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Abstract

Generalization error bounds from learning theory provide statistical guarantees on how well
an algorithm will perform on previously unseen data. In this paper, we characterize the
impacts of data non-IIDness due to censored feedback (a.k.a. selective labeling bias) on
such bounds. We first derive an extension of the well-known Dvoretzky-Kiefer-Wolfowitz
(DKW) inequality, which characterizes the gap between empirical and theoretical CDFs
given IID data, to problems with non-IID data due to censored feedback. We then use this
CDF error bound to provide a bound on the generalization error guarantees of a classifier
trained on such non-IID data. We show that existing generalization error bounds (which
do not account for censored feedback) fail to correctly capture the model’s generalization
guarantees, verifying the need for our bounds. We further analyze the effectiveness of (pure
and bounded) exploration techniques, proposed by recent literature as a way to alleviate
censored feedback, on improving our error bounds. Together, our findings illustrate how
a decision maker should account for the trade-off between strengthening the generaliza-
tion guarantees of an algorithm and the costs incurred in data collection when future data
availability is limited by censored feedback.

1 Introduction

Generalization error bounds are a fundamental concept in machine learning, which provide (statistical)
guarantees on how a machine learning algorithm trained on some given dataset will perform on new, unseen
data. However, many implicit or explicit assumptions about training data are often made when training
ML models and deriving theoretical guarantees for their performance. These assumptions include access
to independent and identically distributed (IID) training data, the availability of correct labels, and static
underlying data distributions (Bartlett & Mendelson, 2002 Bousquet & Elisseeft] |2002; |Cortes et al., [2019;
2020). Some studies in this area, e.g. (Cheng et al.|(2018); [Kuznetsov & Mohri| (2017)); Mohri & Rostamizadeh
(2007} |2008), have provided bounds when these assumptions are removed. In this paper, we are similarly
interested in the impact of non-IID training data, specifically due to censored feedback, on the learned
algorithm’s generalization error guarantees.

Censored feedback, also known as selective labeling bias, arises in many applications wherein human or
algorithmic decision-makers set certain thresholds or criteria for favorably classifying individuals, and sub-
sequently only observe the true label of individuals who pass these requirements. For example, schools may
require a minimum GPA or standardized exam score for admission; yet, graduation rates are only observed
for admitted students. Financial institutions may set limits on the minimum credit score required for loan
approval; yet, loan return rates are only observed for approved applicants. In these types of classification
tasks, the algorithm’s training dataset grows over time (as students are admitted, loans are granted); how-
ever, the new data is selected in a non-IID manner from the underlying domain, due to the unobservability of
the true label of rejected data. This type of bias also arises when determining recidivism in courts, evaluat-
ing the effectiveness of medical treatments, flagging fraudulent online credit card transactions, etc. Despite
this ubiquity, to the best of our knowledge, generalization error bounds given non-IID training data due to
censored feedback remain unexplored. We close this gap by providing such bounds in this work, show the
need for them, and formally establish the extent to which censored feedback hinders generalization.



Under review as submission to TMLR

One of the commonly proposed methods to alleviate the impacts of censored feedback is to explore the data
domain, and admit (some of) the data points that would otherwise be rejected, with the goal of expanding
the training data. Existing approaches to exploration can be categorized into pure exploration (Bechavod
et al.) [2019; Kazerouni et al., [2020; Kilbertus et all 2020; |[Nie et al., |2018), where any individual in the
exploration range may be admitted (with some probability €), and bounded exploration (Balcan et al., 2007}
Lee et al.| 2023} Wei, |2021; [Yang et al., 2022)), in which the exploration range is further limited based on cost
or informativeness of the new samples. The additional data samples collected through (pure or bounded)
exploration may not only help improve the accuracy of the learned model when evaluated on a given test
data (as shown by these prior works), but may also help tighten the generalization error guarantees of the
learned model; we formalize the latter improvement, and show how the frequency and range of exploration
can be adjusted accordingly.

We note that censored feedback may or may not be avoidable depending on the application (given, e.g.,
the costs or legal implications of exploration). We therefore present generalization error bounds both with
and without exploration, establishing the extent to which the decision maker should be concerned about
censored feedback’s impact on the learned model’s guarantees, and how well they might be able to alleviate
it if exploration is feasible.

Our approach. We characterize the generalization error bounds as a function of the gap between the
empirically estimated cumulative distribution function (CDF) obtained from the training data, and the
ground truth underlying distribution of data. At the core of our approach is noting that although censored
feedback leads to training data being sampled in a non-IID fashion from the true underlying distribution, this
non-IID data can be split into IID subdomains. Existing error bounds for IID data, notably the Dvoretzky-
Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al. {1956} Massart] [1990), can provide bounds on the
deviation of the empirical and theoretical subdomain CDFs, as a function of the number of available data
samples in each subdomain. The challenge, however, lies in reassembling such subdomain bounds into an
error bound on the full domain CDFs. Specifically, this will require us to shift and/or scale the subdomain
CDFs, with shifting and scaling factors that are themselves empirically estimated from the underlying data,
and can be potentially re-estimated as more data is collected. Our analysis identifies these factors, and
highlights the impacts of each on the error bounds.

Summary of findings and contributions:

1. We generalize the well-known Dvoretzky-Kiefer-Wolfowitz (DKW) inequality, which characterizes
the gap between empirical and theoretical CDFs given IID data, to problems with non-IID data
due to censored feedback without exploration (Theorem [2)) and with exploration (Theorem , and
formally show the extent to which censored feedback hinders generalization.

2. We characterize the change in these error bounds as a function of the severity of censored feedback
(Proposition [I) and the exploration frequency (Proposition [2)). We further show (Section [3.3) that
a minimum level of exploration is needed to tighten the error bound.

3. We derive a generalization error bound (Theorem for a classification model learned in the presence
of censored feedback using the CDF error bounds in Theorems [2] and

4. We numerically illustrate our findings (Section. We show that existing generalization error bounds
(which do not account for censored feedback) fail to correctly capture the generalization error guar-
antees of the learned models. We also illustrate how a decision maker should account for the trade-off
between strengthening the generalization guarantees of an algorithm and the costs incurred in data
collection for reaching enhanced learning guarantees.

Related works. Although existing literature has studied generalization error bounds for learning from
non-IID data, non-IIDness raised by censored feedback has been overlooked. We provide a detailed review
of related work in Appendix [A] Here, we discuss works most closely related to ours.

First, our work is closely related to generalization theory in the PAC learning framework in non-IID settings,
including (Mohri & Rostamizadeh, 2007 2008; [Yu, 1994)) and (Kuznetsov & Mohril, 2017)); these works con-
sider dependent samples generated through a stationary, and non-stationary S-mixing sequence, respectively,
where the dependence between samples weakens over time. To address the vanishing dependence issue, these
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works consider building blocks within which the data can be viewed as IID. The study of |[Yu (1994) is based
on the VC-dimension, while Mohri & Rostamizadeh| (2008)) and Mohri & Rostamizadeh! (2007) focus on the
Rademacher complexity and algorithm stability, respectively. Our work is similar in that we also consider
building IID blocks to circumvent data non-IIDness. However, we differ in our reassembly method, in the
source of non-IID data, and in our study of the impacts of exploration.

Our work is also closely related to partitioned active learning, including |Cortes et al.| (2019;2020); Lee et al.
(2023)); |Zheng et al.| (2019). |Cortes et al.| (2019) partition the entire domain to find the best hypothesis for
each subdomain, and a PAC-style generalization bound is derived compared to the best hypothesis over the
entire domain. This idea is further extended to adaptive partitioning in |Cortes et al.|(2020). In Lee et al.
(2023)), the domain is partitioned into a fixed number of subdomains, and the most uncertain subdomain is
explored to improve the mean-squared error. The work of |Zheng et al.| (2019) considers a special data non-
ITDness where the data-generating process depends on the task property, partitions the domain according
to the task types, and analyzes each subdomain separately. Our work is similar to these studies in that we
also consider (active) exploration techniques, and partition the data domain to build IID blocks. However,
we differ in problem setup and analysis approach, and in accounting for the cost of exploration when we
consider bounded exploration techniques.

Lastly, the technique of identifying IID-blocks within non-IID datasets has also been used in other contexts
to address the challenge of generalization guarantees given non-IID data. For instance, Wang et al.| (2023))
investigate generalization performance with covariate shift and spatial autocorrelation in geostatistical learn-
ing. They address the non-IIDness issue by removing samples from the buffer zone to construct spatially
independent folds. Similarly, Tang et al| (2021) study generalization performance within the Federated
Learning paradigm with non-ITD data. They employ clustering techniques to partition clients into distinct
clusters based on statistical characteristics, thus treating samples from clients within each cluster as IID
and analyzing each cluster separately. We similarly explore generalization performance with non-IID data
samples and employ the technique of identifying IID subdomains/blocks. However, we differ in the reason
for the occurrence of non-IIDness, the setup of the problem, and our analytical approaches.

