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Abstract

Recent work in task-independent graph seman-001
tic parsing has shifted from grammar-based002
symbolic approaches to neural models, show-003
ing strong performance on different types of004
meaning representations. However, it is still005
unclear that what are the limitations of these006
neural parsers, and whether these limitations007
can be compensated by incorporating symbolic008
knowledge into model inference. In this paper,009
we address these questions by taking English010
Resource Grammar (ERG) parsing as a case011
study. Specifically, we first develop a state-of-012
the-art neural ERG parser, and then conduct de-013
tail analyses of parser performance within fine-014
grained linguistic categories and across a wide015
variety of corpora. The neural parser attains016
superior performance on in-distribution test set,017
but degrades significantly on long-tail and out-018
of-distribution situations, while the symbolic019
parser performs more robustly. To address this,020
we further propose a simple yet principled col-021
laborative framework for neural-symbolic se-022
mantic parsing, by designing a decision cri-023
terion for beam search that incorporates the024
prior knowledge from a symbolic parser and025
accounts for model uncertainty. Experimen-026
tal results show that the proposed framework027
yields comprehensive improvement over neural028
baseline across long-tail categories and out-of-029
domain examples, yielding the best known re-030
sult on the well-studied DeepBank benchmark.031

1 Introduction032

All things semantic are receiving heightened atten-033

tion in recent years, and graph-structured semantic034

representations, which encode rich semantic infor-035

mation in the form of semantic graphs, have played036

an important role in natural language processing037

(Oepen et al., 2019).038

Parsing natural language sentences into the039

semantic-graph representation (e.g., Figure 1) has040

been extensively studied in the recent decade.041

Work in this area has shifted from the symbolic042

(grammar-based) approach to the neural approach. 043

Thanks to the flourishing of deep learning technolo- 044

gies, sequence-to-sequence (seq2seq) models have 045

shown great performance on data sampled from 046

the training distribution. These neural semantic 047

parsers reduce the need for domain-specific gram- 048

mar and feature engineering, but comes at a cost of 049

lacking interpretability, as the model directly out- 050

puts a (linearized) graph without revealing the un- 051

derlying meaning-composition process. Moreover, 052

these neural models often generalize poorly to tail 053

and out-of-distribution (OOD) examples, and previ- 054

ous work has shown that combining high-precision 055

symbolic approaches with neural models can ad- 056

dress this issue for task-oriented semantic parsing 057

(Shaw et al., 2021; Kim, 2021; Cheng et al., 2019). 058

However, this type of approach requires complex 059

architecture engineering to incorporate the gram- 060

mar formalism. The grammar formalism being 061

utilized is usually primitive, and was not tested 062

beyond simple datasets such as SCAN (Lake and 063

Baroni, 2018) or GEOQUERY (Zelle and Mooney, 064

1996). Therefore they are likely not sufficient for 065

handling complex graph-based meaning represen- 066

tations derived from realistic corpora. 067

In this work, we aim to develop a simple yet prin- 068

cipled neural-symbolic approach for graph seman- 069

tic parsing to address tail and OOD generalization, 070

which leverages the information from an a priori 071

grammar parser while maintaining the convenience 072

of neural seq2seq training built on top of massively 073

pre-trained embeddings (Raffel et al., 2020). In 074

this work, we take graph semantic parsing for En- 075

glish Resource Grammar (ERG) as our case study 076

(Adolphs et al., 2008). ERG is a compositional 077

semantic representation explicitly coupled with the 078

syntactic structure. Compared to other graph-based 079

meaning representations, ERG has high coverage 080

of English text and strong transferability across do- 081

mains (Flickinger et al., 2010, 2012; Copestake and 082

Flickinger, 2000; Ivanova et al., 2013), rendering 083
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itself has an attractive target formalism for auto-084

