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ABSTRACT

Language models often recover from partial corruption in their inputs, yet the
mechanism behind this “spontaneous context restoration” is unclear. We study
controlled, label-preserving corruptions in symbolic arithmetic and find a consis-
tent mid-to-late-layer elbow where later components integrate surviving cues to
reconstruct the answer. We introduce two readouts, Repair Difference (RD), a
logit-space contribution measure, and Token Agreement (TA), a layer-wise con-
sistency score, and a linearity-scale test that predicts repairability. We find near-
linear behavior on clean inputs and pronounced nonlinearity under corruption;
the linearity residual predicts repair success. Across model families, accuracy
degrades smoothly with corruption (p &~ —1) and yields compact robustness sum-
maries (750 = 27-34%). RD/TA peak near the elbow, localizing where repair
occurs. Brief fine-tuning at moderate corruption improves self-repair, whereas
training on heavy corruption weakens it, giving a simple, data-efficient recipe. To
test the linearity claim beyond arithmetic, we replicate the context perturbation
correlation to the local non-linearity in the NLP corruption task. Together, RD,
TA, 750, and the linearity test form a concise toolkit for diagnosing and training
for self-repair on corrupted contexts and actionable guidance for when and how
models repair corrupted context, offering practical levers for debugging, evalua-
tion, and training.

1 INTRODUCTION

Small transformers are increasingly used in settings where inputs are imperfect, such as on-device
inference, latency-sensitive assistants, and symbolic subroutines where a single mistyped digit can
derail a computation (Sanh et al., 2019; Sun et al.| [2020; Magister et al., 2022; [Wang et al., [2024)).
Despite anecdotal evidence that models sometimes ’snap back” from such noise, we lack a concrete
account of when spontaneous context restoration happens and where in the network it is im-
plemented, connecting to recent accounts of symbol processing and variable binding in in-context
learning (Smolensky et al.l [2024). Prior interpretability has mapped arithmetic circuits under clean
inputs (Elhage et al.,[2021; Nanda et al., 2023), while robustness studies often perturb the surround-
ing text rather than the symbolic content that defines the task. We address this gap by directly
corrupting the numbers in controlled arithmetic sequences and tracing the computations that support
recovery. Aligning with [Cheng et al.| (2022) on symbolic context, but differing in that we analyze
in-network repair dynamics without constraining outputs to a formal language.

Our study introduces three label-preserving corruption regimes (zero, in-range, out-of-range) and
two readouts that expose repair dynamics: Repair Difference (RD), a logit-space measure of how
strongly the model pushes the correct token on corrupted inputs, and Token Agreement (TA), a layer-
wise consistency score with the clean target. Together they reveal a consistent mid-to-late elbow:
early layers largely transport corrupted evidence, while later layers integrate the surviving cues to
reconstruct the intended pattern. Practically, this depth profile translates this spontaneous context
restoration from an observed behavior into an actionable diagnostic one.

We further conducted a linearity—scale test that perturbs hidden states from clean toward corrupted
along the observed error direction and compares first-order predictions to actual logit changes. The
root mean squared error, which demonstrates how nonlinear the mapping is locally, predicts whether
the correction will succeed. This connects a mechanistic signal (local curvature) to an operational
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one (accuracy under corruption): when behavior is locally linear, models are predictable and re-
pairable; when curvature grows (typically in late layers and under stronger corruption), errors am-
plify. We replicated this behavior on a natural language task and showed that local linearity ex-
trapolates to Large Language Models during this correction. Finally, a brief fine-tune on moderate
corruption improves robustness broadly, whereas training on heavy corruption over-specializes and
weakens context correction. This suggests a complementary path to robustness alongside parameter-
efficient masking approaches|Zhao et al.|(2020)). For practitioners, this yields a compact toolkit (RD,
TA, 750, linearity residual) and a simple recipe: probe for a mid/late repair step, keep behavior in the
near-linear regime, and calibrate noise during fine-tuning to strengthen.