2 Problem Setting

Consider a decision maker (equivalently, the algorithm), and new agents (equivalently, data points) ar-
riving sequentially. The algorithm is a binary classifier, used to make positive/negative decisions (e.g.,
accept/reject) on each new data point. We use a bank granting loans as a running example.

The agents. Each agent/data point has a feature z and a true label y. The feature x € X C R is
the characteristic used for decision-making (e.g., a credit score). The true label y € Y = {0,1} reflects
a qualification state, with y = 1 meaning the data point is qualified to receive a favorable decision (e.g.,
the applicant will return a loan if granted). We will use X and Y to denote the corresponding random
variables, and x and y to denote realizations. Denote the proportion of qualified (unqualified) samples in
the population by p1 (po).

The algorithm. The decision maker begins with a fixed initial/historical training dataset containing n,

IID samples E| {z¥,..., x%y} for each label y (e.g., data on past loan repayments with ny IID samples of

individuals with credit scores {z9,..., 2% .} who defaulted on their loans, and n; IID samples of individuals
1

with credit scores {1, ...,z } who paid off their loans on time). Based on these, the decision maker selects
a threshold-based binary classifier fp(x) : X — {0,1} to decide whether to admit or reject incoming agents
(equivalently, assign labels 1 or 0). Specifically, fg(z) = 1(z > 0), with 6 denoting the decision threshold

(e.g., 8 could be the minimum credit score to be approved for a loan)ﬂ

1That is, we assume that any non-IIDness is introduced due to censored feedback impacting subsequent data collection.
Extension to initially biased training data is also possible, but at the expense of additional notation.

2The single-dimensional features and threshold classifier assumptions are not too restrictive: |Corbett-Davies et al| (2017,
Thm 3.2) and [Raab & Liu| (2021) have shown that threshold classifiers can be optimal if multi-dimensional features can be
appropriately converted into a one-dimensional scalar (e.g., with a neural network).



Under review as submission to TMLR

The decision threshold 6 divides the data domain into two regions: the upper, disclosed region, where the
true label of future admitted agents will become known to the decision maker, and the lower, censored region,
where true labels are no longer observed. As new agents arrive, due to this censored feedback, additional
data is only collected from the disclosed region of the data domain (e.g., we only find out if an agent repays
the loan if it is granted the loan in the first place). This is what causes the non-IIDness of the (expanded)
dataset: after new agents arrive, the training dataset consists of n, historical IID samples from both censored
and disclosed regions on each label y, and an additional &, samples collected afterwards from each label y,
but only from the disclosed region, making the entire n, + k, samples a non-IID subset of the respective
label y’s data domain.

Formally, let F¥(z) denote the theoretical (ground truth) feature distribution for label y agents. Let oY :=
F¥(0) be the theoretical fraction of the agents in the censored region, and m, be the number of the initial
n, training samples from label y agents located in the censored region. It is worth noting that %‘ can
provide an empirical estimate of a¥, but the two are in general not equal. Let k, denote the number of
additional training samples on label y that have been collected, all from the disclosed region, after new
agents arrive. The decision maker will now have access to n, + k, total samples from label y agents, which
are not identically distributed (m, in the censored region, and n, — m, + k, in the disclosed region). Let
ng thy () denote the empirical CDF of the feature distribution for label y agents based on these n, + k,
training data points. Our first goal is to provide an error bound, similar to the DKW inequality, of the
discrepancy between F ++ and the ground truth CDF F", for each label y. We will then use these to bound

the generalization error guarantees of the learned model from the (non-IID) {n, + k,},c10,1} data points.

Remark 1. Note that we assume the decision maker starts with one fixed realization of {n,},c0,11 data
points, and therefore the decision threshold 6 and the number of initial samples in the censored region
{my}yeqo.1y are (non-random) fized values. For instance, the fized training dataset and decision thresh-
old can be likened to a financial institution with an existing loan repayment history dataset consisting of a
set number of defaults and on-time payoffs, and its initial decision threshold selected for approving future
applications. However, there are two possible ways to interpret the additional samples {ky},c(0,13: a poste-
riori (i.e., outcomes after collecting exactly k, new samples in the disclosed region), or a priori (i.e., possible
values once a total of T new agents arrive, only some of which will fall in the disclosed region). The former
is a reasonable assumption if a decision maker has already collected samples under censored feedback, or
alternatively, is willing to wait to collect the exact required number of samples until it can achieve a desired
error bound. The latter is from the viewpoint of a decision maker contemplating potential outcomes if it
waits for a total of T new agents to arrive. We will present our new error bound under both interpretations.

We summarize our algorithm dynamics and main notation below:

Stage I: initial data. The decision maker starts with n, fixed data points {z7,... ,x%y} from each
label y € {0,1}, drawn IID from the respective true underlying distribution F¥(z). Accordingly, it
selects a fixed decision threshold 6. Given 6, the n, samples from label y agents can be divided into
m, samples below 6 (m, = |{i : 2/ < 0}|; refered to as the censored region) and n, — m, samples
above 0 (referred to as the disclosed region).

Stage II: arrival of new agents. At each time ¢, a new agent arrives. Its true label is § = y
with probability p,, and its feature & is drawn uniformly at random from the corresponding Fi(x).
The agent’s feature Z is observed, and the agent is admitted if and only if & > 6. Due to censored
feedback, ¢ will only be observed if the agent is admitted. When an agent is admitted, its data is
used to expand the corresponding dataset of y = § samples to {x¥,... ,x%y,xiyﬂ, . ’Izy-s—k;—l? 2}
Stage III: updating empirical distribution estimates. After T time steps (which can be fixed
in advance, or denote the time at which a certain number of samples have been collected), the decision
maker has access to k, new samples of label y agents, having expanded its trainig data on label y
agents to (the non-IID collection) {z7,..., m%y,xfbyﬂ, e 7x$z1,+k?,—17 xiﬁky}. Accordingly, it will
find FY (z), the empirical CDF of the feature distribution for label y agents based on the total

Ny +ky
of n, + k, data points on those agents.
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3 Error Bounds on Cumulative Distribution Function Estimates

Recall that our first goal is to provide an error bound, similar to the DKW inequality, of the discrepancy
between the empirical CDF of feature distribution F)/ thy () and the ground truth CDF F¥Y(z), for each
label 5. Note that the empirical CDF is found for each label y separately based on its own data samples.
Therefore, we drop the label y from our notation throughout this section for simplicity. Further, we first
derive the a posteriori bounds for given realizations of k,, and develop the a priori version of the bound
accordingly in Corollary [I]

We first state the Dvoretzky-Kiefer-Wolfowitz inequality (an extension of the Vapnik—Chervonenkis (VC)
inequality for real-valued data) which provides a CDF error bound given IID data.

Theorem 1 (The Dvoretzky-Kiefer-Wolfowitz (DKW) inequality (Dvoretzky et al., [1956; Massart, [1990)).

Let Zy,...,Z, be IID real-valued random variables with cumulative distribution function F(z) = P(Z; < z).

Let the empirical distribution function be F,(z) = L 31" | 1(Z; < z). Then, for every n and n> 0,

P<sup F(z) — Fa(z)| > n) < 2exp (~2mP)

z€R

In words, the DKW inequality shows how the likelihood that the maximum discrepancy between the empirical
and true CDFs exceeds a tolerance level n decreases in the number of (IID) samples n.

We now extend the DKW inequality to the case of non-IID data due to censored feedback. We do so by
first splitting the data domain into blocks containing IID data, to which the DKW inequality is applicable.
Specifically, although the expanded training dataset is non-IID, the decision maker has access to m IID
samples in the censored region, and n — m + k IID samples in the disclosed region. Let G,, and K, _ 4k
denote the corresponding empirical feature distribution CDFs. The DKW inequality can be applied to bound
the difference between these empirical CDFs and the corresponding ground truth CDFs G and K.

It remains to identify a connection between the full CDF F', and G (the censored CDF) and K (the disclosed
CDF), to reach a DKW-type error bound on the full CDF estimate (see Figure |If for an illustration). This
reassembly from the bounds on the IID blocks into the full data domain is however more involved, as it
requires us to consider a set of scaling and shifting factors, which are themselves empirically estimated and
different from the ground truth values. We will account for these differences when deriving our generalization
of the DKW inequality, as detailed in the remainder of this section. All proofs are given in the Appendix.

True and Empirical CDF for N(7,1) with 50 Samples
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Figure 1: The empirical CDFs F, 1 (Full domain), G,, (Censored region), and K,,_,+j (Disclosed region),
and the theoretical CDFs of F'; G, and K. Experiments based on randomly drawn samples from Gaussian
data N(7,1), 0 =7, n =50, m =24, and k = 0.
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3.1 CDF bounds under censored feedback

We first present two lemmas that establish how the deviation of G,,, and K,,_,,,+ from their corresponding
theoretical values relate to the deviation of the full empirical CDF Fj,; from its theoretical value F'.

