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Abstract

Recent work in task-independent graph seman-
tic parsing has shifted from grammar-based
symbolic approaches to neural models, show-
ing strong performance on different types of
meaning representations. However, it is still
unclear that what are the limitations of these
neural parsers, and whether these limitations
can be compensated by incorporating symbolic
knowledge into model inference. In this paper,
we address these questions by taking English
Resource Grammar (ERG) parsing as a case
study. Specifically, we first develop a state-of-
the-art neural ERG parser, and then conduct de-
tail analyses of parser performance within fine-
grained linguistic categories and across a wide
variety of corpora. The neural parser attains
superior performance on in-distribution test set,
but degrades significantly on long-tail and out-
of-distribution situations, while the symbolic
parser performs more robustly. To address this,
we further propose a simple yet principled col-
laborative framework for neural-symbolic se-
mantic parsing, by designing a decision cri-
terion for beam search that incorporates the
prior knowledge from a symbolic parser and
accounts for model uncertainty. Experimen-
tal results show that the proposed framework
yields comprehensive improvement over neural
baseline across long-tail categories and out-of-
domain examples, yielding the best known re-
sult on the well-studied DeepBank benchmark.

1 Introduction

All things semantic are receiving heightened atten-
tion in recent years, and graph-structured semantic
representations, which encode rich semantic infor-
mation in the form of semantic graphs, have played
an important role in natural language processing
(Oepen et al., 2019).

Parsing natural language sentences into the
semantic-graph representation (e.g., Figure 1) has
been extensively studied in the recent decade.
Work in this area has shifted from the symbolic

(grammar-based) approach to the neural approach.
Thanks to the flourishing of deep learning technolo-
gies, sequence-to-sequence (seq2seq) models have
shown great performance on data sampled from
the training distribution. These neural semantic
parsers reduce the need for domain-specific gram-
mar and feature engineering, but comes at a cost of
lacking interpretability, as the model directly out-
puts a (linearized) graph without revealing the un-
derlying meaning-composition process. Moreover,
these neural models often generalize poorly to tail
and out-of-distribution (OOD) examples, and previ-
ous work has shown that combining high-precision
symbolic approaches with neural models can ad-
dress this issue for task-oriented semantic parsing
(Shaw et al., 2021; Kim, 2021; Cheng et al., 2019).
However, this type of approach requires complex
architecture engineering to incorporate the gram-
mar formalism. The grammar formalism being
utilized is usually primitive, and was not tested
beyond simple datasets such as SCAN (Lake and
Baroni, 2018) or GEOQUERY (Zelle and Mooney,
1996). Therefore they are likely not sufficient for
handling complex graph-based meaning represen-
tations derived from realistic corpora.

In this work, we aim to develop a simple yet prin-
cipled neural-symbolic approach for graph seman-
tic parsing to address tail and OOD generalization,
which leverages the information from an a priori
grammar parser while maintaining the convenience
of neural seq2seq training built on top of massively
pre-trained embeddings (Raffel et al., 2020). In
this work, we take graph semantic parsing for En-
glish Resource Grammar (ERG) as our case study
(Adolphs et al., 2008). ERG is a compositional
semantic representation explicitly coupled with the
syntactic structure. Compared to other graph-based
meaning representations, ERG has high coverage
of English text and strong transferability across do-
mains (Flickinger et al., 2010, 2012; Copestake and
Flickinger, 2000; Ivanova et al., 2013), rendering



itself has an attractive target formalism for auto-
mated semantic parsing. The classic ERG literature
has focused on developing grammar-based ERG
parser. However they can suffer from issues such
as incomplete categorization of lexical items and
multi-word expression, and yields low coverage
for realistic corpus such as Wikipedia (Baldwin
et al., 2004). On the other hand, multiple neural
ERG parsers have also been proposed (Buys and
Blunsom, 2017; Chen et al., 2018, 2019; Cao et al.,
2021). However they are commonly structured as
a pipelined system and often rely on external tools
(e.g, aligners, part-of-speech taggers, and named
entity recognizers), with the performance of the
upstream component significantly impacting the
final performance (see Appendix B for a review).
This motivates us to build a pure end-to-end neural
parser for ERG parsing that directly maps the input
sentences to target graphs.