2 RELATED WORK

2.1 INTERPRETING ARITHMETIC AND MATHEMATICAL OBJECTIVES

Prior work on arithmetic, algebra, and symbolic prediction (Yu & Ananiadou, 2024} Zhang et al.,
2024;|Stolfo et al.| 2023}, Peng et al., 2022} Brinkmann et al.|[2024) shows that a small set of attention
heads and residual paths encode rules, while MLPs compose intermediate features; these circuits
can be localized, traced, and even edited. However, most analyses assume clean inputs, whereas real
prompts often contain omissions, spurious tokens, or adversarial substitutions. We therefore ask: (i)
how do internal circuits respond to exogenous corruption, and (ii) can models dynamically realign
to recover the intended pattern? Using controlled input ablations and mechanistic probes on small
transformers, we test how context restoration unfolds when context is pathologically perturbed.
Finally, we show that fine-tuning with moderate corruption produces the strongest robustness gains,
clarifying how training noise should be calibrated for reliable symbolic reasoning. In comparison,
PoT and NeRd improve numerical reasoning by delegating computation to an external executor or
program, our results characterize where such computation-like effects arise internally (Chen et al.,
2022;2019).

2.2  PROMPT PERTURBATION

Prior work tests reasoning reliability by perturbing the prompt, chiefly with textual/contextual
noise—e.g., extra punctuation, irrelevant/adversarial descriptions, or extraneous numbers—finding
smooth degradation with noise and partial mitigation via prompting or fine-tuning (e.g., contrastive
denoising CoT) (Abedin et al., 2025} |Chatziveroglou et al., 2025; | Anantheswaran et al., 2024; Zhou
et al., |2024). Yet these studies rarely corrupt the numeric content itself, altering the wrapper rather
than the numbers that define structure. We instead directly corrupt the numerical context in sym-
bolic sequences (zero ablation; in-range and out-of-range substitutions) and link outcome changes
to internal repair dynamics, yielding mechanistic accounts of spontaneous context correction rather
than aggregate robustness alone.

2.3 MECHANISTIC METHODS

General-purpose mechanistic tools—activation patching and residual probing—map causal path-
ways in transformers (Elhage et al.||2021; Nanda et al., [2023)). Circuit discovery and sparse autoen-
coders recover feature-level structure behind complex behaviors (Olah et al. |2020; Bricken et al.|
2023; Heap et al.| [2025), forming the basis for our layer-wise probes and repair metrics. Beyond
math, LLMs are brittle to adversarial prompts, formatting shifts, and subtle context changes (Zou
et al., 2023} [Li et al.L|2023). The Hydra Effect shows endogenous self-repair via redundant pathways
that preserve function under ablations (McGrath et al., [2023). We study interpretability jointly: di-
rectly corrupting numeric content (not just surrounding text) and analyzing how small transformers
internally realign to recover symbolic structure.

3 METHOD

3.1 TASK

We leverage counting tasks with metered steps to evaluate error dynamics. We instantiated three
families- constant, subtract, and variable-step.
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Sequence families. For each family, let p be the starting number, g the (base) step size, r the last
shown element, and L the number of displayed terms (so r = sy). We draw real-valued samples
p* ~ N(pp,07) and ¢* ~ N(pq,07), then set the integer parameters

p= 1P,  g¢=max{1, [|¢*[]}.
Indices run over i € {1,..., L}, and values obey 0 < s; < Spax, Where Sp,.x is a global cap.

1. Constant (fixed increment):
St = (p,p+q.p+2q¢,....,p+(L—1)q), r=p+(L-1)q.

The target next element is r + q.

2. Variable-arithmetic (variable increment):
S0 = D, Sty1 =81+ (¢+t) fort =0,...,L—2,
yielding
Szar: (So,...,SLfl), r=S8r—-1.

The next increment after 7 is ¢ 4+ (L — 1), so the targetis r + (¢ + (L — 1)).

3. Subtract (fixed decrement):

Si=(p,p—aq,p—2q,...,p— (L—1)q), r=p—(L—1)q,
with ¢ > 1 and all terms constrained to R. The target is » — q.

Prompt construction. Prompts are rendered as a comma-separated list of the L shown integers.
We used variable lengths (excluding commas)

L € {40, 60, 80, 100, 120, 140}.

