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ABSTRACT

In this paper, we address the challenge of procedure planning in instructional
videos, aiming to generate coherent and task-aligned action sequences from start
and end visual observations. Previous work has mainly relied on text-level su-
pervision to bridge the gap between observed states and unobserved actions, but
it struggles with capturing intricate temporal relationships among actions. Build-
ing on these efforts, we propose the Masked Temporal Interpolation Diffusion
(MTID) model that introduces a latent space temporal interpolation module within
the diffusion model. This module leverages a learnable interpolation matrix to
generate intermediate latent features, thereby augmenting visual supervision with
richer mid-state details. By integrating this enriched supervision into the model,
we enable end-to-end training tailored to task-specific requirements, significantly
enhancing the model’s capacity to predict temporally coherent action sequences.
Additionally, we introduce an action-aware mask projection mechanism to restrict
the action generation space, combined with a task-adaptive masked proximity loss
to prioritize more accurate reasoning results close to the given start and end states
over those in intermediate steps. Simultaneously, it filters out task-irrelevant ac-
tion predictions, leading to contextually aware action sequences. Experimental
results across three widely used benchmark datasets demonstrate that our MTID
achieves promising action planning performance on most metrics. The code is
available at https://github.com/WiserZhou/MTID.

1 INTRODUCTION

Recently, procedure planning has exhibited critical reasoning capability for solving real-world chal-
lenges in complex domains, such as robotic navigation (Sermanet et al., 2024; Bhaskara et al., 2024)
and autonomous driving (Wang et al., 2024; Liao et al., 2024). Among them, procedure planning
in instructional videos (Zhao et al., 2022; Wang et al., 2023b; Li et al., 2023) has been widely con-
cerned because of its wide application scenarios, which involve identifying and generating coherent
action sequences that align with the task’s objectives, given the start and end visual observations.

In the field of procedure planning in instructional videos, the primary challenge lies in modeling
the temporal evolution mechanism among actions and identifying pertinent conditions that can ef-
fectively steer the generation of intermediary actions in scenarios where information is scarce. As
depicted in Figure 1(a), many scholars have resorted to capturing different forms of auxiliary in-
formation about the intermediate states to bridge the gap between observed states and unobserved
actions. For example, event-based supervision (Wang et al., 2023a) leverages key task events to help
the model learn temporal action structures, while task label supervision (Wang et al., 2023b) uses
task-specific labels for better alignment with the task objective. The probabilistic procedure knowl-
edge graph (Nagasinghe et al., 2024) provides structured knowledge to enhance the understanding
of action dependencies. Additionally, Niu et al. (2024) leverage large language models (LLMs) to
describe state changes, improving the model’s grasp of causal relationships by combining visual
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Figure 1: The core idea to solve procedure planning with previous methods and ours.

and language descriptions. However, all these methods are limited to providing text-level supervi-
sion, resulting in less detailed and comprehensive information, and failing to precisely capture the
temporal relationships between actions. Furthermore, these methods decouple the acquisition of
supervisory information from the intermediate action reasoning process, hindering effective collab-
oration and interaction between the two. Consequently, it becomes challenging to fully integrate and
adapt to current action reasoning tasks.

Based on the above analysis, we propose the Masked Temporal Interpolation Diffusion (MTID)
model for procedure planning in instructional videos. As shown in Figure 1(b), the core concept is
to leverage intermediate latent visual features, generated synchronously by a latent space temporal
interpolation module, to provide comprehensive visual-level information for mid-state supervision.
In the meanwhile, the generated visual features are directly injected into the action reasoning model,
ensuring the generation of intermediate supervision information can be effectively applied to the
current action reasoning task through end-to-end training.

Specifically, MTID comprises three core components: a task classifier, a latent space temporal in-
terpolation module, and a diffusion model framework that integrates the DDIM strategy. In the first
stage, a transformer-based classifier predicts the task class label c for the entire instructional video,
given the start and end observations. This prediction serves as the foundation for subsequent ac-
tion generation. The latent space temporal interpolation module is designed to capture and model
temporal relationships. It employs an observation encoder to transform the visual features of the ob-
servations into latent features that maintain temporal dependencies. A latent space interpolator then
generates intermediate features using a learnable interpolation matrix, which dynamically adjusts the
interpolation ratio to fit task-specific requirements. These interpolated features are refined through
transformer blocks, enhancing their temporal coherence and capturing the dependencies between
action sequences. In the third stage, during the denoising phase for generating action sequences,
the input matrix is constructed by concatenating the task class label, observed visual features, and
Gaussian noise. A masked projection is applied to exclude irrelevant actions, ensuring that the gen-
erated actions remain within the desired range. To accelerate inference, DDIM is used throughout
the iterative process. To further ensure task relevance, we adopt a task-adaptive masked proxim-
ity loss which gradually decreases its focus toward the central features, reinforcing supervision on
intermediate latent features while penalizing irrelevant actions, thereby constraining the generation
process. By leveraging both the start and end observations, our model accurately predicts target ac-
tion sequences, as demonstrated by experimental results on the CrossTask, COIN, and NIV datasets.

The main contributions of this paper are as follows:

• We propose a Masked Temporal Interpolation Diffusion model with a mask to limit action initial-
ization and a task-adaptive masked proximity loss to enhance accuracy.

• We use a latent space temporal interpolation module to extract intermediate visual features with
temporal relationships from the start and end states to guide the diffusion process.

• Extensive experiments are conducted on several widely used benchmarks, showing significant
performance improvements on multiple tasks using the proposed method.
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2 RELATED WORK

Procedure Planning in Instructional Videos. Procedure planning involves generating goal-
directed action sequences from visual observations in unstructured videos, like Qi et al. (2021;
2024). Our work builds on PDPP (Wang et al., 2023b), which models action sequences using dif-
fusion processes. Earlier approaches focus on learning sequential latent spaces (Chang et al., 2020)
and adversarial policy learning (Bi et al., 2021). Recent methods introduce linguistic supervision for
step prediction (Zhao et al., 2022), mask-and-predict strategies for step relationships (Wang et al.,
2023a), and breaking sequences into sub-chains by skipping unreliable actions (Li et al., 2023).
KEPP (Nagasinghe et al., 2024) incorporates probabilistic knowledge for step sequencing, while
SCHEMA (Niu et al., 2024) tracks state changes at each step. However, none of these methods fo-
cus on the visual-level temporal logic between actions. Our approach introduces mid-state temporal
supervision to capture these relationships, resulting in more accurate and efficient predictions.

Diffusion Probabilistic Models for Long Video Generation. Recent advances in diffusion proba-
bilistic models (Croitoru et al., 2023), originally popularized for image generation (Rombach et al.,
2022), have achieved significant progress in generating long video sequences (Weng et al., 2024;
Zhou et al., 2024a; Jiang et al., 2024). StreamingT2V (Henschel et al., 2024) excels in produc-
ing temporally consistent long videos with smooth transitions and high frame quality, overcoming
the typical limitations of short video generation. StoryDiffusion (Zhou et al., 2024b) further en-
hances sequence coherence through consistent self-attention, enabling the creation of detailed, visu-
ally coherent stories. The success of these models has inspired us to incorporate auxiliary temporal
coherence mechanisms in our approach, which we believe are critical to achieving accurate and
high-quality action prediction with our method.