mated semantic parsing. The classic ERG literature085

has focused on developing grammar-based ERG086

parser. However they can suffer from issues such087

as incomplete categorization of lexical items and088

multi-word expression, and yields low coverage089

for realistic corpus such as Wikipedia (Baldwin090

et al., 2004). On the other hand, multiple neural091

ERG parsers have also been proposed (Buys and092

Blunsom, 2017; Chen et al., 2018, 2019; Cao et al.,093

2021). However they are commonly structured as094

a pipelined system and often rely on external tools095

(e.g, aligners, part-of-speech taggers, and named096

entity recognizers), with the performance of the097

upstream component significantly impacting the098

final performance (see Appendix B for a review).099

This motivates us to build a pure end-to-end neural100

parser for ERG parsing that directly maps the input101

sentences to target graphs.102

First, we present an end-to-end seq2seq model103

based on T5 (Raffel et al., 2020) that achieves104

the state-of-the-art results for ERG parsing. This105

model goes beyond the conventional multi-step pre-106

dictions for node and edge in previous work, and107

does not require specialized architecture that ex-108

plicitly incorporate the ERG rules or the synaptic109

structure as part of inductive bias. Despite the com-110

plicated syntax and semantic structures encoded111

in semantic graphs, we have shown that by devis-112

ing proper linearization and tokenization, we can113

successfully transfer ERG parsing problem to trans-114

lation problem (Section 3.1).115

Second, we conduct a comprehensive study of116

the generalization behavior of the neural parser,117

interrogating its performance within fine-grained118

linguistic categories and across five diverse and re-119

alistic corpora. Comparing with a state-of-the-art120

symbolic parser ACE, the neural parser exhibits121

complementary strengths. Particularly, the neural122

model yields much higher coverage than the sym-123

bolic parser, generating valid parses for a wider124

range of examples. However, the quality of the125

top-1 parse degrades severely in the long-tail or126

OOD situation. Perhaps remarkably, we also ob-127

served that the neural model’s top-k parses in fact128

often contain candidate that generalizes well out of129

distribution, but the vanilla MLE-based inference130

fell short in selecting them (Section 4 and 5).131

The above observation motivates our third con-132

tribution: to develop a practical framework for col-133

laborative neural-symbolic parsing. The key lies in134

designing a principled decision making strategy for 135

this neural-symbolic collaboration that performs 136

optimally both in-domain and OOD. To this end, 137

we design a new decision criterion for neural model 138

inference (e.g., beam search) that incorporates both 139

model uncertainty and the prior knowledge from a 140

symbolic parser, leveraging the theoretical frame- 141

work of optimal decision-making under the incom- 142

plete knowledge of the world (Ulansky and Raza, 143

2021; Giang, 2015; Hurwicz, 1951). The basic 144

idea is to utilize uncertainty estimates of the neural 145

parser as a switch between the optimistic, MLE- 146

based inference and the conservative, prior-based 147

inference, such that the neural parser seeks the 148

guidance from a symbolic parser during its decod- 149

ing stage when encountering low-confident exam- 150

ples. This proposed approach achieves comprehen- 151

sive improvement compared to the original neu- 152

ral parser, across almost all linguistic categories 153

and on both in-domain and OOD data. Our re- 154

sult suggests that sometimes the limitation of the 155

neural approach lies not necessarily in the model 156

architecture or the training method, but in a sub- 157

optimal inference procedure that naively maximize 158

the a posteriori likelihood (e.g., the beam search) 159

without questioning the reliability of the prediction 160

(Section 3.2). 161

In summary, our contribution are three-fold: 162

• We propose the first end-to-end model that 163

achieves the state-of-the-art results for ERG pars- 164

ing on the DeepBank WSJ benchmark. Specifi- 165

cally, we get 30.1% error rate reduction in terms 166

of the best known SMATCH score. 167

• We conduct a thorough analysis of the neu- 168

ral parser in terms of generalization. Specifi- 169

cally, we compared the predictive performance 170

of neural parser with the state-of-the-art symbolic 171

parser in various important linguistic categories, 172

showing that both parsers exhibit complemen- 173

tary strengths, validating the potential to build a 174

neural-symbolic parsing framework. 175

• We propose a simple, yet principled framework 176

for neural-symbolic parsing utlizing model un- 177

certainty. The resulting framework not only com- 178

prehensively improved the model performance 179

in tail linguistic categories and across out-of- 180

distribution corpora, and further boosted the per- 181

formance of the neural model on the standard 182

in-domain test set (extra 9.5% error rate reduc- 183

tion), establishing a new state-of-the-art. 184

Reproducibility. We will release the code on 185
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The<0> drug<1> was<2> introduced<3> in<4> West<5> Germany<6> this<7> year<8> .<9>

Figure 1: An example of semantic graph for English Resource Grammar (ERG). Some nodes are surface concepts, meaning
that they are related to a single lexical unit, e.g. _introduce_v_to (the number in the angle brackets indicates their token
alignments in the sentence), while others are abstract concepts representing grammatical meanings, e.g. compound (multiword
expression), parg_d (passive) and loc_nonsp (temporal). Color red indicates the root of this semantic graph. It also supports
light-weight named entity recognition (e.g., “West Germany” is labeled as two named in the graph).

Github1.186

2 Background and Related Work187

2.1 English Resource Grammar (ERG)188

In this paper, we take the representations from En-189

glish Resource Grammar (ERG; Flickinger et al.,190

2014) as our target meaning representations. A191

brief introduction to other meaning representations192

can be found in Appendix A. ERG is an open-193

source, domain-independent, linguistically precise,194

and broad-coverage grammar of English, which195

is rooted in the general linguistic theory of Head-196

driven Phrase Structure Grammar (HPSG; Pollard197

and Sag, 1994). ERG can be presented into dif-198

ferent types of annotation formalism (Copestake199

et al., 2005). In this work, we consider the Ele-200

mentary Dependency Structure (EDS; Oepen and201

Lønning, 2006) which converts ERG into variable-202

free dependency graphs, and is more compact and203

interpretable when compared to other types of an-204

notation schemes, e.g., DMRS (Buys and Blunsom,205

2017; Chen et al., 2018).206

Figure 1 shows an example graph. The semantic207

structure is a directed graph G = ⟨N,E⟩, where208

N denotes nodes labeled with semantic predi-209

cates/relations (e.g., _drug_n_1, compound),210

and E denotes edges labeled with semantic argu-211

ment roles (e.g., ARG1, ARG2).212

There are different parsing technologies for213

graph-based meaning representations, which can214

be roughly divided into grammar- and neural-based215

approaches. We review those approaches in Ap-216

pendix B.217

1https://github.com/anonymous

2.2 Neural-Symbolic Semantic Parsing 218

While seq2seq models excel at handling natural lan- 219

guage variation, they have been shown to struggle 220

with out-of-distribution compositional generaliza- 221

tion (Lake and Baroni, 2018; Shaw et al., 2021). 222

This has motivated new specialized architectures 223

with stronger inductive biases for the compositional 224

generalization, especially for task-oriented seman- 225

tic parsing like SCAN (Lake and Baroni, 2018) 226

and GEOQUERY. Some examples include NQG- 227

T5 (Shaw et al., 2021), a hybrid model combining 228

a high-precision grammar-based approach with a 229

pretrained seq2seq model; seq2seq learning with 230

latent neural grammars (Kim, 2021); a neural se- 231

mantic parser combining a generic tree-generation 232

algorithm with domain-general grammar defined 233

by the logical language (Cheng et al., 2019). 234

However, there are not so much progress regard- 235

ing neural-symbolic parsing for graph meaning rep- 236

resentations. Previous work has shown that the 237

utility of context-free grammar for graph semantic 238

parsing was somewhat disappointing (Peng et al., 239

2015; Peng and Gildea, 2016). This is mainly be- 240

cause the syntax-semantics interface encoded in 241

those graph meaning representations is much more 242

complicated than pure syntactic rules or logical 243

formalism, and is difficult to be exploited in data- 244

driven parsing architecture. 245

3 A Collaborative Neural-Symbolic 246

Parsing Framework 247

In this section, we design and implement a new 248

collaborative neural-symbolic parsing framework 249

for ERG parsing. The framework takes the neural 250

parser’s uncertainty as a trigger to the collaborative 251

process with the symbolic parser. This requires 252

the neural parser to model uncertainty based on the 253
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optimization problem given observed sentence s:254