Ablation scheme. To probe robustness, we randomly mask a fraction of the displayed numbers.
For an ablation rate o € {10, 20, 30, 40, 50, 60, 70, 80,90} %, we sample without replacement a
set of indices M C {1,...,L — 1} with [M| = [«L/100], and ablate the entries at positions in

M. The last shown element (the LM term, r) is never ablated. We consider three regimes: (i) zero
ablation, replacing selected entries with the literal token 0; (ii) in-range ablation, replacing with
integers sampled from (min S, max S) but not equal to the ground-truth value; and (iii) out-of-range
ablation, replacing with integers drawn from [0, min .S) U (max S, Smax]-

3.2 MODEL TRAINING AND PRE-TRAINED MODELS

To study error dynamics on arithmetic series, we first evaluated three off-the-shelf decoder-only
LMs: DistilGPT2 (Radford et al., |2019; [Sanh et al., 2019), Pythia-14M, and Pythia-70M (Bider-
man et al.| |2023), under a next-token prediction objective with teacher forcing (Williams & Zipser,
1989). These baselines use mixed text-number byte-level BPE tokenizers learned on broad web
corpora rather than targeted arithmetic supervision. Concretely, DistilGPT2 uses the 50,257-item
GPT-2 tokenizer, while the Pythia models use the GPT-NeoX tokenizer trained on The Pile; in all
cases, many multi-digit integers decompose into multiple subword units.Because such tokenizers
segment integers irregularly (there is no fixed largest single-token integer and nearby values may
split differently), we constrain targets so that every displayed integer is a single token under all three
tokenizers. Empirically, the smallest safe cap across models fell between 361 and 567; we therefore
set Smax = 360 to preclude multi-token spillover.

Moreover, these models were either trained on OpenWebTextCorpus (DistilGPT2)|Hugging Face|or
the Pile (Pythia suite), which might include noisy or inconsistently formatted numeric content; error
dynamics cannot be claimed with certainty. Therefore, we trained a decoder-only, attention-only
4-layer transformer with ~1.74M parameters on clean sequences drawn from the three arithmetic
families, using the identical next-token objective. Given an input sequence S = (s1,...,Sr,), the
model is trained to maximize pg(si+1 | S<;) and we report losses on the standard one-step shift. For
the pre-trained setup, we set Sy = 13,000.

The training corpus uses fixed sequence length 7'=150 and a vocabulary of 13,007 tokens consisting
of the integer symbols, a comma token, and standard specials (e.g., [PAD], [EOS]). We train
on 38,867 examples. To avoid leaking numeric structure via token IDs, we randomly permuted
the integer token indices at tokenizer construction time; consequently, the model must learn each
numeral’s value from context rather than from an ordered embedding index.
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3.3 DEFINING SPONTANEOUS CONTEXT CORRECTION

In the current study, we re-conceptualized the effect due to context restoration, as compared to
previous studies where logit difference has been extensively used [Wang et al.| (2022); McGrath
et al.| (2023), to capture the most significant change in model behaviour. For a token sequence
S, each layer’s output y, is added to the residual stream R, (with ¢ the layer index and n the

prompt length), so that R, = Ei:o y;. In a transformer, applying LayerNorm to the residual
and then the unembedding matrix W), yields the logits; at the final layer L this gives Logit, =
LayerNorm(W,, - R;). Analogously, we can read out intermediate predictions either from the

residual, Logit}*'! = LayerNorm(W, - Ry), or from a single layer’s contribution, Logit?mp“t =
LayerNorm(W,,-ye). Following common practice, we mean-center logits (subtract their average) so
they have zero mean, which leaves probabilities unchanged |[Elhage et al.|(2021)); Rushing & Nanda

(2024); McGrath et al.| (2023).

Definition 1: (Logit Difference A and B) To compute the difference in internal dynamics during the
inference of clean prompts and faulty prompts, logit distributions are computed. Let Logit be the
logit distribution and clean; be the next maximum likelihood token during the clean prompt infer-
ence and Logit’ logit distribution and ablate; be the next maximum likelihood token during faulty

prompts. Then logit difference is defined as the difference between Logit’cleam and Logitcican,

LogitDif ference = Logit,,,,,, — Logitcecan,. However, to be able to produce the same to-
ken as that of the clean task or when self-correction takes place, Logit’clean, should be equal to
Logit 414, We termed the difference between the latter logit difference B (LD p) and the former

as logit difference A (LD 4).