3 METHOD

3.1 OVERVIEW

Following Chang et al. (2020), given an initial visual observation Vs and a target visual observation
Vg , both are short video clips indicating different states of the real-world environment extracted from
an instructional video, the procedure planning task aims to generate a sequence of actions a1:T that
transforms the environment from Vs to Vg , where T denotes the number of planning time steps. This
problem can be formulated as p(a1:T | Vs, Vg).

Considering the weak temporal reasoning ability caused by the absence of intermediate visual states,
especially in long video scenarios, we propose the Masked Temporal Interpolation Diffusion
(MTID) framework, which employs a denoising diffusion model to rapidly predict the intermedi-
ate action sequence a1:T . As outlined in the following formula, MTID decomposes the procedure
planning task into three sub-problems,

p(a1:T | Vs, Vg) =

∫∫
p(a1:T | υ1:M , c, Vs, Vg)p(υ1:M | Vs, Vg)p(c | Vs, Vg)dυ1:Mdc. (1)

The first sub-problem entails capturing information about the task to be completed about the whole
instructional video, serving as the basis for subsequent reasoning. As shown in Figure 2, this task
supervision stage solves a standard classification problem using a transformer encoder to extract
features from observation pair {Vs, Vg} and transform them into task class label c.

The second sub-problem focuses on reconstructing M intermediate visual features υ1:M from Vs

and Vg to address the lack of mid-state visual supervision and reveal hidden temporal logic within
the action sequences, which is achieved through our latent space temporal interpolation module.

The final sub-problem involves generating action sequence a1:T based on the task information and
interpolated intermediate features. Specifically, we first construct the input matrix x̂N for the de-
noising steps, which consists of three dimensions. The task class dimension contains the captured
task information c for each reasoning step. The observation dimension contains the visual observa-
tions of the start and goal states {Vs, Vg}, where the intermediate states are set to zero. The action
dimension contains â1:T which represents the intermediate state action sequence, and is initialized
by ϵ ∼ N (0, I) and further constrained by our action mask mechanism to reduce the action space
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Figure 2: Overview of our Masked Temporal Interpolation Diffusion (prediction horizon T = 3).
With a transformer classifier to guide from observations, x̂n is processed in a U-Net with latent space
module for temporal supervision. Starting with denoising through masked projection, we derive the
final actions needed to compute the task-adaptive masked proximity loss for iterative optimization.

to be predicted. Hence, the iteration matrix x̂n ∈ RT×(C+A+O) is expressed as,

x̂n =

[
c c · · · c c
â1 â2 · · · âT−1 âT
Vs 0 · · · 0 Vg

]
, (2)

where n ranges from 0 to N , C is the number of task classes, A is the number of actions and O is the
observation visual feature dimension. Next, the intermediate latent features generated from the latent
space temporal interpolation module will be injected into the diffusion model to iteratively optimize
the matrix x̂n. During the iteration process, we adopt DDIM to accelerate the sampling process with
fewer steps while maintaining strong performance. Lastly, we introduce the task-adaptive masked
proximity loss Ldiff to enhance the reliability of the reasoning results.

3.2 MTID: MASKED TEMPORAL INTERPOLATION DIFFUSION

3.2.1 PRELIMINARIES

Denoising Diffusion Implicit Model (DDIM) (Song et al., 2021) improves sampling efficiency by
making the reverse process deterministic, which reduces stochastic noise and establishes a direct
mapping between the initial noise matrix x̂N and the final output matrix x̂0 across N non-Markovian
steps. This approach reduces the number of steps needed while preserving sample quality.

Based on these advantages, we adopt the DDIM sampling strategy with the U-Net model (Ron-
neberger et al., 2015) for its ability to accelerate sampling with fewer steps while maintaining strong
performance. This is especially useful in scenarios where the quality of results remains comparable
to that of Denoising Diffusion Probabilistic Model (DDPM) (Ho et al., 2020; Nichol & Dhariwal,
2021), despite its deterministic approach.

The forward process is parameterized as:
x̂N =

√
ᾱN x̂0 +

√
1− ᾱN ϵ, (3)

where ᾱN =
∏N

s=1 αs, ϵ ∼ N (0, I), and αs = 1 − βs, which represents the noise schedule
controlling the amount of Gaussian noise added at each step s. The forward process starts with the
original data x̂0 and progressively adds noise, resulting in the final noisy matrix x̂N .

In DDIM, the reverse process is defined as:

x̂n−1 =
√
ᾱn−1

(
x̂n −

√
1− ᾱnfθ (x̂n)√

ᾱn

)
+
√

1− ᾱn−1 · fθ (x̂n) , (4)

where fθ (x̂n) is the neural network’s prediction of the noise component added to x̂n. This reverse
process reconstructs the original data x̂0 from x̂N by iteratively removing the noise introduced dur-
ing the forward diffusion process. Unlike DDPM, DDIM’s deterministic reverse process improves
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(a) Latent space temporal interpolation module. (b) Residual temporal block & cross-attention module.

Figure 3: Module in Figure 3a generates temporally coherent latent features from observations,
while the block in Figure 3b refines these features with temporal dependencies, guiding coherent
action sequence generation.

sampling efficiency by directly mapping the noisy input x̂N to the final output x̂0. This makes
DDIM an efficient method for generating or enhancing samples with fewer steps.

3.2.2 LATENT SPACE TEMPORAL INTERPOLATION

As shown in Figure 3a, the Latent Space Temporal Interpolation Module consists of three core
components: an observation encoder, which transforms observation visual features into latent fea-
tures; a latent space interpolator, which generates multiple features to fill the intermediate supervi-
sion; and transformer encoder blocks, which refine the generated features and enhance the module’s
ability to model the temporal correlations among action sequences.

Specifically, this module first employs an observation encoder E, consisting of convolutional layers,
to transform the visual observations Vs and Vg into their respective latent features Ls and Lg:

Ls, Lg = E(Vs, Vg). (5)

In the latent space, we perform linear interpolation between Ls and Lg to generate a sequence of
interpolated features {I1, I2, . . . , IM}. Unlike fixed linear interpolation, our method dynamically
adjusts the interpolation through the learnable interpolation matrix ϕ ∈ RM×O to facilitate smooth
and task-specific transitions. This matrix, restricted between 0 and 1, is responsible for weighting
the latent features Ls and Lg to generate the intermediate latent features as follows:

ϕ = Sigmoid(W · τ + k),

Ij = (1− ϕj) · Ls + ϕj · Lg,
(6)

where W ∈ RM×O and k ∈ RM×O are the parameters of the linear layer, and O represents the
observation dimension. The matrix τ ∈ RM×O is a learnable matrix initialized with a constant
value, controlling a variable ratio between Ls and Lg . This method requires no parameter tuning
and offers better adaptability to different tasks. The number of latent features M depends on the
number of residual temporal blocks in the model.

The sequence of interpolated features {I1, I2, . . . , IM} is then passed through a series of transformer
encoder blocks TF to obtain the enhanced latent features:

F1, F2, . . . , FM = TF (I1, I2, . . . , IM ). (7)

The self-attention mechanism in the transformers captures dependencies between latent features
at different time steps by computing attention scores across all latent features. Stacking multiple
transformer blocks allows the model to iteratively refine these features, ensuring that temporal and
contextual relationships are effectively learned.