First, we present an end-to-end seq2seq model
based on TS5 (Raffel et al., 2020) that achieves
the state-of-the-art results for ERG parsing. This
model goes beyond the conventional multi-step pre-
dictions for node and edge in previous work, and
does not require specialized architecture that ex-
plicitly incorporate the ERG rules or the synaptic
structure as part of inductive bias. Despite the com-
plicated syntax and semantic structures encoded
in semantic graphs, we have shown that by devis-
ing proper linearization and tokenization, we can
successfully transfer ERG parsing problem to trans-
lation problem (Section 3.1).

Second, we conduct a comprehensive study of
the generalization behavior of the neural parser,
interrogating its performance within fine-grained
linguistic categories and across five diverse and re-
alistic corpora. Comparing with a state-of-the-art
symbolic parser ACE, the neural parser exhibits
complementary strengths. Particularly, the neural
model yields much higher coverage than the sym-
bolic parser, generating valid parses for a wider
range of examples. However, the quality of the
top-1 parse degrades severely in the long-tail or
OQD situation. Perhaps remarkably, we also ob-
served that the neural model’s top-k parses in fact
often contain candidate that generalizes well out of
distribution, but the vanilla MLE-based inference
fell short in selecting them (Section 4 and 5).

The above observation motivates our third con-
tribution: to develop a practical framework for col-
laborative neural-symbolic parsing. The key lies in

designing a principled decision making strategy for
this neural-symbolic collaboration that performs
optimally both in-domain and OOD. To this end,
we design a new decision criterion for neural model
inference (e.g., beam search) that incorporates both
model uncertainty and the prior knowledge from a
symbolic parser, leveraging the theoretical frame-
work of optimal decision-making under the incom-
plete knowledge of the world (Ulansky and Raza,
2021; Giang, 2015; Hurwicz, 1951). The basic
idea is to utilize uncertainty estimates of the neural
parser as a switch between the optimistic, MLE-
based inference and the conservative, prior-based
inference, such that the neural parser seeks the
guidance from a symbolic parser during its decod-
ing stage when encountering low-confident exam-
ples. This proposed approach achieves comprehen-
sive improvement compared to the original neu-
ral parser, across almost all linguistic categories
and on both in-domain and OOD data. Our re-
sult suggests that sometimes the limitation of the
neural approach lies not necessarily in the model
architecture or the training method, but in a sub-
optimal inference procedure that naively maximize
the a posteriori likelihood (e.g., the beam search)
without questioning the reliability of the prediction
(Section 3.2).

In summary, our contribution are three-fold:

* We propose the first end-to-end model that
achieves the state-of-the-art results for ERG pars-
ing on the DeepBank WSJ benchmark. Specifi-
cally, we get 30.1% error rate reduction in terms
of the best known SMATCH score.

* We conduct a thorough analysis of the neu-
ral parser in terms of generalization. Specifi-
cally, we compared the predictive performance
of neural parser with the state-of-the-art symbolic
parser in various important linguistic categories,
showing that both parsers exhibit complemen-
tary strengths, validating the potential to build a
neural-symbolic parsing framework.

* We propose a simple, yet principled framework
for neural-symbolic parsing utlizing model un-
certainty. The resulting framework not only com-
prehensively improved the model performance
in tail linguistic categories and across out-of-
distribution corpora, and further boosted the per-
formance of the neural model on the standard
in-domain test set (extra 9.5% error rate reduc-
tion), establishing a new state-of-the-art.

Reproducibility. We will release the code on
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Figure 1: An example of semantic graph for English Resource Grammar (ERG). Some nodes are surface concepts, meaning

that they are related to a single lexical unit, e.g. _introduce_v_to (the number in the angle brackets indicates their token

alignments in the sentence), while others are abstract concepts representing grammatical meanings, e.g. compound (multiword

expression), parg_d (passive) and 1oc_nonsp (temporal). Color red indicates the root of this semantic graph. It also supports

light-weight named entity recognition (e.g., “West Germany” is labeled as two named in the graph).

