
ReliK: A Reliability Measure for Knowledge Graph Embeddings
Anonymous Author(s)

ABSTRACT
Can we assess a priori how well a knowledge graph embedding will

perform on a specific downstream task and in a specific part of the

knowledge graph? Knowledge graph embeddings (KGEs) repre-

sent entities (e.g., “da Vinci,” “Mona Lisa”) and relationships (e.g.,

“painted”) of a knowledge graph (KG) as vectors. KGEs are generated

by optimizing an embedding score, which assesses whether a triple

(e.g., “da Vinci,” “painted,” “Mona Lisa”) exists in the graph. KGEs

have been proven effective in a variety of web-related downstream

tasks, including, for instance, predicting relationship(s) among en-

tities. However, the problem of anticipating the performance of a

given KGE in a certain downstream task and locally to a specific

individual triple, has not been tackled so far.

In this paper, we fill this gap with ReliK , a Reliability measure

for KGEs. ReliK relies solely on KGE embedding scores, is task- and

KGE-agnostic, and requires no further KGE training. As such, it is

particularly appealing for semantic web applications which call for

testing multiple KGE methods on various parts of the KG and on

each individual downstream task. Through extensive experiments,

we attest that ReliK correlates well with both common downstream

tasks, such as tail/relation prediction and triple classification, as well

as advanced downstream tasks, such as rule mining and question

answering, while preserving locality.

ACM Reference Format:
Anonymous Author(s). 2024. ReliK : A Reliability Measure for Knowledge

Graph Embeddings. In Proceedings of (TheWebConf 24). ACM, New York,

NY, USA, 10 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Knowledge graphs (KGs) are sets of facts (i.e., triples such as “da

Vinci,” “painted,” “Mona Lisa”) that interconnect entities (“da Vinci,”

“Mona Lisa”) via relationships (“painted”) [18, 41]. Entities and re-

lationships correspond to nodes and (labeled) edges of the KG,

respectively (Figure 2). Knowledge graph embeddings (KGEs) [39]

are popular techniques to generate a vector representation for enti-

ties and relationships of a KG. A KGE is computed by optimizing a

scoring function that provides an embedding score as an indication

of whether a triple actually exists in the KG. KGEs have been exten-

sively used as a crucial building block of state-of-the-art methods

for a variety of downstream tasks commonly carried out on the

Web, such as knowledge completion [40], whereby a classifier is

trained on the embeddings to predict the existence of a triple; or

head/tail prediction [22], which aims to predict entities of a triple,

as well as more advanced ones, including rule mining [43], query

answering [42], and entity alignment [4, 19, 45, 46].

Motivation. So far, the choice of an appropriate KGE method has

depended on the downstream task, the characteristics of the in-

put KG, and the computational resources. The existence of many

TheWebConf 24, May 13–17, 2024, Singapore

2024. ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

different scoring functions, including linear embeddings [7], bilin-

ear [43], based on complex numbers [33], or projections [9] further

complicates this choice. Alas, the literature lacks a unified measure

to quantify how reliable the performance of a KGE method can be

for a certain task beforehand, without performing such a potentially

slow task. Furthermore, KGE performance on a specific downstream

task is typically assessed in a global way, that is, in terms of how

accurate a KGE method is for that task on the entire KG. However,

the performance of KGEs for several practical applications (e.g.,

knowledge completion [40]) typically varies across the parts of the

KG. This requires carrying out a performance assessment of KGE

locally to specific parts of the KG, rather than globally.

Contributions. We address all the above shortages of the state

of the art in KGE and introduce ReliK (Reliability for KGEs), a
simple, yet principled measure that quantifies the reliability of how

a KGE will perform on a certain downstream task in a specific part

of the KG, without executing that task or (re)training that KGE.

To the best of our knowledge, no measure like ReliK exists in the

literature. ReliK relies exclusively on embedding scores as a black

box, particularly on the ranking determined by those scores (rather

than the scores themselves). Specifically, it is based on the relative

ranking of existing KG triples with respect to non-existing ones,

in the target part of the KG. As such, ReliK is agnostic to both (1)

the peculiarities of a specific KGE and (2) the KG at hand, and (3) it

needs no KGE retraining. Also, (4) ReliK is task-agnostic: in fact, its

design principles are so general that it is inherently well-suited for

a variety of downstream tasks (see Section 3 for more details, and

Section 4 for experimental evidence). Finally, (5) ReliK exhibits the

locality property, as its computation and semantics can be tailored

to a specific part of the KG. All in all, therefore, our ReliK measure

is fully compliant with all the requirements discussed above. Note

that ReliK can be used also to evaluate the utility of a KGE for a

downstream task, even when (for privacy or other reasons) we only

have access to the embedding and not to the original KG.

ReliK is simple, intuitive, and easy-to-implement. Despite that,

its exact computation requires processing all the possible combina-

tions of entities and relationships, for every single fact of interest.

Thus, computing ReliK exactly on large KGs and/or large target sub-

graphs may be computationally too heavy. This is a major technical

challenge, which we address by devising approximations to ReliK .

Our approximations are shown to be theoretically solid (Section 3.2)

and perform well empirically (Section 4.1).

Advanced downstream tasks. Apart from experimenting with

ReliK in basic downstream tasks, such as entity/relation prediction

or triple prediction, we also showcase ReliK on two advanced down-

stream tasks, to fully demonstrate its general applicability. The first

is query answering, which finds answers to complex logical queries

over KGs. The second, rule mining, deduces logic rules, with the

purpose of cleaning the KG from spurious facts or expanding the

information therein. Rule mining approaches rely on a confidence

statistical measure that depends on the quality of the data itself. By

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


TheWebConf 24, May 13–17, 2024, Singapore Anon.

computing the confidence on a ground truth, we show that ReliK

identifies more trustworthy rules.

Relevance. ReliK is particularly amenable to semantic web ap-

plications, for instance by providing a local means to study the

semantics associated with a specific’s entity embedding [27] or by

offering an efficient tool for knowledge completion [44].

Summary and outline. To summarize, our contributions are:

• We fill an important gap of the state of the art in KGE (Section 2)

by tackling for the first time the problem of assessing the relia-

bility of KGEs (Section 3).

• We devise ReliK , the first reliability measure for KGEs, which

possesses important characteristics of generality, simplicity, and

soundness (Section 3.1).

• We devise efficient, yet theoretically solid approximation tech-

niques for estimating ReliK (Section 3.2).

• We perform extensive experiments to show that ReliK correlates

with several common downstream tasks, it complies well with

the locality property, and its approximate computation is efficient

and effective (Section 4).

• We additionally showcase ReliK in two advanced downstream

tasks, question answering and rule mining (Section 4.3).

2 PRELIMINARIES
A knowledge graph (KG) K : ⟨E,R, F ⟩ is a triple consisting of a set

E of 𝑛 entities, a set R of relationships, and a set F ⊂ E ×R × E of

𝑚 facts. A fact is a triple 𝑥ℎ𝑟𝑡 = (ℎ, 𝑟, 𝑡)1, where ℎ ∈ E is the head,

𝑡 ∈ E is the tail, and 𝑟 ∈ R is the relationship. For instance, entities

“Leonardo da Vinci” and “Mona Lisa,” and relationship “painted”

form the triple (“Leonardo da Vinci,” “painted,” “Mona Lisa”). The

set F of facts form an edge-labeled graph whose nodes and labeled

edges correspond to entities and relationships, respectively. We

say a triple 𝑥ℎ𝑟𝑡 is “positive” if it actually exists in the KG (i.e.,

𝑥ℎ𝑟𝑡 ∈ F ), “negative” otherwise (i.e., 𝑥ℎ𝑟𝑡 ∉ F ). KGs are also known
as knowledge bases [13], information graphs [23], or heterogeneous

information networks [31].