To integrate the interpolated latent features {F1, F2, . . . , FM} into the model during the denoising
process, we incorporate cross-attention layers (Khachatryan et al., 2023) into the residual temporal
blocks of the U-Net, as shown in Figure 3b. This allows the model to dynamically focus on relevant
latent features through a learnable matrix, enhancing its ability to capture complex relationships
with more latent temporal information and improving the quality of action predictions.

In this setup, the latent feature Fj , processed through a linear layer, serves as the key and value,
while x̂n, processed through a convolutional block and combined with t (sampled from random
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integers), acts as the query. The cross-attention is computed as:

x̂n = softmax

(
[CB(x̂n) + TM(t)] · LFT

j√
O

)
· LFj , (8)

where CB denotes a 1D convolution block, TM represents a time MLP, and LFj refers to the result
obtained from passing Fj through a linear layer. This design enables the model to effectively capture
temporal relationships, thereby improving the overall quality of action prediction.

3.2.3 MASKED PROJECTION FOR INITIALIZATION

While our model handles procedure planning tasks effectively, the denoising sampling process in
diffusion models does not always guarantee that the generated actions fall within the desired range.
To mitigate this issue, we introduce a masked projection that constrains the action space during
the training denoising process. This approach is inspired by the masked latent modeling scheme
proposed by Gao et al. (2023).

Since each task has a specific action scope, we activate only the actions associated with the current
task class label c and deactivate the others. When constructing the input matrix x̂N for the denoising
process, we add the initial Gaussian noise solely to the active action positions, while setting the
non-active action positions to zero. This process can be expressed as follows:

ât,d =

{
ϵ, if d ∈ Task(c)

0, if d /∈ Task(c)
, (9)

where d denotes the action ID spanning the action dimension A, and ϵ ∼ N (0, 1). The function
Task(c) represents the set of actions corresponding to task c. By restricting the initial noise in
the input matrix x̂N to the relevant action scope, the model ensures that the procedure planning is
confined to the active actions.

3.3 TASK-ADAPTIVE MASKED PROXIMITY LOSS

Our training process consists of two main stages: (a) training a task classifier to extract task-related
information based on the given start and goal visual observations. (b) utilizing a masked temporal
interpolation diffusion model fθ to fit the distribution of the target action sequence.

In the first stage, we minimize the cross-entropy loss between the predicted and true task classes to
optimize the transformer-based task classifier.

In the second stage, we employ a diffusion-based training scheme and introduce a task-adaptive
masked proximity loss to model the target action sequence, defined as follows:

Ldiff =

T∑
t=1

A∑
d=1

wt ·mt,d · (at,d − āt,d)
2, (10)

where at,d refers to the predicted action ID extracted from the final output x̂0, and āt,d denotes the
ground truth action. This loss function computes the weighted mean squared error (MSE) between
the predicted and ground truth actions at each planning time step. The term wt is a time-dependent
gradient weight that controls the contribution of each time step, and mt,d is a mask matrix that
highlights specific action dimensions or planning time steps according to the task requirements.

The weight wt of gradient weighted loss is defined as:

wt = w0 + (1− w0) ·
min(t, T − t+ 1)− 1

⌈T/2⌉ − 1
, (11)

where w0 is the initial weight. Since the task only observes the start and goal features, Vs and Vg ,
higher weights are assigned to predictions near these endpoints, thereby enhancing performance at
a1 and aT . Lower weights are assigned to the intermediate steps, allowing the model to balance
the endpoints and middle states without placing too much emphasis on the endpoints. Unlike Wang
et al. (2023b), who weights both start and end actions called both sides weighted loss, our approach
uses intermediate latent features for continuous supervision. This provides more comprehensive
guidance, allowing us to apply gradient weights for better alignment of the entire action sequence.
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Table 1: Comparison with other methods on CrossTask dataset. Features extracted by the
HowTo100M-trained encoder and settings of PDPP are marked with †, while other features are
provided directly by CrossTask. Note that we compute mIoU by calculating average of every
IoU of a single action sequence rather than a mini-batch for all datasets.

T = 3 T = 4 T=5 T = 6
Models SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ SR↑
Random <0.01 0.94 1.66 <0.01 0.83 1.66 <0.01 <0.01
Retrieval-Based 8.05 23.30 32.06 3.95 22.22 36.97 2.40 1.10
WLTDO (Ehsani et al., 2018) 1.87 21.64 31.70 0.77 17.92 26.43 — —
UAAA (Abu Farha & Gall, 2019) 2.15 20.21 30.87 0.98 19.86 27.09 — —
UPN (Srinivas et al., 2018) 2.89 24.39 31.56 1.19 21.59 27.85 — —
DDN (Chang et al., 2020) 12.18 31.29 47.48 5.97 27.10 48.46 3.10 1.20
PlaTe (Sun et al., 2022) 16.00 36.17 65.91 14.00 35.29 55.36 — —
Ext-GAIL (Bi et al., 2021) 21.27 49.46 61.70 16.41 43.05 60.93 — —
P3IV (Zhao et al., 2022) 23.34 49.96 73.89 13.40 44.16 70.01 7.21 4.40
EGPP (Wang et al., 2023a) 26.40 53.02 74.05 16.49 48.00 70.16 8.96 5.76
PDPP† (Wang et al., 2023b) 37.2 64.67 66.57 21.48 57.82 65.13 13.45 8.41
KEPP† (Nagasinghe et al., 2024) 38.12 64.74 67.15 24.15 59.05 66.64 14.20 9.27
SCHEMA† (Niu et al., 2024) 38.93 63.80 79.82 24.50 58.48 76.48 14.75 10.53
MTID (Ours)† 40.45 67.19 69.17 24.76 60.69 67.67 15.26 10.30

Additionally, a mask matrix mt,d is applied to selectively emphasize certain planning time steps and
action dimensions. This matrix is defined as:

mt,d =

{
ρ, if ât,d is active
1, otherwise

, (12)

where ρ is a scaling coefficient applied when the action is active, thereby increasing the penalty for
unrelated actions. By this mechanism, actions that are unrelated to the current task are discouraged
from appearing in the output, ultimately enhancing planning accuracy.

4 EXPERIMENTS

4.1 EVALUATION PROTOCOL

Datasets and Settings. We evaluate our MTID method on three instructional video datasets:
CrossTask (Zhukov et al., 2019), COIN (Tang et al., 2019), and NIV (Alayrac et al., 2016).
CrossTask consists of 2,750 videos across 18 tasks, covering 105 actions, with an average of 7.6
actions per video. COIN contains 11,827 videos spanning 180 tasks, with an average of 3.6 actions
per video. NIV includes 150 videos from 5 tasks, with an average of 9.5 actions per video. We
randomly split each dataset into training (70% of videos per task) and testing (30%), following pre-
vious works (Sun et al., 2022; Wang et al., 2023b; Niu et al., 2024). Furthermore, we conduct all
experiments using the setting of PDPP, except for Table 3, where we adopt the setting of KEPP to
ensure a fair comparison. For details, please refer to Appendix D for the comparison with PDPP.