Github!.

2 Background and Related Work

2.1 English Resource Grammar (ERG)

In this paper, we take the representations from En-
glish Resource Grammar (ERG; Flickinger et al.,
2014) as our target meaning representations. A
brief introduction to other meaning representations
can be found in Appendix A. ERG is an open-
source, domain-independent, linguistically precise,
and broad-coverage grammar of English, which
is rooted in the general linguistic theory of Head-
driven Phrase Structure Grammar (HPSG; Pollard
and Sag, 1994). ERG can be presented into dif-
ferent types of annotation formalism (Copestake
et al., 2005). In this work, we consider the Ele-
mentary Dependency Structure (EDS; Oepen and
Lgnning, 2006) which converts ERG into variable-
free dependency graphs, and is more compact and
interpretable when compared to other types of an-
notation schemes, e.g., DMRS (Buys and Blunsom,
2017; Chen et al., 2018).

Figure 1 shows an example graph. The semantic
structure is a directed graph G = (N, E), where
N denotes nodes labeled with semantic predi-
cates/relations (e.g., _drug_n_1, compound),
and F denotes edges labeled with semantic argu-
ment roles (e.g., ARG1l, ARG2).

There are different parsing technologies for
graph-based meaning representations, which can
be roughly divided into grammar- and neural-based
approaches. We review those approaches in Ap-
pendix B.
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2.2 Neural-Symbolic Semantic Parsing

While seq2seq models excel at handling natural lan-
guage variation, they have been shown to struggle
with out-of-distribution compositional generaliza-
tion (Lake and Baroni, 2018; Shaw et al., 2021).
This has motivated new specialized architectures
with stronger inductive biases for the compositional
generalization, especially for task-oriented seman-
tic parsing like SCAN (Lake and Baroni, 2018)
and GEOQUERY. Some examples include NQG-
T5 (Shaw et al., 2021), a hybrid model combining
a high-precision grammar-based approach with a
pretrained seq2seq model; seq2seq learning with
latent neural grammars (Kim, 2021); a neural se-
mantic parser combining a generic tree-generation
algorithm with domain-general grammar defined
by the logical language (Cheng et al., 2019).

However, there are not so much progress regard-
ing neural-symbolic parsing for graph meaning rep-
resentations. Previous work has shown that the
utility of context-free grammar for graph semantic
parsing was somewhat disappointing (Peng et al.,
2015; Peng and Gildea, 2016). This is mainly be-
cause the syntax-semantics interface encoded in
those graph meaning representations is much more
complicated than pure syntactic rules or logical
formalism, and is difficult to be exploited in data-
driven parsing architecture.

3 A Collaborative Neural-Symbolic
Parsing Framework

In this section, we design and implement a new
collaborative neural-symbolic parsing framework
for ERG parsing. The framework takes the neural
parser’s uncertainty as a trigger to the collaborative
process with the symbolic parser. This requires
the neural parser to model uncertainty based on the
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optimization problem given observed sentence s:

argmax p(G = (N, E)|s)
N.E

Previous data-driven work on ERG parsing ei-
ther requires pipeline settings (predict nodes N
and edges E separately) or external tools such as
aligners, part-of-speech taggers and named entity
recognizers. In contrast, we aim to build an end-
to-end seq2seq parser that directly maps the input
sentences to the target strings of (linearized) ERG
graphs. However, due to the complexity of the se-
mantic graph representation, care needs to be taken
to parametrize the output space of the graph strings,
so that the seq2seq model can learn efficiently in
finite data. Specifically, we show that by devising
proper linearization and tokenization (Section 3.1),
we can successfully transfer the ERG parsing prob-
lem into a translation problem that can be solved by
a state-of-the-art seq2seq model T5 (Raffel et al.,
2020). The proposed linearization and tokeniza-
tion are essential to model performance, and can
be applied to any meaning representations. The
experimental results show that our model improves
significantly in comparison with the previously re-
ported results (Table 1).

