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Abstract

Large Language Models (LLMs), exemplified
by the likes of ChatGPT, have marked signifi-
cant strides in the field of Natural Language
Processing, earning widespread acclaim for
their multitasking prowess. However, as the
demand for cross-lingual applications escalates,
the issue of response consistency in different
linguistic contexts within LLMs becomes in-
creasingly apparent, particularly in terms of
knowledge-based queries. This study is com-
mitted to a profound evaluation of cross-lingual
consistency in the knowledge embedded within
LLMs. Existing research on knowledge-based
cross-lingual consistency is notably scarce and
suffers from conspicuous limitations. To ad-
dress these shortcomings, we have constructed
a factual knowledge dataset based on Wikidata,
spanning five domains and twelve languages.
Furthermore, we propose a novel set of met-
rics for evaluating cross-lingual consistency of
knowledge, incorporating cross-lingual seman-
tic consistency, cross-lingual accuracy consis-
tency, and cross-lingual timeliness consistency.
Leveraging this newly constructed dataset and
evaluation metrics, we have undertaken a com-
prehensive evaluation and analysis of six repre-
sentative open-source and closed-source mod-

els!.

1 Introduction

In recent years, the rapid development of Large
Language Models (LLMs) has led to significant ad-
vancements in natural language processing (NLP),
e.g., ChatGPT?, Llama (Touvron et al., 2023b) and
Baichuan (Yang et al., 2023). These models have
shown remarkable performance across various NLP
tasks, including machine translation (Jiao et al.,
2023), and question-answering (Bang et al., 2023).

With the increasing demand for global applica-
tions and the necessity to accommodate diverse lin-
guistic communities, the multilingual capabilities
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Figure 1: The ChatGPT exhibits variability in outcomes
when the identical query is articulated in diverse lan-
guages.

of LLMs have gained significant importance. Un-
fortunately, in practical applications, LLMs often
generate inconsistent responses to identical ques-
tions posed in different languages. For example,
as shown in Figure 1, ChatGPT generates the re-
sponses “Paris Saint-Germain (PSG)” for the En-
glish query “Which team does Lionel Messi play
for?" and “& & ¥ A8 L3RR KRR (Chinese trans-
lation of “FC Barcelona”) for the Chinese query
“H P AR - MEEKXA TAH 2AEKKR? ” respec-
tively.

Therefore, evaluating the cross-lingual consis-
tency of the knowledge embedded in LLMs has
become a crucial task. We need to ensure that
these LLMs maintain robust, reliable and consistent
performance when processing different languages.
This not only helps to enhance the multilingual
processing capabilities of LLMs but also has sig-
nificant implications for meeting the demands of
global applications.

However, current research on the cross-lingual
consistency of large models is very limited. Qi
et al. (2023) first proposed the concept of the cross-
lingual consistency of knowledge, constructed a
multilingual aligned knowledge dataset BMLAMA
based on existing datasets, and proposed a consis-



tency measurement method RankC based on per-
plexity ranking. However, this research still has
some shortcomings that need to be improved: in
terms of the dataset, the covered domains and re-
lationships are monotonous, making it difficult to
comprehensively measure the actual performance
of the models; in terms of evaluation metrics, the
model’s answer is not autoregressively generated
by models, creating a gap between the metric and
the practical application, and making it unsuitable
for evaluating closed-source models; furthermore,
a single ranking metric cannot fully measure the
performance of cross-lingual consistency of knowl-
edge in the model.

In light of this, this paper constructs a Mul-
tilingual Aligned Knowledge-based Question-
Answering dataset (MAKQA) based on Wikidata,
which includes 12 languages across 6 domains, and
proposes three innovative cross-lingual consistency
of knowledge evaluation metrics: cross-lingual se-
mantic consistency (CLSC), cross-lingual accuracy
consistency (CLAC), and cross-lingual timeliness
consistency (CLTC). We select six prevalent LLMs
and conduct a comprehensive evaluation and anal-
ysis of them using these metrics.

Main Contributions:

* We construct a multilingual aligned
knowledge-based question answering dataset
(MAKQA) covering 5 domains and 12
languages, providing effective support and
assistance for research on the cross-language
consistency of knowledge in LLMs.