Metrics. Following previous works (Sun et al., 2022; Zhao et al., 2022; Wang et al., 2023b; Niu
et al., 2024; Nagasinghe et al., 2024), we evaluate the models using three key metrics: (1) Success
Rate (SR) is the strictest metric, where a procedure is considered successful only if every predicted
action step exactly matches the ground truth. (2) mean Accuracy (mAcc) computes the average
accuracy of predicted actions at each time step, where an action is deemed correct if it matches
the ground truth action at the corresponding time step. (3) mean Intersection over Union (mIoU)
quantifies the overlap between the predicted procedure and the ground truth by calculating mIoU
as |{at}∩{ât}|

|{at}∪{ât}| , where {at} represents the set of ground truth actions, and {ât} denotes the set of
predicted actions.

4.2 RESULTS

Results for Task Classifier. The first stage of our approach involves predicting the task class based
on the given start and goal observations. We implement this using transformer models, replacing
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Table 2: Classification results on all datasets.

CrossTaskHow COIN NIV
Models T = 3 T = 4 T = 5 T = 6 T = 3 T = 4 T = 3 T = 4

PDPP 92.43 92.98 93.39 93.20 79.42 79.42 100.00 100.00
MTID (Ours) 93.67 94.03 94.02 94.26 81.47 81.47 100.00 100.00

Table 3: Comparisons on COIN and NIV datasets. Note: only this table uses the KEPP’s settings.

COIN NIV

Models T = 3 T = 4 T = 3 T = 4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

Random <0.01 <0.01 2.47 <0.01 <0.01 2.32 2.21 4.07 6.09 1.12 2.73 5.84
DDN 13.90 20.19 64.78 11.13 17.71 68.06 18.41 32.54 56.56 15.97 27.09 53.84
P3IV 15.40 21.67 76.31 11.32 18.85 70.53 24.68 49.01 74.29 20.14 38.36 67.29
EGPP 19.57 31.42 84.95 13.59 26.72 84.72 26.05 51.24 75.81 21.37 41.96 74.90
PDPP 19.42 43.44 - 13.67 42.58 - 22.22 39.50 86.66 21.30 39.24 84.96
KEPP 20.25 39.87 51.72 15.63 39.53 53.27 24.44 43.46 86.67 22.71 41.59 91.49
SCHEMA 32.09 49.84 83.83 22.02 45.33 83.47 27.93 41.64 76.77 23.26 39.93 76.75

MTID 30.44 51.70 59.74 22.74 49.90 61.25 28.52 44.44 56.46 24.89 44.54 57.46

the two-layer Res-MLP architecture employed in Wang et al. (2023b), and train it using a simple
cross-entropy (CE) loss. The classification results are presented in Table 2. Our method consistently
outperforms previous approaches in all evaluated aspects.

Comparisons on CrossTask. We evaluate performance on CrossTask using four prediction hori-
zons. The results in Table 1 demonstrate that our method outperforms all other approaches across
all metrics, except for the SR at T = 6, where our model ranks second. These improvements are
consistent across longer prediction horizons (T = 4, 5, 6) and other step-level metrics, including
mAcc and mIoU.

Comparisons on NIV and COIN. Table 3 presents our evaluation results on the NIV and COIN
datasets, demonstrating that our approach consistently outperforms or matches the best-performing
methods across both datasets. These results highlight that our model performs robustly across
datasets of varying sizes.

4.3 ABLATION STUDIES

Table 4: Ablation studies on our loss function.
Note: W: Both Sides Weighted Loss, GW: Gra-
dient Weighted Loss, M: Mask.

ID MSE W GW M SR↑
1 ✓ 11.89
2 ✓ ✓ 13.90
3 ✓ ✓ 15.10
4 ✓ ✓ 13.26
5 ✓ ✓ ✓ 13.93
6 ✓ ✓ ✓ 15.26

Task-Adaptive Masked Proximity Loss. Ta-
ble 4 demonstrates the effectiveness of our
proposed loss strategy with T = 5 on the
CrossTask dataset, using Mean Squared Er-
ror (MSE) as the base loss. The results show
that both the task-adaptive mask and gradi-
ent weighted loss improve performance. While
MSE alone results in lower scores, adding
masks and fixed weights provides moderate im-
provement. Our approach, which incorporates
gradient weighted loss and intermediate super-
vision, significantly boosts performance by leveraging richer task-relevant features.

Table 5: Ablation study on projection and phase
when T = 3 on CrossTask dataset. Note: “CP”
denotes the condition projection.

Models SR↑ mAcc↑ mIoU↑
w/o MP 39.17 66.49 68.38
MP on iteration 3.38 10.17 9.66
MP on initialization 40.45 67.19 69.17

Masked Projection. Table 5 demonstrates that
our masked projection (MP) on x̂N as input
to the U-Net enhances performance by filtering
out irrelevant actions, allowing the model to fo-
cus on task-relevant actions. We also experi-
ment with applying the mask during denoising
iterations, but this approach proved ineffective.
During the denoising process, the input matrix
contains both positive and negative logits, and
in some cases, negative values can improve the final score. Masking at this stage disrupted the
natural behavior of the logits and the diffusion denoising process. Furthermore, applying the mask
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before the condition projection led to sub-optimal results due to inaccurate task labels. Therefore,
we apply the mask only after the condition projection for optimal performance.

(a) Ablation studies on different simple initializa-
tion coefficient values τ .

(b) Ablation studies on using different interpolated
features for transformer blocks.

(c) Ablation studies on selection with different in-
terpolated features.

(d) Ablation studies on different fusion methods.

Figure 4: Ablation Studies for Interpolation Strategy. Figure 4b illustrates the features generated by
the interpolator, where “copy(Lg)” means Ij = Lg , and “copy(Lt)” indicates Ij = Ls for j ≤ M

2

and Ij = Lg for j > M
2 . In Figure 4c, Ii to I−i indicates that we use interpolated features from the

i-th to the last i-th for the second interpolation. In Figure 4d, “all F” denotes that each cross-attention
module receives F1:M as input, “step F” means we input one FM

2
at the start and gradually increase

the number of features inputted towards both sides, and “-all” indicates that we omit inputting Fj

during the upsampling, middle-sampling, and downsampling processes in U-Net.

Table 6: Component ablation. Note: Int: Interpolation,
Enc: Encoder, Trans: Transformer.

ID Int Enc Trans SR↑ mAcc↑ mIoU↑
1 ✓ 37.86 65.42 67.32
2 ✓ ✓ 39.23 66.62 68.44
3 ✓ ✓ 39.49 66.81 68.68
4 ✓ ✓ ✓ 40.45 67.19 69.17

Latent Space Temporal Interpolation
Module. To evaluate the impact of var-
ious components within the module, we
conduct ablation studies on the CrossTask
dataset with T = 3. The results in Ta-
ble 6 indicate that the observation encoder
effectively transforms visual observations
into latent features, enhancing causal in-
ference and capturing temporal logic. The
interpolator enriches these features by generating multiple interpolated versions, which aids in rea-
soning. The transformer encoder further refines these features, ensuring both mathematical interpo-
lation and logical consistency, thereby improving the model’s inference capabilities.