./ .
LDy = Logltcleant - Logltcleant

!
clean,

LDp = Logit},.q, — Logit
Definition 2: (Repair Difference) The repair difference (RD) is defined to assess how effectively
a model can compensate for changes or disruptions, such as those introduced by a faulty prompt.
It is used to quantify the model’s ability to self-repair or recover from errors. Since LD 4 mea-
sures the difference between the logits of the clean prompt and the faulty prompt after applying
any corrections or adjustments and LD p measures the difference between the logits of the faulty
prompt before and after applying corrections, RD should be able to identify the greatest extent of
correction needed to match or surpass the original clean performance. Therefore we define repair
difference as the maximum distance that Logit’ needs to cover to reach the same value as

cleany
; Syt
maz(Logitciean, , LOGityy q1eq,)-

Then repair difference RD is given as,

LD, for Logiteean, > Logitﬁlblatedt (1)
RD = (¢ LDp  for Logity,,cq, > Logitcican, (1)
LDy for Logit .4, = Logit, > Logitcican, (417)

clean:

where the third case denotes when over-correction takes place.

The range of LD, is R : (—o00,4+00), LDp is R : [0,400) and for repair difference R :
(=00, +00). RD > 0iff Logit,;.q, = Logit,,.,,, and Logit,, .. > Logitccan, Which indi-
cates that the model on faulty prompts is outperforming the one with clean inputs. Furthermore, like

LDy and LDp, RD can be computed for each layer and its evolution with time from the residual.

Definition 3 (Layer-wise token agreement). For each layer ¢ and readout 7 € {resid, output}, let

Logit [)' denote the (mean-centered) logits read from layer ¢ on the faulty run, and let clean, be the
clean-run target token (Def. 1). The agreement is the fraction of examples for which the faulty run
already predicts the clean target:
N
1 Z . . (T)
— 1 [Cleanm— = arg max Logltm } .

N ¢4
i=1

TA) =
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3.4 LINEARITY-SCALE TEST

To test the local linearity of the mapping from a layer’s hidden state to the target next-token logit,
we run the model on two versions of the same example: a clean input and a corrupted input. At all
layers of interest, we cache the hidden states for both runs.

Let a sequence of length L be processed by a model. At layer ¢, denote the hidden states on a clean
input by A2 € RL*C and on a corrupted input by h§o™ € REXC,

Fix the predicted next-token position p := L+ 1. Let the target logit refer to a designated next token
(e.g., the ground-truth label or the clean-run argmax). Define the corruption direction

e — h;orr _ h;lean’ ep c RC.

Let g map layer-¢ hidden states to the target logit; thus g(hy) is the scalar logit of the target token
when the forward computation proceeds from the state hy. On the clean pass, take the gradient at
position p Vg(h‘lflean)p € RC.

For o € {0.25,0.5,0.75, 1.0}, consider the perturbed (patched) state ﬁg(a) = h§lean 4+ qe, which
changes only position p by e, and leaves all other positions unchanged. By the first-order Taylor
expansion of g around h§lea®,

g(Re(@)) ~ g(1i™) + aVg(ni™) e,

Therefore, the predicted logit change is

Agpred(a) = g(ﬁf(a)) - g(h?ean) ~ av-g(h(lglean); €p-

The true change is
Agrue(a) = g(ﬁe(a)) — g(hge™).
Taylor’s theorem about A yields
Agirue(@) = aVgle + 1a? e'He + O(a®),

where H is the Hessian of g with respect to hy at h$'**". Thus, small v probes linearity, while larger
a reveals curvature along e. Comparing Agpred (@) to Agiue () across these v values quantifies
the local linearity of the mapping at layer ¢ along direction e.

4 EXPERIMENTS AND RESULTS

4.1 PERFORMANCE DEGRADES WITH INPUT CORRUPTION

We evaluated 16k sequences for each of the ablation regimes. For the custom-trained model, across
all regimes and sequence types, accuracy declines smoothly and near-monotonically as ablation
increases (Spearman p € [—0.988, —1.000], all p < 9.3 x 10~8). The average accuracy across
the ablation sweep for all regimes sits in the mid-30s (%). The 759 (ablation at 50% accuracy)
concentrates around ~27-34%. Early in the sweep (0—40% ablation), where the curve is almost
linear, the accuracy drops at roughly 1.7-2.1 points per 1% ablation. Small, consistent nuances
emerge by regime. For instance, SUBTRACT is slightly more robust with zero ablation (higher mean
accuracy and 7509), CONSTANT leads for in-range ablation, and all sequence types are effectively
comparable out-of-range (overlapping CIs). In short, degradation with ablation is predictable and
largely uniform, with only modest, regime-specific differences in robustness. See Figure|[T]