3.1 Linearization and Tokenization

Variable-free top-down linearization. A popu-
lar linearization approach is to linearize a directed
graph as the pre-order traversal of its spanning
tree. Variants of this approach have been proposed
for neural constituency parsing (Vinyals et al.,
2015) and AMR parsing (Barzdins and Gosko,
2016; Peng et al., 2017). AMR (Banarescu et al.,
2013) uses the PENMAN notation (Kasper, 1989),
which is a serialization format for the directed,
rooted graphs used to encode semantic dependen-
cies. It uses parentheses to indicate nested struc-
tures. Since nodes in the graph get identifiers
(initialized randomly) in PENMAN notation that
can be referred to later to establish a reentrancy,
e.g., _drug_n_1 in Figure 1, and will confuse
the model to learn the real meaningful mappings,
we remove the identifiers and use star markers in-
stead to indicate reentrancies. For example, our
variable-free linearization for graphs in Figure 1
can be written as:

( _introduced_v_to

:ARG2 ( _drug_n_1 * :BV-of ( _the_g ) )
:ARGl-of ( parg_d :ARG2 ( _drug_n_1 x ) )
:ARGl-of ( loc_nonsp

:ARG2 ( _year_n_1 :BV-of ( _this_d_dem ) ) )
:ARGl-of ( _in_p

:ARG2 ( named
:BV-of ( proper_q )
:ARGl-of ( compound
:ARG2 ( named :BV-of ( proper_g ) ) ) ) ) )

More details about the implementation of lin-
earization can be found in Appendix C.
Compositionality-aware tokenization. Tokeniza-
tion has always been seen as a non-trivial problem
in Natural Language Processing (Liu et al., 2019).
In the case of graph semantic parsing, it is still a
controversial issue which unit is the most basic one
that triggers conceptual meaning and semantic con-
struction (Chen et al., 2019). While previous work
can customize some off-the-shelf tokenizers to cor-
respond closely to the ERG tokenization, there are
still some discrepancies between the tokenization
used by the system and ERG (Buys and Blunsom,
2017). Moreover, using customized tokenization
means we need to pretrain our model from scratch,
and this will cost lots of time and computation.

We address this issue by replacing the non-
compositional part of ERG graphs with some non-
tokenizable units in the T5 vocabulary. This will
let the model learn the compositionality of ERG
units by giving the signal of which type of units
are tokenizable. More details can be found in Ap-
pendix D. This process is crucial since it not only
reflects the original design of ERG vocabulary, but
also dramatically reduces the sequence length of
the output (around 16%). Additionally, it can be
applied to any meaning representations by simply
identifying the set of non-compositional, atomic
units in the semantic graphs.

3.2 A Decision-theoretic Framework for
Collaborative Neural-Symbolic Parsing

It is known that the performance of a neural
model tends to suffer on examples that are under-
represented in the training data, e.g., tail categories
or OOD examples. Indeed, when analyzing our
neural parser, we find the naive TS parser’s per-
formance degrades significantly in the tail linguis-
tic categories, while the symbolic parser performs
more robustly (Section 5). This motivates us to
explore principled strategies to exploit the com-
plementary strengths of both parsers. Specifically,
we cast neural model inference (e.g., beam search)
as a decision-making problem under partial uncer-
tainty of the world (Ulansky and Raza, 2021; Giang,
2015; Hurwicz, 1951), and design a new decision
criterion incorporates both the model uncertainty
about the testing data distribution and the prior



information from a symbolic parser, thereby con-
cretely improving the model performance beyond
the i.i.d. regime.

Formally, consider a sequence prediction prob-
lem where the input and target sequences (x,y) €
X x Y are generated from an underlying distribu-
tion D = p*(y|x)p*(x). We denote p(y|x) the
neural parser trained on the in-domain examples
x € Xjng, and a symbolic parser prior po(y|x)
that encodes a priori linguistic knowledge. Un-
der a decision-theoretic formulation, the model
inference can be understood as a game against
nature D (Hurwicz, 1951). Specifically, given a
world state x, the goal of the decision maker (DM)
is to select the optimal y among the candidate
decisions {y,}2 ; (in this case the beam candi-
dates) according to certain criteria R(y|x) (i.e.,
y = arg ming, 15 R(y|x)). Crucially, the DM
does not have full knowledge of all the possible
states x € A - she may observe a subset X;,,q C X
via the training data, but is not those x’s that are
underrepresented in the tail, or OOD all together.

