
FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation
Gradient Estimation

Srijith Nair 1 Michael Lin 1 Peizhong Ju 2 Amirreza Talebi 3 Elizabeth Serena Bentley 4 Jia Liu 1

Abstract
Collaborative training methods like Federated
Learning (FL) and Split Learning (SL) enable
distributed machine learning without sharing raw
data. However, FL assumes clients can train entire
models, which is infeasible for large-scale models.
In contrast, while SL alleviates the client memory
constraint in FL by offloading most training to
the server, it increases network latency due to its
sequential nature. Other methods address the co-
nundrum by using local loss functions for parallel
client-side training to improve efficiency, but they
lack server feedback and potentially suffer poor
accuracy. We propose FSL-SAGE (Federated
Split Learning via Smashed Activation Gradient
Estimation), a new federated split learning algo-
rithm that estimates server-side gradient feedback
via auxiliary models. These auxiliary models peri-
odically adapt to emulate server behavior on local
datasets. We show that FSL-SAGE achieves a con-
vergence rate of O(1/

√
T), where T is the num-

ber of communication rounds. This result matches
FedAvg, while significantly reducing communica-
tion costs and client memory requirements. Our
empirical results also verify that it outperforms
existing state-of-the-art FSL methods, offering
both communication efficiency and accuracy.

1. Introduction
1) Background and Motivation: In the recent years, large
foundation models (Devlin et al., 2019; Radford et al., 2021;
Ramesh et al., 2022) and LLMs (OpenAI et al., 2024; Tou-

1Department of Electrical and Computer Engineering, The
Ohio State University, Columbus, Ohio, USA 2Department of
Computer Science, University of Kentucky, Lexington, Kentucky,
USA 3Department of Industrial Engineering, The Ohio State
University, Columbus, Ohio, USA 4Air Force Research Labo-
ratory, Rome, New York, USA. Correspondence to: Srijith Nair
<nair.203@osu.edu>, Jia Liu <liu@ece.osu.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

vron et al., 2023) pretrained on large corpora of data have
demonstrated near human-level performance on a variety
of tasks. These models demand heavy computational re-
sources and very large datasets for training (Kaplan et al.,
2020; Hoffmann et al., 2022). The datasets are often owned
by different organizations, making it impossible for a single
entity to train a model on all the data (Sani et al., 2024b).
Distributed learning paradigms like federated learning (FL)
(McMahan et al., 2016) and split learning (SL) (Vepakomma
et al., 2018), which preserve data privacy while leveraging
the compute power of various clients, have become increas-
ingly popular in LLM pretraining (Sani et al., 2024a) and
fine-tuning (Sun et al., 2024; Wang et al., 2024).

Despite their benefits, FL and SL both have some limitations.
Although FL can preserve data privacy by training the model
on the client and aggregating the client-side models at a
server, an inherent assumption of FL is that client devices
have enough computational power to process the model,
which is impractical for large models. SL, on the other hand,
reduces compute requirements for clients by splitting the
model into two parts, processing a smaller piece at the client,
and offloading the other piece to the server. This, however,
implies that processing the complete model in each iteration
involves transmitting the cut-layer features and gradients
back and forth between the client and the server. Moreover,
SL loses the benefits of data parallelism in FL, since the
server needs to assist gradient computation for each client
in a sequential fashion. Consequently, SL suffers significant
increases in communication load, power, and latencies.

To reduce the communication overheads incurred by SL,
some recent works (Han et al., 2021; Mu & Shen, 2023) pro-
pose to use auxiliary models at the clients. These auxiliary
models continue the forward propagation of the client-side
model to compute a local loss function, which is then used
to update both models via gradient descent. This elimi-
nates the need for awaiting the server’s response, which
significantly speeds up the training process. Meanwhile, the
server-side model is updated at a lower frequency by using
the cut-layer features from the clients. While enjoying the
benefit that the clients can conduct training in parallel, this
can significantly reduce communication costs and latencies.
However, the client-side models do not get any feedback
from the server-side model, i.e., the clients are only updated

1

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

using the auxiliary models and thus never get trained via the
server-side model.

To overcome these limitations, we propose a new approach
called Federated Split Learning via Smashed Activation
Gradient Estimation (FSL-SAGE). Note that the auxiliary
model in other FSL frameworks can be interpreted as mim-
icking the server-side model at each client. Since, from the
client-side model’s perspective, the role of the server-side
model is to provide the gradients of the loss function with re-
spect to the cut-layer features, we train the auxiliary models
to estimate these cut-layer gradients returned by the server-
side model, which are then used to update the client-side
models. This allows FSL-SAGE to continue to enjoy the
benefits of FL and SL, while using the auxiliary models to
accurately play the server’s role. Also, we propose to update
the auxiliary models periodically in a less frequent fashion,
thus significantly reducing communication costs.

2) Technical Challenges: However, due to the following
technical challenges, establishing finite-time convergence
rate performance guarantee for FSL-SAGE is highly non-
trivial and necessitates new proof and analysis techniques.
First, as will be shown later in Fig. 1, there are multiple
coupled time-scales involved during training, which include
1) the local step, whereby the client-side model is updated
over a mini-batch of local data; 2) the lesser frequent server
step, where the server-side model is updated given the cut-
layer features; 3) a federated averaging step for the client-
side models; and finally, 4) the least frequent alignment step,
where the auxiliary models are updated to match the server-
side model. Also, one needs to account for the auxiliary
alignment step, which has not been studied in conventional
SL methods (e.g., SplitFed (Thapa et al., 2022) or in the
precursor to this work (Mu & Shen, 2023)). Exacerbating
the problems in FSL-SAGE convergence rate analysis is the
fact that the auxiliary models inject highly heterogeneous
estimation errors during the training process, which are
further coupled with all four time-scales.

3) Main Contributions: The key contribution of this paper
is that we overcome the aforementioned technical challenges
and rigorously establish the finite-time convergence rate
guarantees of our proposed FSL-SAGE. Our main technical
results are summarized as follows:

• We propose a new federated split learning algorithm
called FSL-SAGE to train models that are too large to
be trained on commodity client devices. By using a
periodically aligned auxiliary model at each client to
estimate the server-side model response, FSL-SAGE
enables large model federated training, while enjoying
low communication costs and the same data parallelism
as in conventional FL.

• We establish a general finite-time stationarity conver-
gence rate bound for FSL-SAGE. Based on this general

result, we further show that under a mild in-expectation
PAC-learnability assumption on the auxiliary models,
FSL-SAGE can achieve an O(1/

√
T) convergence rate,

which is the same as those of state-of-the-art FL algo-
rithms even with heterogeneous datasets. Our analysis
sheds theoretical lights on the impacts of the class of
auxiliary model functions on the final-time of conver-
gence, which could be of independent interests to other
FSL methods with auxiliary models.

• We further propose a “lazy version” of our FSL-SAGE
method, where the auxiliary models are frozen beyond
a certain point of alignment. This lazy version can be
useful in practice to further reduce communication costs.
We rigorously establish an explicit trade-off between
this time and the accuracy of the final model.

• We conduct extensive experiments using large ResNet-
18 and GPT2-medium models to verify our theoretical
results and demonstrate that while being much more
communication efficient than existing state-of-the-art
FL/SL algorithms, the accuracy of FSL-SAGE is either
on-par or even better.

2. Related Work
In this section, we provide a quick overview on several
closely related areas, namely FL, SL, and FSL, thus putting
our work in comparative perspectives.

1) Federated Learning: Federated learning was first pro-
posed in McMahan et al. (2016) and theoretically analyzed
in Yu et al. (2019), as an alternative to centralized learning,
whereby several clients could collaborate on training a sin-
gle ML model under the supervision of a server without the
need for sharing client data. In FL, the model parameters
are transmitted over the network to the client devices, where
the clients can train the model on their local datasets be-
fore transmitting them back to the server where the models
get aggregated. This process is repeated iteratively until
the model converges. Federated learning enjoys the ben-
efit that the model needs to be transmitted only once per
communication round, and the clients can train their local
models in parallel, for several iterations per round. Several
FL methods (Yang et al., 2021; Karimireddy et al., 2019;
Sahu et al., 2018; Reddi et al., 2021; Li & Lyu, 2023) have
been analyzed in the recent years, most of which are vari-
ants of the original FedAvg algorithm (McMahan et al.,
2016). As mentioned earlier, one of the key limitations of
conventional FedAvg-type algorithms is that they assume
each client has sufficient memory capacity to store the entire
model to perform local gradient-based updates. However,
this assumption becomes increasingly problematic as ma-
chine learning models continue to grow in size.

2) Split Learning: To alleviate the memory constraint in
training large models with FL, an alternative strategy was

2

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

proposed in Vepakomma et al. (2018), where the idea is
to split a large neural network model into two parts; the
smaller part that contains the input layer is trained on the
clients and the remaining larger portion is trained on the
server. The layer at which the model is split is often called
the cut-layer. During training, the cut-layer features for
each mini-batch of data are communicated from the clients
to the server, and the gradients of the loss with respect to
(w.r.t.) the cut-layer features are in-turn relayed from the
server back to the clients. Moreover, the server needs to
sequentially process the server-side portion of the model for
each client as discussed in Gupta & Raskar (2018), which
renders high latency in using the vanilla SL approach. It
is thus clear that SL reduces client memory requirements
at the expense of slow and highly sequential training and
increased communication costs. CPSL (Wu et al., 2023)
is an extension of traditional SL, where clients are divided
into clusters and clients within each cluster train in parallel.
However, CPSL still suffers the same latencies as in SL.

3) Federated Split Learning: Since FL and SL each have
inherent limitations, an important research is to explore
whether we can design a new algorithmic framework that
combines the data-parallel training efficiency of FL with the
model-splitting capability of SL, thus enabling both faster
training and reduced computational demands on clients. To-
ward this end, the SplitFed algorithm with two variants was
proposed in Thapa et al. (2022), namely SplitFedv1 and
SplitFedv2. SplitFedv1 maintains multiple copies of the
server-side model at the server, one corresponding to each
client, thereby allowing all clients to train in parallel, but at
the expense of the non-scalable computational demand on
the server. By contrast, in SplitFedv2, the server performs
each client’s backpropagation sequentially on a first-come-
first-serve basis. The key advantage to both methods is
that the clients can perform forward propagation in paral-
lel. AdaptSFL (Lin et al., 2024) is a recent extension of
SplitFedv2, where the authors adapted the client-side model
size based on the available resources making SplitFed more
flexible to resource-constrained clients. However, the com-
munication overhead of these methods is the same as SL.