* We design a set of evaluation metrics aimed
at assessing the cross-lingual consistency of
knowledge in LLMs, including cross-lingual
semantic consistency, cross-lingual accuracy
consistency, and cross-lingual timeliness con-
sistency.

* Through the dataset and evaluation metrics,
we conduct evaluations and analyses on mul-
tiple open-source and closed-source LLMs.
We find that: (i) The knowledge embedded
in LLMs exhibits a significant clustering phe-
nomenon based on language families in terms
of cross-lingual consistency; (ii) The cross-
lingual consistency of knowledge shows dis-
tinct language distribution rules and imbal-
ance phenomena, and this imbalance does
not get compensated with the increase in
model size; (iii) The cross-lingual consistency

Domain #Entity #Rel #QA pairs
Sports 50 9 253
Movie 49 17 432
Science 49 12 492
History 45 12 389
Geography 94 6 286
Literature 50 5 165

" Timeliness 129 2 136

Table 1: Satistics of the MAKQA dataset used in our
analysis.

of knowledge remains stable, unaffected by
prompt variations; (iv) There is a correla-
tion between the cross-lingual consistency of
knowledge in LLMs and their multilingual
translation capabilities.

2 Dataset

Before embarking on the construction of a new
dataset, we conduct an in-depth evaluation of exist-
ing factual knowledge datasets. We observe that,
despite the multilingual alignment achieved by BM-
LAMA (Qi et al., 2023), a multilingual factual
knowledge dataset, the knowledge it encompasses
is predominantly concentrated in the field of ge-
ography. This bias limits its utility for compre-
hensively assessing the cross-lingual consistency
of knowledge in LLMs. On the other hand, fac-
tual knowledge datasets that have not achieved
multilingual alignment are unable to effectively
measure the cross-lingual consistency of knowl-
edge. Attempts to extend these datasets to multi-
ple languages using automatic translation engines
may introduce translation errors, thereby impacting
the reliability of the results. Given these factors,
we decide to develop a new multilingual aligned
knowledge question-answering dataset to more ac-
curately and comprehensively evaluate the cross-
lingual knowledge consistency of LLMs.

We utilize Wikidata as the fundamental data
source for establishing our dataset. We collect en-
tity names in English from diverse sources and sub-
sequently, through Wikipedia, we acquire knowl-
edge triplets associated with these entities. From
these triplets, we selectively retained those knowl-
edge triples that contained key relations. In addi-
tion, we capitalized on the feature that every entity
in Wikipedia is logged with its multilingual names,
thereby expanding English knowledge triples to
multilingual aligned knowledge triples. Notably,



we only employed translation engines as supple-
ments for specific language names missing from
some entities in Wikipedia when necessary. Finally,
we transformed knowledge triples into knowledge
question-answer pairs using GPT-4 (OpenAl et al.,
2023), yielding our Knowledge QA dataset.

Using this methodology, we construct a Mul-
tilingual Aligned Knowledge-based Question-
Answering dataset (MAKQA) that encompasses
twelve languages: English (En), German (De),
Dutch (NI), French (Fr), Spanish (Es), Italian (It),
Portuguese (Pt), Greek (El), Russian (Ru), Chi-
nese (Zh), Japanese (Ja), and Korean (Ko). Con-
currently, the dataset covers knowledge from six
fields: sports, movie, science, history, geography,
and literature, as detailed in Table 1.

To fulfill the need for evaluating the cross-lingual
timeliness consistency in LLMs, we construct a
timeliness dataset. To ensure the reliability of the
dataset and respect for privacy, we choose to use
the clubs and leagues that well-known athletes par-
ticipate in as the background for the questions. All
the information used is publicly available and can
be found on Wikipedia. The methodology for data
construction as previously described is employed
in the creation of this dataset. Within the dataset,
the answers are systematically arranged in chrono-
logical order, reflecting the sequence of the events.