Knowledge graph embedding. A KG embedding (KGE) [2, 22, 39]

is a representation of entities and relationships in a 𝑑-dimensional

(𝑑≪|E|) space, typically, the real R𝑑 space or the complex C𝑑 space.

For instance, TransE [7] represents a triple 𝑥ℎ𝑟𝑡 as entity vectors

eℎ, e𝑡 ∈ R𝑑 and relation vector e𝑟 ∈ R𝑑 , and DistMult [43] repre-

sents the relationship as a matrix W𝑟 ∈ R𝑑×𝑑 . Although KGEs can

differ (significantly) from one another in their definition, a common

key aspect of all KGEs is that they are typically defined based on

a so-called embedding scoring function or simply embedding score.

This is a function 𝑠 : E × R × E → R, which quantifies how likely

a triple 𝑥ℎ𝑟𝑡 ∈ E × R × E exists in K based on the embeddings

of its head (ℎ), relationship (𝑟 ), and tail (𝑡 ). Specifically, the higher

𝑠 (𝑥ℎ𝑟𝑡 ), the more likely the existence of 𝑥ℎ𝑟𝑡 . For instance, TransE’s

embedding score 𝑠 (𝑥ℎ𝑟𝑡 ) = −∥eℎ + e𝑟 − e𝑡 ∥ represents the (ℓ1 or
ℓ2) distance between the “translation” from ℎ’s embedding to 𝑡 ’s

embedding through 𝑟 ’s embedding [7].

KGEs are typically learned through a training process that opti-

mizes (e.g., via gradient descent) a loss function defined based on

the embedding score. This training process can be computationally

1
We use “fact” and “triple” interchangeably throughout the paper.

−14 −12 −10 −8 −6
Scores

D
e
n
s
i
t
y

TransE

Positive Negative

−1.5 −1 −0.5
Scores

PairRE

Figure 1: Distribution of the embedding scores for positive (i.e., ex-
isting) and negative (i.e., non-existing) triples on CodexSmall dataset
(cf. Section 4), with TransE [7] and PairRE [9] KGE methods. Al-
though scores and distributions are different, positive and negative
triples are well separated.

expensive, especially if it has to be repeated for multiple KGEs.

KGEs learned this way are shown to be effective for a number of

downstream tasks [22], such as predicting the existence of a triple,

but do not offer any prior indication on their performance [20].

Moreover, existing benchmarks [2] show global performance on

the entire graph rather than local on subgraphs. To this end, in this

work, we provide an answer to the following key question:

Main qestion. Is there a measure that provides a prior

indication of the performance of a KGE on a specific subgraph?

3 KGE RELIABILITY
A good measure of performance of a KGE should support a number

of tasks, from node classification, to link prediction, as well as being

unprejudiced towards the data and the KGE model itself. In other

words, we would like a measure of reliability that properly assesses

how the embedding of a triple would perform on certain tasks and

data, without knowing them in advance. More specifically, the main

desiderata of a proper KGE reliability measure are as follows.

(R1) Embedding-agnostic. It should be independent of the specific
KGE method. This is to have a measure fully general.

(R2) Learning-free. It should require no further KGE training.

This is primarily motivated by efficiency, but also for other reasons,

such as privacy or unavailability of the data used for KGE training.

(R3) Task-agnostic. It should be independent of the specific down-
stream task. In other words, it should be able to properly anticipate

the performance of a KGE in general, for any downstream task.

Again, like (R1), this is required for the generality of the measure.

(R4) Locality. It should be a good predictor of KGE performance

locally to a given triple, that is, in a close surrounding neighborhood

of that triple. This is important, as a KGE model may be more or

less effective based on the different parts of the KG it is applied

to. Thus, assessing how KGEs perform in different parts of the KG

would allow for better use and combine them in downstream tasks.

3.1 The Proposed ReliK Measure
Design principles. Defining a reliability measure that complies

with the aforementioned requirements is an arduous streak. First,

the various KGE methods consider different objectives. Second,

downstream tasks often combine embeddings in different ways.

For instance, even though head or tail predictions predict a single



ReliK : A Reliability Measure for Knowledge Graph Embeddings TheWebConf 24, May 13–17, 2024, Singapore

vector, triple classification combines head, tail, and relationship

vectors. Third, the embedding scores are in general incomparable

across the KGEs.

To fulfil (R1) and (R2), the KGE reliability measure should not

engage with the internals of the computation of KGEs. Thus, we

need to treat the embeddings as vectors and the embedding score as

a black-box function that provides only an indication of the actual

existence of a triple. Though the absolute embedding scores are

incomparable to one another, we observe that the distribution of

positive and negative triples is significantly different (Figure 1).

Specifically, the relative ranking of a positive triple is higher than

that of a negative. This leads to the following main observation.

Observation 1. A KGE reliability measure that uses the position

of a triple relative to other triples via a ranking defined based on the

embedding score fulfills (R1) and (R2).

Furthermore, comparing a triple to all other (positive or negative)

triples might be ineffective. For instance, if we assume that our

measure of reliability is solely based on the separation between

positive and negative triples, we will conclude from Figure 1 that

PairRE [9] performs well for all the tasks, which is not the case.

This is because the absolute score does not provide an indication of

performance. We thus advocate that a local approach that considers

triples relative to a neighborhood is more appropriate, and propose

a measure that fulfils (R4). The soundness of (R4) is better attested
in our experiments in Section 4.

Finally, to meet (R3), the KGE reliability measure should not

exploit any peculiarity of a downstream task in its definition. Indeed,

this is accomplished by our measure, as we show next.

Definition. For a triple 𝑥ℎ𝑟𝑡 = (ℎ, 𝑟, 𝑡) we compute the neighbor

set N− (ℎ) of all possible negative triples, i.e., triples with head ℎ

that do not exist in K . Similarly, we compute N− (𝑡) for tail 𝑡 . We

define the head-rank ℎ of a triple 𝑥ℎ𝑟𝑡 as the position of the triple

in the rank obtained using score 𝑠 for a specific KGE relative to all

the negative triples having head ℎ.

rank𝐻 (𝑥ℎ𝑟𝑡 ) = |{𝑥 ∈ N− (ℎ) : 𝑠 (𝑥) > 𝑠 (𝑥ℎ𝑟𝑡 )}| + 1
The tail-rank rank𝑇 (𝑥ℎ𝑟𝑡 ) for tail 𝑡 is defined similarly.

Our reliability measure, ReliK , for a triple 𝑥ℎ𝑟𝑡 is ultimately

defined as the average of the reciprocal of the head- and tail-rank

ReliK(𝑥ℎ𝑟𝑡 ) =
1

2

(
1

rank𝐻 (𝑥ℎ𝑟𝑡 )
+ 1

rank𝑇 (𝑥ℎ𝑟𝑡 )

)
(1)

ReliK can easily be extended from single triples to subgraphs by

computing the average reliability among the facts in the subgraph.

Specifically, we define the ReliK score of a set 𝑆 ⊆ F of triples as

ReliK(𝑆) = 1

|𝑆 |
∑︁

𝑥ℎ𝑟𝑡 ∈𝑆
ReliK(𝑥ℎ𝑟𝑡 ) . (2)

Rationale. ReliK ranges from (0, 1], with higher values correspond-
ing to better reliability. In fact, the lower the head-rank rank𝐻 (𝑥ℎ𝑟𝑡 )
and/or tail-rank rank𝑇 (𝑥ℎ𝑟𝑡 ), the better the ranking of 𝑥ℎ𝑟𝑡 induced
by the underlying embedding scores, relatively to the non-existing

triples in 𝑥ℎ𝑟𝑡 ’s neighborhood, complies with the actual existence

of 𝑥ℎ𝑟𝑡 in the KG.

It is easy to see that ReliK achieves (R1) and (R2) by relying on

the relative ranking rather than the absolute scores. It also fulfills

(R3) as it involves no downstream tasks at all, and (R4) as it is
based on the local (i.e., 1-hop) neighborhood of a target triple.