Lemma 1 (Censored Region). Let Z = {X;|X; < 0} denote the m out of n + k samples that are in the
censored region. Let G and G, be the theoretical and empirical CDF's of Z, respectively. Then,

sup |F(z) — Fpyr(z)] < sup ’min (oz, ﬂ)(G(:c) - Gm(x))’ + ‘oz - @’ .
z€(—00,0) z€(—00,0) n n

(scaled) censored subdomain error scaling error

The (partial) error bound in this lemma shows the maximum difference between the true F' and the empirical
F, 4k in the censored region (i.e., for © € (—o0,0)) can be bounded by the maximum difference between G
and G, modulated by the scaling (min(a, 7)) that is required to map from partial CDFs to full CDFs.

Specifically, to match the partial and full CDFs, we need to consider the different endpoints of the censored
region’s CDF and the full CDF at 6, which are G,,(0) = G(0) = 1, F(0) = «, and F,,1(0) = ™, respectively.
The first term in the bound above accounts for this by scaling the deviation between the true and empirical
partial CDF accordingly. The second term accounts for the error in this scaling since the empirical estimate

¢ is generally not equal to the true endpoint a.

The following is a similar result in the disclosed region.

Lemma 2 (Disclosed Region). Let Z = {X;|X; > 0} denote the n —m + k out of the n + k samples in the
disclosed region. Let K and K, _ 41 be the theoretical and empirical CDFs of Z, respectively. Then,

. m m

sup |F(z) — Fpyp(z)| < sup |min(l —a,1— —)(K(x)— Kn_m+k(:c))‘ + 2‘04 - —

z€(0,00) z€(0,00) n 4
(scaled) disclosed subdomain error shifting and scaling errors

Similar to Lemma [T} we observe the need for a scaling factor. However, in contrast to Lemmal(l] this lemma
introduces an additional shifting error, resulting in a factor of two in the last term | — ™|. In particular,
we need to consider the different starting points of the disclosed region’s CDF and full CDF at 6, which are
K (0) = K(0) =0, F(0) = o, and F,,; () = ™, respectively, when mapping between the CDFs; one of the
|oe — ™| captures the error of shifting the starting point of the partial CDF to match that of the full CDF.

We can now state our main theorem, which generalizes the well-known DKW inequality to problems with
censored feedback.

Theorem 2. Let x1, 22, ...,y be fized initial data samples, drawn IID from a distribution with CDF F(x).
Let 0 partition the data domain into two regions, such that a = F(0), and m of the initial n samples are
located to the left of 0. Assume we have collected k additional samples above the threshold 0, and let F, 1y
denote the empirical CDF estimated from these n + k (non-IID) data. Then, for every n > 0,

]P’[Sup F(z) — Fn+k(x)’ > n] < 2exp (M) I 2 exp (*2("*m+k)(7772\04*%|)2)

zE€R min (a,%) min (1704,%)

censored region error (constant)  disclosed region error (decreasing with additional data)

The proof proceeds by applying the DKW inequality to each subdomain, and combining the results using a
union bound on the results of Lemmas [ and Bl

The expression above shows that as the number of samples collected under censored feedback increases
(k — 00), the disclosed region’s error decreases exponentially (similar to the DKW bound). However, unlike
the DKW bound, this error bound does not go to zero due to a constant error term from the censored region
of the data domain (the first term in the error bound). This means that unless exploration strategies are
adopted, we can not guarantee arbitrarily good generalization in censored feedback tasks. Finally, we note
that the DKW inequality can be recovered as the special case of our Theorem [2| by letting 6 — —oo (which
makes a ~ 0, m =~ 0).
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Finally, recall from Remark [I| that, instead of considering an exact realization of k new samples in the
disclosed region, a decision maker may want to know the error bound after waiting for 7' agents to arrive
(only some of which will fall in the disclosed region). The following corollary provides an error bound that
can be leveraged under this viewpoint.

Corollary 1. Let x1,xa,...,x, be fized initial data samples, drawn IID from o distribution with CDF F(x).
Let 0 partition the data domain into two regions, such that o = F(0), and m of the initial n samples are
located to the left of 0. Assume we have waited for T additional samples to arrive, and let F,, o1 denote the
empirical CDF estimated accordingly. Then, for every n > 0,

P{sup F(x) - Fn+T(x)’ > 77} < 2exp (M)

e wnin (0,2

censored region error (constant)

T
T k T—k —2(n—m+k)(n—2|a—2t|)?
+kz_02<k>(1—a) « exp( n_m)2 )

min (1 —o, =

expected disclosed region error (decreasing with wait time T')

The proof is straightforward, and follows from writing the law of total probability for the left-hand side of
the inequality by conditioning on the realization k of the samples in the disclosed region. We first note that
the constant error term, as expected, is unaffected by the wait time T. The second term is the expected
value of the disclosed region error from Theorem [2} it is decreasing with T' as the exponential error terms
decrease with k, and higher k’s are more likely at higher T'.

3.2 Censored feedback and exploration

A commonly proposed method to alleviate censored feedback, as noted in Section [T} is to introduce explo-
ration in the data domain. From the perspective of the generalization error bound, exploration has the
advantage of reducing the constant error term in Theorem [2] by collecting more data samples from the cen-
sored region. Formally, we consider (bounded) exploration in the range x € (LB, ), where samples in this
range are admitted with an exploration frequency e. When LB — —oo, this is a pure exploration strategy.

Now, the lowerbound LB and the decision threshold 6 partition the data domain into three IID subdomains
(see Figure [2| for an illustration). However, the introduction of the additional exploration region (LB,0)
will enlarge the CDF bounds, as it introduces new scaling and shifting errors when reassembling subdomain
bounds into full domain bounds.

Specifically, of the n initial data, let I, m — I, and n — m of them be in the censored (below LB), exploration
(between LB and ), and disclosed (above 6) regions, respectively. Let § = F(LB) and o = F(0), with
initial empirical estimates % and ", respectively.

As new agents arrive, let k; and ks denote the additional samples collected in the exploration range and
disclosed range, respectively. One main difference of this setting with that of Section [3.1]is that as additional
samples are collected, the empirical estimate of « can be re-estimated. Accordingly, we present a lemma
similar to Lemmas [I] and [2] for the exploration region.

Lemma 3 (Exploration Region). Let Z = {X;|LB < X; < 6} denote the m — 1 + ki samples out of the
n + ki + ko samples that are in the exploration range. Let E and Ep,_yk, be the theoretical and empirical
CDFs of Z, respectively. Then,

n—1 m-I0l+k ‘

n n—l+k1+€]€2

l
sup |F(@) = Fusn (@) € |8= | +|a—p-
z€(LB,Y) NI

shifting error re-estimated scaling error

+ sup ‘ min (a - B, %#ﬂ:@) (E(x) — Em—i4k, (7))
x€(LB,0)

scaled exploration subdomain error
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True and Empirical CDF for N(7,1) with 50 Samples
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Figure 2: The empirical CDFs F,, 4, +%, (Full domain), G; (Censored region), F,, i1k, (Explored region),
and K1k, (Disclosed region), and the theoretical CDFs of F,G,FE, and K. Experiments based on

randomly drawn samples from Gaussian data N(7,1),0 =7 LB =6,n=>50,1=7,m =27, and ky = ko =0

Observe that here, we need both scaling and shifting factors to relate the partial and full CDF bounds, as

in Lemma [2] but with an evolving scaling error as more data is collected. In particular, the initial empirical

estimate 7* is updated to % + %#—ﬂﬁdm after the observation of the additional k; and ko samples.

We now extend the DKW inequality when data is collected under censored feedback and with exploration.

Theorem 3. Let x1,%2,...,2, be fived initial data samples, drawn IID from a distribution with CDF F(x).
Let LB and 6 partition the domain into three regions, such that 8 = F(LB) and o = F(0), with | and m of
the initial n samples located to the left of LB and 0, respectively. Assume we have collected an additional

k1 samples between LB and 0, under an exploration probability €, and an additional number of ko samples
above 0. Let F, ik, +k, denote the empirical CDF estimated from these n + ki + ko non-IID samples. Then,

for every n > 0,

—2l(n—|8-L)?
P sup [F(2) = Pty s (2)] > | < 2exp (2202 l=5)?
z€R min (B,%)
! 1 m—ltky 2 . 1 m—ltky 2
4 2exp (*2(mfl+k1)(n*\ﬁfz|*|°‘*5* N0 nTFk, Feky |) ) +2exp (*2<"*M+kz)(77*2|"‘*5*nn [REITEDS D )
. —1 —l+k . —1_n—m+ek :
min (a75,47L71 n—77+k1+ik2) min (17&,%%)

Comparing this expression with Theorem [2] we first note that the last terms corresponding to the disclosed
region are similar when setting k = ko, with the difference being in the impact of re-estimating «.