argmax
N,E

p(G = ⟨N,E⟩|s)255

Previous data-driven work on ERG parsing ei-256

ther requires pipeline settings (predict nodes N257

and edges E separately) or external tools such as258

aligners, part-of-speech taggers and named entity259

recognizers. In contrast, we aim to build an end-260

to-end seq2seq parser that directly maps the input261

sentences to the target strings of (linearized) ERG262

graphs. However, due to the complexity of the se-263

mantic graph representation, care needs to be taken264

to parametrize the output space of the graph strings,265

so that the seq2seq model can learn efficiently in266

finite data. Specifically, we show that by devising267

proper linearization and tokenization (Section 3.1),268

we can successfully transfer the ERG parsing prob-269

lem into a translation problem that can be solved by270

a state-of-the-art seq2seq model T5 (Raffel et al.,271

2020). The proposed linearization and tokeniza-272

tion are essential to model performance, and can273

be applied to any meaning representations. The274

experimental results show that our model improves275

significantly in comparison with the previously re-276

ported results (Table 1).277

3.1 Linearization and Tokenization278

Variable-free top-down linearization. A popu-279

lar linearization approach is to linearize a directed280

graph as the pre-order traversal of its spanning281

tree. Variants of this approach have been proposed282

for neural constituency parsing (Vinyals et al.,283

2015) and AMR parsing (Barzdins and Gosko,284

2016; Peng et al., 2017). AMR (Banarescu et al.,285

2013) uses the PENMAN notation (Kasper, 1989),286

which is a serialization format for the directed,287

rooted graphs used to encode semantic dependen-288

cies. It uses parentheses to indicate nested struc-289

tures. Since nodes in the graph get identifiers290

(initialized randomly) in PENMAN notation that291

can be referred to later to establish a reentrancy,292

e.g., _drug_n_1 in Figure 1, and will confuse293

the model to learn the real meaningful mappings,294

we remove the identifiers and use star markers in-295

stead to indicate reentrancies. For example, our296

variable-free linearization for graphs in Figure 1297

can be written as:298

( _introduced_v_to299
:ARG2 ( _drug_n_1 * :BV-of ( _the_q ) )300
:ARG1-of ( parg_d :ARG2 ( _drug_n_1 * ) )301
:ARG1-of ( loc_nonsp302
:ARG2 ( _year_n_1 :BV-of ( _this_d_dem ) ) )303

:ARG1-of ( _in_p304

:ARG2 ( named 305
:BV-of ( proper_q ) 306
:ARG1-of ( compound 307
:ARG2 ( named :BV-of ( proper_q ) ) ) ) ) ) 308

More details about the implementation of lin- 309

earization can be found in Appendix C. 310

Compositionality-aware tokenization. Tokeniza- 311

tion has always been seen as a non-trivial problem 312

in Natural Language Processing (Liu et al., 2019). 313

In the case of graph semantic parsing, it is still a 314

controversial issue which unit is the most basic one 315

that triggers conceptual meaning and semantic con- 316

struction (Chen et al., 2019). While previous work 317

can customize some off-the-shelf tokenizers to cor- 318

respond closely to the ERG tokenization, there are 319

still some discrepancies between the tokenization 320

used by the system and ERG (Buys and Blunsom, 321

2017). Moreover, using customized tokenization 322

means we need to pretrain our model from scratch, 323

and this will cost lots of time and computation. 324

We address this issue by replacing the non- 325

compositional part of ERG graphs with some non- 326

tokenizable units in the T5 vocabulary. This will 327

let the model learn the compositionality of ERG 328

units by giving the signal of which type of units 329

are tokenizable. More details can be found in Ap- 330

pendix D. This process is crucial since it not only 331

reflects the original design of ERG vocabulary, but 332

also dramatically reduces the sequence length of 333

the output (around 16%). Additionally, it can be 334

applied to any meaning representations by simply 335

identifying the set of non-compositional, atomic 336

units in the semantic graphs. 337

3.2 A Decision-theoretic Framework for 338

Collaborative Neural-Symbolic Parsing 339

It is known that the performance of a neural 340

model tends to suffer on examples that are under- 341

represented in the training data, e.g., tail categories 342

or OOD examples. Indeed, when analyzing our 343

neural parser, we find the naive T5 parser’s per- 344

formance degrades significantly in the tail linguis- 345

tic categories, while the symbolic parser performs 346

more robustly (Section 5). This motivates us to 347

explore principled strategies to exploit the com- 348

plementary strengths of both parsers. Specifically, 349

we cast neural model inference (e.g., beam search) 350

as a decision-making problem under partial uncer- 351

tainty of the world (Ulansky and Raza, 2021; Giang, 352

2015; Hurwicz, 1951), and design a new decision 353

criterion incorporates both the model uncertainty 354

about the testing data distribution and the prior 355
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information from a symbolic parser, thereby con-356

cretely improving the model performance beyond357

the i.i.d. regime.358

Formally, consider a sequence prediction prob-359

lem where the input and target sequences (x,y) ∈360

X × Y are generated from an underlying distribu-361

tion D = p∗(y|x)p∗(x). We denote p(y|x) the362

neural parser trained on the in-domain examples363

x ∈ Xind, and a symbolic parser prior p0(y|x)364

that encodes a priori linguistic knowledge. Un-365

der a decision-theoretic formulation, the model366

inference can be understood as a game against367

nature D (Hurwicz, 1951). Specifically, given a368

world state x, the goal of the decision maker (DM)369

is to select the optimal y among the candidate370

decisions {yb}Bb=1 (in this case the beam candi-371

dates) according to certain criteria R(y|x) (i.e.,372

ŷ = argmin{yb}Bb=1
R(y|x)). Crucially, the DM373

does not have full knowledge of all the possible374

states x ∈ X - she may observe a subset Xind ⊂ X375

via the training data, but is not those x’s that are376

underrepresented in the tail, or OOD all together.377

Therefore, the goal of neural-symbolic inference
is to identify a proper criteria R(y|x) for model
inference under uncertainty of world states x ∈ X ,
incorporating knowledge from symbolic prior p0
and accounting for model’s epistemic uncertainty.
To this end, we find a solution by leveraging the
well-known Hurwicz pessimism-optimism criteria
from game theory (Hurwicz, 1951), which suggests
an optimal criteria may adopt the form

R(y|x) = α ∗ Rp(y|x) + (1− α) ∗ R0(y|x),

where Rp(y|x) is an optimistic policy for the fa-378

miliar states x ∈ Xind, R0(y|x) a conservative379

policy in case of high uncertainty, and α ∈ [0, 1] a380

trade-off parameter.381

In the neural-symbolic context, the optimistic382

crieria Rp(y|x) = −log p(y|x) can be the MLE-383

based strategy induced by the neural likelihood,384

which is known generalize well for the in-domain385

situations x ∈ Xind. On the other hand, the pes-386

simistic criteria R0(y|x) = −log p0(y|x) can be387

based on the symbolic prior p0. This is because388

under complete uncertainty, any alternative choice389

may lead to an worst-case outcome that is subop-390

timal to the baseline p0. In this work, we define391

p0(y|x) ∝ exp(−d(y,y0)
λ ) to be the generalized392

Boltzmann distribution centered around the output393

of the symbolic parser y0. Here λ is the tempera-394

ture parameter, and d(y, y′) is a suitable divergence395

metric for the space of ERG graphs, which we 396

choose to be the SMATCH metric (Cai and Knight, 397

2013). This leads to: 398

Rp(y|x) =α ∗ −log p(y|x)+ (1) 399

(1− α) ∗ SMATCH(y,y0)