Interpolation Strategy. Figure 4 illustrates our adapted interpolation strategies for contrast. Ini-
tially, we test different initialization τ values in Figure 4a. The highest score occurs when ϕ is
initialized to 1, which proves to be the most stable and achieves the best overall performance, indi-
cating that ϕ converges close to 1. Further experiments in Figure 4b compare the use of Ls, Lg , or a
combination of both through copying and direct return. The results show that directly returning Lg

performs well, suggesting that Vg may play a critical role in action sequence inference. Although
Ls and Lg are unadjusted features, the transformer encoder blocks can refine them to capture richer
temporal logic and filter out irrelevant details, resulting in relatively reasonable scores. Additionally,
we perform a second interpolation using the obtained Fj (Figure 4c). This experiment shows that
as the features shift towards the center (from Fi to F−i), performance declines due to the loss of
original information, aligning with intuition. In Figure 4d, we examine different strategies for cross-
attention. The “all F” approach results in sub-optimal performance, potentially due to the inclusion
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of numerous features being limited by the capacity of the layers, which diminishes the amount of
information each feature can carry and introduces disorder. Similarly, the “step F” strategy may
suffer from the same issue. When cross-attention is removed from various stages of the U-Net, we
observe that the more layers are removed, the worse the results become. However, when all layers
are removed, the results improve slightly, suggesting that introducing latent features into the U-Net
without sufficient information disturbs the original distribution, leading to sub-optimal outcomes.

4.4 UNCERTAINTY MODELING

We present the uncertainty modeling results for CrossTask and NIV in Table 7. Two baselines from
Wang et al. (2023b) are used for comparison: the Noise baseline, which samples from random noise
and uses the given observations and task class condition to obtain results in a single step without
the diffusion process, and the Deterministic baseline, where x̂N = 0 and the model predicts a
fixed outcome. We evaluate performance using KL divergence, NLL, ModeRec, and ModePrec, as
outlined in Zhao et al. (2022).

Our approach outperforms the baselines on CrossTask, particularly in modeling uncertainty and
generating diverse plans. Compared to Wang et al. (2023b), our model excels in the deterministic
setting with T = 3, demonstrating its ability to capture latent temporal relationships even with fewer
time steps. For the NIV dataset, we observe that despite its small size, our diffusion-based process
still delivers improvements. Additional visualizations are provided in the appendix.

Table 7: The results of uncertain modeling on the CrossTask and NIV datasets.

CrossTask NIV
Metric Method T = 3 T = 4 T = 5 T = 6 T = 3 T = 4

KL-Div ↓
Deterministic 3.12 3.88 4.39 4.04 5.40 5.29
Noise 2.75 3.16 4.37 4.74 5.36 6.03
Ours 2.66 2.81 2.12 1.97 4.65 5.47

NLL ↓
Deterministic 3.70 4.45 4.98 5.34 5.48 5.42
Noise 3.33 4.04 4.95 5.32 5.44 6.12
Ours 3.24 3.69 3.22 3.27 4.74 5.56

ModePrec ↑
Deterministic 52.76 41.13 31.46 18.65 27.77 26.48
Noise 54.30 46.15 22.52 19.09 23.19 32.39
Ours 56.19 47.05 32.75 22.98 30.75 35.88

ModeRec ↑
Deterministic 31.71 20.55 18.70 4.63 26.48 21.57
Noise 43.92 22.35 21.53 17.53 32.39 23.75
Ours 47.34 37.97 39.64 35.03 35.88 29.90

5 CONCLUSION

In this paper, we introduce the Masked Temporal Interpolation Diffusion (MTID) model, specifi-
cally designed for procedure planning in instructional videos. Our model employs a latent space
temporal interpolation module within a U-Net architecture to capture intermediate states and tem-
poral relationships between actions. By incorporating a task-adaptive masked strategy during both
inference and loss calculation, MTID improves the accuracy and consistency of generated action
sequences. Extensive experiments across the CrossTask, COIN, and NIV datasets demonstrate that
our model consistently outperforms existing methods on key metrics. For future work, we aim to
further optimize the memory efficiency of the model to handle larger datasets more effectively. Ad-
ditionally, refining the mask mechanism to enhance control over intermediate state generation and
exploring more diverse interpolation strategies remain promising directions. We also plan to extend
the application of the temporal interpolation module to broader procedural learning tasks, including
more complex conditional planning scenarios.
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REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, we provide general details on the datasets and experi-
mental settings in Section 4.1. Comprehensive information on the model architecture, datasets, and
training strategies can be found in Appendix A.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE DETAILS

In the first learning stage, we aim to predict the task class label given the observations {Vs, Vg}.
We employ a simple 4-layer transformer model for this task and use cross-entropy loss to train the
model by comparing its output with the ground truth task class labels.

The classifier is a neural network based on the transformer architecture. It first embeds the input data
through a linear layer, after which the embedded data is processed by multiple stacked transformer
encoder layers. The output of the encoder layers is averaged and then passed through a series of
fully connected layers with ReLU activation functions. Finally, the processed data is passed through
a linear layer to generate the final output. Dropout layers are applied throughout the model to prevent
overfitting.

Next, our main model is based on a 3-layer U-Net (Ronneberger et al., 2015), similar to Wang
et al. (2023b), but adapted for temporal action prediction. Each layer consists of two residual tem-
poral blocks (He et al., 2016), followed by either downsampling or upsampling. Each residual
temporal block includes two convolutional layers, group normalization (Wu & He, 2018), Mish ac-
tivation (Misra, 2019), and a cross-attention module for feature fusion. Temporal embeddings are
generated via a fully connected layer and added to the output of the first convolution. To handle the
short planning horizon (T = {3, 4, 5, 6}), we employ 1D convolutions with a kernel size of 2, stride
of 1, and no padding for downsampling/upsampling used by Wang et al. (2023b), instead of the
max-pooling approach, ensuring the horizon length remains unchanged. The middle block consists
of only two residual temporal blocks.

The input matrix x̂n is a concatenation of the task class, action sequences, and observation features,
with a dimension of fusion dim = C + A + O, where C, A, and O represent the number of task
classes, action labels, and visual features, respectively. During the downsampling phase, the input
is embedded through [fusion dim → 256 → 512 → 1024], with the reverse process occurring
during the upsampling phase.

The latent space temporal interpolation module consists of three main components: an observation
encoder, a latent space interpolator, and transformer encoder blocks. The observation encoder re-
duces the input dimensionality using two 1D convolutional layers with ReLU activations. The latent
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space interpolator generates intermediate features between two encoded representations via linear
interpolation, guided by a learnable linear layer initialized with matrix τ . The generated matrix is
passed through a Sigmoid function to compute Ij . Finally, standard transformer encoder blocks
apply attention mechanisms to enhance the temporal relationships in Fj , ultimately producing trans-
formed latent features with a shape of [M,O], where M refers to the number of residual temporal
blocks in the U-Net.

For the diffusion process, we employ a cosine noise schedule to generate {βn}Nn=1, which controls
the amount of noise added at each step. These values correspond to the variance of the Gaussian
noise introduced at each stage of diffusion.

A.2 DATASET DETAILS

Each video in the dataset is annotated with action labels and their corresponding temporal bound-
aries, denoted as {si, ei} for the i-th action, where si and ei represent the start and end times,
respectively. The total number of actions in the dataset is denoted as Num. We extract step se-
quences at:(t+T−1) from the videos, with the horizon T ranging from 3 to 6. Following the method
in previous work (Wang et al., 2023b), action sequences {[at, . . . , at+T−1]}Num−T+1

t=1 are generated
by sliding a window of size T over the Num actions. For each sequence, the video clip feature at
the start time of action at is used as the starting observation Vs, and the clip feature at the end time
of action at+T−1 is used as the goal state Vg . Both clips are 3 seconds in duration. The start and
end times of each sequence are rounded to ⌊st⌋ and ⌈et+T−1⌉, respectively, with the clip features
between these times used as Vs and Vg .