The key difference between the two error bounds is in the censored region, in that the first term in Theorem 2]
is now broken into two parts: (still) censored region (—oo, LB), and the exploration region (LB, ). We can
see that although there can still be a non-vanishing error term in the (still) censored region, as we collect
more samples (k; — o0) in the exploration region, the error from the exploration region will decrease to
zero. Further, if we adopt pure exploration (LB — —oo, which makes 8 ~ 0,1 = 0), the first term will vanish
as well (however, note that pure exploration may not be a feasible option if exploration is highly costly).
Lastly, we note that an a priori version of this bound can be derived using similar techniques to that of

Corollary

3.3 When will exploration improve generalization guarantees?

It might seem at first sight that the new vanishing error term in the exploration range of Theorem [3|necessarily
translates into a tighter error bound than that of Theorem [2] when exploration is introduced. Nonetheless, the
shifting and scaling factors, as well as the introduction of an additional union bound, enlarge the CDF error
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bound. Therefore, in this section, we elaborate on the trade-off between these factors, and evaluate when
the benefits of exploration outweigh its drawbacks in providing error bounds on the data CDF estimates.

We begin by presenting two propositions that assess the change in the bounds of Theorems [2] and [3] as a
function of the severity of censored feedback (as measured by €) and the exploration frequency e.

Proposition 1. Let B(0) denote the error bound in Theorem@ and assume the conditions of that theorem
hold. Assume also that we can collect an additional k = O(n) samples above the threshold. Then, B(0) is
increasing in 6.

Proposition 2. Let B¢(LB,0,¢) denote the error bound in Theorem@ and assume the conditions of that
theorem hold. Then, B¢(LB,0,¢€) is decreasing in €.

In words, as intuitively expected, these propositions state that the generalization bounds worsen (i.e., are
less tight) when the censored feedback region is larger, and that they can be improved (i.e., made more tight)
as the frequency of exploration increases.

Numerical illustration. We also conduct a numerical

experiment to illustrate the bounds derived in Theorems —— Original
and [3] We proceed as follows: 8000 random samples are s - g:ﬁé)
drawn from a Gaussian distribution with mean y = 7 and 5 o Be(LB, 6, €)
standard deviation ¢ = 3, with an additional 40000 sam- 2 .

ples arriving subsequently, randomly sampled from across 5

the entire data domain. We set n = 0.015, the threshold 00

0 = 8, and the lower bound LB = 6. We run the exper- 002

iment 5 times and report the error bounds accordingly. " E;;Iorat?;n Prout;abilitu;s h

In Figure[3] the “original” (blue) line represents the DKW  Figure 3: A minimum exploration frequency is
CDF bound of the initial samples without additional data. needed to tighten the CDF error bound.

The “B(0)” (orange) line and “B(LB)” (green) line represent the CDF bound in Theorem [2] without explo-
ration, where the decision threshold is at 6 and LB, respectively. The “B¢(LB,6,¢)” (red) line represents
the bound in Theorem [3] with exploration probability e.

From Figure |3 we first observe that the green line (B(LB), which observes new samples with > LB = 6)
provides a tighter bound than the orange line (B(6), which observes new samples with x > 6 = 8), with both
providing tighter bounds than the blue line (original DKW bound, before any new samples are observed).
This is because collecting more samples from the disclosed region results in a decrease in the CDF error bound,
as noted by Proposition [1} Additionally, we can observe from the trajectory of the red line (B¢(LB,#,¢),
which observes a fraction e of new samples from (LB, 6), and all new samples above 6) that introducing
exploration enlarges the CDF error bound due to the additional union bound, but it also enables the collection
of more samples, leading to a decrease in the CDF error bound as € increases; note that this observation
aligns with Proposition [2}

Notably, we see that a minimum level of exploration probability e (accepting around 10% of the samples in
the exploration range) is needed to improve the CDF bounds over no exploration. Note that this may or may
not be feasible for a decision maker depending on the costs of exploration (see also Section . However, if
exploration is feasible, we also see that accepting around 20% of the samples in the exploration range (when
the red line is close to the green line) can be sufficient to provide bounds nearly as tight as observing all
samples in the exploration range.

3.4 How to choose an exploration strategy?

We close this section by discussing potential considerations in the choice of an exploration strategy in light
of our findings. Specifically, a decision maker can account for a tradeoff between the costs of exploration and
the improvement in the generalization error bound when choosing its exploration strategy. Recall that the
exploration strategy consists of selecting an exploration lowerbound /range LB and an exploration probability
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€. Formally, the decision maker can solve the following optimization problem to choose these parameters:

ee[o,ll]r,lLa}}a'(e[o,e] (B(@) — B(LB, 9, 6)) —C(LB,b,¢) , (1)

where B(0) and B*(LB, 6, ¢) denote the error bounds in Theorems [2]and [3] respectively, and C(LB, 6, €) is
an exploration cost which is non-increasing in (§ — LB) (reducing the exploration range will weakly decrease

the costs) and non-decreasing in e (exploring more samples will weakly increase the cost). As an example,
the cost function C(LB, 0, ¢) can be given by

0
06—

C(LB,#6,¢) = e/ e fO(x)da. (2)

LB

In words, unqualified (costly) samples at = have a density f°(z), and when selected (as captured by the €
multiplier), they incur a cost es_Tm, where ¢ > 0 is a constant. Notably, observe that the cost is increasing
as the sample = gets further away from the threshold 6. For instance, in the bank loan example, this could

capture the assumption that individuals with lower credit scores default on a larger portion of their loans.

As noted in Proposition [2 B¢(LB,0,¢) is decreasing in €; coupled with any cost function C'(LB,#6,¢€) that
is (weakly) increasing in €, this means that the decision maker’s objective function in equation [1| captures a
tradeoff between reducing generalization errors and modulating exploration costs.

The optimization problem in equation [l| can be solved (numerically) by plugging in for the error bounds
from Theorems [2f and [3| and an appropriate cost function (e.g., equation . For instance, in the case of
the numerical example of Fig. 3] under the cost function of equation [2] with ¢ = 5, and fixing LB = 6, the
decision maker should select € = 11.75%.

Another potential solution for modulating exploration costs is to use multiple exploration subdomains, each
characterized by an exploration range [LB;, LB;_1), and with a higher exploration probability ¢; assigned
to the subdomains closer to the decision boundary (which are less likely to contain high cost samples). For
instance, with the choice of b subdomains, the cost function of equation [2| would change to (the lower) cost:

0—

b LB;_1 .
CULBY 0ty =Y e [ e P, Q)

LB;

It is worth noting that while this approach can reduce the costs of exploration, it will also weaken general-
ization guarantees when we reassemble the b exploration subdomains’ bounds back into an error bound of
the full domain (similar to what was observed in Fig. [3|for b = 1). This again highlights a tradeoff between
improving learning error bounds and restricting the costs of data collection.

4 Generalization Error Bounds under Censored Feedback

In this section, we use the CDF error bounds from Section [3] to characterize the generalization error of a
classification model that has been learned from data collected under censored feedback. Specifically, we will
first establish a connection between the generalization error of a classifier (the quality of its learning) and
the CDF error bounds on its training dataset (the quality of its data). With this relation in hand, we can
then use any of the CDF error bounds from Theorems [I}j3] to bound how well algorithms learned on data
suffering from censored feedback (and without or with exploration) can generalize to future unseen data.

Formally, we consider a 0-1 learning loss function £ : Y x Y — {0,1}. Denote R() = Exy L(fo(X),Y) as
the expected risk incurred by an algorithm with a decision threshold §. Similarly, we define the empirical
risk as Remp(8). The generalization error bound is an upper bound to the error |R(6) — Remp(0)|, where 6 is
the minimizer of the empirical loss, i.e., f := arg ming Repmp(9). In words, the bound provides a (statistical)
guarantee on the performance R(é), when using the learned 6 on unseen data, relative to the performance

Remp(0) assessed on the training data. Our objective is to characterize this bound under censored feedback,
and to evaluate how utilizing (pure or bounded) exploration can improve the bound.

10
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Recall that the decision maker starts with a training data containing n, IID samples from each label v,
drawn from an underlying distribution with CDF F¥(z). Let n = mo + n1 denote the size of the initial
training data. Then, the expected loss of a binary classifier with decision threshold 6 is given by,

R(0) = Exy L(f(X),Y) = p1F'(8) + po(1 — F°(6)) ,
while the empirical loss Remyp(6) is given by,

1{z; se,yi=1}+%(1—nio 3 l{xi§9,yi:0}).