This dataset serves not only for evaluating the
cross-lingual consistency of LLM in the domain
of knowledge but also aids in delving deeply into
the disparities in common knowledge and question-
answering abilities of LLM under different lan-
guage environments, and their strengths and weak-
nesses. We will release the dataset in the hope of
fostering research in related fields.

3 Experiments

To evaluate the performance of current state-of-
the-art LLMs, we selected five highly acclaimed
LLMs and examined their variants of different
scales. Specifically, we chose the closed-source
model GPT-3.5 (Ouyang et al., 2022), as well as the
open-source models Bloomz (Muennighoff et al.,
2022) and Llama2 (Touvron et al., 2023a) (which
claim to support multiple languages), Baichuan2
(Baichuan, 2023) and Mistral (Jiang et al., 2023,
2024) (which claim to only support a few high-
resource languages). To assess the impact of mod-
els of different scales on cross-lingual consistency,
we measured variants of each open-source model

Model CLSC CLAC CLTC
GPT-3.5 0.7712 0.4555 0.4798
Bloomz-560m  0.6217 0.2031 0.0655
Bloomz-1b 0.6267 0.2669 0.1015
Bloomz-3b 0.6339 0.2830 0.1196
Bloomz-7b 0.6229 03110 0.1433
"Llama2-7b  0.6891 0.2172 0.2236
Llama2-13b 0.6796 0.3179 0.2072
" Baichuan2-7b  0.695 0.3360 0.2115
Baichuan2-13b  0.7154 0.3404 0.2426
“Mistral-7b~ 0.6676 0.2683  0.2381
Mixtral-8x7B  0.7655 0.4059  0.297

Table 2: The main result of assessing the cross-lingual
consistency of knowledge in LLMs.

with parameter sizes less than 70b. We utilized the
LLAMA-factory (Hiyouga, 2023) to develop an
API that faithfully reproduces the models’ perfor-
mance in real-world usage scenarios.

We used the 5-shot in-context learning strat-
egy to guide the models in providing responses,
in order to mitigate the impact of different mod-
els’ instruction-following abilities on the answers.
Specifically, in each domain, we meticulously se-
lect 20 cases from the dataset to serve as examples.
During each inference process, we would choose 5
of these examples to serve as cases for in-context
learning. The prompts used during the inference
process are provided in the appendix. All our exper-
iments were conducted on four A100-PCIE-40GB
GPUs.

4 Evaluation

In order to comprehensively evaluate the cross-
lingual consistency of the model, we introduce
three progressively hierarchical metrics, namely
cross-lingual semantic consistency (CLSC), cross-
lingual accuracy consistency (CLAC), and cross-
lingual timeliness consistency (CLTC). These met-
rics impose higher requirements on the cross-
lingual consistency of the model. In this section,
we will provide a detailed description of each met-
ric and compare the performance of different mod-
els on these three metrics.

4.1 Cross-Lingual Semantic Consistency

The Cross-Lingual Semantic Consistency (CLSC)
aims to measure the consistency of knowledge
across different languages in LLMs. In other words,
we intend to assess whether a model provides con-



sistent answers when faced with the same questions
in different languages, to determine the consistency
of knowledge stored in the model across different
languages.

4.1.1 Method

To evaluate the semantic consistency of model re-
sponses to identical questions posed in various
languages, we employ LASER (Heffernan et al.,
2022), a multilingual semantic encoding model, to
encode the responses generated by the model in
different languages. We systematically examine all
possible language pair combinations, computing
the cosine similarity of the semantic vectors for
each pair. Subsequently, we derive an average of
these similarities, which provides us with a cross-
lingual semantic consistency score for the model.
This computation process is detailed in Formula 1.
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In Formula 1, ans’, denotes the answer provided
by the model for the s-th question in language . L
and N respectively denote the number of languages
and the total number of question-answer pairs in
the dataset. V'(.) signifies the vector representation
post LASER encoding, and cos_sim(.) represents

the computation of cosine similarity.

