmax

µ

(
1 +

ω

n

)
, ω + 1

}
.



3.3 COMPRESSING THE ITERATES

In this section, we discuss how the shifted compression
framework can be applied and leads to improved results for
the case where the iterates/models themselves need to be
compressed.

Let Q ∈ U(ω). Consider the following shifted by vector
x/γ compressor

Q̂(z) :=
x

γ
+Q

(
z − x

γ

)
,

which clearly belongs to the class U(ω;x/γ). Based on the
fact that for γ 6= 0 compressor Q̄(z) := − 1

γ · Q (−γz) ∈
U(ω) we can transform Q̂ to operator

Q̃(z) :=
x

γ
+ Q̄

(
z − x

γ

)
=

1

γ
[x−Q(x− γz)] ,

which also belongs to U(ω;x/γ) and is helpful for analysing
algorithms with compressed iterates.

Distributed Gradient Descent with Compressed Iterates
(GDCI) was first analyzed by Khaled and Richtárik (2019)
for single node and, in short, was relaxed and formulated in
a convenient form by Chraibi et al. (2019):

xk+1 = (1− η)xk + ηQ
(
xk − γ∇f(xk)

)
. (GDCI)

This algorithm can be reformulated using the previously
described shifted compressor Q̃ ∈ U(ω;xk/γ)

xk+1 = xk − (ηγ)
1

γ

[
xk −Q

(
xk − γ∇f(xk)

)]
= xk − (ηγ)Q̃k(∇f(xk)),

which for the distributed case takes the form

xk+1 = (1− η)xk + η
1

n

n∑
i=1

Qi
(
xk − γ∇fi(xk)

)
. (13)

The essence of this method is compression of the local
workers’ iterates Qi

(
xk − γ∇fi(xk)

)
, their aggregation

on the master and convex combination with the previous
model. Next we present established linear convergence up to
a neighborhood introduced due to variance of compression
operator (similarly to DCGD with fixed shifts Theorem 1).

Theorem 5 (GDCI). Assume each fi is convex and Li-
smooth, and f is L-smooth and µ-strongly convex. LetQi ∈
U(ω) be independent compression operators. If the step-
sizes satisfy

η ≤
[
L

µ
+

2ω

n

(
Lmax

µ
− 1

)]−1
, γ ≤ 1 + 2ηω/n

η (L+ 2Lmaxω/n)
,

then the iterates of the Distributed GDCI (13) satisfy

E
∥∥xk − x?∥∥2 ≤ (1− η)k‖x0 − x?‖2

+ η
2ω

n

1

n

n∑
i=1

‖x? − γ∇fi(x?)‖2 .
(14)

In the interpolation regime (∇fi(x?) = 0 = x?−γ∇fi(x?),
for every i) this result matches the complexity of DCGD
with fixed shifts (7)

Õ (κ (1 + ω/n))

and improves over the original rate of GDCI by Chraibi et al.
(2019) analyzed for fixed point problems and specialized
for gradient mappings:

Õ (κmax {1, κω/n}) & Õ
(
κ2ω/n

)
.

Due to space limitations, the results for Distributed
Variance-Reduced Gradient Descent with Compressed
Iterates (VR-GDCI), which eliminates the neighborhood
in (14), along with detailed proofs of all stated theorems are
presented in the Supplementary Material.

4 EXPERIMENTS

In this section, we present some of the experimental results
obtained. The remainder of the results (including real-world
data and other models) are available in the Supplementary
Materia. To provide evidence that our theory translates into
observable predictions, we focus on well-controlled settings
that satisfy the assumptions in our work.

Consider a classical ridge-regression optimization problem

min
x∈Rd

[
f(x) :=

1

2
‖Ax− y‖2 +

λ

2
‖x‖2

]
,

where λ = 1/m and A ∈ Rm×d, y ∈ Rm are generated us-
ing the Scikit-learn library (Pedregosa et al., 2011) method
sklearn.datasets.make_regression with default parameters
for m = 100, d = 80. The obtained data is uniformly,
evenly, and randomly distributed among 10 workers. To
compare selected algorithms, we evaluate the logarithm of
a relative argument error log

(
‖xk − x?‖2/‖x0 − x?‖2

)
on

the vertical axis, while the horizontal axis presents the num-
ber of communicated bits needed to reach a certain error
tolerance ε. The starting point x0 ∈ Rd entries are sampled
from the normal distribution N (0, 10).

In our simulations we thoroughly examine the Rand-DIANA
method, which is presented for the first time. Extensive
studies of the methods with compressed iterates can be
found in the works by Khaled and Richtárik (2019); Chraibi
et al. (2019).

4.1 RANDOMIZED-DIANA VS DIANA

In the first set of experiments, we compare Rand-DIANA
and DIANA with different compressors Qi (Ci ≡ 0)
and varied operators’ parameters. The results obtained
are summarized in Figure 1. The designation q := k/d
is used for the share of non-zeroed coordinates of the

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_regression.html
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Figure 1: Comparison of DIANA and Randomized-DIANA. Left plot: methods equipped with Rand-K for different q
values. Right plot: selected results of a grid search for the ND parameter s over {2, . . . , 20}.
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Figure 2: Study of the stability and performance of Rand-DIANA with varying parameters b and p.

Random sparsification (Rand-K) operator, and s
corresponds to the number of levels for the Natural
Dithering (ND) (Horváth et al., 2019a) compressor. The
p parameter of Rand-DIANA was set at 1/(ω + 1) for every
run.

The left plot in Figure 1 clearly shows that Rand-DIANA
performs better than DIANA for every value of the Rand-K
compressor parameter. It is worth noting that DIANA per-
forms better at higher q, while the opposite holds for Rand-
DIANA.

From the right plot in Figure 1, one can see that DIANA with
ND can be superior to Rand-DIANA for the optimized pa-
rameter s?. Nevertheless, Rand-DIANA is highly preferable
for very aggressive compression (e.g., s = 2).

In the next experimental setup, we more closely investigate
the behavior of Rand-DIANA with respect to its parameters.

4.2 RANDOMIZED-DIANA STUDY

According to the formulation of Theorem 4, the constant
M has to be strictly greater than M ′ := 2ω/(np). In the
left plot of Figure 2, we show that the method becomes less

stable and can even diverge for smaller values of M (set to
M ′ · b). However, too high M (for b = 1.5) can lead to an
overall (stable) slowdown. We conclude that the condition
imposed by theoretical analysis is indeed critical.

The right plot in Figure 2 examines how the parameter p
affects the convergence in a high compression regime (q =
0.1). The method converges faster for smaller p and can
diverge above a certain threshold, similarly to the previous
study of M trade-off.

We did not conduct additional experiments to show the effect
of combining unbiased compressors with biased counter-
parts, as the benefits of such an approach have already been
clearly demonstrated by Horváth and Richtárik (2021) for
distributed training of deep neural networks.
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