(4,y1) (zi,y:)

ny 1
Remp(e) = ;771

Similarly, if the decision maker can collect an additional k, samples of agents with features above the
threshold 6, the above empirical risk expression can be updated accordingly, by considering the n, + &,
samples available from each label y.

We detail the derivations of these expressions in Appendix [} Using these expressions of the expected and
empirical risks, the following theorem provides an upper bound on the generalization error |R(6) — Repyp ()|
as a function of the CDF error bound, where 6 denotes the minimizer of the empirical loss, i.e., 0 =
argming Repmp(0).

Theorem 4. Consider a threshold-based classifier f;(x) : X — {0,1}, determined from a dataset containing
ny initial 11D training samples from each label y, with n = no +n1, under a 0-1 loss function. Let p, denote
the proportion of agents from label y. Subsequently, due to the censored feedback, the algorithm collects ky
additional samples from each label y. Let FY and FY denote the CDFs and empirical CDFs, respectively,
given m samples from label y agents. Then, with probability at least 1 — 20,

’R(é) - Remp(é)‘ < 3‘]90 — %’ + Z min (py, %) sup ’F“(G) - ng+ky(9)‘ .
ye{0,1} ’

The proof is given in Appendix [H] First, we note that tightening the CDF error bounds leads to tightening
the generalization error guarantees. More specifically, using this theorem together with Theorems [I, [2]
and [3] we can provide a generalization error guarantee for an algorithm in terms of the number of available
data samples in its training data from each label and in different parts of the data domain, particularly when
future data availability is non-IID due to censored feedback.

For instance, the DKW inequality can be alternatively expressed as follows: given n, IID samples from a
label y, with probability at least 1 — 4, the following inequality holds:

SN

log

sup |F(z) — FY (2 ’ < .
Zp ( ) ny( ) — 2ny
Using this expression in Theorem 4l we conclude that (without censored feedback, or with pure exploration

with € = 1) with probability at least 1 — 24,

log 2
§3‘po—@‘+ Z min(py,@) 85
n n 2ny
y€{0,1}

B(0) = Rewy(0)

We can similarly specialize Theorem [4] to tasks with censored feedback by linking it with Theorems [2] and
[Bl Given the complexity of the CDF error bounds under censored feedback, while we cannot derive a closed-
form expression for the bound as done for the DKW inequality, we can compute the bounds numerically, as
shown in the next section.

5 Numerical Experiments

5.1 CDF error bounds

We first illustrate our derived bounds (with 6 = 0.015) on the empirical CDF. We start with 50 random
samples from a Gaussian distribution N(7,1). Next, 200 new samples are drawn from the same distribution,

11
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with all samples with features > 6 = 7 accepted, and samples with features LB = 6 < z < 6 accepted
with a probability e € {0,0.5,1}; higher values of e the represent less censored feedback (e = 1 means no
censored feedback).

1.0

— True CDF

—— Emp CDF (¢ = 0)

081 —— Emp CDF (¢ = 0.5)

—— Emp CDF (¢ = 1)
- Upper/Lower error bound (& = 0)
- Upper/Lower error bound (g = 0.5)
- Upper/Lower error bound (& = 1)

0.2

0.0

Figure 4: CDF error bounds when different levels of exploration (€) are used to alleviate censored feedback.
As e increases: (a) the empirical CDF estimates become more accurate, and (b) our CDF error bounds
improve (i.e., more tightly enclose the true CDF).

From Figure 4 we first note that our bounds (the dotted lines) effectively enclose the true distribution. We
also note the distinction between empirical CDFs in the disclosed region (z > 7) and the censored region
(x < 7): as intuitively expected, empirical CDFs (solid lines) in the disclosed region are “smoother” compared
to those in the censored region. Furthermore, as € (exploration) increases, we overcome censored feedback
in the exploration region, resulting in more accurate empirical estimates. Additionally, as € increases, our
error bounds improve (i.e., more tightly enclose the true CDF).

5.2 Model generalization error bounds: real-world data and adaptively updated algorithm

We now illustrate the ability of our generalization error bounds (derived in Theorem [4)) in providing guar-
antees on the error of the learned models from data affected by censored feedback, using experiments on a
real-world dataset. In addition, while our bounds are derived for a fixed model é, the model can be updated
as new samples are collected. Therefore, in these experiments we also assess the performance of our bounds
based on whether we adaptively update the decision threshold 6 with new samples.

We conduct these experiments on the real-world Adult census dataset (Dua & Graff, |2017)). The objective is
to predict whether an individual earns more than $50k/year, based on a multi-dimensional feature set. We
employ a logistic regression algorithm and 0-1 loss for the classification task, and compare the generalization
error across different exploration probabilities (e = {0.5,1}). We start with a 1000 sample training dataset.
A total of 45000 new samples arrive throughout the experiment; in addition to accepting all samples with
feature z > é, the algorithm also accepts some samples that fall below 6. The decision threshold is updated
periodically based on new data (after each 5000 batch of new samples arrives). The decision threshold is
retrained using (most recent) training data. We report our experiment results for an average of 5 runs, where
the randomness comes from the order of samples arrived and the exploration.

From Figure we observe that as the decision threshold 6 is adaptively updated when more samples
are collected, it has even better generalization performance compared to a non-adaptive decision threshold.
This is expected as a refined decision threshold yields better performance on unseen data. Further, for
the generalization error bounds (dotted lines in the right panel), we see that our bounds effectively contain
the true generalization errors of the model (for both the fixed model and adaptively updated model cases).
Notably, in the presence of censored feedback, we observe that the generalization error bound with adaptive
updating is tighter than the non-adaptive one, pointing to a potential future research direction for further
improving our bounds.

12
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Figure 5: Generalization error with(out) an adaptively updated model (A) and varying exploration ().

5.3 Comparison with existing generalization error bounds
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Figure 6: Existing bounds fail to capture generalization when there is censored feedback.

We now compare the performance of our bounds with a number of existing generalization error bounds, and
show that by failing to account for censored feedback, prior works fail to correctly capture how well a model
learned on data suffering from censored feedback generalizes to unseen data. We consider the following
four benchmarks: The ‘Hoeffding + Azuma’ bounds represent those derived from Hoeffding and Azuma
inequalities (Hoeffding, |1994; |Azuma), (1967). The ‘VC + binomial’ bounds are VC generalization bounds
(Vapnik & Chervonenkis, 2015; [Abu-Mostafa et al., 2012, Thm 2.5) where the shatter coefficient is bounded
through the binomial theorem. The ‘VC + poly’ bounds represent VC generalization bounds
[Chervonenkis|, 2015; Devroye et al., [2013, Thm 13.11) applicable to any linear classifier whose empirical
error is minimal, where the shatter coefficient is bounded by a polynomial function. Lastly, the ‘GC’ bounds
(Glivenko, [1933; (Cantelli, |1933)) are derived based on the Glivenko-Cantelli Theorem for a threshold classifier
and 0-1 loss.

We conduct this experiment on synthetic data. We start with 50 initial training samples for each label
y € {0,1} randomly drawn from Gaussian distributions N(9,1) and N(10,1), respectively. The decision
threshold @ is selected to be the one minimizing the misclassification error on the training data. Then, a total
of 50000 new samples arrive throughout the experiment. They will be accepted if the feature > 0, otherwise,

13
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they are rejected. We run the experiments 5 times and report the average results with corresponding error
bars. From Figure we can clearly see that the ‘Hoeffding-Azuma’ (red), ‘VC+binomial’ (blue), and
‘GC’ (purple) bounds are inadequate for accurately estimating the true generalization error guarantees of
the model. For the ‘VC+poly’ (gray) bound, for the given number of new samples, it provides a very loose
bound, even compared with our bounds. However, as the number of arrived samples increases, it will exhibit
similar behaviors to the other three benchmarks, in that it will go lower than the true generalization error
(black line/shades).

6 Conclusion and Future Work

We studied generalization error bounds for classification models learned from non-IID data collected under
censored feedback. We presented two generalizations of the Dvoretzky-Kiefer-Wolfowitz (DKW) inequality,
which characterizes the gap between empirical and theoretical CDFs given IID data, to problems with non-
IID data due to censored feedback without exploration (Theorem and with exploration (Theorem, and
connected these bounds to generalization error guarantees of the learned model (Theorem . Our findings
establish the extent to which a decision maker should be concerned about censored feedback’s impact on
the learned model’s performance guarantees, and show that a minimum level of exploration is needed to
alleviate it.

For future work, we are interested in strengthening our bounds by allowing the model (6) to be adaptively
updated as new samples are collected; as noted in Section [5] this could help further strengthen our error
bounds. Generalization error bounds under a combination of censored feedback and domain adaptation are
also worth exploring, wherein the initial training data distribution differs from the target domain distribution.
Finally, we have provided extensions of the DKW inequality, which strengthens the VC inequality when
data is real-valued, under censored feedback; providing similar extensions of the VC inequality for multi-
dimensional data could be an interesting direction of future work. We discuss some initial findings and
potential challenges of this extension below.