For pre-trained models (Pythia suite and DistilGPT2), we evaluated 150 sequences each for CON-
STANT and SUBTRACT sequences only, as low Sy,.x constraints creating enough VARIABLE-
ARITHMETIC number series. Similar to the custom model, the accuracy drops smoothly and near-
monotonically as ablation increases. Overall robustness (the average accuracy across the ablation
sweep) is highest for DistilGPT-2, moderate for Pythia-70M, and lowest for Pythia-14M. DistilGPT-
2 maintains mid-30s to mid-40s% average accuracy with 75 around 42-47%; Pythia-70M is lower
(average accuracy about 27-36%, 75 about 22-32%); Pythia-14M is brittle (average accuracy about
1-16%, 150 = 0%). CONSTANT sequences are consistently sturdier than SUBTRACT, and smaller
models show steeper early-regime slopes, reflecting faster degradation.
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Figure 1: Accuracy of the custom model on three ablation regimes for all three sequence types.

4.2 INTERNAL CORRECTION PEAKS AROUND THREE-QUARTERS DEPTH

To quantify internal correction, the model applies to overcome faulty input and still predict the right
token, we computed Repair Difference (RD) per layer before and after the residual is added. RD
is the shift in the correct—token logit on the ablated prompt needed to beat the harder of the two
references—either the clean correct—token logit or the ablated alternate—token logit. Intuitively, RD
measures how much the network “pushes back” against the corruption. For the custom-trained,
RD shows a consistent elbow (See Figure [2a)) at approximately three—quarters depth across tasks: a
one-break segmented fit places the elbow at layer 3 of 4 (normalized depth ~ 0.75) for Constant,
Subtract, and Variable—arithmetic sequences (See Figure[9). Before the elbow, RD changes slowly
(mid-layer slopes per layer: CONSTANT —0.65, SUBTRACT —0.53, VARIABLE ARITHMETIC
—0.47), indicating gradual damping. Immediately after the elbow, RD drops steeply (late—segment
slopes large in magnitude), reflecting a decisive late—stage correction failure concentrated in the fi-
nal block. In comparison, the layer-wise token agreement (TA) reveals the same depthwise pattern
across tasks (See Figure[2b|and Figure[I0). Agreement falls sharply from layer 1 to the mid network
(the strongest drop by layer 2), indicating that early processing propagates the ablation’s effect. It
then recovers toward layer 3, where agreement peaks, consistent with a mid/late self-repair step.
The final layer contributes little additional recovery (and can slightly reduce agreement), suggesting
that most correction is completed just before the output layer. Heavier ablations uniformly lower the
curves.
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20
Ablated percent
-0 0
2

H H
Layer Layer Layer Layer

(a) (b)

o
Ablated percent Ablated percent
-0 0 0

Ablated percent
0

48
I
8838
s & e
L
111
8838888
|
[
|| eszsesss

8
8
Token agreement (Layer)

Repair difference Layer
Repair difference Residual
Token agreement (Residual)

Figure 2: (a) Exemplary Repair Difference across ablation percentages for CONSTANT sequence for
the custom model. (b) Exemplary Layer-wise Token Agreement (TA) across ablation percentages
for CONSTANT sequence for the custom model.

Similarly, for the pretrained models RD exhibits the qualitative shape—a mid—to—late elbow fol-
lowed by a sharp drop—but the location and magnitude vary by architecture. Overall depthwise
ordering is preserved, indicating that pretrained LMs retain the same “mid-damping, late correc-
tion” propagation law even without task-specific training. TA is V-shaped: agreement dips sharply
at a mid/late block and then rebounds to near one by the final layer. Early decline, a mid-depth
failure point, and late recovery—placing the effective self-repair step just before the output layer
(See Figure [9]and Figure [10).

This reveals a simple propagation law: layers at mid to three-quarters depth carry the repair signal in
their residual stream, damping errors upstream and triggering a concentrated correction just before
the output layer.

We also observed some instances of over-correction when the repair difference is positive, i.e.,
RD > 0 (the ablated-prompt correct-token logit exceeds both the clean baseline and the ablated
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alternate) (See Figure [TT). Over-correction is rare and concentrated in the earliest layer. Across
regimes, the peak rate always occurs at layer 1 and remains modest. Heatmaps show a monotonic
decline with depth. Over-correction also diminishes as ablation strength increases, indicating that
mild corruptions sometimes induce small early overshoots, whereas stronger corruptions predomi-
nantly lead to under-correction. However, this trend does not hold for pre-trained models and showed
higher levels, sometimes even peaking at 100%.