λ
, 400

where we have omitted the normalizing constant of 401

p0 since it does not impact optimization. 402

A caveat of (1) is α is fixed regardless of whether 403

x is a in-domain (Xind) or out-of-domain (X/Xind) 404

state, incurring an hard trade-off. When x is in- 405

domain, a fixed α can be too conservative since 406

minimizing the beam score −log p(y|x) alone is 407

known to generalize well. When x is from a region 408

that is under-respresented in the training data, how- 409

ever, (1) can be overly optimistic since the neural 410

model p(y|x) may generalize poorly in the under- 411

represented regions, and a more prudent strategy 412

is to revert to the prior by focusing on minimizing 413

p0(y|x). To handle this challenge, we consider an 414

improved criteria that accounts for model uncer- 415

tainty: 416

R(y|x) =α(x) ∗ −log p(y|x)+ 417

(1− α(x)) ∗ SMATCH(y,y0)

λ
(2) 418

where α(x) = sigmoid(− 1
T ∗ (H(x) − b)) is a 419

monotonic transformation of model uncertainty 420

H(x) which is known as the Platt calibration (Platt 421

et al., 1999), whose parameters (T, b) can be es- 422

timated using a small amount of validation data. 423

As shown, depending on the value of H(x), the 424

proposed criteria (2) approaches the original beam 425

score −log p(y|x) when the model is confident, 426

and reverts to the prior likelihood −log p0(y|x) 427

when the model is uncertain andH is high. 428

For the proposed criteria (2) to perform robustly 429

in practice, the uncertainty estimatorH(x) should 430

be well calibrated, i.e., the magnitude of H is in- 431

dicative of the model’s predictive error. In this 432

work, we choose H to be the margin probability, 433

i.e., the difference in probability of the top 1 pre- 434

diction minus the likelihood of the top 2 prediction 435

based on the beam score: 436

Hmargin(p(y|x,D)) = p(y(1)|x,D)− p(y(2)|x,D), 437

due to its strong calibration performance on the 438

graph semantic parsing tasks. Appendix G discuss 439

alternative choices of H, investigating their cali- 440

bration performance and their respective efficacy 441
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in improving the collaborative parsing system’s442

predictive performance (Table 2).443

4 Experiments444

Dataset. We conduct model training on DeepBank445

v1.1 that correspond to ERG version 1214, and446

adopt the standard data split. For test, we consider447

both in-domain and out-of-domain datasets.448

For in-domain dataset, following the previous449

work, we use the DeepBank annotation of the Wall450

Stree Journal, sections 00-21 (the same text anno-451

tated in the Penn Tree Bank).452

For out-of-domain datasets, the latest public re-453

lease of the Redwoods Treebank includes ERG454

annotation with a broad range of different genres,455

among which we select a set of standard and chal-456

lenge OOD sets. The former includes the Brown457

corpus, Wikipedia, and the Eric Raymond Essay;458

the latter includes E-commerce, and the Tanaka459

corpus. The detailed description for those datasets460

can be found in the Appendix F.461

The Pydelphin2 library is leveraged to extract462

EDS graphs and transfer them into PENMAN for-463

mat.464

Implementation Details. T5 (Raffel et al., 2020)465

is a pre-trained sequence-to-sequence Transformer466

model that has been widely used in many NLP ap-467

plications. We use the open-sourced T5X 3, which468

is a new and improved implementation of T5 code-469

base in JAX and Flax. Specifically, we use the offi-470

cial pretrained T5-Large (770 million parameters)471

and finetuned it on DeepBank in-domain training472

set. Despite the general fact that larger model size473

will lead to better performance on finetuning for474

some tasks, our empirical results show that adopt-475

ing model sizes larger than T5-Large will not lead476

to further gain for ERG parsing.477

For the collaborative neural-symbolic parsing,478

we set the beam size to 5, i.e., our combined pre-479

dictions will be selected from the top 5 predictions480

produced by the model. For the monotonic trans-481

formation α(x) in (2), we set We set λ = 0.1 and482

T = 0.1.483

Evaluation Metrics. For evaluation, following pre-484

vious work, we adopt the SMATCH metric (Cai and485

Knight, 2013), which was originally proposed for486

evaluating AMR graphs. It measures graph overlap,487

but does not rely on sentence alignments to deter-488

2https://github.com/delph-in/pydelphin
3https://github.com/google-research/

t5x

mine the correspondences between graph nodes. 489

Specifically, SMATCH is computed by performing 490

inference over graph alignments to estimate the 491

maximum F1-score obtainable from a one-to-one 492

matching between the predicted and gold graph 493

nodes. This is also ideal for measuring the diver- 494

gence between predicted and prior graphs in our 495

collaborative framework. 496

Node Edge Graph

P R F P R F SMATCH

w/o preprocess 96.29 91.72 93.95 93.86 88.66 91.19 92.57
w/ preprocess 97.67 96.93 97.30 97.71 96.85 95.81 96.54

Table 1: Comparision of precision, recall, and F1-score for
node and edge prediction and SMATCH scores on the test set
under the settings of with/without tokenization preprocessing.

Impact of Tokenization. To validate the effec- 497

tiveness of our proposed tokenization process, we 498

report the performance of node and edge predic- 499

tion and the SMATCH scores with and without the 500

process on the test set in Table 1, which indicates 501

that after this process, the SMATCH score is im- 502

proved by 4.29% on the test set. We can find 503

that the recall score for node prediction has sig- 504

nificant improvement, and this is because that the 505

sequence without tokenization preprocessing will 506

lead to longer sequence length, and many output 507

graphs have reached the max decoding sequence 508

length and thus are incomplete. 509

Model Node Edge SMATCH

ACE4 93.18 88.76 90.94
Transition-based (Buys and Blunsom, 2017) 89.06 84.96 87.00
SHRG-based (Chen et al., 2018) 94.51 87.29 90.86
Composition-based (Chen et al., 2019) 95.63 91.43 93.56
Factorization-based (Chen et al., 2019) 97.28 94.03 95.67
Factorization-based (Cao et al., 2021) 96.42 93.73 95.05
ACE-T5 (following Shaw et al. (2021)) 93.46 89.19 91.30

Translation-based (Ours) 97.30 95.81 96.54
+ Uncertainty-based Collaboration 97.64 96.41 97.01

Table 2: F1 score for node and edge predictions and the
SMATCH scores on the test set.