Bounds for higher dimensional data. When assessing generalization error under censored feedback
in higher dimensional data, one approach could be to first reduce the dimensionality, enabling direct ap-
plication of our findings. For instance, we have performed a mapping of multi-dimensional features to a
single-dimensional representation in our experiments on the real-world Adult census dataset. However, this
reduction may lead to some loss of information, potentially impacting algorithm performance. An alternative
would be to follow our approach of identifying ITD subspaces in the higher-dimensional data space, apply a
multivariate DKW inequality (e.g., (Naaman| 2021)) in these subspaces, and then identify the appropriate
error coefficients to re-assemble the subdomain bounds and find a CDF error bound for the entire data
domain. We provide an analysis for 2D spaces based on this approach in Appendix [J] A main challenge
when doing so is that while the decision boundary can be any arbitrary line (determining the two subspaces
in which data can be viewed as IID), the standard joint CDF calculates the probability that X < z and
Y <y, where z and y are vertical and horizontal cutoff values. To circumvent this mismatch, we start with
an adjusted CDF which measures data density and counts existing vs. newly collected samples in a “rotated”
data space, and subsequently map the CDF error bound of the adjusted CDF to a CDF error bound for the
standard CDF (as detailed in Appendix . Alternative error bounds that build on the VC inequality for
multi-dimensional data (instead of multi-dimensional DKW inequalities), remain as a potential direction for
future work.
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A Additional and detailed related work

Censored feedback (Adaptive sampling). The problem of censored feedback has been extensively
studied in the literature. Prior works, such as (Abernethy et al., [2016; Deshpande et al.l [2018; |[Ensign et al.
2018; (Weil, [2021), have explored various aspects of this problem. For instance, [Ensign et al| (2018]) view
the problem as a semi-bandit problem and apply existing regret bounds to obtain their theoretical result.
Abernethy et al.| (2016) propose a Kaplan-Meier-based Upper Confidence Bound algorithm for censored
feedback in the context of a threshold bandit problem. Deshpande et al.| (2018]) investigate inference in high-
dimensional linear models and analyze the sample adaptivity from a bias and variance trade-off perspective in
both time series analysis and batched data collection. |Weil (2021 studies the learning policies with censored
feedback, finding the optimal decision policy that maximizes the utility function. This work considers both
adaptive sampling and cost exploration and formulates the problem as a partially observed Markov decision
process, which is solved through dynamic programming. Our work is similar to these prior works in that we
also consider censored feedback, but we mainly focus on deriving a generalization error bound in the presence
of censored feedback, and we propose to use a bounded exploration technique to improve the bounds.

Bandit literature. Our work is related to the bandit problem (Abernethy et al., 2016; Ensign et al., |2018)),
which deals with the exploration and exploitation dilemma, where the decision maker can obtain additional
information to improve the generalization performance through exploration, while at the same time incurring
a large risk of exploration. In the bandit problem, the decision maker explores other arms in various ways,
such as randomly using the e-greedy algorithm, by some form of highest uncertainty as in UCB algorithm, or
by importance sampling approaches as in EXP3, etc. The key difference in our approach is that we consider
bounded exploration (Balcan et al., 2007} |Lee et al., 2023} |Wei, 2021} [Yang et al.l |2022), where the lower
bound is set because the cost of wrong decisions increases as samples further away from the current decision
threshold are admitted. Furthermore, in the bandit literature, regret analysis is conducted to analyze the
model performance compared to the best actions. In contrast, we analyze the model performance from
different angles, such as how to improve the generalization performance (upper bound on the difference
between the model’s performance on training data and unseen testing data) by utilizing the newly collected
samples through exploration.

Generalization with non-IIDness. In addition to the S-mixing sequence non-IIDness discussed in the
main paper, (Steinwart & Christmann, [2009; [Steinwart et al., [2009) have studied a more general non-I11D
setting called a-mixing sequence, where stationarity is not necessary. Furthermore, (Modha & Masry,
1996; Zou et al., |2009) have explored the generalization performance based on exponentially strongly mixing
observations, where the a-mixing coefficient is bounded by an exponential decay term. Apart from the mixing
sequence, (Cheng et al.l 2018]) have imitated human learning behavior by discarding training samples with
lower losses during training, and refreshing them when a new training epoch starts. They experimentally show
that their method of using non-IID samples can lead to better performance than uniformly sampling using IID
samples. (Smale & Zhou,|2009) have investigated non-IIDness in online learning algorithms through a Markov
sampling method, where samples are drawn according to a sequence of probability measures. Meanwhile,
(Zhao et al., [2022) explore non-1TDness through a mixing of in-distribution and out-of-distribution samples.
They show that the performance gap is related to the distribution discrepancy between in-distribution and
out-of-distribution (similar to (Ben-David et al., |2010), which refers to source and target discrepancy),
empirical losses, and empirical estimation error.

DKW-typed inequalities with non-ITDness. Our work is also related to DKW-type inequalities with
non-IID data. (Kontorovich & Weiss, [2014)) derive deviation bounds using DKW-type inequalities for strongly
mixing non-stationary Markov chains. Extending the DKW inequality with one-dimensional IID samples
sharpened by (Massart], [1990), (Naaman, [2021)) generalize it to the multi-dimensional case, incorporating
an a-mixing condition. Furthermore, DKW-type inequalities have been applied to the Kaplan-Meier (KM)
estimator in the analysis of right censored data in survival analysis, as shown by (Bitouzé et al,{1999). They
utilize a weight factor, similar to our scaling factor, to control uniform deviation in the uncensored data
model. Moreover, (Goldberg & Kosorok, 2017)) introduce a censored SVM learning algorithm with a inverse
probability censoring weighting (IPCW) loss function. Additionally, (Goldberg, [2019) develope Hoeffding-
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type and Bernstein-type inequalities based on DKW inequalities to bound the difference between the IPCW
estimator and its expectation.

Vapnik-Chevronenkis (VC) Theory. In binary classification with the 0-1 loss function, the VC theory
(Pollard} 2012, Thm 12.6) provides a bound on the maximum difference between the empirical estimates of
whether an event happens and its expectation over IID data. It states that the difference could be bounded
by 8S(F,n)exp(—nn?/32), where S(F,n) is the shattering coefficient of F and n is the sample size. The
shattering coefficient satisfies S(F,n) < (n + 1)¢ with finite VC dimension d so that the generalization
error of linear classifiers with one dimensional IID samples could be bounded as 8(n + 1)? exp(—nn?/32).
Alternatively, as the VC theory is a mighty generalization of Gilvenko-Cantelli (GC) bound (Pollard} 2012,
Thm 12.4), when considering the deviation between the empirical and true CDFs, it takes the form of
8(n + 1) exp(—nn?/32) by replacing S(F,n) with n+ 1. In our study, we employ the DKW bound, which is
an extension of the GC bound by eliminating the logarithmic term (n 4 1). The main distinction between
our bounds and the VC/GC bounds lies in the assumption that the data input is non-IID over the entire
data domain, while it may be treated as IID within each subdomain.

B Proof of Lemma [

Proof. Let G and G,,, be the theoretical and empirical CDFs of Z in the censored region, respectively.
For the full c.d.f. in (—o0,0), we have

Flz)=Pr(X <z), F,(z)= l 1x,<z, Vi,z € (—00,0)
n E <
i=1

For the censored c.d.f. in (—o0, 8), we have
1 — ,
G(x)=Pr(Z <z), Guplx)= — E_l 1z,<y, Vi,x € (—00,0)

Hence, for any fixed z € (—o0, ), we have

and

Similarly,

Therefore, we have

sup |F—F,|= sup ’aG— @Gm‘
z€(—00,0) z€(—00,0) n
m
= sup |aG—aG,, + aG,, — —Gm‘
z€(—00,0) n
m
< sw |G =G|+ s |(a= )Gl
z€(—00,0) z€(—00,0) n
= sup a(G—Gm)‘—i— a—%’

z€(—00,0)

where the last equality holds since | — 2| is constant once 6 is fixed and by the monotonic property of the
CDF curve. Notice that, by the definition of G,, = % > ;1z,<6 = 1. We could instead choose to add and
subtract "G, which would yield a similar result. Choosing the smaller of the two gives us the bound. [
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C Proof of Lemma
Proof. Let K and K, _, 1k be the theoretical and empirical CDFs of Z in the disclosed region, respectively.