4.1.2 Result

The CLSC scores for each model are presented in
the first column of Table 2. Firstly, we observe vari-
ations among different models. The closed-source
model GPT-3.5 performs the best in CLSC, with a
score of 0.7712, surpassing all open-source models.
Among the open-source models, Mixtral-8x7b per-
forms the best with a score of 0.7655, significantly
outperforming other open-source models. Despite
Mixtral claiming to only support a limited num-
ber of high-resource languages, it exhibits better
performance in CLSC.

Secondly, we observe a significant improvement
in the performance of Mixtral as the number of
model parameters increases. However, it is note-
worthy that Mixtral modifies the model structure
compared to Mistral by incorporating the MOE
(Mixture of Experts) structure (Fedus et al., 2022)

in the FeedForward blocks. In Baichuan2 models,
we note a minor increase in CLSC scores as the
model size grows. Yet, in the Bloomz and Llama2
models, we do not observe the impact of model
size on CLSC. Therefore, we infer that merely in-
creasing the size of the model may not effectively
enhance the CLSC score.

To enhance our understanding of the distribution
of semantic consistency across various language
pairs, we conduct a detailed analysis and visualize
the results. These heatmaps represent the seman-
tic similarity scores between all language pairs for
these four open-source models of 7b size, depicted
in Figure 2. The analysis illuminates a notable
pattern: the CLSC scores between languages are
profoundly influenced by their linguistic families.
Specifically, languages within the Germanic lan-
guage family (English [En], German [De], Dutch
[NI]) and the Indo-European-Romance language
family (French [Fr], Spanish [Es], Italian [It], Por-
tuguese [Pt]) demonstrate a pronounced level of
semantic consistency amongst themselves. In con-
trast, their semantic alignment with languages out-
side these families is markedly lower, thereby il-
lustrating a clustering trend. We further employ
hierarchical clustering based on CLSC scores to
group languages, and obtain the same conclusion,
with the experimental results provided in the ap-
pendix.

Finally, we independently compute the scores
for five representative models across six domains,
as depicted in Table 3. The findings reveal that the
CLSC scores of these models fluctuate noticeably
across the varied domains. Nevertheless, in a gen-
eral sense, GPT-3.5 surpasses other models in all
evaluated domains. Among the open-source mod-
els, Baichun2-7b exhibits superior performance
in four out of the six domains, while Bloomz-7b
consistently underperforms in all domains. These
observations suggest that although variations in
knowledge across diverse domains can impact the
CLSC in LLMs, they do not act as a definitive
determinant.

4.2 Cross-Lingual Accuracy Consistency

This section aims to evaluate the consistency of the
accuracy of the model’s responses across different
languages. Accuracy serves as the most critical and
straightforward metric for evaluating the model’s
performance in diverse languages, given that it mir-
rors the model’s effectiveness in downstream tasks.
Moreover, the consistency of accuracy across nu-
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Figure 2: Distribution of average cosine similarity across languages.

Model Sports Movie Science History Geography Literature
GPT-3.5 0.8029 0.738 0.7511  0.7607 0.8241 0.788
Bloomz-7b 0.6326 0.5814 0.6133  0.6411 0.7006 0.6165
Llama2-7b 0.6944 0.6894 0.7373  0.6328 0.7053 0.6368
Baichuan2-7b  0.7241 0.6466 0.6936  0.6976 0.7451 0.692
Mistral-7b 0.6593 0.6946 0.7061 0.6454 0.6607 0.6283

Table 3: CLSC domain result

merous languages necessitates superior standards
for the model’s cross-lingual consistency of knowl-
edge. This implies that the knowledge embedded
in different languages should not only be identi-
cal but also accurate. Consequently, we introduce
the Cross-Lingual Accuracy Consistency metric
(CLAC).

4.2.1 Method

We commence by establishing a metric for accu-
racy, computed using theFuzz® method to deter-
mine the partial ratio between the answer and the
groundtruth. An answer is deemed correct if the
ratio meets or exceeds 75%, thereby receiving a
label of 1; otherwise, it is assigned a label of O.
This metric facilitates an evaluation of the model’s
answer accuracy across diverse languages, and it
mitigates the risk of erroneous judgments engen-
dered by exact matching. Subsequently, we employ
the Spearman correlation coefficient to ascertain
the correlation of accuracy results between every
pair of languages. The average value across all
language pairs is utilized as an indicator of cross-
lingual accuracy consistency.