Leonardo

Da Vinci

Italy

Mona

Lisa

France

b
o
r
n
in

p
a
in
te
d located

in

KG and considered edge

Leonardo

Da Vinci

Italy

Mona

Lisa

France

p
a
in
te
d

lo
c
a
te
d
in

p
ain

ted
born

inlocated
in

b
o
r
n
in

lo
c
a
t
e
d
in

Negative triples N− (ℎ)
to compute rank𝐻

Leonardo

da Vinci

Italy

Mona

Lisa

France

b
o
r
n
i
n

p
a
i
n
t
e
d

l
o
c
a
t
e
d
i
n

b
o
r
n
in

lo
c
a
t
e
d
in

painted

born in

located in

Negative triples N− (𝑡 )
to compute rank𝑇

Figure 2: Constituents of ReliK on an example KG.

Figure 2 provides an example of the computation of ReliK for

the triple 𝑥ℎ𝑟𝑡 = (“Leonardo da Vinci”, “painted”, ‘Mona Lisa”). The

N− (ℎ) is depicted as the red (dashed) edges and N− (𝑡) in blue

(dotted). To compute ReliK on an embedding, we compute the

embedding score 𝑠 of (“Leonardo da Vinci”, “painted”, “Mona Lisa”)

and rank it according to the triples in N− (ℎ) and N− (𝑡).

3.2 Efficiently computing ReliK
Computing ReliK (Eq. (1)) takes O (|E| · |R|) time, as it needs to

scan the whole negative neighborhood of the target triple. For large

KGs, repeating this for a (relatively) high number of triples may

be computationally too heavy. For this purpose, here we focus on

approximate versions of ReliK , which properly trade off between

accuracy and efficiency.

The main intuition behind the ReliK approximation is that the

precise ranking of the various potential triples is not actually needed.

Rather, what it matters is just the number of those triples that exhibit

a higher embedding score than the target triple. This observation

leads to two approaches. In both of them, we sample a random sub-

set of negative triples. In the first approach, we compute ReliKLB,

a lower bound to ReliK , by counting the negative triples in the

sample that have a lower embedding score than the target triple

and pessimistically assuming that all the other triples not in the

sample have higher scores. In the second approach, we estimate

ReliKApx by evaluating the fraction of triples in the sample that

have a higher score than the triple under consideration and then

scaling this fraction to the total number of negative triples. Next,

we provide the details of these two approaches.

Let 𝑆𝐻 be a random subset of𝑘 elements selected without replace-

ment independently and uniformly at random from the negative

neighborhood N− (ℎ) of the head ℎ of a triple 𝑥ℎ𝑟𝑡 . The size |𝑆𝐻 |
trades off between efficiency and accuracy of the estimator, and it

may be defined based on the size of N− (ℎ). Define also

rank
𝑆
𝐻 (𝑥ℎ𝑟𝑡 ) = |{𝑥 ∈ 𝑆𝐻 : 𝑠 (𝑥) > 𝑠 (𝑥ℎ𝑟𝑡 )}| + 1,

to be the rank of the score 𝑠 (𝑥ℎ𝑟𝑡 ) that the KGE assigns to 𝑥ℎ𝑟𝑡 ,

among all the triples in the sample. We similarly compute 𝑆𝑇 and

rank
𝑆
𝑇
for tail’s neighborhood N− (𝑡).

ReliKLB estimator. The sampled triples with lower score than

𝑠 (𝑥ℎ𝑟𝑡 ) are fewer than all such negative triples, that is,

|𝑆𝐻 | − rank𝑆𝐻 (𝑥ℎ𝑟𝑡 ) ≤ |N
− (ℎ) | − rank𝐻 (𝑥ℎ𝑟𝑡 ),

or, equivalently,

rank𝐻 (𝑥ℎ𝑟𝑡 ) ≤ rank
𝑆
𝐻 (𝑥ℎ𝑟𝑡 ) + |N

− (ℎ) | − |𝑆𝐻 | . (3)



TheWebConf 24, May 13–17, 2024, Singapore Anon.

Analogously, the observation holds for 𝑆𝑇

rank𝑇 (𝑥ℎ𝑟𝑡 ) ≤ rank
𝑆
𝑇 (𝑥ℎ𝑟𝑡 ) + |N

− (𝑡) | − |𝑆𝑇 | . (4)

We therefore define our ReliKLB estimator as

ReliKLB (𝑥ℎ𝑟𝑡 ) =
1

2

(
1

rank
𝑆
𝐻
(𝑥ℎ𝑟𝑡 ) + |N− (ℎ) | − |𝑆𝐻 |

+ 1

rank
𝑆
𝑇
(𝑥ℎ𝑟𝑡 ) + |N− (𝑡) | − |𝑆𝑇 |

)
,

(5)

From Eqs. (3) and (4), it holds that

ReliKLB (𝑥ℎ𝑟𝑡 ) ≤ ReliK(𝑥ℎ𝑟𝑡 ).

ReliKApx estimator. As for our second estimator, we define it as

ReliKApx =
1

2

©­« 1

rank
𝑆
𝐻
(𝑥ℎ𝑟𝑡 )

|N− (ℎ) |
|𝑆𝐻 |

+ 1

rank
𝑆
𝑇
(𝑥ℎ𝑟𝑡 )

|N− (𝑡 ) |
|𝑆𝑇 |

ª®¬ . (6)

In words, we simply scale up the rank induced by the sample to the

entire set of negative triples.

Theoretical characterization of ReliKApx. Note that by Jensen’s

inequality [21], we have that

E


1

rank
𝑆
𝐻
(𝑥ℎ𝑟𝑡 )

|N− (ℎ) |
|𝑆𝐻 |

 ≥
1

E
[
rank

𝑆
𝐻
(𝑥ℎ𝑟𝑡 )

|N− (ℎ) |
|𝑆𝐻 |

]
=

1

E[rank𝑆
𝐻
(𝑥ℎ𝑟𝑡 )]

|N− (ℎ) |
|𝑆𝐻 |

=
1

rank𝐻 (𝑥ℎ𝑟𝑡 )
,

where E[·] denotes mathematical expectation. This holds since

E[rank𝑆𝐻 (𝑥ℎ𝑟𝑡 )] = |𝑆𝐻 | ·
rank𝐻 (𝑥ℎ𝑟𝑡 )
|N− (ℎ) | ,

given that for each element 𝑥 ∈ 𝑆𝐻 , the probability to have a score

𝑠 (𝑥) > 𝑠 (𝑥ℎ𝑟𝑡 ) is
rank𝐻 (𝑥ℎ𝑟𝑡 )
|N− (ℎ) | .

We argue similarly for the tail and, therefore, we finally obtain

E[ReliKApx (𝑥ℎ𝑟𝑡 )] ≥ ReliK(𝑥ℎ𝑟𝑡 ) .
In other words, ReliKApx is, in expectation, an upper bound of ReliK .

Quality of ReliKApx approximation. ReliKApx is a randomized

approximate based on Bernoulli trials. To see that, let us consider

each negative triple in N− (ℎ) a sample from an i.i.d. Bernoulli

variable with probability 𝑝 = (rank𝐻 (𝑥ℎ𝑟𝑡 ) − 1)/|N− (ℎ) |. In other

words, we assume that each negative triple 𝑥 with score 𝑠 (𝑥) >
𝑠 (𝑥ℎ𝑟𝑡 ) is assigned a binary random variable 𝐵𝑥 = 1 and the rest 0.

As such, rank𝐻 (𝑥ℎ𝑟𝑡 ) − 1 =
∑
𝑥∈N− (ℎ) 𝐵𝑥 is a sum of Bernoulli

variables which are distributed as a binomial random variable

𝑓 (𝑘 ; |N− (ℎ) |, 𝑝). Thus, our ReliKApx for a sample of size 𝑘 bounds

the errors within ���� 𝑘

|N− (ℎ) | − 𝑝
����

The same reasoning and bound hold for the tail 𝑡 .