Comparison with Existing Parsers. For in- 510

domain settings, we compared our parser with the 511

grammar-based ACE parser and other data-driven 512

parsers in Table 2. The baseline models also in- 513

clude a similar practice with Shaw et al. (2021), 514

4The results for ACE are lower than those reported in previ-
ous work, which are originally from Buys and Blunsom (2017).
We use the same ACE parser and we have confirmed with other
authors that those higher results are not reproducible. As the
ACE parser fails to parse some of the sentences (more than
1%), we only evaluate sentences that are successfully parsed
by ACE.
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Brown Wiki Eric Raymond Essay E-commerce Tanaka

Node Edge SMATCH Node Edge SMATCH Node Edge SMATCH Node Edge SMATCH Node Edge SMATCH

All Examples

ACE 93.84 91.49 92.63 77.15 79.11 77.91 93.63 90.98 92.27 96.03 95.73 95.89 98.62 98.32 98.47
T5 93.43 92.50 92.94 87.96 88.32 88.06 93.13 92.85 92.94 92.39 93.08 92.66 95.81 95.36 95.59
Collab. 94.76 93.65 94.19 89.14 89.62 89.28 94.28 93.89 94.05 95.06 94.93 95.03 97.26 96.77 97.03

Valid Parse Only

ACE 95.02 92.64 93.79 88.54 90.79 89.42 95.08 92.39 93.69 98.04 97.73 97.90 98.76 98.46 98.61
T5 93.48 92.55 92.98 88.73 89.09 88.83 93.13 92.85 92.94 92.41 93.10 92.68 95.81 95.36 95.59
Collab. 94.80 93.69 94.29 89.92 90.40 90.07 94.28 93.89 94.05 95.08 94.95 95.04 97.26 96.77 97.03

Oracle T5 96.12 95.21 95.66 91.69 91.85 91.73 95.31 95.01 95.13 95.66 95.72 95.71 97.92 97.70 97.87
Oracle All 98.00 97.23 97.60 93.91 94.13 93.99 97.57 96.45 97.00 98.85 98.55 98.72 99.61 99.52 99.57

Table 3: F1 score for node and edge predictions and the SMATCH scores on out-of-domain datasets. Collab. means
collaborative model. Oracle T5 means selecting predictions with the best SMATCH scores from T5 top k predictions,
and Oracle All means selecting from T5 top k and ACE predictions.

which takes T5 as a backup for grammar-based515

parser. Our model outperforms all previous work,516

and achieves a SMATCH score of 96.54 (a 30.1%517

reduction in error), which is a significant improve-518

ment over existing parsers on this well-studies519

benchmark. After applying the collaborative pars-520

ing framework, we further improve the parser’s521

performance to 97.01 (a 39.6% reduction in error).522

We notice that using the simple margin probabil-523

ity as the uncertainty estimator performs better than524

weighted entropy. We then conduct an investiga-525

tion on the calibration quality of model uncertainty526

using different estimators. Specifically, we find527

predictive margin exhibits a surprisingly strong cor-528

relation with the model’s test SMATCH score, while529

some more well-known uncertainty metrics (e.g.,530

predictive entropy) are poorly calibrated. More531

details can be found in Appendix G.532

We further show the OOD performance of the533

ACE, T5 and collaborative models’ performance534

in Table 3. Considering the coverage for ACE535

parser is not stable across different datasets, we536

show the results that including and excluding the537

failure examples separately (all examples v.s. valid538

parse only). Several conclusion can be drawn here:539

• When comparing ACE and T5 on valid parsed540

examples (line 4 and 5), as suspected, vanilla541

T5 model underperforms on all OOD datasets.542

However, the advantage of ACE does not hold543

if we consider parsing coverage (results on all544

examples).545

• When comparing ACE and oracle T5 on valid546

parsed examples (line 4 and 7), oracle T5 is ei-547

ther comparable or outperforming ACE, which548

validates the fact that T5 provide candidates that549

generalize well, however it’s just the inference550

algorithm fails to select them. 551

• When comparing T5, collaborative model and 552

Oracle T5 on valid parsed examples (line 5, 6 and 553

7), we notice that ACE-guided T5 (i.e., Collab.) 554

provides a concrete improvement to the vanilla 555

beam-inference baseline, effectively approaching 556

its theoretical upper bound (i.e., Oracle T5). 557

• However, if we look into Oracle All (line 8), 558

an even better performance can be achieved by 559

finding the best predictions from T5 and ACE 560

parsing. This indicates that a deeper integration 561

of neural and symbolic inference may lead to 562

even further improvement. 563

5 Fine-grained Linguistic Evaluation 564

Though performs better than symbolic parser, we 565

find that actually neural and symbolic parsers yield 566

different distributions on the test set (see Appendix 567

E for details). This has motivated us to dive deeply 568

into more fine-grained evaluation for our models. 569

ERG provides different levels of linguistic infor- 570

mation that is beneficial to many NLP tasks, e.g., 571

named entity recognition, semantic role labeling, 572

and coreference. This rich linguistic annotation 573

can help us quantify different types of errors the 574

model makes. We reported the detailed evaluation 575

results on in-domain and OOD (Brown and Tanaka) 576

datasets in Table 4. Specifically, we consider three 577

types of linguistic phenomena, including lexical 578

construction, argument structure and coreference. 579

More details can be found in Appendix H. 580

As shown, on in-domain dataset (WSJ) the T5 581

parser performs much better than ACE, especially 582

for compound recognition. This indicates that local 583

semantic information such as compound construc- 584

tions or named entities can be easily captured by 585
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DeepBank (WSJ) Standard OOD (Brown) Challenging OOD (Tanaka)
Type # ACE T5 Collab. # ACE T5 Collab. # ACE T5 Collab.

Compound 2,266 80.58 90.46 90.36 987 76.26 80.75 80.45 274 92.96 82.12 86.86
Nominal w/ nominalization 22 85.71 89.66 82.76 6 40.00 66.67 66.67 1 100.00 100.00 100.00
Nominal w/ noun 1,044 85.28 90.96 91.42 541 84.66 78.93 80.04 215 92.92 85.12 88.84
Verbal 23 75.00 77.27 81.82 25 80.00 84.00 80.00 2 100.00 50.00 100.00
Named entity 1,153 82.92 91.36 90.40 352 64.69 87.50 83.52 36 97.22 77.78 86.11

Argument structure 7,108 86.98 90.68 91.66 8,646 85.27 82.11 85.35 6,074 96.55 87.09 91.31
Total verb 4,176 85.34 89.75 90.50 4,751 81.81 81.56 84.36 3,792 95.95 86.76 90.77
Basic verb 2,356 85.79 89.97 90.90 2,874 81.88 83.37 85.87 2,194 95.65 88.74 92.30

ARG1 1,683 90.25 93.40 93.94 2,365 86.77 89.68 91.16 1,937 96.89 93.91 95.77
ARG2 1,995 90.48 92.95 93.79 1,994 88.01 87.16 89.67 1,594 97.23 90.84 93.85
ARG3 195 85.63 83.08 84.62 246 73.55 67.07 72.36 204 92.61 78.92 84.80