4) Auxiliary Models: The most related works to our paper
are Han et al. (2021) and Mu & Shen (2023), where algo-
rithms using local cost functions were proposed to avoid
the need for the clients to wait for the server to return the
cut-layer gradients. The client-side models are updated
in parallel by backpropagating gradients via the local loss
function through auxiliary models on the corresponding
clients. The client-side and auxiliary models are then ag-
gregated every round. The server-side model is updated
by receiving cut-layer activations once in several local it-
erations. The method in Han et al. (2021) is similar to
SplitFedv1 in the sense that separate server-side models
are maintained per client, while the method in Mu & Shen

(2023) is similar to SplitFedv2, where only one server-side
model is updated on a first-come-first-serve basis. How-
ever, our work differs from these existing methods in the
following key aspect: the auxiliary models at the clients in
our proposed FSL-SAGE are periodically aligned with the
server-side model to ensure high training accuracy with low
communication costs. In contrast, the auxiliary models in
the aforementioned methods do not perform any alignments
with the server-side model, thus leading to potentially low
training accuracy. Notably, we circumvent all limitations of
the above methods. Our method minimizes computational
burden on the clients and communication costs that are in-
evitable in the other algorithms, and reduces latencies by
facilitating parallel training, without compromising accu-
racy. Oh et al. (2022) addressed the inherent limitations of
using local losses and the dual frequency of updates in FSL
frameworks, and proposed to locally regularize the client-
side models to maximize the mutual information between
raw and cut-layer data, while also augmenting the smashed
data so that the server-side model to improve latency and
accuracy in parallel SL.

Group Knowledge Transfer (GKT) (He et al., 2020) is an-
other approach related to our work. The basic idea of GKT
is to train smaller client-side auxiliary models and then trans-
fer their knowledge to the server via a variant of knowledge
distillation (Hinton et al., 2015) by using the logits from
the auxiliary model to train the server-side model. GKT is
classified as a knowledge distillation approach with mod-
ified loss functions to incorporate server feedback during
client-side model training, and is not exactly a federated
split learning method. Thus, its performance is not directly
comparable to FSL methods due to its different training
objective function.

Although auxiliary models have been used in centralized
deep network training Marquez et al. (2018); Bhatti & Moon
(2022), the training of the auxiliary models in such works is
indirect, and can be interpreted as training the network in
parts. In our work, we explicitly train the auxiliary models
to approximate the server-side models, thus ensuring their
most accurate use.

3. The Proposed FSL-SAGE Algorithm
In this section, we present our system settings and the pro-
posed FSL-SAGE algorithm.

1) System Setting: As shown in Fig. 1, our federated system
consists of a server and m clients indexed by i. Each client
i is associated with a local dataset Di. The server contains
two server processes: (i) the “F -server” for conducting
federated aggregation, and (ii) the “S-server” that processes
the server-side model and updates the auxiliary models for
each client. In this paper, we call one cycle of federated

3

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

1

2

1

3

4

2

1

3

4

4

4

4

1 2

2

2

2

3
4

5

1

2

3
4

5

1

2

3

4

5

1

1

1

1

1

1

Figure 1. Schematic diagram of the FSL-SAGE algorithm. Text on
the arrows indicates (sender → receiver, message, rate), e.g., the
red arrows transmit xc between Ci and the F -server at the rate of
1 per round (p.r.), the updated xa,i is sent to Ci once in l rounds.
Arrows are color coded: brown arrows represent local operations,
blue arrows represent the smashed data and label transmission
to the server, red arrows indicate federated averaging, and green
arrows indicate auxiliary model transfer; circled numbers indicate
the order of operations

aggregation as one “round” and assume that FSL-SAGE
runs for a total of T rounds. Our objective is to learn a model
x ∈ Rd that minimizes a global loss function f : Rd → R:

min
x∈Rd

f(x) :=
1

m

m∑
i=1

Fi(x), (1)

where Fi(·) := Eξi∼Di
[Fi(x; ξi)] corresponds to the objec-

tive function of the i-th client.

2) The FSL-SAGE Algorithm: The entire process of FSL-
SAGE is illustrated in Fig. 1. Similar to split learning, in
FSL-SAGE, we split the model x into the client-side model
xc,i for all clients i ∈ [m] and the server-side model xs. As
shown in Fig. 1, a single local iteration at the i-th client con-
sists of the following key steps: (1) The client-side model
takes as input a sampled batch of data ξi ∈ Di and outputs
the cut-layer features zi,f (xc,i; ξi), where the subscript f
in zi,f denotes the output of the “forward” pass; (2) Each
client has an auxiliary model xa,i, which takes as input
zi,f and computes the cost function estimate F̂ (xa,i; zi,f);
(3) In the backward pass, the auxiliary model computes
the gradients of the cost estimate with respect to the cut
layer features, denoted as ẑi,b(xa,i; zi,f , yi), where yi is
the label corresponding to ξi, and the subscript b in ẑi,b

denotes the result of the ‘backward’ pass. These gradients

Algorithm 1 The Code of Client i in FSL-SAGE.

Require: x0
a,i

1: for t← 0, 1, . . . , (T − 1) do
2: xt,0

c,i ← xt
c # Initialize weights from F -server

3: if t ≡ 0 mod l then
4: Receive xt

a,i from S-server
5: else
6: xt

a,i ← xt−1
a,i

7: end if
8: for k ← 1, 2, . . . , (K − 1) do
9: (ξt,ki , yt,ki) ∼ Di # Sample local mini-batch

10: zt,k
i,f ← zi,f (x

t,k
c,i ; ξ

t,k
i) # Forward pass on client

11: if k ≡ 0 mod (K/Q) then
12: Send (zt,k

i,f , y
t,k
i) to S-server

13: end if
14: ẑt,k

i,b ← ẑi,b(x
t
a,i; z

t,k
i,f) # Compute grad estimate

15: xt,k+1
c,i ← xt,k

c,i − ηLJ
t,k
c,i ẑ

t,k
i,b # Update client

16: end for
17: Send xt,K

c,i to F -server
18: end for

Algorithm 2 FSL-SAGE F -Server

1: Initialize model x0

2: (x0
c ,x

0
s)← split

(
x0

)
Split model

3: Send x0
s to Server S

4: Broadcast x0
c to all clients

5: for t← 0, 1, . . . , T − 1 do
6: Receive xt,K

c,i from clients i = 1, 2, . . . ,m

7: xt+1
c = 1

m

∑m
i=1 x

t,K
c,i # Aggregate client model

8: Broadcast xt+1
c to all clients

9: end for

are in turn used to update the client-side model; (4) Ev-
ery client performs K local iterations before sending their
models, xc,i, to the F -server for aggregation. Algorithms
1 and 2 summarize the client and F -server operations in
FSL-SAGE.

To update the server-side model, the clients periodically
send the computed cut-layer features and labels to the S-
server Q times per round. The S-server computes the true
loss function Fi(xs; zi,f , yi) and the gradient of Fi with
respect to zi,f , which is denoted by zi,b. The server-side
model is then updated in a gradient descent fashion. The
tuple (zi,f , yi), called the alignment dataset, is stored for
training the auxiliary model. Algorithm 3 summarizes the
operations of the S-server.

Once every l rounds, the server initiates an alignment pro-
cess, where each client’s auxiliary model is updated using
the respective alignment dataset. Assuming round t is a
multiple of l the auxiliary model at round t, is updated as

4

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

Algorithm 3 (Lazy) FSL-SAGE S-Server

1: Receive x0
s from F -server

2: for t ∈ [T] do
3: for k ∈ [K] if k ≡ 0 mod K/Q do
4: Receive (zt,k

i,f , yi) ∀i on FCFS basis
5: Compute grad gs(x

t,k
s ; zt,k

i,f , yi) via backprop
6: xt,k+1

s := xt,k
s − ηgt,k

s # Update server model
7: Store for client i: (zj

i,f , y
j
i)

8: end for
9: if t ≡ 0 mod l and t ≤ T ′ then # T ′ ≤ T

10: for client i← 1, 2, . . . ,m do
11: Compute zi,b(z

j
i,f , y

j
i) ∀j from

12: xt
a,i = align

({
zj
i,f , z

j
i,b, y

j
i

}
j

)
13: Send xt

a,i to client i
14: end for
15: end if
16: end for

the following:

xt
a,i = argmin

xa

1

2

Qt∑
j=1

∥∥∥ẑi,b(xa; z
j
i,f , y

j
i)− zj

i,b

∥∥∥2
2
, (2)

where the backward gradients zj
i,b are computed by passing

zj
i,f and yji through the server-side model. In practice,

the minimization in (2) could be approximately done by
using a finite number of steps of gradient descent, Adam
(Kingma & Ba, 2015), or other optimizers. Also, since
the alignment dataset grows larger in size with the number
of rounds increases, one can discard the older entries in
order to maintain a fixed maximum size of the dataset. For
simplicity in theoretical analysis, we assume that the server
has sufficiently large storage to accommodate the growing
alignment dataset size.

In Algorithm 1, if the auxiliary models are only updated
for the first T ′ < T rounds of communication and then are
frozen until the end of training, we will refer to this version
as the Lazy FSL-SAGE algorithm. Note that, in practice,
choosing a smaller T ′ can further reduce communication
costs at the expense of final accuracy of the learned model.
On the other hand, the FSL-SAGE algorithm is non-lazy if
T ′ = T . In Section 4, we will characterize the stationarity
gaps of both lazy and non-lazy versions of FSL-SAGE.

4. Theoretical Convergence Analysis
For convenient reference, we summarize the key notation
used in the following analysis in Appendix A and Table 2.
We begin by making the following standard assumptions
widely adopted in the FL literature (Karimireddy et al., 2019;

Reddi et al., 2021; Yang et al., 2021).

Assumption 4.1 (Smoothness). For all i = 1, 2, . . .m,
the following objective functions corresponding to the i-
th client are smooth, i.e., for all xs,xa,i, ξi and yi:

(a) The gradient of gi := ∇Fi(xc,xs; ξi, yi) is
Lc-Lipschitz with respect to x := (xc,xs),
i.e., there exists a constant Lc > 0 such
that ∥gi(uc,us; ξi, yi)− gi(vc,vs; ξi, yi)∥ ≤
Lc ∥u− v∥, for all u := (uc,us) and
v := (vc,vs) ∈ X .

(b) The gradient of the local client objective F̂i, ĝc,i :=

∇cF̂i(xc,xa,i; ξi, yi) is L̂c-Lipschitz with respect
to xc: there exists a constant L̂c > 0 such
that

∥∥ĝc,i(uc,xa,i; ξi, yi)− ĝc,i(vc,xa,i; ξi, yi)
∥∥ ≤

L̂c ∥uc − vc∥ for all uc,vc ∈ Xc.

Assumption 4.2 (Bounded Variance). The following quan-
tities measuring variability of the local stochastic estimates
of the objective function and the variability of the client loss
function are bounded:

(a) The local gradient estimate for a mini-batch sam-
pled at client i is unbiased for all i, i.e.,
∀ x̃, Eξi∼Di

[
∇F̂i(x̃; ξi)

]
= ∇F̂i(x̃i) and has

a bounded variance, i.e., ∃ σL > 0 such that

Eξi∼Di

[∥∥∥∇F̂i(x̃; ξi)−∇F̂i(x̃)
∥∥∥2] ≤ σ̂2

L;

(b) The local gradient for client i is unbiased for all
i, i.e., ∀ x̃, Eξi∼Di

[∇Fi(x; ξi)] = ∇Fi(xi) and
has a bounded variance, i.e., ∃ σL > 0 such that
Eξi∼Di

[
∥∇Fi(x; ξi)−∇Fi(x)∥2

]
≤ σ2

L

(c) The global variability of the local client gradi-
ent is bounded, i.e., for all x and i ∈ [m],
∥∇Fi(x)−∇f(x)∥2 ≤ σ2

G.