Algorithms. Algorithm 1 shows the steps to compute ReliKLB and

ReliKApx. Initially, in Line 1, we sample, uniformly at random, 𝑘

negative triples from the head neighborhood and the tail neighbor-

hood. Note that we can save computation time by first filtering the

Algorithm 1 compute ReliKLB or ReliKApx

Input: KG K : ⟨E, R, F⟩, triple 𝑥ℎ𝑟𝑡 = (ℎ, 𝑟, 𝑡 ) ∈ F, embedding score function

𝑠 : E × R × E → R, sample size 𝑘 ∈ N
Output: ReliKLB (𝑥ℎ𝑟𝑡 ) (Eq. (5)) or ReliKApx (𝑥ℎ𝑟𝑡 ) (Eq. (6))
1: 𝑆𝐻 ← sample 𝑘 triples from N− (ℎ) ; 𝑆𝑇 ← sample 𝑘 triples from N− (𝑡 )
2: rank𝐻 ← 1; rank𝑇 ← 1

3: for 𝑥ℎ′𝑟 ′𝑡 ′ ∈ 𝑆𝐻 ∪ 𝑆𝑇 do
4: if 𝑠 (𝑥ℎ𝑟𝑡 ) < 𝑠 (𝑥ℎ′𝑟 ′𝑡 ′ ) then
5: if ℎ′ = ℎ then
6: rank𝐻 ← 𝑟𝑎𝑛𝑘𝐻 + 1
7: if 𝑡 ′ = 𝑡 then
8: rank𝑇 ← 𝑟𝑎𝑛𝑘𝑇 + 1
9: return 1

2

(
1

rank𝐻 +|N− (ℎ) |− |𝑆𝐻 | +
1

rank𝑇 +|N− (𝑡 ) |− |𝑆𝑇 |

)
for ReliKLB

or
1

2

©­« 1

rank𝐻
|N− (ℎ) |
|𝑆𝐻 |

+ 1

rank𝑇
|N− (𝑡 ) |
|𝑆𝑇 |

ª®¬ for ReliKApx

triples in 𝑆𝐻 ∪𝑆𝑇 by score (Line 4), i.e., considering only those with

score higher than the input triple 𝑥ℎ𝑟𝑡 , and then check whether a

triple in 𝑆𝐻 ∪ 𝑆𝑇 has either the head (Line 5) or the tail (Line 7) in

common with 𝑥ℎ𝑟𝑡 to update the corresponding rank.

Time complexity. Algorithm 1 runs in O(𝑘) time. This corre-

sponds to the time needed for the sampling step in Line 5, which

can easily be accomplished linearly in the number of samples, with-

out materializing the negative neighborhoods. The sample size 𝑘

trades off between accuracy and efficiency of the estimation. Sec-

tion 4.1 shows that ReliKApx approximation with 20% sample size is

2.5× faster than ReliK with only 0.002 Mean Squared Error (MSE).

As such, ReliKApx is our method of reference in the experiments.

4 EXPERIMENTAL EVALUATION
We evaluate ReliK on four downstream tasks, six embeddings, and

six datasets. We report the correlation with ReliK and the per-

formance of ranking tasks (Section 4.2) and show that ReliK can

identify correct query answers as well as mine rules with higher

confidence than existing methods (Section 4.3).

space

method set entity relation score

TransE [7] R O(𝑛) O (𝑛) −∥eℎ + e𝑟 − e𝑡 ∥𝑝
DistMult [43] R O(𝑛) O (𝑛) e⊤

ℎ
diag(W𝑟 )e𝑡

RotatE [33] C O(𝑛) O (𝑛) −∥eℎ ◦ e𝑟 − e𝑡 ∥
PairRE [9] R O(𝑛) O (𝑛) −∥eℎ ◦ e𝑟ℎ − e𝑡 ◦ e𝑟𝑡 ∥
ComplEx [38] C O(𝑛) O (𝑛) 𝑅𝑒 (⟨e𝑟 , eℎ, e𝑡 ⟩)
ConvE [14] R O(𝑛) O (𝑛) 𝑓 (𝑣𝑒𝑐 (𝑓 ( [eℎ ; e𝑟 ] ∗𝜔 ) )W)e𝑡
Table 1: Characteristics of the considered embeddings.

Embeddings. We include six established KGE methods, represen-

tative of the four major embedding families (see Section 5). Table 1

shows the embeddings in our evaluation, the embedding space,

and the embedding score function. A detailed description of the

embeddings is in Section A.1 in the appendix.

Datasets. We perform experiments on six KGs with different char-

acteristics, shown in Table 2.

• Countries [8] is a small KG created from geographical locations,

where entities are continents, subcontinents and countries, and

edges containment or geographical neighborhood.

• FB15k237 [37] is a sample of Freebase KG [6] covering encyclo-

pedic knowledge consisting of 237 relations, 15𝑘 entities and 310𝑘



ReliK : A Reliability Measure for Knowledge Graph Embeddings TheWebConf 24, May 13–17, 2024, Singapore

dataset | E | | R | | F | Task

Countries 271 2 1 158 Approximation

FB15k237 14 505 237 310 079 Ranking / Classification / Querying

Codex-S 2 034 42 36 543 Ranking / Classification

Codex-M 17 050 51 206 205 Ranking / Classification

Codex-L 77 951 69 612 437 Ranking / Classification

YAGO2 834 750 36 948 358 Rule Mining

Table 2: Characteristics of the KGs; number of entities |E |;
number of relationships |R |; number of facts |F |; task.

facts. FB15k237 is a polished and corrected version of FB15k [7]

constructed to circumvent data leakage. The dataset contains

Freebase entities with more than 100 mentions and with refer-

ence in Wikilinks database.

• Codex [29] is a collection of three datasets of incremental size,

Codex-S (2𝑘 entities, 36𝑘 triples), Codex-M (17𝑘 entities, 200𝑘

facts), and Codex-L (78𝑘 entities, 610𝑘 facts) extracted fromWiki-

data andWikipedia. Codex collection explicitly encourages entity

and content diversity to overcome the limitations of FB15k.

• YAGO [32] is an open-source KG automatically extracted from

Wikidata with an additional ontology from schema.org. We use

YAGO2 [17], which comprises 834k entities and 948k facts.

Experimental setup. We implement our approximate and ex-

act ReliK in Python v3.9.13.
2
We train the embedding using the

Pykeen library v1.10.1,
3
with default parameters besides the em-

bedding dimension 𝑑𝑖𝑚 = 50 and training loop sLCWA. We run

our experiments on a Linux Ubuntu 4.15.0-202 machine with 48

cores Intel(R) Xeon(R) Silver 4214 @ 2.20GHz, 128GB RAM and

an NVIDIA GeForce RTX 2080 Ti GPU. We report an average of 5

experiments using 5-fold cross validation with 80-10-10 split.

Summary of experiments.We evaluate ReliK on several down-

stream tasks and setups. We first show in Section 4.1 that our ap-

proximate ReliKApx outperforms the simpler ReliKLB lower-bound

approximation and achieves a good tradeoff between quality and

speed. We then show in Section 4.2 that ReliK correlates with com-

mon ranking tasks, such as tail and relation prediction, as well

as classification tasks and validate the claim that ReliK is a local

measure. In Section 4.3 we present the more complex tasks of query

answering and mining logic rules on KGs. To summarize, we evalu-

ate ReliK on the following downstream tasks:

• (T1) Ranking tasks, tail and relation prediction

• (T2) Classification task, triple classification

• (T3) Query answering task

• (T4) Rule mining application

4.1 Approximation Quality
We start by showing that ReliKApx runs as fast as ReliKLB while

being more accurate. We report time and mean squared error (MSE)

with respect to the exact ReliK measure for ReliKApx and ReliKLB.