For the CrossTask dataset, we consider two types of pre-extracted features: (1) the 3200-dimensional
features provided by the dataset, which combine I3D, ResNet-152, and audio VGG features (Car-
reira & Zisserman, 2017; He et al., 2016; Hershey et al., 2017), and (2) features extracted using an
encoder trained on the HowTo100M dataset (Miech et al., 2019), as used in (Wang et al., 2023b). We
utilize the latter due to its smaller size. For the COIN and NIV datasets, we also use HowTo100M
features (Wang et al., 2023b) to maintain consistency and ensure fair comparison.

A.3 DETAILS OF METRICS

Previous works (Chang et al., 2020; Bi et al., 2021; Sun et al., 2022) computed the mIoU metric
over mini-batches, averaging the results across the batch size. However, this method introduces
variability depending on the batch size. For instance, if the batch size equals the entire dataset, all
predicted actions may be considered correct. In contrast, using a batch size of one penalizes any
mismatch between predicted and ground-truth sequences. To address this issue, we follow Wang
et al. (2023b) by standardizing mIoU calculation, computing it for each individual sequence and
then averaging the results, effectively treating the batch size as one. However, this approach may
result in our mIoU scores being lower than those reported by others.

A.4 TRAINING DETAILS

Following Wang et al. (2023b), we employ a linear warm-up strategy to train our model, with specific
protocols adjusted for different datasets. For the CrossTask dataset, we set the diffusion steps to 250
and train for 20,000 steps. The learning rate is linearly increased to 5 × 10−4 over the first 3,333
steps, then halved at steps 8,333, 13,333, and 18,333. For the NIV dataset, with 50 diffusion steps,
training lasts for 5,000 steps. The learning rate ramps up to 3×10−4 over the first 1,000 steps and is
reduced by 50% at steps 2,666 and 4,332. In the larger COIN dataset, we use 300 diffusion steps and
train for 30,000 steps. The learning rate increases to 1× 10−5 in the first 5,000 steps and is halved
at steps 12,500, 20,000, and 27,500, stabilizing at 2.5 × 10−6 for the remaining steps. Training is
performed using ADAM (Kingma, 2014) on 8 NVIDIA RTX 3090 GPUs.

A.5 DETAILS OF UNCERTAINTY MODELING

In the main paper, we investigate the probabilistic modeling capability of our model on the
CrossTask and COIN datasets, demonstrating that our diffusion-based model can generate both di-
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verse and accurate plans. Here, we provide additional details, results, and visualizations to further
illustrate how our model handles uncertainty in procedure planning.

Additional Results on COIN. Results on the COIN dataset are presented in Table 8. On the COIN
dataset, our model underperforms relative to the Deterministic baseline. We attribute this to the
shorter action sequences, where reduced uncertainty is more advantageous but less critical for long-
horizon procedural planning.

Visualizations for Uncertainty Modeling. In Figures 7a to 7d, we present visualizations of various
plans with the same start and goal observations, generated by our masked temporal interpolation
diffusion model on CrossTask for different prediction horizons. We have observed that some results
contain repeated actions, which is due to the probabilistic nature of our model’s prediction method,
making repeated action predictions unavoidable. The top five predicted logits for the actions are
passed through a softmax function, and the action with the highest probability is selected to form
the prediction figures.

Table 8: The results of uncertain modeling
on the COIN dataset.

Metric Method T = 3 T = 4

KL-Div ↓
Deterministic 4.47 4.40
Noise 5.12 4.88
Ours 4.74 4.47

NLL ↓
Deterministic 5.42 5.81
Noise 6.07 6.28
Ours 5.69 5.87

ModePrec ↑
Deterministic 34.04 32.47
Noise 23.16 22.18
Ours 28.83 26.91

ModeRec ↑
Deterministic 27.41 20.88
Noise 21.06 15.24
Ours 23.27 18.14

Details of Evaluating Uncertainty Modeling. For
the Deterministic baseline, we sample once to obtain
the plan, as the result is fixed when the observations
and task class conditions are given. For the Noise
baseline and our diffusion-based model, we sample
1,500 action sequences to calculate the uncertainty
metrics. To efficiently perform this process, we ap-
ply the DDIM (Song et al., 2021) sampling method
to our model, enabling each sampling process to be
completed in 10 steps. This accelerates sampling by
20 times for CrossTask and COIN, and by 5 times
for NIV. It is important to note that multiple sam-
pling is only required when evaluating probabilistic
modeling—our model can generate a good plan with
just a single sample.

B BASELINE METHODS

In this section, we describe the baseline methods used in our study.

• Random Selection. This method randomly selects actions from the available action space
within the dataset to generate plans.

• Retrieval-Based Approach. Given the observations {Vs, Vg}, this method retrieves the
nearest neighbor by minimizing the visual feature distance within the training dataset. The
action sequence associated with the retrieved neighbor is then used as the plan.

• WLT DO (Ehsani et al., 2018). This method employs a recurrent neural network (RNN)
to predict action steps based on the provided observation pairs.

• UAAA (Abu Farha & Gall, 2019). UAAA is a two-stage approach that uses an RNN-
HMM model to predict action steps in an auto-regressive manner.

• UPN (Srinivas et al., 2018). UPN is a path planning algorithm for physical environments
that learns a plannable representation to generate predictions. To produce discrete action
steps, a softmax layer is appended to the model’s output, as described in (Chang et al.,
2020).

• DDN (Chang et al., 2020). DDN is an auto-regressive framework with two branches de-
signed to learn an abstract representation of action steps and predict transitions in the fea-
ture space.

• PlaTe (Sun et al., 2022). PlaTe extends DDN by incorporating transformer modules into
its two branches for prediction tasks. PlaTe uses a different evaluation protocol compared
to other models.

• Ext-GAIL (Bi et al., 2021). Ext-GAIL addresses procedure planning using reinforcement
learning. Unlike our approach, Ext-GAIL divides the planning problem into two stages:
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the first provides long-horizon information, which is then used by the second stage. In
contrast, our approach derives sampling conditions directly.

• P3IV (Zhao et al., 2022). P3IV is a transformer-based, single-branch model that incorpo-
rates a learnable memory bank and an additional generative adversarial framework. Similar
to our model, P3IV predicts all action steps simultaneously during inference.

• EGPP (Wang et al., 2023a). EGPP proposes an event-guided paradigm for procedure
planning, where events are inferred from observed visual states to guide the prediction of
intermediate actions. The E3P model uses event-aware prompting and Action Relation
Mining to improve action prediction accuracy, significantly outperforming existing meth-
ods in experiments.

• PDPP (Wang et al., 2023b). PDPP is a two-branch framework that models temporal de-
pendencies and action transitions using a diffusion process. Like our model, PDPP predicts
all actions simultaneously, refining predictions over multiple stages to enhance logical con-
sistency during inference.

• KEPP (Nagasinghe et al., 2024). KEPP is a knowledge-enhanced procedure planning
system that leverages a probabilistic procedural knowledge graph (P2KG) learned from
training plans. This graph acts as a “textbook” to guide step sequencing in instructional
videos. KEPP predicts all action steps simultaneously with minimal supervision, achieving
leading performance.