4.3 LOCAL LINEARITY PREDICTS REPAIRABILITY UNDER CORRUPTION

To assess local linearity at layer ¢, we compare Ay and Apreq over several o values. As a simple
predictor at a=1 negative Root Mean Squared Error ((-RMSE), and evaluated how well S separates
correct vs. incorrect continuations by computing ROC-AUC within each sequence type and ablation
regime. The AUC values ranged 0.91 — 0.94 for layers except the last layer. However, within
ablation levels, the AUC drops significantly to 0.4 — 0.5, revealing Simpson’s paradox. Pairwise
AUC heatmaps revealed that most of the pooled AUC comes from cross-group comparisons (See

Figure[3).

Layer 2
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Figure 3: Heatmaps of pairwise AUC for the linearity score (a« = 1) at Layer 2. Rows (g) are
accurate examples at ablation g, columns (h) are inaccurate examples at ablation h; each cell is AUC
(positive g vs. negative h). Diagonal numbers show within-ablation separability ( 0.35-0.52 —
weak), while off-diagonals near 1 indicate the score mainly separates groups at different ablation
levels. Panels: zero / in-range / out-of-range corruptions.

Next we evaluated, residual 7(a) = |Ague(r) — Aprea(at)|.We observed that 7(«) increases mono-
tonically with «, and the rise is much steeper on incorrect examples than on correct ones. By
a=1 the gap is large, which explains why the a=1 residual is a strong per—example predictor.
Next, it was seen that for a fixed a, 7(a) grows smoothly and approximately convexly with ab-
lation percentage; the growth rate itself increases with . A second—order Taylor expansion, im-
plies r(a) ~ 3a?|e" He|, so the observed trends indicate (i) small steps/weak ablations lie in a
near-linear regime, while (ii) larger steps/stronger ablations expose curvature along the error direc-
tion (|e " He| increases), which is precisely where failures concentrate, linking increased nonlinear-
ity to reduced repairability (See Figure ). This result holds for both the pretrained models on all
layers (See Figure[T3) and the NLP task evaluated on an LLM (See Section [4.4). However, unlike
the LLMs and other pretrained baselines, our custom 4-layer attention-only model breaks this pat-
tern at the final layer (See Figure[T2): that block behaves as a near—hard readout. By the penultimate
layer, the correct token is already linearly separable, and the last block primarily rescales/saturates
the margin (via LayerNorm + unembedding) rather than “reasoning.” In this saturated regime, the
clean-point gradient is small or largely orthogonal to the corruption direction, so the scale-test resid-
ual no longer tracks repairability and AUC-ROC collapses—even though the model has effectively
committed to a prediction one layer earlier.

Per-layer evaluation places the strongest prediction at mid—late depth, coinciding with the elbow
we observe in repair-difference and token-agreement plots: mid layers gently damp the error, while
late layers either amplify it or enact a sharp correction.
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Figure 4: Residual scaling at Layer 2. Left: Mean residual vs. step size «, split by outcome.
Incorrect cases grow much faster, indicating stronger local curvature. Right: Residual vs. ablation
rate per «. Curves rise smoothly (nearly convex) with ablation and steepen with larger «, showing
that heavier corruption and bigger steps expose more nonlinearity and hence lower repairability.

4.4 LOCAL LINEARITY BREAKS IN CORRUPTED NLP TASKS

We evaluate two lightweight next-token tasks in a unified prefix — I-token format: (i)
Subject-Verb agreement (SVA) from BLiMP (Warstadt et al) [2020) by cutting right before
is/are/has/have/does/do; (ii) Factual cloze from SQuAD (Rajpurkar et al., |2016) with
single-word answers. Prefix-only corruptions (word dropout, constant “the”) at p € {0,0.2,0.4}
preserve the label and end with a trailing space. See Appendix [A.2]
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Figure 5: Alpha-residual scaling on Factual (constant corruption). Mean residual vs. « across layers
{0,5,10, 15,20} for corruption rates p € {0,0.2,0.4}. Early layers are near-linear (flat curves),

while residuals grow steeply with both « and p in late layers, showing curvature that emerges with
depth and corruption.