Moreover, we must also take into account the
potential for multiple answer entities within the
responses. To manage this scenario, we initially
partition the answers and subsequently match each
entity with the potential answers. Ultimately, we
compute the mean of the scores for all entities pre-
dicted by the model to derive the accuracy score
for the given question.

3https://github.com/seatgeek/thefuzz

4.2.2 Result

Upon examining the experimental results delin-
eated in the second column of Table 2, we ob-
serve that different models exhibit similar trends
in terms of accuracy consistency and semantic con-
sistency. Specifically, the closed-model GPT-3.5
outperforms all other Language Learning Models
(LLMs), and Mixtral demonstrates the best perfor-
mance among the open-source models.

In contrast to semantic consistency, our findings
suggest that accuracy consistency experiences a
marked augmentation with the escalation in model
size. This trend is particularly conspicuous in the
Bloomz series models. We infer that such improve-
ments may be attributable to the enhanced capabil-
ities of the model as a result of the expansion in
model parameters, thereby increasing the overall
accuracy of the model. Ultimately, it leads to a
significant improvement in its cross-lingual consis-
tency in accuracy scores.

To evaluate the preferences of LLMs for CLAC
across different languages, we plot the average
CLAC scores of each language in relation to other
languages (as illustrated in Figure 3).Our inves-
tigation reveals that the GPT-3.5 model exhibits
a commendable level of consistency in perfor-
mance across different language pairs, with a rela-
tively uniform distribution of accuracy consistency
among various languages. Notably, while Greek
displays the lowest average correlation, it nonethe-
less achieves a correlation coefficient of approx-
imately 0.4. In stark contrast, the open-source
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Figure 3: Average cross-lingual accuracy consistency scores of LLMs in different languages.

LLMs under examination, except Mixtral, demon-
strate a pronounced disparity in the distribution of
accuracy consistency among different languages,
with Greek and Korean, for example, registering
an average correlation coefficient of less than 0.1.
Furthermore, from the figure, we see that across all
evaluated models, there is a significantly higher av-
erage correlation coefficient with languages belong-
ing to the Germanic and Indo-Romance families as
opposed to languages from other families. This ob-
servation suggests that the CLAC exhibits a corre-
lation with linguistic families, predominantly man-
ifesting within high-resource language families,
more specifically, within the European languages.
Lastly, our study also uncovers that while augment-
ing the size of the model may yield marginal im-
provements in cross-lingual accuracy consistency,
it falls short of addressing the stark imbalances in
consistency distribution observed across languages.

4.3 Cross-Lingual Timeliness Consistency

The primary aim of this section is to assess the
disparities in the timeliness of responses across var-
ious languages. As illustrated in Figure 1, the act of
posing time-sensitive queries in distinct languages
frequently results in receiving answers with vary-
ing degrees of timeliness. To precisely quantify
the differences in response timeliness among differ-
ent languages, we develop a novel metric termed
Cross-Lingual Timeliness Consistency (CLTC).

4.3.1 Method

We adopt a similar approach to CLAC to assess
the answers generated by the model. We utilize
a fuzzy matching technique predicated on the par-
tial ratio to ascertain the correspondence between
the entities in the model’s responses and those in

the pre-established ground truth answer list. the
models are scored based on the inverse of the rank
assigned to the corresponding entity within the an-
swer list. We calculate the Spearman correlation
coefficient across the scores obtained for various
language pairs and compute their average to obtain
the CLTC score of the model.

4.3.2 Result

The third column in Table 2 presents the CLTC
scores of all models. It is evident that GPT-3.5
achieves a score of 0.4798, markedly surpassing
the performance of other models. This discrepancy
in performance becomes increasingly pronounced
as the evaluation criteria shift from CLSC to CLTC,
highlighting GPT-3.5’s superior capability in cross-
lingual tasks. Additionally, for the Bloomz and
Baichuan2 models, the CLTC scores exhibit an
increasing trend with the increase in model size.