• SCHEMA (Niu et al., 2024). SCHEMA focuses on procedure planning by learning state
transitions. It employs a transformer-based architecture with cross-modal contrastive learn-
ing to align visual inputs with text-based state descriptions. By tracking intermediate states,
SCHEMA predicts future actions using a large language model to capture temporal depen-
dencies and logical transitions, improving action planning in instructional videos.

C ADDITIONAL ABLATION STUDIES

Model Size. Due to the large size of the COIN dataset, we adjust the model size by modifying
the U-Net architecture. As shown in Table 9, increasing the model size results in higher scores for
the COIN dataset. We believe that optimizing the model to be more memory-efficient could further
improve performance, which we plan to explore in future work. In Table 9, increasing the size to
512 does not improve the scores on CrossTask. We believe this suggests overfitting, indicating that
a model size of 256 is sufficient for this task.

Table 9: Ablation study on the role of model size on COIN and CrossTask datasets.

T = 3 T = 4
Dataset Size SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

COIN
128 23.01 45.44 51.93 19.69 45.32 55.06
256 28.84 50.44 57.86 21.64 48.06 59.52
512 30.90 52.17 59.58 23.10 49.71 60.78

CrossTask
128 23.01 45.44 51.93 19.69 45.32 55.06
256 40.45 67.19 69.17 24.76 60.69 67.67
512 37.94 65.16 67.43 21.97 58.30 66.15

Components of Observation Encoder. Table 10 presents the impact of different encoder compo-
nents. Based on this ablation study, the optimal model consists of two 1D convolution layers with
ReLU activation, which achieves the best balance between depth and activation, resulting in the
highest scores across all metrics. Adding more layers does not consistently improve performance,
and activation functions like ReLU play a key role in enhancing model effectiveness. We believe
that ReLU introduces non-linearity, enabling the network to capture temporal latent features more
effectively. Moreover, by setting negative values to zero, ReLU promotes sparse activation, which
may aid in the extraction and construction of latent features.
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Table 10: Ablation study on the observation encoder components (T = 3, CrossTask).

Models SR↑ mAcc↑ mIoU↑
1 1d conv. layer w/ ReLU 39.71 66.91 69.05
2 1d conv. layers w/ ReLU (Ours) 40.45 67.19 69.17
3 1d conv. layers w/ ReLU 36.04 64.41 66.55
1 1d conv. layer w/o ReLU 39.32 66.70 68.91
2 1d conv. layers w/o ReLU 39.38 66.73 68.65
3 1d conv. layers w/o ReLU 37.77 65.06 67.61

Table 11: Ablation study on the role of classifier type on CrossTask dataset.

T = 3 T = 4 T=5 T = 6
Models SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ SR↑
PDPP (Res-MLP) 37.2 55.35 66.57 21.48 57.82 65.13 13.58 8.47
PDPP (Transformer) 39.08 66.32 68.47 22.48 60.72 66.13 13.77 8.63
MTID (Transformer) 40.45 67.19 69.17 24.76 60.69 67.67 15.26 10.30

Transformer Classifier Type. We conduct ablation studies on the CrossTask and COIN datasets
to evaluate the impact of our transformer-based classifier. As shown in Tables 11 and 12, the in-
clusion of the transformer-based classifier significantly boosts the performance of PDPP. Although
the improvements are modest for longer horizons, this highlights the effectiveness of our temporal
interpolation module on CrossTask compared to PDPP with the same transformer classifier. How-
ever, the classifier’s performance may also limit further improvements. Additionally, we observe
that even with incorrect task class labels during supervision, the model still achieves strong scores,
demonstrating its robustness, fault tolerance, and error correction capabilities.

(a) Ablation studies on different complex initial-
ization methods with max value 6.

(b) Ablation studies on different complex initial-
ization methods with max value 1.

Figure 5: Ablation studies for interpolation strategy. Note: “always 1” indicates that τ is initialized
to ‘1’; “linear ↑” denotes that the values in the matrix τ increase linearly, with the first column
initialized to ‘1’ and the last column set to ‘6’ in Figure 5a, with a gradual linear increase in between,
and from ‘0’ to ‘1’ in Figure 5b; “linear ↓” represents the reverse process. “square ↑” indicates that
the value of τ increases following a square progression. “↑ & ↓” refers to a variation similar to our
gradient loss weights, where the value first increases linearly and then decreases.

More Interpolation Strategies. We experimented with both linear and non-linear strategies, as
shown in Figure 5. In Figure 5a, we found that using a maximum value of ‘6’ led to poor results,
particularly for the “square ↑” and “square ↓” strategies, indicating a significant deviation from
the desired final value. When we reduced the maximum value to ‘1’, the results still remained
unsatisfactory, suggesting that the final value of τ consistently converged around ‘1’, resulting in
sub-optimal performance.

Number of Transformer Encoder Layers. Figure 6a shows the scores of three metrics across
different numbers of layers in the transformer encoder blocks. The results indicate that using fewer
layers (1 or 2) results in a significant drop in performance, with SR being the most adversely affected.
As the number of layers increases, the metrics stabilize, with notable improvements, especially in
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Table 12: Ablation study on the role of classifier type on COIN dataset.

T = 3 T = 4
Models SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑
PDPP (Res-MLP) 21.33 45.62 51.82 14.41 44.10 51.39
PDPP (Transformer) 24.02 48.03 55.21 17.36 46.12 55.82
MTID (Transformer) 28.84 50.44 57.86 21.64 48.06 59.52

SR, which shows a significant positive shift at 6 and 7 layers. In contrast, mAcc and mIoU show
more subtle variations, with slight positive changes as the number of layers increases, reflecting a
steady trend. These results suggest that an optimal configuration of 6 or 7 layers delivers the best
overall performance.

Table 13: Performance comparison of T and M.

Method SR↑ mAcc↑ mIoU↑
T 38.64 66.13 68.05
M 40.45 67.19 69.17

Table 14: Ablation studies on different components on CrossTask. This ablation study effectively
demonstrates the predictive capability of our method. Note: The results of ID 1 are from PDPP.

ID Interpolation Module Mask Projection Proximity Loss SR↑ mAcc↑ mIoU↑
1 37.20 64.67 66.57
2 ✓ 39.03 66.49 68.26
3 ✓ 38.88 66.36 68.35
4 ✓ 38.57 66.02 68.17
5 ✓ ✓ 39.64 66.74 68.77
6 ✓ ✓ 39.71 66.65 68.83
7 ✓ ✓ 39.17 66.49 68.38
8 ✓ ✓ ✓ 40.45 67.19 69.17

Ablation for Our Different Methods. Table 14 presents the effects of our proposed methods. The
results demonstrate that each component significantly enhances the model’s performance.

D MORE ANALYSIS FOR METHODS

More Explanation for M . Our MTID diffusion model takes as input a matrix containing action se-
quences with T timesteps and is based on U-Net, which contains M residual temporal blocks in the
downsampling, upsampling, and middle layers for directly diffusing and generating T intermediate
target actions. To ensure that each intermediate layer contains valid auxiliary information, our Latent
Space Temporal Interpolation Module needs to generate M intermediate auxiliary features. Subse-
quently, we apply cross-attention in residual temporal blocks across the M interpolated features and
the entire input matrix rather than individual timesteps, enabling better temporal integration. We
also conducted experiments to demonstrate the effect of M. Our results in Table 13 showed that
using interpolated features only for T steps led to suboptimal performance. This also supports our
decision to use interpolated features across all M modules.