Assumptions 4.1 and 4.2 are commonly used in analyzing
convergence of many optimization algorithms from the clas-
sical SGD (Ghadimi & Lan, 2013) to many variants of fed-
erated learning (Yu et al., 2019; Yang et al., 2021). The vari-
ance terms σ̂2

L, σ2
L and σ2

G in Assumption 4.2 characterize
the degree of intra-client and inter-client data heterogeneity.

4.1. General Finite-Time Convergence Rate Results of
Non-lazy FSL-SAGE

In what follows, we provide an upper bound on the station-
arity gap of the FSL algorithm, i.e., a bound on the expected
squared norm of the gradient of the model parameters.

Theorem 4.3 (Convergence of Non-Lazy FSL-SAGE). Un-
der Assumptions 4.1 and 4.2, given step-sizes ηL and η

5

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

satisfying η ≤ 1
4
√
2QLc

and ηL ≤ 1

2
√
10KL̂c

, FSL-SAGE, as
described in Algorithms 1-3, has the following finite-time
stationarity convergence rate bound:

min
t∈[T]

E
[∥∥∇f(xt)

∥∥2] ≤ f(x0)− f∗

cmin {ηL,mη}QT

+
3KηL

2cQmin{ηL,mη}
1

T

T∑
t=1

εt +
Φ(ηL, η)

T
, (3)

where

Φ(ηL, η) :=
c′K

2c2mQmin{ηL,mη}
.
[
η2Lσ̂

2
LLc

+ 40mKη3LL̂
2
c(σ̂

2
L +Kσ2

G)

+m2η2σ2
LLc + 32Qm2η3L2

c(σ
2
L +Qσ2

G)
]
. (4)

and εt is the gradient estimation error incurred by the aux-
iliary model averaged over clients i ∈ [m]:

εt :=
1

m

m∑
i=1

∥∥∥∇F̂i(x̃
t)−∇Fi(x

t)
∥∥∥2 . (5)

A full proof of Theorem 4.3 is provided in Appendix B.1.
The following result directly follows from Theorem 4.3.

Corollary 4.4. For the step-size choices η = O
(

1
m

√
T

)
and ηL = O

(
1√
T

)
, Algorithms 1-3 achieves the following

finite-time stationarity convergence rate:

min
t∈[T]

E
[∥∥∇f(xt)

∥∥2] = O(
1√
T

)
+
O (1)

T

T∑
t=1

εt. (6)

The last term in (6) corresponds to the round-average of the
auxiliary models’ estimation error in estimating the cut-layer
gradients returned by the server, which plays an important
role in the convergence of our method. While these terms
similar to terms 1 and 3 in the RHS of (3) appear in con-
vergence proofs of FedAvg (McMahan et al., 2016) and its
variants (Yang et al., 2021; Reddi et al., 2021), the estima-
tion error term is a direct result of using our auxiliary model
to estimate the server gradients. We note that, although
CSE-FSL (Mu & Shen, 2023) also uses auxiliary models,
their analysis only considers the client-side and server-side
models separately, and thus they bypass analyzing such an
important estimation error term.

4.2. O(1√
T
) Convergence Rate of Non-lazy FSL-SAGE

with Agnostic PAC Learnable Auxiliary Models

With the general finite-time convergence rate results in The-
orem 4.3, it remains unclear whether one can achieve the
same O(1√

T
) convergence rate as the conventional FedAvg-

type methods. In this section, we show that the answer is

“yes” if we further impose a mild learnability assumption on
the auxiliary model. Toward this end, we first introduce the
notion called in-expectation learnability (Mey, 2022):

Definition 4.5 (In-Expectation Learnability). The hypoth-
esis class G is said to be in-expectation learnable by the
empirical risk minimization (ERM) algorithm if and only
if ∀ ϵ > 0, there exists a rG(ϵ) such that, for r ≥ rG(ϵ)
training samples, the following bound holds:

E
[
∥g(θr;x)− f(x)∥2

]
≤ min

θ
E
[
∥g(θ;x)− f(x)∥2

]
+ ϵ, (7)

where the expectation is over x,x1,x2, . . . ,xr; and θr is
the ERM hypothesis learned from {xi}ri=1 that are i.i.d
sampled from D:

θr({xi}i) := argmin
θ∈Θ

1

r

r∑
i=1

∥g(θ;xi)− f(xi)∥2 . (8)

Next, we introduce additional notation pertaining to the
loss function used to train the auxiliary model. We start by
denoting the hypothesis class of auxiliary model functions
for the ith client asAi := {ẑi,b(xa,i; ·) : xa,i ∈ Xa}, which
is parameterized by xa,i. Omitting obvious parameters for
readability, we can denote the empirical loss on r training
samples {(zj

i,f , y
j
i)}rj=1 as

L̂i(xa,i,x) :=
1

r

r∑
j=1

∥∥ẑi,b(xa,i)− zi,b(x)
∥∥2, (9)

and the true loss as

Li(xa,i,x) := E(ξ,y)∼Di

[∥∥∥∥ẑi,b(xa,i)−zi,b(x)

∥∥∥∥2]. (10)

Recall that the auxiliary model is trained once every l rounds
on an increasing number of smashed data samples r :=
⌊t/l⌋. Thus, one can define the ERM solution at round
t from Algorithms 1 & 3, and the corresponding optimal
solution as follows:

xt
a,i = argmin

xa∈Xa

L̂i(xa,x
t) (11)

xt⋆
a,i = argmin

xa∈Xa

Li(xa,x
t). (12)

Then, the auxiliary model (11) is an in-expectation learner
ofAi if ∀ ϵ > 0, there exists a ri(ϵ) such that, for r ≥ ri(ϵ):

E
[
Li(x

t
a,i,x

t)
]
≤ Li(x

t⋆
a,i,x

t) + ϵ (13)

This leads us to introduce the following learnability assump-
tion on the auxiliary model.

6

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

Assumption 4.6 (Learnable Auxiliary Model). The auxil-
iary model of the i-th client xa,i in (9) is an in-expectation
learner of Ai according to Definition 4.5 with sample com-
plexity ri(ϵ) = O

(
1/ϵ2

)
.

In (Grunwald et al., 2021), in-expectation bounds under
the PAC-Bayesian formulation have been derived for loss
functions satisfying the so-called (B, β)-Bernstein condi-
tion (Bartlett & Mendelson, 2006) with B > 0, β ∈ [0, 1].
The sample complexity of those bounds are given by

O
({

comp
r

} 1
2−β

)
where comp is some complexity mea-

sure that appears in the form of KL-divergence (Audibert,
2004; Zhang, 2006) or the conditional mutual information
(CMI) (Steinke & Zakynthinou, 2020) of the posterior and
prior distributions in PAC-Bayesian framework. Provided
the comp term does not increase drastically with r, Assump-
tion 4.6 can be satisfied by such models. Lastly, we make
the following Lipchitz client assumption:

Assumption 4.7 (Lipschitz client). For all clients i =
1, 2, . . .m and for all uc,vc ∈ Xc, the client-side cut-layer
activation zi,f (xc; ξi) is Lzf -Lipschitz with respect to the
client parameters xc, i.e., there exists a constant Lzf > 0
such that ∥zi,f (uc; ξi)− zi,f (vc; ξi)∥ ≤ Lzf ∥uc − vc∥ .

With these assumptions, we are now in a position to state
our next main result:

Theorem 4.8 (FSL-SAGE with PAC Auxiliary Models).
Under Assumptions 4.1, 4.2, and 4.7, and with step-sizes
(η, ηL) satisfying the conditions in Theorem 4.3, if the auxil-
iary model satisfies Assumption 4.6 with ri(ϵ) = O (1/ϵ2),
then after T rounds, the iterates in FSL-SAGE satisfy:

min
n∈{1,...,⌊T/l⌋}

E
[∥∥∇f(xnl−1)

∥∥2] ≤ f(x0)− f∗

cmin{ηL,mη}QT

+
3CKηL

2Qmin{ηL,mη}
√
T

+
Φ(ηL, η)

T

+
3KηLL

2
f

2cQmin{ηL,mη}
1

T

T∑
i=1

εt⋆ (14)

where C > 0 and 0 < c < 0.5 − 20K2η2LL̂
2
c are some

constants, and εt⋆ := 1
m

∑m
i=1 Li(x

t⋆
a,i,x

t).

Note that, for the step-size choices ηL = O(1/
√
T) and

η = O(1/(m
√
T)), the first three terms in the upper bound

in (14), decrease with rounds as O(1/
√
T). The last term,

given by C/T
∑T

t=1 ε
t
⋆ where C = O (1), is the average of

εt⋆ over all rounds. The term εt⋆ is the error achieved by the
best hypothesis inA at round t and is entirely determined by
the architecture of the auxiliary model. It is trivially zero for
cases when the server-side model can be obtained for some
realization of the auxiliary model parameters. A more inter-
esting case is when the auxiliary model is typically much
smaller than the server-side model. For 2-layer auxiliary

models, there are several results such as the universal ap-
proximation theorem (Cybenko, 1989; Hornik et al., 1989),
and bounds for sufficiently wide or deep networks (Lu et al.,
2017; Hanin & Sellke, 2018; Hanin, 2019) that show that
εt⋆ can be made arbitrarily small. Finally, from the above
discussions, we have the following complexity results:

Corollary 4.9. For the step-size choices ηL = O(1/
√
T)

and η = O(1/(m
√
T)), the non-lazy FSL-SAGE with PAC-

learnable auxiliary models achieves a finite-time conver-
gence rate of O(1/

√
T).

4.3. Convergence Results of Lazy FSL-SAGE

Since the alignment process is expensive in terms of commu-
nication costs, in practice one may want to stop performing
alignment of the auxiliary model after T ′ < T rounds, i.e.,
the Lazy FSL-SAGE apporach. Since the only difference
in the convergence bound of non-lazy FSL-SAGE in The-
orem 4.8 and Lazy FSL stems from the estimation error’s
contribution to the upper bound εt, we immediately have
the following result for the Lazy FSL-SAGE with slight
modification of the bound in Theorem 4.8:

Corollary 4.10 (Convergence Rate of Lazy FSL). Under
Assumptions 4.1, 4.2, 4.6 and 4.7, and the step-sizes (η, ηL)
satisfying the conditions in Theorem 4.3, let us additionally
assume that A is in-expectation learnable as per Defini-
tion 4.5 with ri(ϵ) = O (1/ϵ2) for all δ, then after T > T ′

rounds Lazy FSL-SAGE satisfies:

min
n∈{1,...,⌊T/l⌋}

E
[∥∥∇f(xnl−1)

∥∥2] ≤ f(x0)− f∗

cmin{ηL,mη}QT

+
3CKηL(1 + T ′/T)

2Qmin{ηL,mη}
√
T ′

+
Φ(ηL, η)

T

+
3KηLL

2
f

2cQmin{ηL,mη}
1

T

T∑
i=1

εt⋆ (15)

where c, C and εt⋆ are as defined in Theorem 4.8.