1 n—m-+k
=1

Since Z = {X|X > 6}, then we have

K@)=Pr(Z<z)=Pr(X <z|X >0)= P?ﬁé{é ?)x) _ F(lxz;oz

In terms of the empirical CDF, the full empirical CDF on variable X in (6, 00) can be viewed as starting
at the F,,(#) = ™, then increasing to 1 as x increases with the total increment ™. However, for the
increment, the only difference between F, 4 and K,,_,, 1 is that the earlier one focuses on the variable X
while the latter one focuses on the variable Z = {X|X > 6}. Note that, the notation F, , similar to F,,
means the empirical CDF is evaluated using n + k samples. Hence, with additional k samples, we can use a
scaling factor =™ to write the CDF such that

n

n—m-+k

n—m 1
Z lo<x,<z, Vi,x € (0,00)
i=1

m
Fn+k(1’):g—|— n n—m+k

Then, for any fixed = € (6, 00), we have

m n—m 1 gy n—m
Foiplz)— — = 1 <p = —K,—
n+k (1‘) " n n—m+k ; 0<X;<z n n m-‘rk(x)

Therefore, we have

sup |F—Fuikl= sup |(1—a)K+a-— n= mK7l_m+k _m
z€(0,00) z€(0,00) n
< sup (1 - O‘)K - - mKn—m+k‘ + ’O‘ - T
z€(0,00) n
n—m m
= sup (1 - a)K - (1 - O‘)Kn—m-‘rk + (1 - a)K7z—m+k - 7Kn—m+k‘ + ‘a -
z€(0,00) n n
m
< swp [(1=a)(K — Kuoman)| +2a— 2|
z€(6,00) n
Similarly, we could instead choose to add and subtract *—" K and choose the smaller of the two. O
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D Proof of Theorem

Proof.

P(:gg F(&) = Fa(w)] > n)

:P(max< sup ‘F(x)—Fn(x)7 sup ’F(:c)—Fn+k(:c)D> )

n
z€(—00,0) z€(0,00)
P( sup |F(z) — Fn(az)‘ >mnor sup ‘F(m) - Fn+k(x)‘ > 77)
z€(—00,0) z€(0,00)
< P( sup |F(z)— Fn(az)‘ > 17) + P( sup ‘F(x) - Fn+k(x)’ > n)
z€(—00,0) z€(0,00)
<P( sup min(a7m)(G—Gm)‘+‘a—m‘>n)
z€(—00,0) n n

n—m

+P< sup ‘min (1—a,

m
)(K—Kn,mm‘ +2‘a— 7‘ > n)
z€(0,00) n

:P( sup ‘G Gm‘>‘a_?:>
min (a %)

—00,0)

n—Q‘a—m

min (1 —a, ”nm>)

2 2
g2exp(‘2’”<”("“‘)*') )+2€Xp( 2(n— m(+k)(n 2|a)—f|) )
min (a, min (1-a, 2=

+P< sup ‘KfKn_ch‘ >
z€(0,00)

where the first inequality is obtained by the union bound, the second inequality is obtained according to
Lemma and [2] and the last inequality is obtained by plugging in the DKW inequality introduced in
Theorem [ O

E Proof of Theorem 3

Proof.

P(sup[F@) = P na0)] 2 )
e

:P( ap  |F@) - @) 2nor swp [F@) - B )] 20
z€(—o0,LB) z€(LB,0)

or sup ’F(x) = oy ke (x)’ 2 77)
z€(0,00)

<P<I6(sup ‘min(ﬂ,i)(G—Gl)‘-i-’ﬁ—i’>77>

—oo,LB)
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. - —l+k
+P< es(lljge)‘mm (a_ﬁ’nTlnznTLib)(E_Em—Hkl)
x )

_ _ n—I m—l+k1
+ ‘Oé B n n—Il+ki+eko

+lo- 4|20

+ P( sup ’ min (1 —a, %%) (K — Kn—m+k,)
z€(6,00)

n n—Il+ki+eks

l =1 m—l+k
+ 2‘“ T ke | 2 77)
- ‘6 -1k
=P sup ‘G — Gl‘ > —
z€(—o00,LB) min (ﬁ7 %)
l —l__m—l+k
Ul ol At s e
+ P sup ‘E —En ik, | 2
2€(LB,6) min (a _ 3, n=L M)

n—l m—Il+k;

l
U 2’0[ T n Tn n—Il+kqi+eks
+P< sup ’K*Kn—nﬂ-kz > : l .
z€(6,00) min (1 —a, %%)
—2l(n—|B—1))?
SQCXP( (n—18 ,,,\2) )
min (ﬂ,%)
2
72(m71+k1)(n7|ﬁ*%\7 a—p-2t oL ) )

+ 2exp
( . n—1 m—Il+kq
min | a=8, == s5 e
n—l — 14k
—2(n—m+kz)(n—2la—L -7 njzl+k1+1k2|)2)

2
Y (R

+ 2exp(

n n—Il+ky+ekg

The proof is similar to the proof of Theorem [2| with the introduction of exploration region and re-estimated
empirical estimates a. O

F Proof of Proposition [1]

Proof. Before we dive into the proof of the proposition, we first show that the impact of the estimation error
under different # is minimal compared to the change of 6.

Let’s consider the censored region (first term) in the above inequality, and w.l.o.g., we assume that m/n < «
and a —m/n = u. Then, the first term could be written as

2 exp (%ﬂ;ﬁ) — 2exp (W)

As 0 decreases, m decreases. It is worth noting that E(u) = 0 according to the law of large numbers. In
the following analysis, we measure the change as factor b, b’ for m, u, respectively, and denote A,,, A, as the
change in the output. We also assume 0 < b,b’ < 1, and use it as a proxy to show the decreasing in 6. In
other words, we are analyzing the impact of change in u compared to the change in m as 6 decreases, our
objective is to show the following

A 2 exp <7_2n2(n_u)2) — 2exp (7_2"1("_“)2)
o - - > 1
Ay Jexp (*2712(?7*1&)2) e (fzrﬂ(nfb’u)?)

m
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which is equivalent to show

exp ( 72”25(:,177”2 )
<1
exp ( —2n2(:]n—b’u)2 )

Since we have,

—2on?(n—u)?
€xp ( b ) . (—2n2(77 —u)?  —2n?%(n-— b’u)z)
=ex
exp (22000 P m

—2n2(n — w)? 4 2n2(n — V'u)?
m

)

— (exp( 2))(%(n*u)2*(n*b’u)2)
exp(———

It is clear that the exponent is greater than 0 since the change magnitude of m could be much greater than
that of u as 6 decreases, meaning that 0 < b << b’ = 1. Therefore, the impact of the estimation error under
different # is minimal compared to the change of . As a result, the first term decreases as 6 decreases,
primarily due to the decrease in the denominator.

Regarding the disclosed region (second term), the sample size increases due to a reduction in the number
of samples (m) in the censored region and the additional samples (k) collected from the disclosed region.
Similar to the discussion in the proof of Proposition (1} let k& = ¢(n —m), where ¢ is a scalar representing how
many additional samples we could collect proportionally above the decision threshold. If ¢ > % -1,
as more additional samples are collected, it will contribute to making the second term vanish and become
dominated by the first term. Consequently, as 6 decreases, the bounds also decrease, leading to B(6) decreases
as 0 decreases.

O

G Proof of Proposition 2]

Proof. As e decreases, the censored region (first term) remains unchanged since the change in € only affects
the value of kq. For the disclosed region (third term), similar to Proposition |1} the impact of the estimation
l n—Il m—Il+k;

error | — + — 2= =T | ynder different values of € is minimal compared to the change in k1. Therefore
n n n—I+ki+eka ’

the whole expression is dominated by the change in the exploration region (second term).

For the exploration region, it is worth noting that when ¢ = 1, we collect k; samples in the exploration
region. Therefore, if € < 1, the number of k; will decrease leading to an increase in the exponential term.
Thus, as € becomes smaller, the bound in the exploration region increases, resulting in an overall increase in
the bounds. This implies that B¢(LB, 0, ¢) is decreasing in e.