More Explanation for Weighted Gradient Loss. In PDPP, for handling the loss, a coefficient w
with a value of 10 is multiplied at the beginning and end positions. The paper believes that both sides
are more important because they are the most related actions for the given observations. Experiments
have shown that this approach is indeed effective. However, in my opinion, it doesn’t better conform
to the pattern of action accuracy. From my observations, I found that the accuracy tends to decrease
for actions closer to the middle, but not identical in the middle as shown in Figure 6b. This is
because the supervision from real visual features is stronger on both ends, while, as we move toward
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(a) Ablation studies on the number of transformer en-
coder block layers.

(b) Accuracy changes of different actions at vari-
ous time steps as epochs progress when T=5.

Figure 6: Combined ablation studies of different coefficients. Note: “t1” refers to the number of
transformer encoder layers in Figure 6a.

the middle, there is actually less available real information. Inspired by this, I designed a loss
function that imposes stricter supervision constraints on both ends while relaxing the constraints in
the middle, achieving better results.

Upper Bound of Visual Features Supervision. The comparison presented in Table 15 reveals that
results vary depending on dataset characteristics, particularly size, task types, and average action
sequence lengths. To explain this, we categorize our interpolated features into two parts: simple
memory and hard temporal relationships. For instance, COIN, which has the largest dataset size
but the shortest sequences, demonstrates that interpolated features excel in tasks focused on simple
memory. In contrast, NIV, being the smallest dataset with the longest sequences, shows comparable
performance between real and interpolated features. Meanwhile, CrossTask, characterized by large
size and long sequences, exhibits a significant performance gap favoring real features. These find-
ings highlight a trade-off where interpolated features perform well in simpler datasets but struggle
with complex temporal relationships in larger, more diverse datasets. This underscores the necessity
for improved interpolation methods to effectively manage complex, temporally diverse datasets in
future research.

Table 15: Combined results for CrossTask, COIN, and NIV datasets with interpolated features and
original real features.

T = 3 T = 4 T=5 T = 6
Dataset Method SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ SR↑

CrossTask Interpolated 40.45 67.19 69.17 24.76 60.69 67.67 15.26 10.30
Real 49.05 73.62 73.23 36.55 70.42 72.09 24.88 24.02

COIN Interpolated 30.90 52.17 59.58 23.10 49.71 60.78 – –
Real 27.07 49.07 57.53 20.01 47.35 58.24 – –

NIV Interpolated 29.63 48.02 56.49 25.76 46.62 58.50 – –
Real 32.59 50.25 56.40 24.02 48.36 58.92 – –

Comparison with PDPP. The results on COIN and NIV under the PDPP settings, as presented
in Table 16, indicate that our performance on NIV is slightly lower due to two main factors. First,
the dataset size of NIV is significantly smaller than that of CrossTask and COIN, which leads to the
model excessively learning detailed patterns from the training data and consequently reducing its
generalization ability. Second, there are differences in experimental settings: PDPP defines states
as the window between start and end times, while KEPP uses a 2-second window around start and
end times. This difference allows PDPP to access more step information, particularly for short-
term actions, which may weaken the impact of our interpolation feature supplementation. Despite
these challenges with NIV under PDPP settings, our model demonstrates strong capabilities on the
larger CrossTask and COIN datasets, highlighting its effectiveness in temporal logic and memory
utilization.
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Table 16: Comparisons between PDPP and MTID under the setting of PDPP.

COIN NIV

Models T = 3 T = 4 T = 3 T = 4
SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑ SR↑ mAcc↑ mIoU↑

PDPP 21.33 45.62 51.82 14.41 44.10 51.39 30.20 48.45 57.28 26.67 46.89 59.45
MTID 30.90 52.17 59.58 23.10 49.71 60.78 29.63 48.02 56.49 25.76 46.62 58.50

E FURTHER DISCUSSIONS

Limitations. The limitations of our method are as follows. First, while the logical consistency
between the actions generated by our model is generally strong, there is no guarantee of perfect
alignment with the task. Mismatches were observed during the experiments, which is a common
issue in procedure planning models. This challenge arises because the labels for multi-task and
multi-action tasks in the dataset are replaced by data IDs, which may lead to issues with numerical
calculations.

Comparison Across Supervision Strategies and Mid-State Handling. Our MTID model intro-
duces several innovations that set it apart in terms of how it handles supervision and mid-state action
prediction: (1) Supervision Approach: Weak vs. Full Supervision: DDN, PlaTe, and Ext-GAIL
rely on fully supervised learning, requiring extensive annotations to model temporal dynamics. In
contrast, MTID uses a weakly supervised approach with a latent space temporal interpolation mod-
ule, capturing mid-state information without detailed annotations. Its diffusion process and latent
interpolation offer finer-grained supervision for intermediate steps, outperforming Ext-GAIL and
DDN in long-term predictions. (2) Intermediate State Supervision and Logical Structure: PDPP
uses task labels to bypass intermediate state supervision, and Skip-Plan reduces uncertainty by skip-
ping uncertain intermediate actions. However, both methods struggle to fully capture the logical
structure of intermediate steps. MTID addresses this by explicitly supervising mid-state actions
through latent space interpolation, ensuring that the generated sequences are both temporally logical
and well-aligned with the task requirements. (3) Handling of External Knowledge and Probabilistic
Guidance: P3IV leverages natural language instructions for weak supervision, while KEPP uses
a probabilistic procedural knowledge graph (P2KG) to guide the planning process. While both
methods aim to improve action prediction through external guidance, MTID distinguishes itself by
focusing on direct mid-state supervision via intermediate latent features from a diffusion model.
This approach provides more precise control over action generation, ensuring logical consistency
across the entire sequence. (4) State Representation and Visual Alignment: SCHEMA relies on
large language models (LLMs) to describe and align state changes with visual observations, focus-
ing on high-level state transitions. MTID, in contrast, directly uses mid-state supervision through
latent space temporal interpolation, which improves visual-level supervision and enhances temporal
reasoning, resulting in more accurate action sequence predictions.

Generalization Capabilities. Our MTID model demonstrates strong generalization across varia-
tions in action steps, object states, and environmental conditions. For action step variations, the
model was evaluated with sequences of different lengths, ranging from 3 to 6 steps. The results
consistently showed that MTID outperforms state-of-the-art models, leveraging its latent space tem-
poral interpolation to capture temporal relationships across various step lengths. In terms of object
states and environmental contexts, the benchmark datasets used for evaluation cover a wide range
of topics, such as cooking, housework, and car maintenance, featuring diverse objects like fruits,
drinks, and household items. For instance, the CrossTask dataset includes 105 step types across 18
tasks, while the COIN dataset features 778 step types over 180 tasks. These tests highlight MTID’s
ability to generalize effectively, capturing the nuances of varying object states and environmental
conditions, due to its robust interpolation and diffusion framework.
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(a) Horizon T = 3

(b) Horizon T = 4

(c) Horizon T = 5

(d) Horizon T = 6

Figure 7: Visualization of diverse plans produced by our model with different horizons. Note: each
figure includes images depicting the start and goal observations, the first row labeled “GT” showing
the ground truth actions, the last row labeled “Failure” illustrating a plan that does not achieve the
goal, and the middle rows displaying multiple reasonable plans produced by our model. These
decimals represent the probability values obtained from action prediction.
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