Although Han et al. (2024) studied the convergence of
SplitFed without any auxiliary models or local losses, to
add to the challenges faced in their setting, in our case, the
client-side model is updated through an approximation of
the server-side model, which introduces approximation er-
rors in the client-side model. To the best of our knowledge,
our work is the first to provide an explicit relationship be-
tween the convergence rate and the approximation power of
the auxiliary models.

An important limitation between FSL with sequentially pro-
cessed server-side model and FL, which manifests in our
convergence analysis is the lack of linear speedup (Yang
et al., 2021), i.e., the convergence rate does not reduce with
the increase in the number of clients m. Note that in all FSL
approaches (Han et al., 2024; Mu & Shen, 2023), including

7

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

0 50 100 150 200

Communication Load (GB)

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
es
t
A
cc
u
ra
cy

7
0
.0
4
G
B

6
0
.2
3
G
B

1
0
9
.0
7
G
B

2
6
.0
2
G
B

1
2
.2
0
G
B

FSL-SAGE SplitFed-MS
CSE-FSL

FedAvg

SplitFed-SS

Figure 2. Test accuracy vs. communication
load for ResNet-18 on CIFAR-10 distributed
homogeneously across 10 clients. Curves
are labeled from best (leftmost) to worst
(rightmost) in final accuracy.

0 50 100 150 200

Communication Load (GB)

0.0

0.1

0.2

0.3

0.4

0.5

T
es
t
A
cc
u
ra
cy

4
8
.0
2
G
B

2
6
.1
8
G
B

1
3
.4
5
G
B

FSL-SAGE SplitFed-MS

CSE-FSL

FedAvg

SplitFed-SS

Figure 3. Test accuracy vs. communica-
tion load for ResNet-18 on CIFAR-100 dis-
tributed homogeneously across 10 clients.

100 101 102 103 104

α

0.4

0.5

0.6

0.7

0.8

T
es
t
A
cc
u
ra
cy

@
8
0
.0
0
G
iB

FSL-SAGE

CSE-FSL

SplitFed-MS

FedAvg

SplitFed-SS

Figure 4. Best accuracy vs. Dirichlet α ∈
(0,∞] for ResNet-18/CIFAR-10 with non-
i.i.d. data for 10 clients up to 80GiB comm.

in our work, where a single server-side model is maintained,
the server-side model must be sequentially processed, thus
losing linear speedup.

5. Experimental Results and Discussion
In this section, we conduct numerical experiments to verify
the efficacy of our proposed FSL-SAGE algorithm1.

1) Experiment Settings: 1-a) Compute and Baselines: We
compare FSL-SAGE with FedAvg (McMahan et al., 2016),
SplitFedv1 and SplitFedv2 (Thapa et al., 2022), and CSE-
FSL (Mu & Shen, 2023). We use PyTorch for training on a
single NVIDIA H100 NVL GPU with 80GB of memory.

1-b) Datasets: Although FL generally applies to a wide
range of machine learning tasks, we focus on two tasks: 1)
image classification on CIFAR-10 and CIFAR-100 datasets
(Krizhevsky et al., 2009); and 2) natural language gener-
ation using the E2E (Novikova et al., 2017) dataset. The
CIFAR datasets contain 60K 32×32 3-channel images with
10 and 100 classes respectively. To simulate the effect of
data heterogeneity we use the Dirichlet distribution parame-
terized by α ∈ (0,∞) to determine the proportion of class
labels (Hsu et al., 2019), where smaller α indicates more
heterogeneity of class label distribution.

1-c) Models: For image classification, we use the ResNet-
18 (He et al., 2016), which comprises of 4 ResNet blocks.
We split the network in between block 2 and 3 to create a
client-side model with 685K parameters and a server-side
model with 10.5M parameters. For the auxiliary models,
we arbitrarily cascade the first server ResNet block with the
final fully-connected layer, yielding 2.1M parameters. For
natural language generation, we perform LoRA finetuning
(Hu et al., 2021) of GPT2-medium (Radford et al., 2019).
We split the model after the first attention block, yielding

1Our source code is available at https://github.com/s
rijith1996/FSL-SAGE.

66.2M parameters for the client-side model and 365.7M
parameters for the server-side model. For the auxiliary
model, we use the first 3 attention blocks cascaded with the
language decoder of the server-side model (92.4M params).

1-d) Hyperparameters: For image classification, we use a
batch-size of 256. Clients train their models for 1 epoch on
their local dataset per federated averaging round. For CSE-
FSL and FSL-SAGE, the cut-layer features are sent to the
server-side model every 5 local steps, and for FSL-SAGE,
the auxiliary models are aligned with the server every l = 10
rounds. We stop training when the communication cost
incurred exceeds 200GiB. The client-side and server-side
models are optimized using Adam (Kingma & Ba, 2015)
with a learning rate 10−3, weight decay 10−4, and β1 =
0.9, β2 = 0.999. For alignment, we use the same optimizer
settings with no weight decay. For better interpretability, we
use SplitFed-MS (multi-server) in lieu of SplitFedv1 and
SplitFed-SS (single-server) in lieu of SplitFedv2.

2) Results and Discussions: 2-a) Image Classification: In
Fig. 2, we plot the test accuracy against communication load
on 10 clients on CIFAR-10, averaged over 4 training runs.
FSL-SAGE outperforms all the other methods in final accu-
racy. More importantly, for a given level of accuracy, say
81%, FSL-SAGE achieves almost 2.2× lesser communica-
tion cost than CSE-FSL, and 10× lesser than SplitFed-SS.
Figure 3 depicts a similar plot for CIFAR-100. Table 1
summarizes the best accuracies on CIFAR datasets.

In Fig. 4, we plot the best accuracy achieved by each method

Algorithm CIFAR-10 CIFAR-100
iid non-iid iid non-iid

FedAvg 82.08 42.72 45.79 35.26
SplitFedv1 84.21 81.48 50.78 51.03
SplitFedv2 81.42 46.79 45.54 35.57
CSE-FSL 83.74 80.40 50.94 49.55
FSL-SAGE 85.71 82.75 56.06 51.90

Table 1. Best test accuracy (%) for ResNet-18 trained up to
200GiB. Best and second best results are colored and bold.

8

https://github.com/srijith1996/FSL-SAGE
https://github.com/srijith1996/FSL-SAGE

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

0 1000 2000 3000 4000

Communication Load (GB)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

T
es
t
L
o
ss

CSE-FSL

FSL-SAGE

SplitFed-SS

FedAvg

Figure 5. Test loss vs. communication load for LoRA finetuning
of GPT2-m on i.i.d. E2E distributed across 3 clients.

over the course of training on CIFAR-10, upto a commu-
nication load of 80GiB, against the Dirichlet distribution
parameter α ∈ (0,∞). We vary α from 10−1 (high hetero-
geneity) to 104 (low heterogeneity) to simulate the effect
of uneven data distribution among 10 clients. While Fe-
dAvg and SplitFed-SS do not converge within the specified
communication budget under high heterogeneity, the other
three methods are much more robust to data heterogeneity.
FSL-SAGE is robust within the given range of heterogeneity,
and outperforms other methods. We present some supple-
mentary plots for the image classification experiments in
Appendix D.

2-b) LoRA Fine-tuning GPT2 on E2E: In order to study
the convergence rates of different FL/SL methods, we also
perform an experiment on fine-tuning the pretrained GPT2-
medium (Radford et al., 2019) on the E2E dataset (Novikova
et al., 2017), which is a tabular to natural language genera-
tion problem. In Fig. 5, we plot the masked cross-entropy
loss against communication load for test data. The meth-
ods are run upto 4TB of communication or 50 rounds,
whichever is earlier. We observe that FSL-SAGE converges
faster, and is more accurate than its auxiliary-based counter-
part CSE-FSL, and almost as fast as SplitFed-SS. FedAvg
converges the fastest since, for GPT2-medium, communicat-
ing the model once per round consumes much lesser bytes
than more frequently transmitting the smashed data.

6. Conclusion
In this paper, we proposed a new federated split learning
algorithm, FSL-SAGE, which facilitates the training of large
models using FL, while enjoying the benefits of data paral-
lelism. Our method leverages parallel training of client-side
models while incorporating server feedback via auxiliary
models. FSL-SAGE has a finite-time convergence rate of
O(1/

√
T) for T communication rounds, which matches Fe-

dAvg. We conducted extensive experiments with large-size
computer vision and natural language models to verify the
efficacy and the significant amount of communication cost

savings of our proposed FSL-SAGE method.

Acknowledgements
This work is supported in part by ONR grant N00014-
24-1-2729; NSF grants CAREER 2110259, 2112471, and
2324052; DARPA YFA D24AP00265 and DARPA HR0011-
25-2-0019.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none of which we feel must be
specifically highlighted here.

References
Audibert, J.-Y. PAC-Bayesian Statistical Learning Theory.

PhD thesis, Paris 6, Jul 2004.

Bartlett, P. L. and Mendelson, S. Empirical minimization.
Probability theory and related fields, 135(3):311–334,
2006.

Bhatti, H. I. and Moon, J. Locally supervised learn-
ing with periodic global guidance. arXiv preprint
arXiv:2208.00821, 2022.

Cybenko, G. V. Approximation by superpositions of a
sigmoidal function. Mathematics of Control, Signals and
Systems, 2:303–314, 1989. URL https://api.se
manticscholar.org/CorpusID:3958369.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. Bert:
Pre-training of deep bidirectional transformers for lan-
guage understanding. In Proceedings of the 2019 confer-
ence of the North American chapter of the association for
computational linguistics: human language technologies,
volume 1 (long and short papers), pp. 4171–4186, 2019.

Ghadimi, S. and Lan, G. Stochastic first-and zeroth-order
methods for nonconvex stochastic programming. SIAM
journal on optimization, 23(4):2341–2368, 2013.

Grunwald, P., Steinke, T., and Zakynthinou, L. Pac-bayes,
mac-bayes and conditional mutual information: Fast rate
bounds that handle general vc classes. In Conference on
Learning Theory, pp. 2217–2247. PMLR, 2021.

Gupta, O. and Raskar, R. Distributed learning of deep neural
network over multiple agents. Journal of Network and
Computer Applications, 116:1–8, 2018.

Han, D.-J., Bhatti, H. I., Lee, J., and Moon, J. Accelerating
federated learning with split learning on locally generated
losses. In ICML 2021 workshop on federated learning

9

https://api.semanticscholar.org/CorpusID:3958369
https://api.semanticscholar.org/CorpusID:3958369

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

for user privacy and data confidentiality. ICML Board,
2021.

Han, P., Huang, C., Tian, G., Tang, M., and Liu, X. Con-
vergence analysis of split federated learning on hetero-
geneous data. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=ud0R
BkdBfE.

Hanin, B. Universal function approximation by deep neural
nets with bounded width and relu activations. Mathemat-
ics, 7(10):992, 2019.

Hanin, B. and Sellke, M. Approximating continuous
functions by relu nets of minimal width, 2018. URL
https://arxiv.org/abs/1710.11278.