Computing ReliK is infeasible in datasets with more than a few hun-

dred entities. Hence, we limit our analysis to the entire Countries

dataset for which we can compute ReliK exactly.

Figure 3 reports the results in terms of seconds and MSE at

increasing sample size 𝑘 = |𝑆 |. Both ReliKLB and ReliKApx incur the

2
Code available at: https://anonymous.4open.science/r/Anon-6405

3
https://pykeen.readthedocs.io/en/stable/

same time, because of the fact that both require to sample𝑘 negative

triples and compute the score on the sample. On the other hand,

when the sample size is more than 80% of all the negative triples,

as the sampling time dominates the computation of ReliKLB and

ReliKApx, ReliK becomes faster. ReliKApx rapidly reduces the error

and stabilizes at around 40% of the sample size, whereas ReliKLB

exhibits a steadily larger error than ReliKApx. The current results

show the effectiveness of the results in an unparallelized setting;

yet, we note that the sampling process can be easily parallelized by

assigning each sample to a separate thread.

In terms of quality, ReliKApx exhibits minimal MSE (<0.005) with
as little as 10% of the sample size, being 3 times faster than ReliK .

Thus, even though the exact ReliK is feasible for small datasets or

subgraphs, ReliKApx offers a good approximation with significant

speedup. On the next experiments, we set𝑘 to 10% of all the negative

triples and report results for ReliKApx.

0 0.2 0.4 0.6 0.8 1

5

10

15

sample ratio

T
i
m
e
(
s
)

ReliK ReliKApx ReliKLB

0 0.2 0.4 0.6 0.8 1

0

0.005

0.01

0.015

sample ratio

M
S
E

Figure 3: Comparing ReliKApx and ReliKLB with exact ReliK
in time (left) and Mean Squared Error (right) vs sample to
data size ratio on Countries dataset and TransE embeddings.

4.2 Common Downstream Tasks
We test ReliK on the ability to anticipate the results of common

tasks for KGEs [22, 39]. We measure the statistical significance

of Pearson correlation among two ranking tasks, tail and relation

prediction, and the triple classification task. To evaluate ReliK on

different areas of the graph and different graph topologies, we

sample random subgraphs of Codex-S with 60 nodes by initially

selecting a starting node uniformly at random and then including

nodes and edges by random walk with restart [36] with restart

probability 1 − 𝛼 = 0.2, until the subgraph comprises 60 nodes. For

Codex-M and Codex-L we use size 100 and for FB15k237 we use

200 nodes. We report the average ReliK on 100 random subgraphs

on the Codex-S, Codex-M, Codex-L, and FB15k237 datasets.

Ranking tasks (T1). In the first experiments, we measure the

Pearson correlation between ReliK and the performance on ranking

tasks with mean reciprocal rank (MRR) [11]. The first task, tail

prediction [7, 9, 33], assesses the ability of the embedding to pre-

dict the tail given the head and the relation, thus answering the

query (ℎ, 𝑟, ?) where the tail is unknown. The second task, relation

prediction, assesses the ability of the embedding to predict the undis-

closed relation of a triple (ℎ, ?, 𝑡). The common measure used for

tail and relation prediction is MRR, which provides an indication

of how close to the top the score ranks the correct tail (or relation).

Consistently with previous approaches [7, 9, 33], we employ the

filtered approach in which we consider for evaluation only negative

triples that do not appear in either the train, test, or validation set.

Table 3 reports the correlations alongside the statistical significance

https://anonymous.4open.science/r/Anon-6405
https://pykeen.readthedocs.io/en/stable/


TheWebConf 24, May 13–17, 2024, Singapore Anon.

in terms of the p-value. We marked in red, high p-values (> 0.05)

that suggest no correlation and person score values that are for

inverse correlation. Generally, ReliK exhibits significant correlation

across embeddings and tasks. Noteworthy, even though ReliK (see

Eq. (1)) does not explicitly target tail or head rankings by including

both, we observe significant correlation on tail prediction in most

embeddings and datasets. Because of the considerable training time,

we only report results for RotatE on Codex-S. We complement our

analysis with correlation plots in Figure 4 for Codex-S; in most

cases, we observe a clear correlation. Comparing the actual results

of the various tasks, it is also clear in most cases in which we do

not have correlation, that the results are too close to distinguish;

for example, ComplEx having only result close to 0. In such cases,

ReliK indicates that the embedding needs further tuning.

Tail (MRR) Relation (MRR) Classific. (Acc.)

KGE Pearson p-value Pearson p-value Pearson p-value

Codex-S
TransE 0.23 0.02 0.93 2.17𝑒−44 0.37 1.42𝑒−4

DistMult 0.16 0.12 0.85 2.03𝑒−29 0.69 2.21𝑒−15

RotatE 0.35 0.0003 0.89 7.92𝑒−37 −0.24 0.02

PairRE 0.86 7.29𝑒−31 0.91 2.36𝑒−39 0.09 0.37

ComplEx 0.14 0.17 0.63 2.22𝑒−12 −0.06 0.57

ConvE −0.396 6.61𝑒−5 0.89 4.92𝑒−37 0.10 0.30

Codex-M
TransE 0.90 2.70𝑒−37 0.97 9.07𝑒−63 0.53 1.93𝑒−08

DistMult 0.22 0.04 0.89 8.37𝑒−32 0.60 5.12𝑒−10

RotatE – – – – – –

PairRE 0.06 0.58 0.98 1.05𝑒−74 −0.12 0.23

ComplEx −0.33 8.92𝑒−4 0.36 2.01𝑒−4 0.15 0.13

ConvE −0.22 0.03 0.99 3.86𝑒−96 −0.02 0.84

Codex-L
TransE 0.83 1.13𝑒−26 0.97 3.812𝑒−64 0.63 2.54𝑒−12

DistMult 0.49 2.10𝑒−07 0.78 4.68𝑒−22 0.60 3.74𝑒−11

RotatE – – – – – –

PairRE −0.04 0.68 0.95 3.33𝑒−52 −4.47𝑒−4 0.99

ComplEx 0.82 1.03𝑒−25 0.91 3.96𝑒−39 0.06 0.57

ConvE 0.59 4.26𝑒−11 −0.07 0.48 0.31 1.57𝑒−3

FB15k237
TransE 0.24 0.02 0.86 2.83𝑒−30 0.34 5.79𝑒−4

DistMult −0.05 0.65 0.64 5.57𝑒−13 0.39 5.58𝑒−05

RotatE – – – – – –

PairRE 0.80 1.51𝑒−23 0.65 1.74𝑒−13 0.08 0.44

ComplEx 0.20 0.05 0.88 3.53𝑒−34 0.14 0.18

ConvE 0.09 0.37 0.85 4.47𝑒−30 0.01 0.93

Table 3: Pearson Correlation and statistical significance of
ReliK for Tail, Relation prediction, and Triple Classification;
red indicates cases of less statistically significant correlation,
with p-value > 0.05, or inverse correlation.