Therefore, the goal of neural-symbolic inference
is to identify a proper criteria R(y|x) for model
inference under uncertainty of world states x € X,
incorporating knowledge from symbolic prior pg
and accounting for model’s epistemic uncertainty.
To this end, we find a solution by leveraging the
well-known Hurwicz pessimism-optimism criteria
from game theory (Hurwicz, 1951), which suggests
an optimal criteria may adopt the form

R(ylz) = axRp(ylz) + (1 — o) * Ro(y|®),

where R, (y|x) is an optimistic policy for the fa-
miliar states € € Xj,q4, Ro(y|x) a conservative
policy in case of high uncertainty, and o € [0, 1] a
trade-off parameter.

In the neural-symbolic context, the optimistic
crieria R, (y|x) = —log p(y|x) can be the MLE-
based strategy induced by the neural likelihood,
which is known generalize well for the in-domain
situations * € Xj,4. On the other hand, the pes-
simistic criteria Ro(y|x) = —log po(y|x) can be
based on the symbolic prior pg. This is because
under complete uncertainty, any alternative choice
may lead to an worst-case outcome that is subop-
timal to the baseline pg. In this work, we define
po(yle) ewp(—%) to be the generalized
Boltzmann distribution centered around the output
of the symbolic parser yy. Here A is the tempera-
ture parameter, and d(y, y) is a suitable divergence

metric for the space of ERG graphs, which we
choose to be the SMATCH metric (Cai and Knight,
2013). This leads to:

Ryp(ylz) =a* —log p(y|z)+ (1
(1 _ Oé) * SMATCI)‘\I(?J,?JO)’

where we have omitted the normalizing constant of
po since it does not impact optimization.

A caveat of (1) is «v is fixed regardless of whether
@ is ain-domain (Xj,,4) or out-of-domain (X / X;,q)
state, incurring an hard trade-off. When x is in-
domain, a fixed o can be too conservative since
minimizing the beam score —log p(y|x) alone is
known to generalize well. When « is from a region
that is under-respresented in the training data, how-
ever, (1) can be overly optimistic since the neural
model p(y|x) may generalize poorly in the under-
represented regions, and a more prudent strategy
is to revert to the prior by focusing on minimizing
po(y|x). To handle this challenge, we consider an
improved criteria that accounts for model uncer-
tainty:

R(y|x) =a(z) + —log p(y|z) +

(1— a(@)) * W @

where a(z) = sigmoid(—7 * (H(x) — b)) is a
monotonic transformation of model uncertainty
H () which is known as the Platt calibration (Platt
et al., 1999), whose parameters (7, b) can be es-
timated using a small amount of validation data.
As shown, depending on the value of #(z), the
proposed criteria (2) approaches the original beam
score —log p(y|x) when the model is confident,
and reverts to the prior likelihood —log po(y|x)
when the model is uncertain and # is high.

For the proposed criteria (2) to perform robustly
in practice, the uncertainty estimator #(x) should
be well calibrated, i.e., the magnitude of H is in-
dicative of the model’s predictive error. In this
work, we choose H to be the margin probability,
i.e., the difference in probability of the top 1 pre-
diction minus the likelihood of the top 2 prediction
based on the beam score:

Honargin(p(y|x, D)) = p(y D]z, D) — p(y? |z, D),

due to its strong calibration performance on the
graph semantic parsing tasks. Appendix G discuss
alternative choices of H, investigating their cali-
bration performance and their respective efficacy



in improving the collaborative parsing system’s
predictive performance (Table 2).

4 Experiments

Dataset. We conduct model training on DeepBank
vl1.1 that correspond to ERG version 1214, and
adopt the standard data split. For test, we consider
both in-domain and out-of-domain datasets.

For in-domain dataset, following the previous
work, we use the DeepBank annotation of the Wall
Stree Journal, sections 00-21 (the same text anno-
tated in the Penn Tree Bank).