We run the scale test on EleutherAl/gpt-neo-1.3B (24 layers) (Gao et al. 2020; Black et al.
2021) using our SVA and factual cloze sets, with prefix-only corruptions (dropout/constant) at
p €4{0,0.2,0.4} and « € {0.25,0.5,0.75,1.0}. Across tasks, predicted vs. patched logit changes
are tightly aligned at small o (Pearson R ~ 0.86—0.88 over all « points). Residuals grow roughly
quadratically with o and with ablation strength, indicating curvature along the corruption direction.
Depth-wise, early layers are near-linear (tiny residuals), while residuals rise sharply in late lay-
ers—consistent with mid-depth damping followed by late re-amplification (See Figure [5|and Figure
). Figures show the effect for layers {0,5,10,15,20} under both corruption modes.

4.5 TARGETED FINE-TUNING BOOSTS ACCURACY ON CORRUPTED CONTEXT

Starting from our custom base model, we fine—tuned separate copies on a single corruption level
r € {10, 30,50,90}% (“FT@7r”), using only 20% of the training set until convergence, and kept
the standard next—token objective (targets are the clean next tokens). We then evaluated each
fine—tuned model across the full ablation sweep on held—out data for all three sequence types.
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Figure 6: Model accuracy before and after finetuning as a function of ablation level of testing se-
quence. Each panel shows a different sequence type (left to right: Constant, Variable arithmetic,
Subtract). Curves correspond to the fraction of finetuning data used (nil, 10%, 30%, 50%, 90%).
Lines indicate mean accuracy across runs.

The unfine-tuned model is denoted nil (See Figure |§[) For the fine-tuning purpose, we only used
the ZERO-ABLATION regime. Accuracy—vs—ablation curves show consistent gains for FT@10 and
FT@30 across tasks, with FT @30 the most robust overall (Fig. . In contrast, FT@50 yields mixed
effects and FT @90 degrades sharply, indicating over-specialization to heavy corruption and loss of
clean/medium-—ablation performance. The (750, ablation level at 50% accuracy) peaks at FT@30 for
CONSTANT and SUBTRACT, with sizable but smaller gains for VAR_ARITHMETIC; beyond FT @30,
750 collapses (Fig. [7). Mean accuracy shows similar trends (See Figure [I5). Thus, light, targeted
fine—tuning shifts the entire accuracy curve upward, whereas heavy fine—tuning harms generaliza-
tion. However, with corrupted ablation, the accuracy on clean tasks decreases from 0.8% (FT@10)
to 24% (FT@30).

constant subtract var_arithmetic
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&
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30 30 30
Finetuning percent Finetuning percent Finetuning percent

Figure 7: Estimated 750 as a function of finetuning percent for three sequence types (constant,
subtract, variable-arithmetic). Larger 75( indicates greater robustness to ablation.

5 DISCUSSION

We find a consistent mid-to-late “elbow” where transformers enact spontaneous context correction;
this late integration explains selective robustness (e.g., SUBTRACT is sturdier under zero masks but
falters with in-range decoys) and provides direct evidence of variable binding: across heteroge-
neous corruptions (zero, in-range, out-of-range), models re-instantiate the mapping between roles
(slots) and values (numbers) to converge on the same next token Smolensky et al.[(2024). However,
this is not absolute, as exact programmatic predictors are possible even under heavy corruption. A
simple linearity—scale test—comparing first-order logit predictions to patched outcomes—predicts
repairability: behavior is near-linear (and correctable) on clean or mildly corrupted inputs but be-
comes curved (and failure-prone) under stronger corruption. These effects replicate across symbolic
arithmetic and corrupted NLP, and from a 4-layer transformer to a 1.3B-parameter model.

Two takeaways follow: (i) diagnose at the elbow—use RD/TA to localize the repair step and the lin-
earity residual to forecast success—then fine-tune at moderate corruption to lift the whole robustness
curve without sacrificing clean performance, while heavy-corruption training over-specializes; (ii)
expect portability—the mid-damping/late-correction pattern, local linearity criterion, and variable-
binding signature appear architecture- and task-agnostic, so the toolkit should extrapolate to a broad
array of LLMs, with the caveat that saturated final layers can obscure linearity signals, so measure-
ments should target the last decision-forming block.
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A APPENDIX

A.1 LLM USAGE

We used a general-purpose large language model only for light writing support (clarity edits, phras-
ing, and tightening of title/abstract) and minor plotting assistance (suggestions for Matplotlib/LaTeX
labels and figure layout). All scientific content, mathematical definitions, code, and figures were ver-
ified and version-controlled by the authors, and any LLM-suggested text or code was reviewed and
edited for accuracy and reproducibility.