He, C., Annavaram, M., and Avestimehr, S. Group knowl-
edge transfer: Federated learning of large cnns at the edge.
Advances in Neural Information Processing Systems, 33:
14068–14080, 2020.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual learn-
ing for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Hinton, G., Vinyals, O., and Dean, J. Distilling
the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Hoffmann, J., Borgeaud, S., Mensch, A., Buchatskaya, E.,
Cai, T., Rutherford, E., de Las Casas, D., Hendricks,
L. A., Welbl, J., Clark, A., et al. An empirical analy-
sis of compute-optimal large language model training.
Advances in neural information processing systems, 35:
30016–30030, 2022.

Hornik, K., Stinchcombe, M., and White, H. Multilayer
feedforward networks are universal approximators. Neu-
ral networks, 2(5):359–366, 1989.

Hsu, T.-M. H., Qi, H., and Brown, M. Measuring the effects
of non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019.

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y., Wang,
S., Wang, L., and Chen, W. Lora: Low-rank adaptation of
large language models. arXiv preprint arXiv:2106.09685,
2021.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B.,
Chess, B., Child, R., Gray, S., Radford, A., Wu, J., and
Amodei, D. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Karimireddy, S. P., Kale, S., Mohri, M., Reddi, S. J., Stich,
S. U., and Suresh, A. T. SCAFFOLD: stochastic con-
trolled averaging for on-device federated learning. CoRR,
abs/1910.06378, 2019. URL http://arxiv.org/
abs/1910.06378.

Kingma, D. P. and Ba, J. Adam: A method for stochas-
tic optimization. In Bengio, Y. and LeCun, Y. (eds.),
3rd International Conference on Learning Representa-
tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Krizhevsky, A., Hinton, G., et al. Learning multiple layers
of features from tiny images. 2009.

Li, Y. and Lyu, X. Convergence analysis of sequential feder-
ated learning on heterogeneous data. Advances in Neural
Information Processing Systems, 36:56700–56755, 2023.

Lin, Z., Qu, G., Wei, W., Chen, X., and Leung,
K. K. Adaptsfl: Adaptive split federated learning in
resource-constrained edge networks. arXiv preprint
arXiv:2403.13101, 2024.

Lu, Z., Pu, H., Wang, F., Hu, Z., and Wang, L. The ex-
pressive power of neural networks: A view from the
width. In Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017. URL
https://proceedings.neurips.cc/paper
_files/paper/2017/file/32cbf687880eb
1674a07bf717761dd3a-Paper.pdf.

Marquez, E. S., Hare, J. S., and Niranjan, M. Deep cascade
learning. IEEE transactions on neural networks and
learning systems, 29(11):5475–5485, 2018.

McMahan, H. B., Moore, E., Ramage, D., and y Arcas,
B. A. Federated learning of deep networks using model
averaging. CoRR, abs/1602.05629, 2016. URL http:
//arxiv.org/abs/1602.05629.

Mey, A. A note on high-probability versus in-expectation
guarantees of generalization bounds in machine learning,
2022. URL https://arxiv.org/abs/2010.0
2576.

Mu, Y. and Shen, C. Communication and storage efficient
federated split learning. In ICC 2023 - IEEE International
Conference on Communications, pp. 2976–2981, 2023.
doi: 10.1109/ICC45041.2023.10278891.

Novikova, J., Dušek, O., and Rieser, V. The E2E dataset:
New challenges for end-to-end generation. In Jokinen, K.,
Stede, M., DeVault, D., and Louis, A. (eds.), Proceedings
of the 18th Annual SIGdial Meeting on Discourse and
Dialogue, pp. 201–206, Saarbrücken, Germany, August
2017. Association for Computational Linguistics. doi:

10

https://openreview.net/forum?id=ud0RBkdBfE
https://openreview.net/forum?id=ud0RBkdBfE
https://arxiv.org/abs/1710.11278
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1910.06378
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://proceedings.neurips.cc/paper_files/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/32cbf687880eb1674a07bf717761dd3a-Paper.pdf
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
https://arxiv.org/abs/2010.02576
https://arxiv.org/abs/2010.02576

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

10.18653/v1/W17-5525. URL https://aclantho
logy.org/W17-5525/.

Oh, S., Park, J., Vepakomma, P., Baek, S., Raskar, R., Ben-
nis, M., and Kim, S.-L. Locfedmix-sl: Localize, federate,
and mix for improved scalability, convergence, and la-
tency in split learning. In Proceedings of the ACM Web
Conference 2022, WWW ’22, pp. 3347–3357, New York,
NY, USA, 2022. Association for Computing Machinery.
ISBN 9781450390965. doi: 10.1145/3485447.3512153.
URL https://doi.org/10.1145/3485447.
3512153.

OpenAI, Achiam, J., et al. Gpt-4 technical report, 2024.
URL https://arxiv.org/abs/2303.08774.

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. Language models are unsupervised
multitask learners. OpenAI blog, 1(8):9, 2019.

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G.,
Agarwal, S., Sastry, G., Askell, A., Mishkin, P., Clark,
J., Krueger, G., and Sutskever, I. Learning transferable
visual models from natural language supervision, 2021.
URL https://arxiv.org/abs/2103.00020.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. Hierarchical text-conditional image generation with
clip latents, 2022. URL https://arxiv.org/ab
s/2204.06125.

Reddi, S. J., Charles, Z., Zaheer, M., Garrett, Z., Rush, K.,
Konečný, J., Kumar, S., and McMahan, H. B. Adaptive
federated optimization. In International Conference on
Learning Representations, 2021. URL https://open
review.net/forum?id=LkFG3lB13U5.

Sahu, A. K., Li, T., Sanjabi, M., Zaheer, M., Talwalkar, A.,
and Smith, V. On the convergence of federated optimiza-
tion in heterogeneous networks. CoRR, abs/1812.06127,
2018. URL http://arxiv.org/abs/1812.061
27.

Sani, L., Iacob, A., Cao, Z., Lee, R., Marino, B., Gao, Y.,
Cai, D., Li, Z., Zhao, W., Qiu, X., et al. Photon: Feder-
ated llm pre-training. arXiv preprint arXiv:2411.02908,
2024a.

Sani, L., Iacob, A., Cao, Z., Marino, B., Gao, Y., Paulik, T.,
Zhao, W., Shen, W. F., Aleksandrov, P., Qiu, X., and Lane,
N. D. The future of large language model pre-training
is federated. In International Workshop on Federated
Foundation Models in Conjunction with NeurIPS 2024,
2024b. URL https://openreview.net/forum
?id=hfeH5AP9NY.

Steinke, T. and Zakynthinou, L. Reasoning about general-
ization via conditional mutual information. In Conference
on Learning Theory, pp. 3437–3452. PMLR, 2020.

Sun, Y., Li, Z., Li, Y., and Ding, B. Improving loRA in
privacy-preserving federated learning. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum
?id=NLPzL6HWNl.

Thapa, C., Arachchige, P. C. M., Camtepe, S., and Sun,
L. Splitfed: When federated learning meets split learn-
ing. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 36, pp. 8485–8493, 2022.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux,
M.-A., Lacroix, T., Rozière, B., Goyal, N., Hambro, E.,
Azhar, F., Rodriguez, A., Joulin, A., Grave, E., and Lam-
ple, G. Llama: Open and efficient foundation language
models, 2023. URL https://arxiv.org/abs/23
02.13971.

Vepakomma, P., Gupta, O., Swedish, T., and Raskar,
R. Split learning for health: Distributed deep learn-
ing without sharing raw patient data. arXiv preprint
arXiv:1812.00564, 2018.

Wang, Z., Shen, Z., He, Y., Sun, G., Wang, H., Lyu, L.,
and Li, A. FLoRA: Federated fine-tuning large language
models with heterogeneous low-rank adaptations. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, 2024. URL https://openrevi
ew.net/forum?id=TcCorXxNJQ.

Wu, W., Li, M., Qu, K., Zhou, C., Shen, X., Zhuang, W.,
Li, X., and Shi, W. Split learning over wireless networks:
Parallel design and resource management. IEEE Journal
on Selected Areas in Communications, 41(4):1051–1066,
2023.

Yang, H., Fang, M., and Liu, J. Achieving linear speedup
with partial worker participation in non-IID federated
learning. In International Conference on Learning Rep-
resentations, 2021. URL https://openreview.n
et/forum?id=jDdzh5ul-d.

Yu, H., Yang, S., and Zhu, S. Parallel restarted sgd with
faster convergence and less communication: Demystify-
ing why model averaging works for deep learning. In
Proceedings of the AAAI conference on artificial intelli-
gence, volume 33, pp. 5693–5700, 2019.

Zhang, T. From ε-entropy to kl-entropy: Analysis of min-
imum information complexity density estimation. The
Annals of Statistics, pp. 2180–2210, 2006.

11

https://aclanthology.org/W17-5525/
https://aclanthology.org/W17-5525/
https://doi.org/10.1145/3485447.3512153
https://doi.org/10.1145/3485447.3512153
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2204.06125
https://arxiv.org/abs/2204.06125
https://openreview.net/forum?id=LkFG3lB13U5
https://openreview.net/forum?id=LkFG3lB13U5
http://arxiv.org/abs/1812.06127
http://arxiv.org/abs/1812.06127
https://openreview.net/forum?id=hfeH5AP9NY
https://openreview.net/forum?id=hfeH5AP9NY
https://openreview.net/forum?id=NLPzL6HWNl
https://openreview.net/forum?id=NLPzL6HWNl
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://openreview.net/forum?id=TcCorXxNJQ
https://openreview.net/forum?id=TcCorXxNJQ
https://openreview.net/forum?id=jDdzh5ul-d
https://openreview.net/forum?id=jDdzh5ul-d

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

A. Notation

ξi zi,f (xc; ξi) Fi(xs, zi,f , yi)

F̂i(xa,i, zi,f , yi)

gc,i(xc,xs; ξi, yi)

zi,b(xs; zi,f , yi)

gs,i(xs; zi,f , yi)

ĝc,i(xc,xa,i; ξi, yi)

ẑi,b(xa,i; zi,f , yi)

J i(xc; ξi)

xc xs

xa,i

Figure 6. Outline and notation of gradient flows in FSL: Blue arrows denote gradients w.r.t. model parameters; green arrows represent
gradients w.r.t. the cut-layer; and brown arrow indicates the Jacobian of the cut-layer w.r.t. the client-side parameters.

We use the following additional notation in our convergence analysis. We denote the gradients of the loss Fi(x; ξi, yi)
associated with client i, w.r.t. the server-side model as gs,i := ∂Fi/∂xs and w.r.t. the client-side model as:

gc,i :=
∂Fi

∂xc
=

∂z′
i,f

∂xc
.
∂Fi

∂zi,f
= Jc,i.zi,b. (A.1)

where we use Jc,i to denote the transpose of the Jacobian matrix ∂zi,f/∂x
′
c of the cut-layer activations zi,f with respect to

the client-side model weights xc,i for the ith client. The returned gradient zi,b is a function of the model x, and the client’s
mini-batch (ξi, yi), and can be written as zi,b(x; ξi, yi).