We compute and plot the average correlation
coefficient between each language and all other
languages, as illustrated in Figure 4. This figure
reveals a parallel trend between CLTC and CLAC
metrics: (i) All models demonstrate superior cross-
lingual consistency between the languages of the
Germanic and Indo-Romance families, as com-
pared to other languages; (ii) An increase in model
size does not effectively address the issue of imbal-
anced distribution of CLTC.

5 Discussion

In Section 4, we conduct a comprehensive evalu-
ation of LLMs with a focus on the cross-lingual
consistency of knowledge across three distinct di-
mensions. Next, centering on Cross-Lingual Se-
mantic Consistency (CLSC), we investigate factors
that may affect consistency performance: prompt
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Bloomz-7b 0.6229 0.6208 0.626
Llama2-7b 0.6891 0.6748 0.6739
Baichuan2-7b 0.695 0.6999 0.6853
Mistral-7b 0.6738 0.6713 0.6676

Table 4: CLSC scores of LLMs using different prompts.

Baichuan2-7b

Bloomz-7b

ende nl fr es it pt el ru zh ja ko
Target language

Source language
Source language
ko ja zh ru el pt it es fr nl deen

ko ja zh ru el pt it es fr nl deen

ende nl fr es it pt el ru zh ja ko
Target language

Figure 5: Distribution of Chrf++ scores for translations
across languages.

and multilingual translation.

5.1 Is cross-language consistency
prompt-sensitive?

Firstly, we evaluate the robustness of CLSC
in LLMs by scrutinizing the impact of varying
prompts. To accomplish this, we employ not
only the original questions (hereafter referred to
as Promptl) but also devise two distinct sets of
new questions, denoted as Prompt2 and Prompt3.
Prompt2 follows a standardized question template,
incorporating relations and head entities to gener-
ate questions. Prompt3 is derived by rephrasing
the original questions using GPT-4. By comparing
the model’s performance on these three types of
questions, we can effectively evaluate the extent of
variation in cross-lingual consistency of knowledge
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Figure 6: Average cross-lingual accuracy consistency
scores and average translation scores for LLMs in dif-
ferent languages.

under disparate prompts. We tabulate the experi-
mental results in Table 4.

We observe that the models display minor vari-
ations in performance when subjected to different
prompts. Specifically, the Bloomz-7b model reg-
isters performance scores of 0.6229, 0.6208, and
0.626 under disparate prompts, respectively. Nev-
ertheless, it is imperative to highlight that despite
these minor discrepancies, the overall shift in per-
formance is not statistically significant. This indi-
cates that the assessment of cross-lingual consis-
tency in LLMs is largely impervious to the choice
of prompts. These results infer that large language
models exhibit a commendable degree of robust-
ness and reliability in CLSC.

5.2 Is cross-language consistency relevant to
translation?

Secondly, our research aims to investigate the
correlation between CLSC and the multilingual
translation capabilities of LLMs. To achieve this,
we select 12 languages from the Flores-200 de-
vtest dataset (NLLB Team, 2022), forming a test



set that encompasses a total of 132 translation
directions. We select two models, Bloomz-7b
and Baichuan2-7b, and evaluate their performance
across all translation directions utilizing the Chrf++
metric (Popovic, 2017). Figure 5 delineates the
performance distribution of these models.

From the figure, it can be observed that the dis-
tribution of LLMs’ multilingual translation abil-
ity follows a similar pattern to the distribution of
their CLSC. More precisely, the models exhibit
markedly superior translation performance within
the Germanic language family (En, De, NI) and the
Indo-European-Romance language family (Fr, Es,
It, Pt). In contrast, their performance is relatively
subpar in other translation directions. Furthermore,
we have noted that for languages within the Ger-
manic and Indo-European-Romance language fam-
ilies, the models’ translation performance is sig-
nificantly elevated when these languages are used
as the target language compared to the source lan-
guage. However, this particular trend is not ob-
servable for languages belonging to other language
families.

We plot Figure 6 to show the correlation between
the multilingual translation capabilities of LLMs
and their CLAC. In the figure, the darker points
within each color represent the average translation
performance of the model across all translation
directions that include the respective language. The
lighter points indicate the model’s average CLAC
score in that language relative to other languages.