For out-of-domain datasets, the latest public re-
lease of the Redwoods Treebank includes ERG
annotation with a broad range of different genres,
among which we select a set of standard and chal-
lenge OOD sets. The former includes the Brown
corpus, Wikipedia, and the Eric Raymond Essay;
the latter includes E-commerce, and the Tanaka
corpus. The detailed description for those datasets
can be found in the Appendix F.

The Pydelphin? library is leveraged to extract

EDS graphs and transfer them into PENMAN for-
mat.
Implementation Details. T5 (Raffel et al., 2020)
is a pre-trained sequence-to-sequence Transformer
model that has been widely used in many NLP ap-
plications. We use the open-sourced T5X 3, which
is a new and improved implementation of T5 code-
base in JAX and Flax. Specifically, we use the offi-
cial pretrained T5-Large (770 million parameters)
and finetuned it on DeepBank in-domain training
set. Despite the general fact that larger model size
will lead to better performance on finetuning for
some tasks, our empirical results show that adopt-
ing model sizes larger than T5-Large will not lead
to further gain for ERG parsing.

For the collaborative neural-symbolic parsing,
we set the beam size to 5, i.e., our combined pre-
dictions will be selected from the top 5 predictions
produced by the model. For the monotonic trans-
formation () in (2), we set We set A = 0.1 and
T =0.1.

Evaluation Metrics. For evaluation, following pre-
vious work, we adopt the SMATCH metric (Cai and
Knight, 2013), which was originally proposed for
evaluating AMR graphs. It measures graph overlap,
but does not rely on sentence alignments to deter-

https://github.com/delph-in/pydelphin
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t5x

mine the correspondences between graph nodes.
Specifically, SMATCH is computed by performing
inference over graph alignments to estimate the
maximum F1-score obtainable from a one-to-one
matching between the predicted and gold graph
nodes. This is also ideal for measuring the diver-
gence between predicted and prior graphs in our
collaborative framework.

Node Edge
P R F P R F

w/o preprocess  96.29 9172 9395 9386 88.66 91.19 92.57
w/ preprocess  97.67 9693 97.30 97.71 96.85 9581 96.54

Graph
SMATCH

Table 1: Comparision of precision, recall, and F1-score for
node and edge prediction and SMATCH scores on the test set
under the settings of with/without tokenization preprocessing.

Impact of Tokenization. To validate the effec-
tiveness of our proposed tokenization process, we
report the performance of node and edge predic-
tion and the SMATCH scores with and without the
process on the test set in Table 1, which indicates
that after this process, the SMATCH score is im-
proved by 4.29% on the test set. We can find
that the recall score for node prediction has sig-
nificant improvement, and this is because that the
sequence without tokenization preprocessing will
lead to longer sequence length, and many output
graphs have reached the max decoding sequence
length and thus are incomplete.

Model ‘ Node Edge SMATCH
ACE* 93.18 88.76 90.94
Transition-based (Buys and Blunsom, 2017) | 89.06 84.96 87.00
SHRG-based (Chen et al., 2018) 94.51 87.29 90.86
Composition-based (Chen et al., 2019) 95.63 91.43 93.56
Factorization-based (Chen et al., 2019) 97.28 94.03 95.67
Factorization-based (Cao et al., 2021) 96.42 93.73 95.05
ACE-T35 (following Shaw et al. (2021)) 93.46 89.19 91.30
Translation-based (Ours) 97.30 95.81 96.54
+ Uncertainty-based Collaboration 97.64 96.41 97.01

Table 2: F1 score for node and edge predictions and the
SMATCH scores on the test set.

Comparison with Existing Parsers. For in-
domain settings, we compared our parser with the
grammar-based ACE parser and other data-driven
parsers in Table 2. The baseline models also in-
clude a similar practice with Shaw et al. (2021),