We denote the gradients of the loss Fi(x; ξi, yi) associated with client i as gi := (gc,i, gs), where gc,i and gs denote the
gradients with respect to the client-side and server-side models respectively.

Figure 6 outlines the gradients used in our analysis. The following equations define the notation used there.

gs,i(xs; zi,f , yi) :=
∂Fi

∂xs
(xs; zi,f , yi) (A.2a)

zi,b(xs; zi,f , yi) :=
∂Fi

∂zi,f
(xs; zi,f , yi) (A.2b)

J i(xc; ξi) :=
∂z′

i,f

∂xc
(xc; ξi) (A.2c)

gc,i(xc,xs; ξi, yi) := J i(xc; ξi) . zi,b(xs; zi,f , yi) (A.2d)

ẑi,b(xa,i, zi,f , yi) :=
∂F̂i

∂zi,f
(xa,i; zi,f , yi) (A.2e)

ĝc,i(xc,xa,i; ξi, yi) := J i(xc; ξi) . ẑi,b(xa,i; zi,f , yi) (A.2f)

Also, we denote the gradient w.r.t. the client-side model with∇c and the w.r.t. the server-side model as ∇s.

Table 2 summarizes all the notation used in this paper.

B. Proofs
B.1. Proof of Theorem 4.3

We first state the following useful lemma that bounds the kth iterate averaged across clients, which we call the client drift.
The proof is provided in Appendix B.3.

12

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

Table 2. Notations for FSL-SAGE
Quantity Meaning
m Number of clients
T Total number of communication rounds
K Number of client local updates
l Frequency of server-side or auxiliary model updates
p :=

⌊
T
l

⌋
/T Fraction of rounds for which server-side model is updated

xc,xs,xa,i Client-side, server-side and auxiliary model parameters
x̃ Concatenation of client-side and auxiliary model parameters
x Concatenation of client-side and server-side model parameters
gc,i, gs, gi Gradients of f(·) w.r.t. client-, server-side and concatenated model parameters
ηL, η Learning rates for client- and server-side models respectively
f0, f

∗ cost function values at initialization and end of T rounds
∇c,∇s Gradients w.r.t. client- and server-side models
Lc, L̂c Lipschitz constants of∇Fi and ∇F̂i

Lzf Lipschitz constant of zi,f w.r.t. client-side model
σL Bound on variance of local stochastic gradients
σG Bound on variance of estimating global cost function gradient

Lemma B.1. (Client drift bound) For any step-size satisfying ηL ≤ 1√
10KL̂c

, the client drift for any k ∈ 0, . . . ,K − 1 can
be bounded as:

1

m

m∑
i=1

Et

[∥∥∥xt,k
c,i − xt

c

∥∥∥2] ≤ 20Kη2L

[
(σ̂2

L +Kσ2
G) +K

∥∥∇cf(x
t)
∥∥2

+
K

m

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2] (B.1)

For the following, we denote the expectation conditioned on all randomness up to the tth step as Et [·]. First, from
Assumption 4.1(a), and the fact that x := (xc,xs), we get

Et

[
f(xt+1)

]
≤ f(xt) +

〈
∇cf(x

t),Et

[
xt+1
c − xt

c

]〉
+

Lc

2
Et

[∥∥xt+1
c − xt

c

∥∥2]︸ ︷︷ ︸
≜ C

+
〈
∇sf(x

t),Et

[
xt+1
s − xt

s

]〉
+

Lc

2
Et

[∥∥xt+1
s − xt

s

∥∥2]︸ ︷︷ ︸
≜ S

(B.2)

Hereafter, the proof is divided into two parts: the client-side bound (C) and the server-side bound (S).

1. Client-side bound: At the kth iteration of the tth round, the net update for client i takes the form:

xt,k
c,i = xt,k−1

c,i − ηLĝ
t,k−1
c,i = xt,0

c,i − ηL

k−1∑
j=0

ĝt,j
c,i. (B.3)

Together with the model averaging at server F , the client-side model update in one communication round is given by

xt+1
c =

1

m

m∑
i=1

xt,K
c,i =

1

m

m∑
i=1

[
xt,0
c,i − ηL

K−1∑
k=0

ĝt,k
c,i

]
= xt

c −
ηL
m

m∑
i=1

K−1∑
k=0

ĝt,k
c,i . (B.4)

13

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

We first bound the quantity C in (B.2):

C =

〈
∇cf(x

t),−ηL
m

Et

[
m∑
i=1

K−1∑
k=0

ĝt,k
c,i

]〉
︸ ︷︷ ︸

≜A

+
η2LLc

2
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

ĝt,k
c,i

∥∥∥∥∥
2

︸ ︷︷ ︸
≜B

(B.5)

where we get (B.5) from (B.4). For the sequel, we define x̃i := (xc,i,xa,i) as the set of parameters at client i. Then, we
can bound the expression A in (B.5) as follows.

A =

〈
∇cf(x

t),−ηL
m

Et

[
Km∇cf(x

t) +

m∑
i=1

K−1∑
k=0

∇cF̂i(x̃
t,k
i)−Km∇cf(x

t)

]〉

= −KηL
∥∥∇cf(x

t)
∥∥2 +〈

∇cf(x
t),−ηL

m

m∑
i=1

K−1∑
k=0

Et

[
∇cF̂i(x̃

t,k
i)−∇cFi(x

t)
]〉

= −KηL
∥∥∇cf(x

t)
∥∥2

+ Et

[〈√
KηL∇cf(x

t),−
√
ηL

m
√
K

m∑
i=1

K−1∑
k=0

{
∇cF̂i(x̃

t,k
i)−∇cFi(x

t)
}〉]

(B.6)

Using the property ⟨a, b⟩ = 1/2 ∥a∥2 + 1/2 ∥b∥2 − 1/2 ∥a− b∥2, we can rewrite A as

A = −KηL
2

∥∥∇cf(x
t)
∥∥2 + ηL

2m2K
Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

{
∇cF̂i(x̃

t,k
i)−∇cFi(x

t)
}∥∥∥∥∥

2

− ηL
2m2K

Et

∥∥∥∥∥mK∇cf(x
t) +

m∑
i=1

K−1∑
k=0

{
∇cF̂i(x̃

t,k
i)−∇cFi(x

t)
}∥∥∥∥∥

2

= −KηL
2

∥∥∇cf(x
t)
∥∥2 + ηL

2m2K
Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

{
∇cF̂i(x̃

t,k
i)−∇cFi(x

t)
}∥∥∥∥∥

2

− ηL
2m2K

Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

∇cF̂i(x̃
t,k
i)

∥∥∥∥∥
2

≤ −KηL
2

∥∥∇cf(x
t)
∥∥2 + ηL

2m

m∑
i=1

K−1∑
k=0

Et

[∥∥∥∇cF̂i(x̃
t,k
i)−∇cFi(x

t)
∥∥∥2]︸ ︷︷ ︸

≜A1

− ηL
2m2K

Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

∇cF̂i(x̃
t,k
i)

∥∥∥∥∥
2
 (B.7)

Next, we bound A1 in (B.7) as follows:

A1 = Et

[∥∥∥∇cF̂i(x
t,k
i)−∇cFi(x

t)
∥∥∥2]

= Et

[∥∥∥∇cF̂i(x̃
t,k
i)−∇cF̂i(x̃

t,0
i) +∇cF̂i(x̃

t,0
i)−∇cFi(x

t)
∥∥∥2]

≤ 2Et

[∥∥∥∇cF̂i(x̃
t,k
i)−∇cF̂i(x̃

t,0
i)

∥∥∥2]+ 2Et

[∥∥∥∇cF̂i(x̃
t,0
i)−∇cFi(x

t)
∥∥∥2] (B.8)

≤ 2L̂2
cEt

[∥∥∥xt,k
c,i − xt

c

∥∥∥2]+ 2
∥∥∥∇cF̂i(x̃

t
i)−∇cFi(x

t)
∥∥∥2 (B.9)

14

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

where, n := ⌊t/l⌋ in (B.8) we use the property ∥
∑n

i=1 ai∥
2 ≤ n

∑n
i=1 ∥ai∥2 with n = 2, in (B.9) we use Assump-

tion 4.1(b). Next, bounding the quantity B in (B.5):

B =
η2LLc

2
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

ĝt,k
c,i

∥∥∥∥∥
2

=
η2LLc

2
Et

∥∥∥∥∥ 1

m

m∑
i=1

K−1∑
k=0

{
ĝt,k
c,i −∇cF̂i(x̃

t,k
i)

}∥∥∥∥∥
2
+

η2LLc

2m2
Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

∇cF̂i(x̃
t,k
i)

∥∥∥∥∥
2
 (B.10)

≤ η2LKσ̂2
LLc

2m
+

η2LLc

2m2
Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

∇cF̂i(x̃
t,k
i)

∥∥∥∥∥
2
 (B.11)

where (B.10) follows from E
[
∥x∥2

]
= E

[
∥x− E [x]∥2

]
+ ∥E [x]∥2, and (B.11) from Assumption 4.2(a). Substituting

(B.9) in (B.7), and then (B.7) and (B.11) in (B.5) we get the following.

C = A+B

≤ −KηL
2

∥∥∇cf(x
t)
∥∥2 + η2LKσ̂2

LLc

2m

+
ηL
m

m∑
i=1

K−1∑
k=0

[
L̂2
cE

[∥∥∥xt,k
c,i − xt

c

∥∥∥2]+
∥∥∥∇cF̂i(x̃

t
i)−∇cFi(x

t)
∥∥∥2]

− ηL
2m2K

(1− ηLLcK)Et

∥∥∥∥∥
m∑
i=1

K−1∑
k=0

∇cF̂i(x̃
t,k
i)

∥∥∥∥∥
2
 (B.12)

≤ −KηL
2

∥∥∇cf(x
t)
∥∥2 + η2LKσ̂2

LLc

2m
+ ηLL̂

2
c

K−1∑
k=0

{
1

m

m∑
i=1

E
[∥∥∥xt,k

c,i − xt
c

∥∥∥2]}

+
ηLK

m

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2 (B.13)

where we use the fact that the last term in (B.12) is strictly negative for ηL < 1
KLc

to get (B.13). In (B.13), using
Lemma B.1 and rearranging, we get:

C ≤ −KηL
2

∥∥∇cf(x
t)
∥∥2 + η2LKσ̂2

LLc

2m
+

ηLK

m

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2

+ 20K2η3LL̂
2
c

[
(σ̂2

L +Kσ2
G) +K

∥∥∇cf(x
t)
∥∥2 + K

m

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2]

= −KηL

(
1

2
− 20K2η2LL̂

2
c

)∥∥∇cf(x
t)
∥∥2 + η2LKσ̂2

LLc

2m
+ 20K2η3LL̂

2
c(σ̂

2
L +Kσ2

G)

+
KηL
m

(1 + 20K2η2LL̂
2
c)

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2

≤ −cKηL
∥∥∇cf(x

t)
∥∥2 + η2LKσ̂2

LLc

2m
+ 20K2η3LL̂

2
c(σ̂

2
L +Kσ2

G)