Verb-particle 1,761 84.69 89.47 90.00 1,877 81.71 78.80 82.05 1,598 96.36 84.04 88.67
ARG1 1,545 89.57 93.50 94.05 1,617 85.59 84.66 87.14 1,471 96.93 87.49 91.09
ARG2 923 86.27 91.10 91.26 1,246 85.51 78.01 81.86 1,016 97.14 84.65 88.78
ARG3 122 87.88 86.75 88.08 172 79.64 70.93 72.67 149 93.96 75.84 83.89

Total noun 394 92.41 91.84 92.63 407 88.34 81.08 84.77 163 98.15 85.99 95.09
Total adjective 2,538 89.05 92.09 93.25 2,981 89.89 83.66 86.85 1,861 97.47 87.75 91.89

Reentrancy 2,343 77.29 87.88 88.43 2,496 78.73 72.12 77.36 1,495 95.44 78.66 84.96
passive 522 84.89 91.54 92.72 507 88.28 78.90 86.19 1,258 97.67 87.98 92.64

Table 4: Comparing ACE, T5 parsers and collaborative parsing (Collab.) on fine-grained linguistic categories. All
scores are reported in accuracy. The underlined denotes the best in ACE and T5, and the bold denotes the best in
ACE, T5 and Collab.

those pretrained embedding-based models. For ar-586

gument structure, though performs better than ACE587

in most cases, the T5 parser still has relatively low588

accuracy for ARG3 and noun structure recognition.589

This is mainly due to their relatively low frequency590

in the training set (1.94% for ARG3 and 5.54% for591

noun argument structures).592

For OOD datasets, the T5 parser is underper-593

forming the ACE parser on most of the linguis-594

tic phenomena especially on long-tail structures595

(e.g., ARG3), while our collaborative framework596

can boost the performance to be close to or even597

better than the ACE results.598

Our analysis in this section is consistent with599

previous work: the T5 parser, similar to many other600

neural parsers, is fragile to tail and OOD instances601

that do not have sufficient representation in the602

training data. We also further report the evalua-603

tion results for our collaborative neural-semantic604

parsing framework (Collab.), where we can see605

that it brings improvement for the issues above,606

which validates the effectiveness of the collabora-607

tive framework.608

6 Conclusions and Future Work609

In this paper, we present a simple, uncertainty-610

based approach to collaborative neural-symbolic611

parsing for graph-based meaning representations.612

In contrary to the prior neural-symbolic approaches, 613

we maintain the simplicity of the seq2seq training, 614

and design a decision-theoretic inference criteria 615

for beam candidate selection, incorporating model 616

uncertainty and prior knowledge from an existing 617

symbolic parser. 618

Remarkably, despite the simplicity of the 619

method, our approach strongly outperform all 620

the previously-known approach on the DeepBank 621

benchmark (Table 2), and attains strong perfor- 622

mance even in the tail linguistic categories (Table 623

4). Our study revealed that the commonly observed 624

weakness of the neural model may root from a 625

sub-optimal inference procedure. Therefore, devel- 626

oping a more calibrated neural semantic parser and 627

developing principled inference procedure may be 628

a fruitful avenue for addressing the generalization 629

issues of neural parsers. 630

In the future, we plan to apply this approach to 631

a broader range of graph meaning representations, 632

e.g., AMR (Banarescu et al., 2013) and UCCA 633

(Abend and Rappoport, 2013), and build a more 634

advanced uncertainty estimation approach to quan- 635

tify model uncertainty about sub-components of 636

the graph, thereby allowing more fine-grained in- 637

tegration between neural prediction and symbolic 638

derivations. 639
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Ethical Consideration640

This paper focused on collaborative neural-641

symbolic semantic parsing for the English Re-642

source Grammar (ERG). Our architecture are built643

based on open-source models and datasets (all avail-644

able online). We do not anticipate any major ethical645

concerns.646
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A Graph-based Meaning Representation927