Based on the figure, it can be inferred that a
discernible positive correlation between the multi-
lingual translation capabilities of LLMs and CLAC
can be observed. This correlation is not merely con-
fined to different models, but it also persists within
the same model across a variety of languages.

6 Conclusion

Our research focuses on the evaluation and analysis
of the cross-lingual consistency of knowledge in
LLMs:

* We construct a Multilingual Aligned
Knowledge-based Question-Answering
dataset (MAKQA), which covers 12 lan-
guages and 5 domains. With this dataset, we
comprehensively evaluate the cross-lingual
consistency of knowledge in LLMs.

* We develop an evaluation metric system
grounded in three key aspects: semantic con-
sistency, accuracy consistency, and timeliness

consistency. Utilizing this metric system, we
carry out evaluations on a range of widely-
used LLMs.

* Through our analysis of LLMs, we have un-
earthed several intriguing phenomena. Firstly,
we observed clear language distribution pat-
terns and imbalances in the cross-lingual con-
sistency of knowledge in LLMs. Notably,
the imbalances are not mitigated by simply
increasing the model size. Secondly, the
cross-lingual consistency of LLMs remains
relatively stable despite changes in prompts.
Lastly, our research reveals a discernible posi-
tive correlation between the multilingual trans-
lation capabilities of LL.Ms and their CLAC.

7 Limitations

In this paper, we conduct experiments on 12 lan-
guages and 5 LLMs to evaluate the cross-lingual
consistency of knowledge in LLMs. It is, however,
crucial to acknowledge that the implications drawn
from our study may not be universally applicable to
all LLMs. Therefore, to ensure the validity and gen-
eralizability of our findings, further research needs
to be conducted on a wider range of languages and
models.

Furthermore, it is noted that this paper is exclu-
sively dedicated to the evaluation and analysis of
the cross-lingual consistency of knowledge. Our
future research will primarily focus on exploring
how to improve the cross-lingual consistency in
LLMs at a lower cost. This will help to address
inconsistency issues that currently exist between
different languages in LLMs and provide a more
reliable foundation for practical applications.
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A Appendix

A.1 CLSC languages’ results
A.2 System prompt

In this section, we will present the system prompt
used in the evaluation process of LLMs :

You are a helpful assistant. Please respond to
user questions about factual knowledge, fol-
lowing four rules:

1. Provide direct answers without explaining
or repeating the question.

2. Ensure your answers are as concise as pos-
sible.

3. If the answer involves multiple entities,
separate them with ", ".

4. Use the same language as the user.

5. If you don’t know or can’t answer the ques-
tion, strictly respond with "I don’t know"; do
not provide any other response.

A.3 CLSC Experiments

We adopt the hierarchical clustering method to di-
vide all languages into four clusters based on their
average cross-lingual consistency scores. The clus-
tering results are shown in Table 5. The cluster-
ing results align with our observations: there is a
clear clustering phenomenon in the cross-lingual
consistency of the models. For the Germanic lan-
guage family (En, De, NI) and the Indo-European-
Romance language family (Fr, Es, It, Pt), the se-
mantic consistency between them is very high,
while the consistency with other languages is rela-
tively low.
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Model Clusterl Cluster2 | Cluster3 | Cluster4
Bloomz-7b ’En’, ’De’, °NI’, ’Fr’, ’Es’, ’It’, ’Pt’, 'Ru’, 'Zh’ EI’ Ja’ Ko’
Llama2-7b ’En’, ’De’, °NI’, ’Fr’, ’Es’, ’It’, ’Pt’, ’Ru’ EI’ Zh’ ’Ja’, ’Ko’
Baichuan2-7b | ’En’, ’De’, 'NI’, ’Fr’, ’Es’, ’It’, ’Pt’, 'Ru’, "Zh’ EI’ Ja’ Ko’
Mistral-7b En’, ’De’, ’NI’, ’Fr’, ’Es’, ’It’, ’Pt’, 'Ru’ EI’ Zh’,Ja’ Ko’

Table 5: CLSC languages cluster
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