*The results for ACE are lower than those reported in previ-
ous work, which are originally from Buys and Blunsom (2017).
We use the same ACE parser and we have confirmed with other
authors that those higher results are not reproducible. As the
ACE parser fails to parse some of the sentences (more than
1%), we only evaluate sentences that are successfully parsed
by ACE.
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‘ Brown Wiki ‘ Eric Raymond Essay ‘ E-commerce ‘ Tanaka
‘ Node Edge Swmarcu ‘ Node Edge Swarcu ‘ Node Edge Swarcn ‘ Node Edge Swmarcu ‘ Node Edge Swmarcn
All Examples
ACE 9384 91.49 92.63 | 77.15 79.11 7791 | 93.63 90.98 92.27 | 96.03 95.73 95.89 | 98.62 98.32 98.47
TS5 93.43 9250 92.94 | 87.96 88.32 88.06 | 93.13 92.85 9294 | 92.39 93.08 92.66 | 9581 9536 95.59
Collab. 94.76 93.65 94.19 | 89.14 89.62 89.28 | 94.28 93.89 94.05 | 95.06 9493 95.03 | 97.26 96.77 97.03
Valid Parse Only

ACE 95.02 92.64 93.79 | 88.54 90.79 89.42 | 95.08 9239 93.69 | 98.04 97.73 97.90 | 98.76 98.46 98.61
TS5 93.48 9255 9298 | 88.73 89.09 88.83 | 93.13 92.85 9294 | 9241 93.10 92.68 | 9581 9536 95.59
Collab. 94.80 93.69 94.29 | 89.92 90.40 90.07 | 94.28 93.89 94.05 | 95.08 9495 95.04 | 97.26 96.77 97.03
Oracle TS5 | 96.12 9521 95.66 | 91.69 91.85 91.73 | 9531 95.01 95.13 | 95.66 95.72 95.71 | 97.92 97.70 97.87
Oracle All | 98.00 97.23 97.60 | 93.91 94.13 93.99 | 97.57 9645 97.00 | 98.85 98.55 98.72 | 99.61 99.52 99.57

Table 3: F1 score for node and edge predictions and the SMATCH scores on out-of-domain datasets. Collab. means
collaborative model. Oracle TS5 means selecting predictions with the best SMATCH scores from T5 top k predictions,
and Oracle All means selecting from T5 top k and ACE predictions.

which takes TS5 as a backup for grammar-based
parser. Our model outperforms all previous work,
and achieves a SMATCH score of 96.54 (a 30.1%
reduction in error), which is a significant improve-
ment over existing parsers on this well-studies
benchmark. After applying the collaborative pars-
ing framework, we further improve the parser’s
performance to 97.01 (a 39.6% reduction in error).

We notice that using the simple margin probabil-
ity as the uncertainty estimator performs better than
weighted entropy. We then conduct an investiga-
tion on the calibration quality of model uncertainty
using different estimators. Specifically, we find
predictive margin exhibits a surprisingly strong cor-
relation with the model’s test SMATCH score, while
some more well-known uncertainty metrics (e.g.,
predictive entropy) are poorly calibrated. More
details can be found in Appendix G.

We further show the OOD performance of the
ACE, TS5 and collaborative models’ performance
in Table 3. Considering the coverage for ACE
parser is not stable across different datasets, we
show the results that including and excluding the
failure examples separately (all examples v.s. valid
parse only). Several conclusion can be drawn here:

* When comparing ACE and T5 on valid parsed
examples (line 4 and 5), as suspected, vanilla
TS5 model underperforms on all OOD datasets.
However, the advantage of ACE does not hold
if we consider parsing coverage (results on all
examples).

* When comparing ACE and oracle TS on valid
parsed examples (line 4 and 7), oracle T5 is ei-
ther comparable or outperforming ACE, which
validates the fact that T5 provide candidates that
generalize well, however it’s just the inference

algorithm fails to select them.

* When comparing TS5, collaborative model and
Oracle TS on valid parsed examples (line 5, 6 and
7), we notice that ACE-guided TS5 (i.e., Collab.)
provides a concrete improvement to the vanilla
beam-inference baseline, effectively approaching
its theoretical upper bound (i.e., Oracle T5).

* However, if we look into Oracle All (line 8),
an even better performance can be achieved by
finding the best predictions from TS5 and ACE
parsing. This indicates that a deeper integration
of neural and symbolic inference may lead to
even further improvement.