Considerable NLP research has been devoted to928

the transformation of natural language utterances929

into a desired linguistically motivated semantic rep-930

resentation. Such a representation can be under-931

stood as a class of discrete structures that describe932

lexical, syntactic, semantic, pragmatic, as well as933

many other aspects of the phenomenon of human934

language. In this domain, graph-based representa-935

tions provide a light-weight yet effective way to en-936

code rich semantic information of natural language937

sentences and have been receiving heightened at-938

tention in recent years. Popular frameworks un-939

der this umbrella includes Bi-lexical Semantic De-940

pendency Graphs (SDG; Bos et al., 2004; Ivanova941

et al., 2012; Oepen et al., 2015), Abstract Mean-942

ing Representation (AMR; Banarescu et al., 2013),943

Graph-based Representations for English Resource944

Grammar (ERG; Oepen and Lønning, 2006; Copes-945

take, 2009), and Universal Conceptual Cognitive946

Annotation (UCCA; Abend and Rappoport, 2013).947

B Literature Review on Graph-based948

Semantic Parsing949

In this section, we present a summary of differ-950

ent parsing technologies for graph-based meaning951

representations, with a focus on English Resource952

Grammar (ERG).953

Grammar-based approach. In this type of ap-954

proach, a semantic graph is derived according to955

a set of lexical and syntactico-semantic rules. For956

ERG parsing, sentences are parsed to HPSG deriva-957

tions consistent with ERG. The nodes in the deriva-958

tion trees are feature structures, from which MRS959

is extracted through unification. However, this ap-960

proach fails to parse sentences for which no valid961

derivation is found. It is implemented in the PET962

(Callmeier, 2000) and ACE5 parser. Chen et al.963

(2018) also proposed a Synchronous Hyperedge964

Replace Grammar (SHRG) based parser by relat-965

ing synchronous production rules to the syntacto-966

semantic composition process.967

Factorization-based approach. This type of ap-968

proach is inspired by graph-based dependency tree969

parsing (McDonald, 2006). A factorization-based970

parser explicitly models the target semantic struc-971

tures by defining a score function that can eval-972

uate the probability of any candidate graph. For973

ERG parsing, Cao et al. (2021) implemented a two-974

5http://sweaglesw.org/linguistics/ace/

step pipeline architecture that identifies the concept 975

nodes and dependencies by solving two optimiza- 976

tion problems, where prediction of the first step is 977

utilized as the input for the second step. Chen et al. 978

(2019) presented a four-stage pipeline to incremen- 979

tally construct an ERG graph, whose core idea is 980

similar to previous work. 981

Transition-based approach. In these parsing sys- 982

tems, the meaning representations graph is gen- 983

erated via a series of actions, in a process that is 984

very similar to dependency tree parsing (Yamada 985

and Matsumoto, 2003; Nivre, 2008), with the dif- 986

ference being that the actions for graph parsing 987

need to allow reentrancies. For ERG parsing, Buys 988

and Blunsom (2017) proposed a neural encoder- 989

decoder transition-based parser, which uses stack- 990

based embedding features to predict graphs jointly 991

with unlexicalized predicates and their token align- 992

ments. 993

Composition-based approach. Following a prin- 994

ciple of compositionality, a semantic graph can 995

be viewed as the result of a derivation process, in 996

which a set of lexical and syntactico-semantic rules 997

are iteratively applied and evaluated. For ERG pars- 998

ing, based on Chen et al. (2018), Chen et al. (2019) 999

proposed a composition-based parser whose core 1000

engine is a graph rewriting system that explicitly 1001

explores the syntactico-semantic recursive deriva- 1002

tions that are governed by a synchronous SHRG. 1003

Translation-based approach. This type of ap- 1004

proach is inspired by the success of seq2seq mod- 1005

els which are the heart of modern Neural Machine 1006

Translation. A translation-based parser encodes 1007

and views a target semantic graph as a string from 1008

another language. In a broader context of graph 1009

semantic parsing, simply applying seq2seq models 1010

is not successful, in part because effective lineariza- 1011

tion (encoding graphs as linear sequences) and data 1012

sparsity were thought to pose significant challenges 1013

(Konstas et al., 2017). Alternatively, some specifi- 1014

cally designed preprocessing procedures for vocab- 1015

ulary and entities can help to address these issues 1016

(Konstas et al., 2017; Peng et al., 2017). These pre- 1017

processing procedures are very specific to a certain 1018

type of meaning representation and are difficult to 1019

transfer to others. However, we show that by devis- 1020

ing proper linearization and tokenization (Section 1021

3.1), we can successfully transfer the ERG parsing 1022

problem into a translation problem, which can be 1023

solved by a state-of-the-art seq2seq model T5 (Raf- 1024

fel et al., 2020). This linearization and tokenization 1025
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can be applied to any meaning representations.1026

C Detailed Implementation of1027

Linearization1028

The original PENMAN styled linearization for1029

graph in Figure 1 can be written as:1030

(x0 / _introduced_v_to1031
:ARG2 (x1 / _drug_n_11032
:BV-of (x2 / _the_q))1033

:ARG1-of (e0 / parg_d1034
:ARG2 x1)1035

:ARG1-of (e1 / loc_nonsp1036
:ARG2 (x3 / _year_n_11037
:BV-of (x4 / _this_d_dem)))1038

:ARG1-of (x5 / _in_p1039
:ARG2 (e2 / named1040
:BV-of (e3 / proper_q)1041
:ARG1-of (e4 / compound1042
:ARG2 (e5 / named1043
:BV-of (e6 / proper_q))))))1044

The term -of is used for reversing the edge1045

direction for graph traversing. Nodes in the1046

graph get identifiers (e.g., x0, e0), which can1047

be referred to later to establish a reentrancy,1048

e.g., the node _drug_n_1 serves as ARG2 of1049

_introduced_v_to and ARG2 of parg_d at1050

the same time, so the identifier x_1 appears twice1051

in the notation. However, in our settings, these1052

identifiers can be randomly set to any unique sym-1053

bols, which will confuse the model to learn the1054

real meaningful mappings. To tackle this issue and1055

create a variable-free version of the PENMAN no-1056

tation, we replace these identifiers with star mark-1057

ers to indicate reentrancy, e.g., replacing x1 with1058

_drug_n_1 *.1059

The rewriting process can be done by Algorithm1060

1. It is noted that there can be more than one reen-1061

trancy in the graph, and we use different numbers1062

of star marks to indicate this (line 10 in Algorithm1063

1).1064

To illustrate more about reentrancies, we con-1065

sider two different types of cases:1066

(1) For cases where the second reentrancy1067

still points back to the first _drug_n_1, e.g.,1068

in the sentence “the drug was introduced and1069

used this year”, the node will still be marked as1070

_drug_n_1 *.1071

(2) For cases where the second reentrancy refers1072

to another token span in the sentences, e.g., in1073

the sentence “The drug was introduced this year,1074

and another drug will be introduced next year”,1075

the second node reentrancy will be marked as1076

_drug_n_1 **.1077

In other words, the max number of star markers *1078

indicates the total number of different reentrancies1079

in the sentences. This will not confuse the model to1080

Algorithm 1 Variable-free PENMAN rewriting
Input: G = ⟨N,E⟩ is the EDS graph
Output: Variable-free PENMAN notations of G

1: R← ∅ ▷ reenrancy set
2: nR ← 0 ▷ number of of reenrancies
3: for n ∈ N do
4: if child(n) ∩ child(parent(n)) ̸= ∅ then
5: R′ ← child(n) ∩ child(parent(n))
6: R← R ∪R′

7: end if
8: end for
9: for r ∈ R do

10: G← rewrite(G, r, r +′ ∗′ × (nR + 1))
11: nR ← nR + 1
12: end for
13: return PENMAN(G)

do the reentrancy prediction as it can always refer 1081

to how many reentrancies have been predicted in 1082

the previous sequences. 1083

D Details about Tokenization 1084

ERG makes an explicit distinction between nodes 1085

with surface relations (prefixed by an underscore), 1086

and with grammatical meanings. The former, 1087

called the surface node, consists of a lemma fol- 1088

lowed by a coarse part-of-speech tag and an op- 1089

tional sense label. For example, for the node 1090

_drug_n_1 in Figure 1, the surface lemma is 1091

drug (_drug), the part-of-speech is noun (_n), 1092

and _1 here specifies that it is the first sense un- 1093

der the noun “drug”. The later, called the abstract 1094

node, is used to represent the semantic contribu- 1095

tion of grammatical constructions or more special- 1096

ized lexical entries, e.g., parg_d (for passive), 1097

proper_q (for quantification of proper words), 1098

compound (for compound words), and named 1099

(for named entities). 1100

It is noted that the set of abstract concepts and 1101

edges are fixed and relatively small (88 for abstract 1102

nodes and 11 for edges in the training set), while 1103

the surface nodes have high productivity, i.e., many 1104

different lemmas can fit into some fixed patterns 1105

such as _n_1 and _v_to. Therefore, we rewrite 1106

those fixed abstract, concepts surface patterns and 1107

edges into some non-tokenizable tokens in the T5 1108

vocabulary to inform the model that these units are 1109

non-compositional in ERG graphs. 1110
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E Distributions of the T5 and ACE1111
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Figure 2: SMATCH scores of the T5 and ACE parsers
across test examples