O
H Proof of Theorem [4
Proof. Let F} ., (0) := n% (ry) H@i < 0,y; =1} and FR ko (0) = nio 2 (e Hwi < 0,y; = 0} be the

empirical estimate of the area of the censored region for the corresponding label.
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|R(0) = Rewny(0)

< sup ‘R(G) - Remp(G)‘
6
ny o
= sup [p P (0) 4po (1= F2(0)) = TLF) 0, (0) = T2 (1=l 1, (0))|
ni no

< sup ‘plFl(G) - ;F%m (9)‘ +sup ‘poFO(H) - ;Fr?ngko (9)) +lpo——=

. n o
< Y)g ‘ Yy _ Y ‘ _
< e%:l}mm (py, m ) sup | F(6) = F; L, (6)] +3lpo — 7|

Yy )

The last inequality follows the same technique as the proof of Lemma

| Expected and empirical loss derivation

Following the setup described in Section|2|7 let F¥ and F}¥ denote the CDFs and empirical CDFs, respectively,
with n realizations of the distribution of label y € {0,1}. We assume that among these n samples, n; of them
belong to qualified agents (y = 1), while the remaining ones are from unqualified agents (y = 0). We suppose
the model is equipped with a 0-1 loss function and a threshold-based binary classifier fg(x) : X — {0, 1}.
We then can derive the expected and empirical loss as follows:

R(9) = Exyl(f(X),Y)
=Pr(Y =1)- Exjy=1l(f(X),Y =1)+ Pr(Y =0) - Ex;y=l(f(X),Y =0)

= B[1{f(X) £Y,Y = 1}] + pE[1{f(X) £Y,Y = 0}]

- plPr(IL{f(X) £Y,)Y = 1}) +p0Pr(IL{f(X) £YY = o})
:p1Pr<f(X) <6,y = 1) +p0Pr(f(X) >0,Y = 0)

= p1F(0) + po(1 — F°(6))

Remp(@) = = 3 1Sy = 32 1{F() £ i)

(zi,yi) (%4,y1)
1
=[S0 1@ £ 13+ Y 1) £ 0}]
y;i=1 yi=0
ny 1 o 1
™2 {z; <0,y, =11+ —(1— — H{z; <0,y; =0
T ) { wey ”( ”°<§-> { ’ }>

J Analysis with higher dimensional samples

In this section, we expand our analysis from real-valued data to a higher dimensional space using the
multivariate DKW inequality introduced in (Naaman) [2021]). We first state the inequality and subsequently
show how we will split the data domain to accommodate censored feedback. Although this analysis applies to
samples with k£ > 1 dimensions, for the sake of notation simplicity, we focus on samples with two dimensions.

Theorem 5 (Multivariate DKW inequality (Naaman, 2021)). Let Z1,...,Z, be k dimensional IID random
variables with the empirical distribution function be F,(z) = L 3" | 1(Z; < z). Let F(2) be the expectation
of Fn(2). Then, for every n and n> 0,

IP’( sup
zERF

F() - Fa(2)] 2 77> < 2k exp (~2mp?) |
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In the 2D space, the threshold classifier is a linear classifier, with the decision boundary (line) represented as
(WTX —b=0). Here, the bold terms denote vector forms, where W7 = [wy, ws] and X = [X;, X5]. This
line splits the full data domain (R?) into two subspaces: the subspace where WX — b < 0 is the censored
region, while the remaining half space is the disclosed region.

We first establish the relation between the deviation of the censored partial empirical CDF from its expec-
tation, and the deviation of the full empirical CDF from its expectation. The proof mirrors that of Lemma
m

Lemma 4 (Multivariate Censored Region). Let Z = {X|WTX —b < 0} denote the m out of n+ k samples
that are in the censored region (C). Let « = F(WTX —b < 0). Let G and G, be the theoretical and
empirical CDFs of Z, respectively. Then,

. m m
sup [F(x) = P (X)) < sup [min (o, ™) (G(x) = Gu()|[+ [~
xeC xeC n n

scaled censored subdomain error scaling error

In the disclosed region, we could derive the expression following a similar approach. However, in 2D space, for
any given x in the disclosed region, the number of samples in the disclosed region enclosed by F'(x) should be
no less than n+k—m because we only need to subtract the number of samples from the area of WX —b < 0,
X, <z and X5 < x5 out of m. Since we only know there are a total of m samples located in the censored
region, we introduce an adjusted CDF F, compared to the standard CDF F(x) = Pr(X; <z1,Xs < x9).

Definition 1 (Adjusted CDF). Let the decision line WX — b = 0 split the entire data domain into two
subspaces. Let the adjusted CDF be

0o p_Tlg 4wy

- , wo P17 Wy

F(xl’b) = fﬂh,ﬂﬂzdmdlz
— 00

—o0
where w1, ws are the parameters defined by the line, and b’ € (—00, 00).

Remark. The standard CDF F calculates the area of (X; < x1, X5 < 23), where z1 and x5 are horizontal
and vertical thresholds, respectively. In contrast, the adjusted CDF measures the area below the line
WX =V, When &/ = —oo(resp. 00), it is equivalent to the case of (x;7 = 29 = —oo(resp. o0)). Similarly,
when b’ = b, F(x1,0/ = b) = F(W'X —b < 0) = . The adjusted CDF and standard CDF are both
non-decreasing functions ranging from 0 to 1, and they only differ in the ways of calculating the enclosed
area. By using adjusted CDFs as a proxy, we can derive such relations in the disclosed region.

Lemma 5 (Multivariate Disclosed Region). Let Z = {X|W*X —b > 0} denote the n —m + k out of the
n + k samples in the disclosed region (D). Let a« = F(WTX —b < 0). Let K and K,,_, 1 be the adjusted
theoretical and empirical CDFs of Z, respectively. Then,

. m., -~ . m

sup |[F(x) — Foyx(x)] < sup |min(1 — a,1 — 2)(K(x) — Kn_m+k(x))’ n 2‘0[ _m

xeD xeD T n
scaled disclosed subdomain error shifting and scaling errors

Proof. Given any x = (z1,z2), we can always find a line passing through the point (z1, z2) with the same W
as the decision line. Moreover, the area below the line is greater than that measured by the standard CDF.
Since our focus is on sup, |F(x) — Fj,+x(x)|, the maximum differences between empirical and theoretical
CDFs can be upper bounded in a larger area (e.g., the area below the line). Therefore, we can obtain the
following inequality: R R

sup [F(x) = Py (%)) < sup [F(x) = Py ()

xeD xeD
The equality holds when the maximum difference occurs in the area of (X; < x1, X5 < x3). The remainder
of the proof follows that of Lemma [2] O

Now, we present our theorem, extending the multivariate DKW inequality to problems with censored feed-
back. Analogous to Theorem [2] we derive the following based on Lemma [ and [}
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Theorem 6. Let X1, Xs, ..., X, be initial/historical IID data samples with cumulative distribution function
F(X). Let WX — b =0 partition the data domain into two regions, such that « = F(WTX —b < 0), and
m of the initial n samples are located in the censored region. Assume we collect k additional samples from
the disclosed region, and let F, 1y denote the empirical CDF estimated from these n + k (non-I1ID) data.
Then, for every m,n,k and n > 0,

P { sup
zeR2

F(m)an-s-k(m)‘ zn} < dexp (M) 4 4exp(—2<n—m+k>(n—2|a—2%\>2>

P
min (a,%) min (1—(1,";7”

censored region error (constant)  disclosed region error (decreasing with additional data)

Similarly, incorporating the exploration, the LB can now be defined as a new line sharing the same W as
the decision line but with a different intercept (e.g., bpp < b). Consequently, we have the following:

Theorem 7. Let X1, Xo, ..., X, be initial/historical IID data samples with cumulative distribution function
F(X). Let WX —brp = 0 and WTX — b = 0 partition the data domain into three regions, such that
B =FWTX —brp <0) and a« = F(WTX —b < 0), with | and m of the initial n samples located in
the censored region, and the combined censored and exploration region, respectively. Assume we collect an
additional k1 samples from the exploration region, under an exploration probability €, and an additional
number of ko samples from the disclosed region. Let F, ik, +k, denote the empirical CDF estimated from
these n + k1 + ko non-IID samples. Then, for every l,m,n, ki, ks, and n > 0,

—2U(n—|8—£1)?
P| sup [F(2) = Fupsyaa (2)] > 0| < dexp (220212
i (5:5)
—2(m—I+k —18=1|- _5_"74% 2 —2(n—m+k ol _n=t __m—lik; 2
+4exp( (m 1)(" ! "lil’a m,“:; n_z2+k1+ek2’) )+4exp( (n—m 2)(77 ’o:lnn77:+:k—l+k21+ek2|) )
min (O‘_B*nn n—l’+k1+ik2) min (1_‘1’nn '7L7l+7;1+627€2)

The proofs for Theorem [6]and [7]follow the same logic as the proofs for Theorem 2] and [3] with an application
of the multivariate DKW inequality and the re-estimated a.

K Additional experiments

Additional experiments on CDF error bounds

10

— True CDF Y ........................
—— Emp CDF (¢ = 0) .

081 ««++ Upper/Lower error bound (g = 0)
=+ Upper/Lower VC bound

Figure 7: Comparison with our CDF error bound and existing VC bound

In this experiment, we aim to compare the performance of our bounds to the existing VC generalization error
bound (Devroye et all 2013, Cor. 12.2) through the confidence bounds (6 = 0.015) around the empirical
distribution function. We proceed with the same experiment setting on the synthetic data as in Fig [ but
without exploration. We run the experiments 5 times and report the average results with its error bars.

From Figure [7, we can clearly see that the existing VC generalization bound (blue dotted lines) fails to
capture the true distribution, especially in the censored and exploration regions, from where we do not
collect samples due to the censored feedback. This is because the discrepancy between the empirical and
true distributions is large in regions with fewer samples, and the existing VC generalization bound does not
account for censored feedback, decreasing the error bounds faster.
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