Classification task (T2). In this experiment, we test the correla-

tion between ReliK and the accuracy of a threshold-based classifier

on the embeddings. The classifier predicts the presence of a triple

in the KG if the embedding score is larger than a threshold, a com-

mon scenario for link prediction [22]. We tune the threshold on the

training set and test it on the test set. Table 3 (right column) reports

the correlations and their significance for all datasets and Figure 5

shows the detailed analysis on Codex-S. At close inspection, we

0 0.2 0.4 0.6 0.8 1

2

4

6

·10−4

R
e
l
i
K

TransE
Subgraph Regression line

0 0.2 0.4 0.6 0.8 1

2

4

6

·10−4

0 0.2 0.4 0.6 0.8 1

3

4

5

·10−3

R
e
l
i
K

DistMult

0 0.2 0.4 0.6 0.8 1

3

4

5

·10−3

0 0.2 0.4 0.6 0.8 1

3

4

5

·10−3

R
e
l
i
K

RotatE

0 0.2 0.4 0.6 0.8 1

3

4

5

·10−3

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5
·10−3

R
e
l
i
K

PairRE

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

·10−3

0 0.2 0.4 0.6 0.8 1

3

3.5

·10−5

R
e
l
i
K

ComplEx

0 0.2 0.4 0.6 0.8 1

3

3.5

·10−5

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

·10−3

MRR

Tail prediction

R
e
l
i
K

ConvE

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

·10−3

MRR

Relation prediction

Figure 4: ReliK correlation with MRR on tail prediction (left
column) and relation prediction (right column); each point
is the ReliK score for a subgraph with 60 nodes on Codex-S.

observe that in cases of unclear correlation, e.g., PairRE, the re-

spective classification results are too close to make out a difference.

Those cases notwithstanding, ReliK is significantly correlated with

accuracy. This result confirms that ReliK can serve as a proxy for

the quality of complex models trained on embeddings.



ReliK : A Reliability Measure for Knowledge Graph Embeddings TheWebConf 24, May 13–17, 2024, Singapore

0 0.2 0.4 0.6 0.8 1

2

4

6

·10−4

R
e
l
i
K

TransE

Subgraph Regression line

0 0.2 0.4 0.6 0.8 1

3

4

5

·10−3 DistMult

0 0.2 0.4 0.6 0.8 1

3

4

5

·10−3

R
e
l
i
K

RotatE

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5
·10−3

PairRE

0 0.2 0.4 0.6 0.8 1

3

3.5

·10−5

Accuracy

R
e
l
i
K

ComplEx

0 0.2 0.4 0.6 0.8 1

1

1.5

2

2.5

·10−3

Accuracy

ConvE

Figure 5: ReliK correlation with Accuracy on triple classifi-
cation; each point represents the ReliK score for a subgraph
with 60 nodes on Codex-S.

Tuning Subgraph Size. Next, we analyze how ReliK correlates

with the tasks presented in Section 4.2 on subgraphs of varying size

with the TransE embedding. Figure 6 reports the correlation values

for all three tasks, only including those values where the p-value is

below 0.05. We observe that ReliK ’s correlation generally increases

with subgraphs of up to 100 nodes on Codex-S. After that point,

we note an unstable behavior in all tasks. This is consistent with

the assumption that ReliK is a measure capturing local reliability.

To strike a balance between quality and time we test on subgraphs

with 60 nodes for Codex-S in all experiments. Yet, as tasks are of

different nature, the subgraph size can be tuned in accordance with

the task to provide more accurate results.

0 50 100 150

0.4

0.6

0.8

Subgraph size

P
e
a
r
s
o
n

tail

relation

classifier

Figure 6: Pearson correlation on tail and relation prediction
and triple classification vs subgraph size on Codex-S.

4.3 Complex Downstream Tasks
We now turn our attention to complex downstream tasks.

Query answering (T3).We show how ReliK can improve query-

answering tasks. Complex logical queries on KGs are working with

different query structures. We focus on queries of chaining multiple

predictions or having an intersection of predictions, from different

query structures that have been described in recent work [3, 28]. We

keep the naming convention introduced by Ren and Leskovec [28].

We evaluate a selection of 1000 queries per type (1𝑝 ,2𝑝 ,3𝑝 ,2𝑖 ,3𝑖)

from their data on the FB15k237 graph.
4
The queries of type 𝑝 are

1 to 3 hops from a given entity with fixed relation labels that point

to a solution, whereas queries of type 𝑖 are the intersection of 2

or 3 predictions pointing towards the same entity. We evaluate

ReliK on the ability to detect whether an instance of an answer is

true or false. We compute ReliK on TransE embeddings trained on

the entire FB15k237. Figure 7 shows the average ReliK scores for

positive and negative answers. ReliK clearly discriminates between

positive and negative instances, often by a large margin.

1p 2p 3p 2i 3i

0

2

4

6

·10−5

Query types
R
e
l
i
K

Query Answering

negative instances positive instances

0 10 20

0

0.5

1

1.5
·10−5

Rules

R
e
l
i
K

Rule Mining

Figure 7: Comparison between positive instances and nega-
tive instances for the query and answer task for FB15k237
(left) and the rule mining task on Yago2 (right).

Rule mining (T4). ReliK effectively improves on the rule mining

task as well. Rule mining methods [15, 16, 26] automatically retrieve

logic rules over KGs having a predefined minimum confidence. A

logic rule is an assertion such as 𝐴 ⇒ 𝐵, which states that 𝐵

follows from 𝐴. For instance, a rule could imply that all presidents

of a country are citizens of the country. An instance of a rule is

triples matching 𝐵, given that 𝐴 is true. Logic rules are typically

harvested with slow exhaustive algorithms similar to the apriori

algorithm for association rules [1]. We present two experiments.

In the first, we show that ReliK can discriminate between true and

false instances. In the second, we show that ReliK can retrieve all

the rules by considering only subgraphs with high ReliK score.

Detecting true instances. To showcase performance on the down-

stream task (T4), we evaluate ReliK on the ability to detect whether

an instance of a rule is true or false. This task is particularly im-

portant to quantify the real confidence of a rule [24]. To this end,

we employ a dataset
5
comprising 23 324 manually annotated in-

stances over 26 rules extracted from YAGO2 using the AMIE [16]

and RudiK [26] methods. We compute ReliK on TransE embed-

dings trained on the entire YAGO2. Figure 7 shows the average

ReliK scores for positive and negative instances. ReliK discriminates

between positive and negative instances, often by a large margin.

Rule mining on subgraphs. In this experiment, we show that Re-

liK identifies the subgraphs with high-confidence rules. To this end,

we mine rules with AMIE [15, 16] on Codex-S, and compare with

densest subgraphs of increasing size. We construct subgraphs of in-

creasing size by first mining the densest subgraph using Charikar’s

4
http://snap.stanford.edu/betae/

5
https://hpi.de/naumann/projects/repeatability/datasets/colt-dataset.html

http://snap.stanford.edu/betae/
https://hpi.de/naumann/projects/repeatability/datasets/colt-dataset.html


TheWebConf 24, May 13–17, 2024, Singapore Anon.

0 0.2 0.4 0.6 0.8 1

0.3

0.4

0.5

Subgraph size (%)

S
t
d
C
o
n
fi
d
e
n
c
e

complete densest random

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

Subgraph size (%)

P
C
A
C
o
n
fi
d
e
n
c
e

Figure 8: Std and PCA confidence [16] vs subgraph size for
AMIE rules on Codex-S; densest subgraph according to ReliK .
PCA confidence normalizes the support of a rule only by the
number of facts which we know to be true or consider to be
false on a KG assumed to be partially complete [15, 16].

0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8

1

Subgraph size (%)

T
i
m
e
(
%
)

Subgraph number of rules

size (%) densest random

0.06 11 11.4

0.26 71 38.6

0.53 160 193.0

0.56 175 198.2

0.58 175 199.0

0.58 174 200.8

0.73 205 207.4

0.74 206 208.8

0.79 222 214.4

1.00 228 228.0

Figure 9: Time to compute AMIE rules vs subgraph size (left)
and number of discovered rules (right) on Codex-S.

greedy algorithm [10] on the weighted graph obtained assigning

each edge the ReliK score; then, we remove the densest subgraph

and repeat the algorithm on the remaining edges, until no edge

remains. At each iteration, we mine AMIE rules and compute the

standard confidence, as well as confidence by the partial complete-

ness assumption (PCA) [15, 16], i.e., the assumption that the database

includes either all or none of the facts about each head entity ℎ

by any relationship 𝑟 . In Figure 8 we compare our method with a

baseline that extracts random subgraphs of the same size as those

computed with our method. The densest subgraph located by ReliK

finds more rules with higher confidence on as little as 25% of the

KG. On the other hand, a random subgraph does not identify any

meaningful subgraph. This indicates that ReliK is an effective tool

for retrieving rules in large graphs. A further analysis in Figure 9

shows that by exploiting ReliK we can compute rules 75% of the

time. We emphasize though that because rule mining incurs expo-

nential time, the difference between mining rules on the complete

graph and on the ReliK-subgraph will be more pronounced on

graphs larger than Codex-S. As a complement, the table reports the

number of rules mined in the entire graph that are discovered by

ReliK in the subgraph. It is clear, that on 26% of the graph, ReliK

discovers 1/3 as opposed to only 1/6 discovered by random graphs.