A.2 TASK CREATION AND CORRUPTIONS FOR NLP OBJECTIVE

Datasets. We construct two next-token tasks in a unified prefix — I-token target schema. (i) SVA
(Subject-Verb Agreement): Across all BLIMP configurations, we cut the prefix immediately be-
fore the first auxiliary in {is, are, has, have, does, do}. The target is that auxiliary
token. (ii) Factual cloze: From SQuAD vl.1 we retain QA pairs with single-word answers and
form the prefix "Question:{g} Answer: 7;the targetis the answer string.

Tokenizer constraints. We require each target to be a single tokenizer token under the evaluation
tokenizer (e.g., GPT-2 family). All prompt strings are enforced to end with a trailing space to
guarantee the target is the immediate next token.

Corruption (ablation) operators Corruptions operate only on the prefix and do not modify the
target. We protect the last two prefix tokens to avoid breaking immediate local cues. We apply
two simple, label-preserving operators: (a) word dropout (delete editable tokens independently with
probability p), and (b) constant replacement (replace editable alphanumeric tokens with the constant
”the” with probability p). We sweep p € {0.0,0.2, 0.4} with one random draw per (p, mode) cell.

Sanity filters. We drop items that fail any of: (i) non-1-token target, (ii) prefix not ending in a space,
(iii) leakage, or (iv) very short prefixes (fewer than three tokens pre-auxiliary for SVA or overall for
Factual).

Sizes and balance. After corruption, we use approximately 103 examples per task, balanced across
ablation levels and corruption modes.

The single-token target lets us define the target logit g precisely at the final prefix position. Prefix-
only corruption varies the hidden-state error e while keeping the gold label fixed, enabling our scale
test: predicted Agpred(@) = & Vg e vs. patched Agyue () over a € {0.25,0.5,0.75,1.0}.

Examples.

SVA 1 (plural)
Clean: The keys to the cabinet

Target: are
Dropout (p=0.2): The keys the cabinet
Const (p=0.4): the keys the the

SVA 2 (singular)
Clean: The book on the table

Target: 1is

Dropout (p=0.2): The book the table

Const (p=0.4): the book the the

Factual 1

Clean: Question: The capital of France is Answer:
Target: Paris

Dropout (p=0.2): Question: capital of France Answer:
Const (p=04) : Question: the the of France the Answer:
Factual 2

12
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Clean: Question: The capital of Italy is Answer:
Target: Rome

Dropout (p=0.2): Question: capital of Italy Answer:
Const (p=0.4): Question: the the of Italy the Answer:

A.3 EXTENDED FIGURES
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Figure 8: Accuracy of the pre-trained models on three ablation regimes for all three sequence types.
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Figure 9: Repair Difference across ablation percentages for all sequence types, across all ablation
regimes for all the evaluated models. All figures show elbow effect.
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Figure 10: Layer-wise Token Agreement across ablation percentages for all sequence types, across
all ablation regimes for all the evaluated models.
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Figure 11: Over-correction across depth and corruption.Heatmaps show the share of cases (color; %)
where the ablated run over-corrects (RD> 0)—i.e., the correct-token logit on the corrupted prompt
exceeds both the clean-run correct-token logit and the best competing token—as a function of layer
(x-axis) and ablated percent (y-axis). Columns give sequence families (Constant, Subtract, Variable
arithmetic) and panels split models (Custom, Pythia-14M, Pythia-70M, DistilGPT2); within each
model the three blocks correspond to zero, in-range, and out-of-range ablations. Over-correction is
rare and concentrated in early layers, decaying with depth and with stronger ablation for the custom
model, while pretrained models exhibit larger, sometimes late-layer pockets (most prominently in
Pythia-14M). Color bar: % over-correction.
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for different prompt ablation schemes used for the NLP
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Figure 15: Mean accuracy AOC (%): average accuracy across ablation levels as a function of finetun-

ing percent for three sequence types (constant, subtract, variable-arithmetic). Larger AOC indicates
better overall performance under ablation.
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