+
3KηL
2m

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2 (B.14)

We get (B.14) because, ∃ c > 0 such that (0.5− 20K2η2LL̂
2
c) > c provided ηL < 1

2
√
10KL̂c

, and by reusing the bound

on ηL in the last term as well. Rewriting (B.14) in terms of Φ1(ηL) :=
1
c

[
ηLσ̂2

LLc

2m + 20Kη2LL̂
2
c(σ̂

2
L +Kσ2

G)
]

and the

15

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

estimation error metric εt in (5), we get:

C ≤ cKηL

(
−
∥∥∇cf(x

t)
∥∥2 + 3

2c
εt +Φ1(ηL)

)
. (B.15)

2. Server-side bound: The clients transmit the smashed data to the S-server once every K/Q local iterations, thus the
server-side model is updated Q times per round per client. The update equation for the server-side model is then:

xt+1
s = xt

s − η

m∑
i=1

Q−1∑
q=0

gt,q
s,i (B.16)

where the second superscript on gt,q
s,i indicates the qth server update, and is different from the local client iteration index

k. Then, the server-side bound S over one communication round in (B.2) can be written as follows:

S =
〈
∇sf(x

t),Et

[
xt+1
s − xt

s

]〉
+

Lc

2
Et

[∥∥xt+1
s − xt

s

∥∥2]
= Et

[〈
∇sf(x

t),−η
m∑
i=1

Q−1∑
q=0

gt,q
s,i

〉]
+

η2Lc

2
Et

∥∥∥∥∥
m∑
i=1

Q−1∑
q=0

gt,q
s,i

∥∥∥∥∥
2
 (B.17)

Equation (B.17) is identical to (B.5) with the substitutions ηL/m→ η, ĝt,k
c,i → gt,q

s,i , ∇c → ∇s and K → Q. Following
the same steps as in the client-side bound we can say that under Assumptions 4.1(a) and 4.2(b), and provided η ≤ 1

4
√
2QLc

,
S can be bounded as

S ≤ c′mQη
(
−
∥∥∇sf(x

t)
∥∥2 +Φ2(η)

)
(B.18)

with Φ2(η) :=
1
c′

[
ησ2

LLc

2 + 16Qη2L2
c(σ

2
L +Qσ2

G)
]
.

Finally, we can substitute (B.15) and (B.18) back in (B.2) to get the following:

Et

[
f(xt+1)

]
≤ f(xt) + cKηL

(
−
∥∥∇cf(x

t)
∥∥2 + 3

2c
εt +Φ1(ηL)

)
+ c′mQη

(
−
∥∥∇sf(x

t)
∥∥2 +Φ2(η)

)
which can be rearranged to get:

cKηL
∥∥∇cf(x

t)
∥∥2 + c′mQη

∥∥∇sf(x)
t
∥∥2 ≤ f(xt)− Et

[
f(xt+1)

]
+

3KηL
2

εt + cKηLΦ1(ηL) + c′QmηΦ2(η)

Next, by redefining c = min{c, c′} and c′ = max{c, c′}. After further rearranging we get:

cQmin{ηL,mη}
∥∥∇f(xt)

∥∥2 ≤ f(xt)− Et

[
f(xt+1)

]
+

3KηL
2

εt + c′K [ηLΦ1(ηL) +mηΦ2(η)]

=⇒
∥∥∇f(xt)

∥∥2 ≤ f(xt)− Et

[
f(xt+1)

]
cQmin{ηL,mη}

+
3KηL

2cQmin{ηL,mη}
εt +

c′K

cQ

(
ηLΦ1(ηL) +mηΦ2(η)

min{ηL,mη}

)
Next, taking full expectation on both sides, and summing over t = 1, 2, . . . , T and recognizing that minimum is lesser than
the average, we get the final bound:

min
t∈[T]

E
[∥∥∇f(xt)

∥∥2] ≤ f(x0)− f∗

cmin {ηL,mη}QT
+

3KηL
2cQmin{ηL,mη}

1

T

T∑
t=1

εt +
Φ̃(ηL, η)

T
(B.19)

where Φ̃(ηL, η) is given by:

Φ̃(ηL, η) :=
c′K

cQ
.

ηL

c

[
ηLσ̂2

LLc

2m + 20Kη2LL̂
2
c(σ̂

2
L +Kσ2

G)
]
+ mη

c′

[
ησ2

LLc

2 + 16Qη2L2
c(σ

2
L +Qσ2

G)
]

min{ηL,mη}

≤ c′K.
η2
Lσ̂2

LLc

2m + 20Kη3LL̂
2
c(σ̂

2
L +Kσ2

G) +
mη2σ2

LLc

2 + 16Qmη3L2
c(σ

2
L +Qσ2

G)

c2Qmin{ηL,mη}
=: Φ(ηL, η) (B.20)

Thus, substituting Φ(ηL, η) instead of Φ̃(ηL, η) in (B.19) we get the statement of the theorem.

16

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

B.2. Proof of Theorem 4.8 and Corollary 4.10

The statement of the theorem follows by further bounding the estimator term 1
T

∑T−1
t=0 εt in the RHS in Theorem 4.3. There,

we obtained an upper bound on the stationarity gap, i.e., mint ∥∇f(xt)∥2, which contained a term involving

εt :=
1

m

m∑
i=1

E
[∥∥∥∇cF̂i(x̃

t
i)−∇cFi(x

t)
∥∥∥2] (B.21)

where the gradients∇cF̂i(x̃
t
i) and∇cFi(x

t
i) are written in terms of the cut-layer activations as:

∇cF̂i(x̃
t) := Et

[
J i(x

t
c; ξ

t
i) . ẑi,b(x

t
a,i; z

t
i,f , y

t
i)
]

(B.22)

∇cFi(x
t) := Et

[
J i(x

t
c; ξi) . zi,b(x

t
s; z

t
i,f , y

t
i)
]

(B.23)

where Et [·] refers to expectation with respect to the randomness at iteration t. We can then bound εt as follows:

εt =
1

m

m∑
i=1

E
[∥∥∥∇cF̂i(x̃

t
i)−∇cFi(x

t)
∥∥∥2]

=
1

m

m∑
i=1

E
[∥∥Et

[
J i(x

t
c; ξ

t
i) .

(
ẑi,b(x

t
a,i; z

t
i,f , y

t
i)− zi,b(x

t
s; z

t
i,f , y

t
i)
)]∥∥2]

≤ 1

m

m∑
i=1

E
[∥∥J i(x

t
c; ξ

t
i) .

(
ẑi,b(x

t
a,i; z

t
i,f , y

t
i)− zi,b(x

t
s; z

t
i,f , y

t
i)
)∥∥2] (B.24)

≤ 1

m

m∑
i=1

E
[∥∥J i(x

t
c; ξ

t
i)
∥∥2 .

∥∥ẑi,b(x
t
a,i; z

t
i,f , y

t
i)− zi,b(x

t
s; z

t
i,f , y

t
i)
∥∥2] (B.25)

≤
L2
f

m

m∑
i=1

E
[∥∥ẑi,b(x

t
a,i; z

t
i,f , y

t
i)− zi,b(x

t
s; z

t
i,f , y

t
i)
∥∥2] (B.26)

=
L2
f

m

m∑
i=1

Li(x
t
a,i,x

t)

where we use Jensen’s inequality in (B.24) and the spectral norm of J i(·; ·) in (B.25). In (B.26) we use Assumption 4.7 and
the fact that the spectral norm of the Jacobian is bounded by the Lipschitz constant.

Note that ri(ϵ) = O (1/ϵ2) implies that ϵ = O (1/
√
r) = O (1/

√
t). Now, from (13), we have:

εt ≤
L2
f

m

m∑
i=1

Li(x
t⋆
a,i,x

t)︸ ︷︷ ︸
L2

fε
t
⋆

+
C1√
t

(B.27)

for some C1 > 0. Note that εt⋆ is the lowest achievable error rate by the hypothesis class Ai at time t and is not reducible
further. Finally, substituting (B.27) back into (6) and using 1/T

∑T
t=1

1/
√
t ≤ 2/

√
T from Lemma B.2, we get the desired

result in Theorem 4.8.

17

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

For the proof of Corollary 4.10, the only difference is that we need to bound the round average of E [εt] as follows:

1

T

T−1∑
t=0

E [εt] ≤
1

T

T−1∑
t=0

[
L2
fε

t
⋆ +

C1√
t

]

=
L2
F

T

T−1∑
t=0

εt⋆ +
C1

T

T−1∑
t=0

1√
t

=
L2
F

T

T−1∑
t=0

εt⋆ + C1

 1

T

T ′−1∑
t=0

1√
t
+

1

T

T−1∑
t=T ′

1√
T ′

≤ L2

F

T

T−1∑
t=0

εt⋆ + C1

{
2T ′/T√

T ′
+

(1− T ′/T)√
T ′

}

=
L2
F

T

T−1∑
t=0

εt⋆ + C1
(1 + T ′/T)√

T ′

for some C1 > 0. Note that when T ′ = T , alignment happens till the last round, and this recovers the bound in Theorem 4.8.
On the other hand when T ′ = 0, no alignment occurs, and this makes the upper bound→∞.

B.3. Proof of Lemma B.1

The proof is along similar lines as (Reddi et al., 2021) and proceeds as follows. We start with the iterate:

Et

[∥∥∥xt,k
c,i − xt

c

∥∥∥2] = Et

[∥∥∥xt,k−1
c,i − xt

c − ηLĝ
t,k−1
c,i

∥∥∥2]
= Et

[∥∥∥∥xt,k−1
c,i − xt

c − ηL

{
ĝt,k−1
c,i −∇cF̂i(x̃

t,k−1
i) +∇cF̂i(x̃

t,k−1
i)−∇cF̂i(x̃

t
i)

+∇cF̂i(x̃
t
i)−∇cFi(x

t) +∇cFi(x
t)−∇cf(x

t) +∇cf(x
t)
}∥∥∥∥2

]

≤ Et

[∥∥∥xt,k−1
c,i − xt

c

∥∥∥2]+ 5η2LEt

[∥∥∥ĝt,k−1
c,i −∇cF̂i(x̃

t,k−1
i)

∥∥∥2]
+ 5η2LEt

[∥∥∥∇cF̂i(x̃
t,k−1
i)−∇cF̂i(x̃

t
i)
∥∥∥2]+ 5η2L

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2

+ 5η2L
∥∥∇cFi(x

t)−∇cf(x
t)
∥∥2 + 5η2L

∥∥∇cf(x
t)
∥∥2 (B.28)

where in (B.28), we use the property that ∥
∑

i ai∥2 ≤ n
∑

i

∥∥a2
i

∥∥. Since K > 1, we can continue bounding the expression
on the right hand side as follows:

Et

[∥∥∥xt,k
c,i − xt

c

∥∥∥2] ≤ (
1 +

1

2K − 1

)
Et

[∥∥∥xt,k−1
c,i − xt

c

∥∥∥2]+ 5η2LEt

[∥∥∥ĝt,k−1
c,i −∇cF̂i(x̃

t,k−1
i)