5 RELATEDWORK
Knowledge graph embeddings are commonly used to detect

missing triples, correcting errors, or question answering [22, 39].

A number of KGEs appeared in the last few years. The distinctive

features among embeddings are the score function and the opti-

mization loss. Translational embeddings in the TransE [7] family

and the recent PairRE [9] assume that the relationship performs

a translation from the head to the tail. Semantic embeddings, such

as DistMult [43] or HolE [25] interpret the relationship as a mul-

tiplicative operator. Complex embeddings, such as RotatE [33] and

ComplEx [38] use complex-valued vectors and operations in the

complex plane. Neural-network embeddings, such as ConvE [14] per-

form sequences of non-linear operations. While each embedding

defines a specific score, ReliK is agnostic to the choice of embed-

ding. It is still an open question how well embeddings capture the

semantics included in a KG [20]. Our work progresses in that re-

gard by offering a simple local measure to quantify how faithful an

embedding represents the information in the data.

Embedding calibration. An orthogonal direction to ours is em-

bedding calibration [30, 34]. Calibration methods provide effective

ways to improve the existing embeddings on various tasks, by alter-

ing the embedding vectors in subspaces with low accuracy [30], by

reweighing the output probabilities in the respective tasks [34], or

by matrix factorization [12]. On the contrary, ReliK does not alter

the embeddings nor the prediction scores but provides insights on

the performance of the embeddings in specific subgraphs.

Evaluation of embeddings. ReliK bears an interesting connection

with ranking-based quality measures, in particular with the Mean

Reciprocal Rank (mrr) and hits@k for head, tail, and relation

prediction [5, 7, 9, 30, 33, 39]. For a triple (?, ?, 𝑡) with unknown

head mrr is the average of the reciprocal of ranks of the correct

heads in the KG given the relationship 𝑟 and tail 𝑡 . As such, ReliK ,

can be considered a generalization of mrr as the mrr for triples of

the kind (?, ?, 𝑡) and (ℎ, ?, ?). Since the triples (?, 𝑟 , 𝑡) are included
in (?, ?, 𝑡), ReliK includes more information than mrr. Moreover,

while mrr and hits@k provide a global indication of performance,

ReliK is suitable for local analysis. Yet, current global measures have

been recently shown to be biased towards high-degree nodes [35].

6 CONCLUSION
Aiming to develop a measure that prognosticates the performance

of a knowledge graph embedding on a specific subgraph, we in-

troduced ReliK , a KGE reliability measure agnostic to the choice

of the embeddings, the dataset, and the task. To allow for efficient

computation, we proposed a sampling-based approximation, which

we show to achieve similar results to the exact ReliK at less than

half of the time. Our experiments confirm that ReliK anticipates the

performance on a number of common and complex downstream

tasks for KGEs. In particular, apart from correlating with accu-

racy in prediction and classification tasks, ReliK discerns the right

answers to complex logical queries and guides the mining of high-

confidence rules on subgraphs dense in terms of ReliK score. These

results suggest that ReliK may be used in other domains, as well as

a debugging tool for KGEs.

Ethical use of data. The measurements performed in this study

are all based on datasets that are publicly available for research

purposes. We site the original sources.

REFERENCES
[1] Rakesh Agrawal, Ramakrishnan Srikant, et al. 1994. Fast algorithms for mining

association rules. In VLDB, Vol. 1215. Santiago, Chile, 487–499.

[2] Mehdi Ali, Max Berrendorf, Charles TapleyHoyt, Laurent Vermue,Mikhail Galkin,

Sahand Sharifzadeh, Asja Fischer, Volker Tresp, and Jens Lehmann. 2021. Bringing



ReliK : A Reliability Measure for Knowledge Graph Embeddings TheWebConf 24, May 13–17, 2024, Singapore

light into the dark: A large-scale evaluation of knowledge graph embedding

models under a unified framework. TPAMI 44, 12 (2021), 8825–8845.

[3] Yushi Bai, Xin Lv, Juanzi Li, and Lei Hou. 2023. Answering Complex Logical

Queries on Knowledge Graphs via Query Computation Tree Optimization. (2023).

[4] Satadisha Saha Bhowmick, Eduard C. Dragut, and Weiyi Meng. 2023. Globally

Aware Contextual Embeddings for Named Entity Recognition in Social Media

Streams. In ICDE. 1544–1557.

[5] Federico Bianchi, Gaetano Rossiello, Luca Costabello, Matteo Palmonari, and

Pasquale Minervini. 2020. Knowledge Graph Embeddings and Explainable AI. In

Knowledge Graphs for eXplainable Artificial Intelligence: Foundations, Applications

and Challenges. IOS Press, 49–72.

[6] Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor.

2008. Freebase: a collaboratively created graph database for structuring human

knowledge. In SIGMOD. 1247–1250.

[7] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Ok-

sana Yakhnenko. 2013. Translating embeddings for modeling multi-relational

data. NeurIPS 26 (2013).

[8] Guillaume Bouchard, Sameer Singh, and Theo Trouillon. 2015. On approximate

reasoning capabilities of low-rank vector spaces. In AAAI.

[9] Linlin Chao, Jianshan He, Taifeng Wang, and Wei Chu. 2021. PairRE: Knowledge

Graph Embeddings via Paired Relation Vectors. In ACL. 4360–4369.

[10] Moses Charikar. 2003. Greedy approximation algorithms for finding dense

components in a graph. In APPROX. Springer, 84–95.

[11] Nick Craswell. 2009. Mean Reciprocal Rank. Encyclopedia of database systems

1703 (2009).

[12] Caglar Demir, Julian Lienen, and Axel-Cyrille Ngonga Ngomo. 2022. Kronecker

decomposition for knowledge graph embeddings. In HT. 1–10.

[13] Omkar Deshpande, Digvijay S Lamba, Michel Tourn, Sanjib Das, Sri Subrama-

niam, Anand Rajaraman, Venky Harinarayan, and AnHai Doan. 2013. Building,

maintaining, and using knowledge bases: a report from the trenches. In SIGMOD.

1209–1220.

[14] Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018.

Convolutional 2d knowledge graph embeddings. In AAAI, Vol. 32.

[15] Luis Galárraga, Christina Teflioudi, Katja Hose, and Fabian M Suchanek. 2015.

Fast rule mining in ontological knowledge bases with AMIE ++. VLDBJ 24, 6

(2015), 707–730.

[16] Luis Antonio Galárraga, Christina Teflioudi, Katja Hose, and Fabian M. Suchanek.

2013. AMIE: association rule mining under incomplete evidence in ontological

knowledge bases. In TheWebConf. 413–422.

[17] Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum.

2013. YAGO2: A spatially and temporally enhanced knowledge base from

Wikipedia. Artificial intelligence 194 (2013), 28–61.

[18] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Gerard de Melo,

Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli,

Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, SabbirM. Rashid,

Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine

Zimmermann. 2022. Knowledge Graphs. ACM CSUR 54, 4 (2022), 71:1–71:37.