F Details for OOD Datasets1113

The Borwn Corpus The Brown Corpus was a1114

carefully compiled selection of current American1115

English, totalling about a million words drawn1116

from a wide variety of sources.1117

Wikipedia The DeepBank team contructed a1118

treebank for 100 Wikipedia articles on Computa-1119

tional Linguistics and closely related topics. The1120

treebank of 11558 sentences comprises 16 sets of1121

articles. The corpus contains mostly declarative,1122

relatively long sentences, along with some frag-1123

ments.1124

The Eric Raymond Essay The treebank is based1125

on translations of the essay “The Cathedral and the1126

Bazaar” by Eric Raymond. The average length1127

and the linguistic complexity of these sentences is1128

markedly higher than the other treebanked corpora.1129

E-commerce While the ERG was being used in1130

a commercial software product developed by the1131

YY Software Corporation for automated response1132

to customer emails, a corpus of training and test1133

data was constructed and made freely available,1134

consisting of email messages composed by people1135

pretending to be customers of a fictional consumer1136

products online store. The messages in the corpus1137

fall into four roughly equal-sized categories: Prod-1138

uct Availability, Order Status, Order Cancellation,1139

and Product Return.1140

The Tanaka Corpus This treebank is based on1141

parallel Japanese-English sentences, which was1142

adopted to be used with in the WWWJDIC dictio-1143

nary server as a set of example sentences associated1144

within words in the dictionary.1145

G Uncertainty Estimates and Calibration 1146

Performance 1147

There has been some work exploring the model 1148

uncertainty for seq2seq parser or some other non 1149

seq2seq models (Dong et al., 2018; Kamath et al., 1150

2020). In this section, we are also interested in 1151

investigating the calibration quality of model un- 1152

certainty of a seq2seq neural parser. For the pro- 1153

posed criteria (2) to perform robustly in practice, 1154

the uncertainty estimatorH(x) should be well cal- 1155

ibrated, i.e., the magnitude of H is indicative of 1156

the model’s predictive error. To this end, we notice 1157

that a reliable uncertainty measure for sequence 1158

prediction tasks is still an open research challenge 1159

(Malinin and Gales, 2020). In this work, we experi- 1160

ment with several well-known estimators of model 1161

uncertainty: 1162

Margin probability. The simplest estimator for 1163

model uncertainty is the predictive margin, i.e., the 1164

difference in probability of the top 1 prediction 1165

minus the likelihood of the top 2 prediction based 1166

on the beam score: 1167

Hmargin(p(y|x,D)) = p(y(1)|x,D)− p(y(2)|x,D) 1168

Weighted entropy. Considering that our model 1169

uses beam-search for inference, and with regards to 1170

the Monte-Carlo estimators, beam-search can be in- 1171

terpreted as a form of importance-sampling which 1172

yields hypotheses from high-probability regions 1173

of the hypothesis space. We can estimate uncer- 1174

tainty which is importance-weighted in proportion 1175

to p(y(b)|x,D) such that 1176

Hentropy(p(y|x,D)) = −
B∑
b=1

πb
L(b)

ln p(y(b)|x,D), 1177

where πb =
p(y(b)|x,D)∑B
k p(y(k)|x,D)

is the estimated impor- 1178

tance weight for each beam candidate (Malinin and 1179

Gales, 2020). 1180

In our experiment, we investigate the calibration 1181

of the above uncertainty estimations (see below), 1182

and experiment with their respective efficacy in 1183

improving the collaborative parsing system’s pre- 1184

dictive performance (Table 5). 1185

A common approach to evaluate a model’s un- 1186

certainty quality is to measure its calibration per- 1187

formance, i.e., whether the model’s predictive un- 1188

certainty is indicative of the predictive error (Guo 1189

et al., 2017). To understand how well the T5 1190

parser’s neural uncertainty correlates with its pre- 1191

diction reliability, we plot the diagrams for the 1192
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Figure 3: Diagrams for the model’s confidence verses
SMATCH scores on the test set. Each bin contains 50
examples.

model’s confidence verses SMATCH scores on the1193

test set in Figure 3. As shown, comparing to the1194

weighted entropy, margin probability is qualita-1195

tively much better calibrated. 6 Correspondingly,1196

Table 5 shows that the collaborative result using1197

margin probability yields much strongly perfor-1198

mance, confirming the connection between a uncer-1199

tainty model’s calibration quality and its effective-1200

ness is collaborative prediction (Kivlichan et al.,1201

2021).1202

Model Node Edge SMATCH

ACE7 93.18 88.76 90.94
Transition-based (Buys and Blunsom, 2017) 89.06 84.96 87.00
SHRG-based (Chen et al., 2018) 94.51 87.29 90.86
Composition-based (Chen et al., 2019) 95.63 91.43 93.56
Factorization-based (Chen et al., 2019) 97.28 94.03 95.67
Factorization-based (Cao et al., 2021) 96.42 93.73 95.05
ACE-T5 (following Shaw et al. (2021)) 93.46 89.19 91.30

T5 (Ours) 97.30 95.81 96.54
Collaborative w/ margin probability 97.64 96.41 97.01
Collaborative w/ weighted entropy 97.27 96.14 96.70

Table 5: F1 score for node and edge predictions and the
SMATCH scores on the test set.

H Fine-grained Linguistic Phenomena1203

Lexical construction ERG uses the abstract1204

node compound to denote compound words. The1205

edge labeled with ARG1 refers to the root of the1206

compound word, and thus can help to further dis-1207

tinguish the type of the compound into (1) nominal1208

with normalization, e.g., “flag burning”; (2) nomi-1209

nal with noun, e.g., “pilot union”; (3) verbal, e.g.,1210

“state-owned”; (4) named entities, e.g., “West Ger-1211

many”.1212

Argument structure In ERG, there are differ-1213

ent types of core predicates in argument struc-1214

tures, specifically, verbs, nouns and adjectives.1215

We also categorize verb in to basic verb (e.g.,1216

6We hypothesize that the inferior performance of entropy
is due to the well-known "length bias" (Yang et al., 2018), i.e.,
shorter predictions tend to have higher beam score, which also
tend to have lower SMATCH score

_look_v_1) and verb particle constructions (e.g., 1217

_look_v_up). The verb particle construction is 1218

handled semantically by having the verb contribute 1219

a relation particular to the combination. 1220

Coreference ERG resolves sentence-level coref- 1221

erence, i.e., if the sentence referring to the same 1222

entity, the entity will be an argument for all the 1223

nodes that it is an argument of, e.g., in the sentence, 1224

“What we want to do is take a more aggressive 1225

stance”, the predicates “want” (_want_v_1) and 1226

“take” (_take_v_1) share the same agent “we” 1227

(pron). As discussed before, this can be presented 1228

as reentrancies in the ERG graph, we notice that 1229

one important type of reentrancies is the passive 1230

construction (e.g., parg_d in Figure 1), so we 1231

also report evaluation on passive construction in 1232

Table 4. 1233
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