∥∥∥2]
+ 5Kη2LEt

[∥∥∥∇cF̂i(x̃
t,k−1
i)−∇cF̂i(x̃

t
i)
∥∥∥2]+ 5Kη2L

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2

+ 5Kη2L
∥∥∇cFi(x

t)−∇cf(x
t)
∥∥2 + 5Kη2L

∥∥∇cf(x
t)
∥∥2

≤
(
1 +

1

2K − 1
+ 5Kη2LL̂

2
c

)
Et

[∥∥∥xt,k−1
c,i − xt

c

∥∥∥2]+ 5η2L(σ̂
2
L +Kσ2

G)

+ 5Kη2L

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2 + 5Kη2L

∥∥∇cf(x
t)
∥∥2 (B.29)

≤
(
1 +

1

K − 1

)
Et

[∥∥∥xt,k−1
c,i − xt

c

∥∥∥2]+ 5η2L(σ̂
2
L +Kσ2

G)

+ 5Kη2L

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2 + 5Kη2L

∥∥∇cf(x
t)
∥∥2 (B.30)

18

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

where in (B.29), we use Assumptions 4.2 and 4.1(b); and (B.30) holds when ηL ≤ 1√
10KL̂c

. Next, averaging over m clients
and unrolling the recursion we can obtain

1

m

m∑
i=1

Et

[∥∥∥xt,k
c,i − xt

c

∥∥∥2] ≤ k−1∑
p=0

(
1 +

1

K − 1

)p [
5η2L(σ̂

2
L +Kσ2

G) + 5Kη2L
∥∥∇cf(x

t)
∥∥2

+
5Kη2L
m

m∑
i=1

∥∥∥∇cF̂i(x̃
t
i)−∇cFi(x

t)
∥∥∥2] (B.31)

Representing the term in square brackets as Ht, we can write:

1

m

m∑
i=1

Et

[∥∥∥xt,k
c,i − xt

c

∥∥∥2] ≤ (K − 1)

[(
1 +

1

K − 1

)k

− 1

]
Ht

≤ (K − 1)

[(
1 +

1

K − 1

)K

− 1

]
Ht (B.32)

≤ 4KHt (B.33)

where, we use the fact that k ≤ K and that 1+1/(K−1) ≥ 1 in (B.32), and the fact that for K > 1, {1+1/(K−1)}K < 5
in (B.33). Finally, substituting the value of Ht in (B.33), we obtain the inequality in the lemma.

B.4. Additional Lemmas

1 2 3
. . . p p+ 1

1/
√
p + 1

1/√p

...

1/
√
3

1/
√
2

1

x

y
y = 1/

√
x

y = 1/
√
x− 1

Figure 7. Illustration of the inequality in (B.36)

Lemma B.2 (Series bound). Given p ∈ N, the series:

S(p) ≜
1

p

p∑
r=1

1√
r

(B.34)

satisfies the bounds
2√

p+ 1 + 1
≤ S(p) ≤ 2

√
p
. (B.35)

In other words S(p) = O
(

1√
p

)
.

Proof. The series in (B.34) can be bounded using integrals as follows:

1

p

∫ p+1

1

dx√
x
≤ S(p) ≤ 1

p

∫ p+1

1

dx√
x− 1

(B.36)

The reason for this becomes clear from the illustration in Figure 7. The integrals in (B.36) simplifies to the desired lower
and upper bounds.

19

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

Figure 8. Class label distribution for Dirichlet distributed data with
α = 1 simulating a heterogeneous data distribution across clients.

65 70 75 80 85 90 95 100

Communication Load (GB)

0.5

0.6

0.7

0.8

T
es
t
A
cc
u
ra
cy

FedAvg

SplitFed-MS

SplitFed-SS

CSE-FSL

FSL-SAGE

α

1.0e+00

1.0e+04

Figure 9. Scatter plot of best accuracy vs. communica-
tion load for ResNet-18/CIFAR-10 on 10 clients.

C. Notes on experimental setup
Dirichlet Sampling We use the Dirichlet distribution to simulate client data heterogeneity. Specifically, we sample the
proportion of class labels in each client from a Dirichlet distribution, and then sample examples uniformly from each class
per client while respecting the proportions sampled from the Dirichlet distribution. The parameter α controls the degree of
heterogeneity with smaller values indicating a higher variation in the proportion of class labels distributed across the clients.
In Fig. 8, we show an instance of class label distribution for α = 1 for CIFAR-10.

Note on the cut-layer and auxiliary models: There are two important choices in the design of FSL-SAGE: the choice of
the cut-layer and the choice of auxiliary models. 1) Cut-Layer: The location of the cut-layer determines the communication
cost of transmitting the cut-layer features. If the cut-layer features are too large compared to the size of the auxiliary
models, the communication gain of FSL-SAGE is not too large compared to CSE-FSL, since both methods expend resources
in transmitting the cut-layer features. Although, note that FSL-SAGE does strictly better than CSE-FSL in terms of
communication cost. 2) Auxiliary: For our experiments, we choose auxiliary models as small subsets of the server model for
training. This arbitrary choice is able to demonstrate competitive performance for us, but it is important to note that the
size of the chosen auxiliary can impact the communication advantage of our method. We perform ablation experiments
demonstrating the effect of auxiliary model size on final test performance in Section D.4.

D. Additional Experiments
D.1. Accuracy-Communication performance

In Fig. 9 we plot the best accuracy achieved and the corresponding communication cost incurred by the five algorithms for
various values of Dirichlet α. Each point represents a different (algorithm, Dirichlet-α) combination. The best performing
algorithms, which maximize accuracy while minimizing communication costs, would be found at the north-west corner
of the plot. The radius of the points in the plot, indicates the degree of heterogeneity, with larger points corresponding to
lower α and hence more non-i.i.d. data. We observe that FSL-SAGE is able to achieve a high level of accuracy for all tested
levels of heterogeneity, being the only method to occupy the north-west corner of the plot, even for certain high degrees of
heterogeneity.

D.2. Latency Analysis

In Fig. 10, we analyze the differences in the computation and communication latencies of the various FL methods used
in our CIFAR-10/ResNet-18 experiments. Note that the computation latency of FSL-SAGE is higher than CSE-FSL due
to the auxiliary alignment process, which can is computationally expensive for the server. However, the communication

20

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

FedAvg SplitFed-MS SplitFed-SS CSE-FSL FSL-SAGE
10s

1m 40s

16m 40s

2h 46m 40s

L
at
en
cy

(s
)

Computation

Communication

Figure 10. Computation and communication latency in various FL methods for 200 rounds. (Note that the y-axis is in logarithmic scale.)

latency of FSL-SAGE is about half that of CSE-FSL, since CSE-FSL requires the server to send the auxiliary models back
to the clients after aggregation, while FSL-SAGE only transmits the updated auxiliary models once from the S-server to
the clients. The communication latency of the three baselines, FedAvg, SplitFed-MS and SplitFed-SS is high because full
model transmission for aggregation, and smashed data transmission at every iteration are very communication intensive.

D.3. Effect of alignment interval l (Ablation study)

In Figures 11 and 12 we plot the final test accuracy of FSL-SAGE using ResNet-18 on CIFAR-10 and CIFAR-100 datasets
respectively, for 200 rounds of training. We vary the alignment interval l from once in 2 rounds to once in 10 rounds. Note
that, interestingly, there is no clear pattern between l and the final test accuracy for the CIFAR-10 dataset, likely because
CIFAR-10 is not a difficult dataset for ResNet-18 to learn. Hence, the server-side model is not very complex, and the
auxiliary model learns to mimic it fairly quickly, thus requiring a far fewer update frequency. On the other hand, for a more
difficult dataset like CIFAR-100, we see a clear pattern of deterioration of test accuracy with increasing l. The alignment
interval l is an important trade-off parameter in FSL-SAGE, as it trades-off increased computational load on the server with
the final test performance. For our main results, we chose a value of l = 10, which is a suitable compromise between the
two.

D.4. Effect of auxiliary model size (Ablation study)

In this section, we study the effect of the size of the auxiliary model on the performance of the trained model. We use the
CIFAR datasets, and the ResNet-18 model split into a client-side model and a server-side model as previously described in
our main experiments. The client-side model comprises the first two blocks of ResNet-18, and the last two blocks with the
final fully-connected layer are used as the server-side model. We try out the following four variations in the auxiliary model:

1. Linear: with only the final fully-connected layer of ResNet-18. The size of the auxiliary model is only ≈ 5 kB.

2. Half: with 3rd and 4th of ResNet-18, but with only half the original number of layers, i.e. 1 layer per block, and the
final fully connected layer. In this case, the size is ≈ 3.5MB.

3. Ours: with only the 3rd block and the fully connected layer. The size for this case is ≈ 8MB.

4. Full: with the auxiliary model being the same architecture as the server-side model. The size is ≈ 40MB.

In Figures 13 and 14, we see the effect of using the above four auxiliary models on the CIFAR-10 and CIFAR-100 datasets.

21

FSL-SAGE: Accelerating Federated Split Learning via Smashed Activation Gradient Estimation

101

Alignment interval (l)

0.80

0.82

0.84

0.86

0.88

0.90
T
es
t
A
cc
u
ra
cy

(2
0
0
ro
u
n
d
s)

Figure 11. Effect of auxiliary model size on final test perfor-
mance of CIFAR-10 after 200 rounds.

101

Alignment interval (l)

0.515

0.520

0.525

0.530

0.535

0.540

0.545

T
es
t
A
cc
u
ra
cy

(2
0
0
ro
u
n
d
s)

Figure 12. Effect of auxiliary model size of final test perfor-
mance of CIFAR-100 after 200 rounds.

10−2 10−1 100 101

Auxiliary size (in MB)

0.820

0.825

0.830

0.835

0.840

0.845

0.850

0.855

0.860

T
es
t
A
cc
u
ra
cy

(@
2
0
0
G
B
)

CSE-FSL

FSL-SAGE

Figure 13. Effect of ResNet-18 auxiliary model size on CIFAR-
10.

10−2 10−1 100 101

Auxiliary size (in MB)

0.48

0.50

0.52

0.54

0.56

T
es
t
A
cc
u
ra
cy

(@
2
0
0
G
B
)

CSE-FSL

FSL-SAGE

Figure 14. Effect of ResNet-18 auxiliary model size on CIFAR-
100.

For CIFAR-10, the increasing auxiliary model size shows a drop in test performance. We attribute this to the fact that
CIFAR-10 is a relatively simple classification problem, and perhaps a small auxiliary model is able to replicate the nuances
in the function learned by the server-side model, while a larger auxiliary model overfits the patterns on the training data. In
fact, both CSE-FSL and FSL-SAGE, are able to learn a simpler linear auxiliary model much quicker resulting in a good
performance for the linear model in all cases. More importantly, note that the difference in performance of the same auxiliary
model increases between the two algorithms as the model size increases. This shows that FSL-SAGE is able to learn a more
complex auxiliary model more efficiently than CSE-FSL. In Fig. 14, the performance of the FSL-SAGE improves with
increasing auxiliary model sizes, in contrast to CSE-FSL.

22