[19] Jiacheng Huang, Zequn Sun, Qijin Chen, Xiaozhou Xu, Weijun Ren, and Wei

Hu. 2023. Deep Active Alignment of Knowledge Graph Entities and Schemata.

PACMMOD 1, 2 (2023), 159:1–159:26.

[20] Nitisha Jain, Jan-Christoph Kalo, Wolf-Tilo Balke, and Ralf Krestel. 2021. Do

Embeddings Actually Capture Knowledge Graph Semantics?. In ESWC. 143–159.

[21] Johan Ludwig William Valdemar Jensen. 1906. Sur les fonctions convexes et les

inégalités entre les valeurs moyennes. Acta mathematica 30, 1 (1906), 175–193.

[22] Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S Yu Philip. 2021.

A survey on knowledge graphs: Representation, acquisition, and applications.

Trans. Neural Netw. Learn. Syst. 33, 2 (2021), 494–514.

[23] Matteo Lissandrini, Davide Mottin, Themis Palpanas, Dimitra Papadimitriou,

and Yannis Velegrakis. 2015. Unleashing the power of information graphs. ACM

SIGMOD Record 43, 4 (2015), 21–26.

[24] Michael Loster, Davide Mottin, Paolo Papotti, Jan Ehmüller, Benjamin Feldmann,

and Felix Naumann. 2021. Few-shot knowledge validation using rules. In TheWe-

bConf. 3314–3324.

[25] Maximilian Nickel, Volker Tresp, Hans-Peter Kriegel, et al. 2011. A three-way

model for collective learning on multi-relational data.. In ICML, Vol. 11. 3104482–

3104584.

[26] Stefano Ortona, Venkata Vamsikrishna Meduri, and Paolo Papotti. 2018. Robust

discovery of positive and negative rules in knowledge bases. In ICDE. 1168–1179.

[27] Heiko Paulheim. 2018. Make embeddings semantic again!. In ISWC.

[28] Hongyu Ren and Jure Leskovec. 2020. Beta embeddings for multi-hop logical

reasoning in knowledge graphs. Advances in Neural Information Processing

Systems 33 (2020), 19716–19726.

[29] Tara Safavi and Danai Koutra. 2020. CoDEx: A Comprehensive Knowledge Graph

Completion Benchmark. In EMNLP. 8328–8350.

[30] Tara Safavi, Danai Koutra, and Edgar Meij. 2020. Evaluating the Calibration of

Knowledge Graph Embeddings for Trustworthy Link Prediction. In EMNLP.

[31] Chuan Shi, Yitong Li, Jiawei Zhang, Yizhou Sun, and S Yu Philip. 2016. A survey

of heterogeneous information network analysis. TKDE 29, 1 (2016), 17–37.

[32] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: a core of

semantic knowledge. In TheWebConf. 697–706.

[33] Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2019. RotatE: Knowl-

edge Graph Embedding by Relational Rotation in Complex Space. In ICLR.

[34] Pedro Tabacof and Luca Costabello. [n. d.]. Probability Calibration for Knowledge

Graph Embedding Models. In ICLR.

[35] Sudhanshu Tiwari, Iti Bansal, and Carlos R Rivero. 2021. Revisiting the evalu-

ation protocol of knowledge graph completion methods for link prediction. In

TheWebConf. 809–820.

[36] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk

with restart and its applications. In ICDM. IEEE, 613–622.

[37] Kristina Toutanova and Danqi Chen. 2015. Observed versus latent features

for knowledge base and text inference. In Proceedings of the 3rd workshop on

continuous vector space models and their compositionality. 57–66.

[38] Théo Trouillon, Johannes Welbl, Sebastian Riedel, Éric Gaussier, and Guillaume

Bouchard. 2016. Complex embeddings for simple link prediction. In ICML. PMLR,

2071–2080.

[39] Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph

embedding: A survey of approaches and applications. TKDE 29, 12 (2017), 2724–

2743.

[40] Xiangyu Wang, Lyuzhou Chen, Taiyu Ban, Muhammad Usman, Yifeng Guan,

Shikang Liu, Tianhao Wu, and Huanhuan Chen. 2021. Knowledge graph quality

control: A survey. Fundamental Research 1, 5 (2021), 607–626.

[41] Gerhard Weikum. 2021. Knowledge Graphs 2021: A Data Odyssey. PVLDB 14, 12

(2021), 3233–3238.

[42] Yuhan Wu, Yuanyuan Xu, Xuemin Lin, and Wenjie Zhang. 2023. A Holistic

Approach for Answering Logical Queries on Knowledge Graphs. In ICDE. 2345–

2357.

[43] Bishan Yang, Scott Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015.

Embedding Entities and Relations for Learning and Inference in Knowledge Bases.

In ICLR.

[44] Mohamad Zamini, Hassan Reza, and Minou Rabiei. 2022. A Review of Knowledge

Graph Completion. Information 13, 8 (2022), 396.

[45] Alexandros Zeakis, George Papadakis, Dimitrios Skoutas, and Manolis

Koubarakis. 2023. Pre-trained Embeddings for Entity Resolution: An Exper-

imental Analysis. PVLDB 16, 9 (2023), 2225–2238.

[46] Ziyue Zhong, Meihui Zhang, Ju Fan, and Chenxiao Dou. 2022. Semantics Driven

Embedding Learning for Effective Entity Alignment. In ICDE. 2127–2140.



TheWebConf 24, May 13–17, 2024, Singapore Anon.

A APPENDIX
A.1 Embeddings
In our experiments, we compare the following embedding methods.

• TransE [7] is the first translational model. The score of a triple

is obtained by the difference −∥eℎ + e𝑟 − e𝑡 ∥𝑝 between the head

embedding eℎ translated by the relation e𝑟 and the tail embed-

ding e𝑡 . The score ranges in [−∞, 0] with positive triples close

to 0. This is a strong baseline for all previous works [2, 29, 39].

• DistMult [43] is a notable representative of the semantic similar-

ity family. The score e⊤
ℎ
diag(W𝑟 )e𝑡 is bilinear and the relation

is a square diagonal matrixW𝑟 . The score ranges in [−∞, +∞],
whereby positive triples are assigned higher scores.

• RotatE [33] is a representative of the complex vector family,

whereby vector values are complex numbers. The score −∥eℎ ◦

e𝑟 − e𝑡 ∥ is the analogous of TransE’s score in the complex space

and ranges in [−∞, 0] with positive triples scoring close to 0.

• PairRE [9] is a more recent asymmetric version of TransE in

which the relations are represented by two vectors, an head

relation e𝑟ℎ and a tail relation e𝑟𝑡 . The score −∥eℎ ◦e𝑟ℎ−e𝑡 ◦e𝑟𝑡 ∥
is an enriched version of TransE and ranges in [−∞, 0] with
positive triples scoring close to 0.

• ComplEx [38] uses complex evaluated embeddings. The score

function is the real part 𝑅𝑒 of the complex trilinear dot-product

among the embedding of a triple 𝑅𝑒 (⟨e𝑟 , eℎ, e𝑡 ⟩).
• ConvE [14] applies a multilevel convolutional network with

filters 𝜔 on the head and relation embeddings. The resulting

tensor is then projected to a vector by a linear layer with param-

eters W and multiplied to the tail vector. The scoring function is

𝑓 (𝑣𝑒𝑐 (𝑓 ( [eℎ ; e𝑟 ] ∗ 𝜔))W)e𝑡 .


	Abstract
	1 Introduction
	2 Preliminaries
	3 KGE Reliability
	3.1 The Proposed ReliK Measure
	3.2 Efficiently computing ReliK

	4 Experimental evaluation
	4.1 Approximation Quality
	4.2 Common Downstream Tasks
	4.3 Complex Downstream Tasks

	5 Related Work
	6 Conclusion
	References
	A Appendix
	A.1 Embeddings