5 Fine-grained Linguistic Evaluation

Though performs better than symbolic parser, we
find that actually neural and symbolic parsers yield
different distributions on the test set (see Appendix
E for details). This has motivated us to dive deeply
into more fine-grained evaluation for our models.

ERG provides different levels of linguistic infor-
mation that is beneficial to many NLP tasks, e.g.,
named entity recognition, semantic role labeling,
and coreference. This rich linguistic annotation
can help us quantify different types of errors the
model makes. We reported the detailed evaluation
results on in-domain and OOD (Brown and Tanaka)
datasets in Table 4. Specifically, we consider three
types of linguistic phenomena, including lexical
construction, argument structure and coreference.
More details can be found in Appendix H.

As shown, on in-domain dataset (WSJ) the T5
parser performs much better than ACE, especially
for compound recognition. This indicates that local
semantic information such as compound construc-
tions or named entities can be easily captured by



DeepBank (WSJ) Standard OOD (Brown) Challenging OOD (Tanaka)
Type # ACE T5  Collab. # ACE T5  Collab. # ACE TS Collab.
Compound 2,266 80.58 90.46 90.36 987 76.26 80.75 80.45 274 9296 82.12  86.86
Nominal w/ nominatization 22 8571 89.66 82.76 6 40.00 66.67 66.67 1 100.00 100.00 100.00
Nominal w/noun 1,044 8528 90.96 91.42 541 84.66 78.93 80.04 215 9292 85.12 88.84
Verbal 23 75.00 77.27 81.82 25 80.00 84.00 80.00 2 100.00 50.00 100.00
Named entity 1,153 8292 91.36 90.40 352 64.69 87.50 83.52 36 97.22 7778  86.11
Argument structure | 7,108 86.98 90.68 91.66 | 8,646 85.27 82.11 8535 |6,074 96.55 87.09 91.31
Total verb 4,176 8534 89.75 90.50 | 4,751 81.81 81.56 8436 | 3,792 9595 86.76  90.77
Basic verb 2,356 8579 89.97 9090 | 2,874 81.88 83.37 85.87 | 2,194 95.65 88.74  92.30
ARGI 1,683 90.25 9340 9394 | 2365 86.77 89.68 91.16 | 1,937 96.89 9391 95.77
ARG2 1,995 9048 9295 93.79 | 1,994 88.01 87.16 89.67 | 1,594 97.23 90.84 93.85
ARG3 195 85.63 83.08 84.62 246 173.55 67.07 72.36 204  92.61 7892  84.80
Verb-particle 1,761 84.69 8947 90.00 | 1,877 81.71 78.80 82.05 | 1,598 96.36 84.04  88.67
ARGI 1,545 89.57 93.50 94.05 | 1,617 8559 84.66 87.14 | 1471 9693 8749 91.09
ARG2 923 86.27 91.10 91.26 | 1,246 85.51 78.01 81.86 | 1,016 97.14 84.65 88.78
ARG3 122 87.88 86.75 88.08 172 79.64 70.93 72.67 149 9396 75.84 83.89
Total noun 394 9241 91.84 92.63 407 88.34 81.08 84.77 163 98.15 8599  95.09
Total adjective 2,538 89.05 92.09 9325 | 2981 89.89 83.66 86.85 | 1,861 97.47 87.75 91.89
Reentrancy 2,343 7729 87.88 8843 | 2496 78.73 72.12 7736 | 1,495 9544 78.66 84.96
passive 522 84.89 91.54 92.72 507 88.28 7890 86.19 | 1,258 97.67 87.98  92.64

Table 4: Comparing ACE, TS5 parsers and collaborative parsing (Collab.) on fine-grained linguistic categories. All
scores are reported in accuracy. The underlined denotes the best in ACE and T5, and the bold denotes the best in

ACE, T5 and Collab.

those pretrained embedding-based models. For ar-
gument structure, though performs better than ACE
in most cases, the TS parser still has relatively low
accuracy for ARG3 and noun structure recognition.
This is mainly due to their relatively low frequency
in the training set (1.94% for ARG3 and 5.54% for
noun argument structures).

For OOD datasets, the TS parser is underper-
forming the ACE parser on most of the linguis-
tic phenomena especially on long-tail structures
(e.g., ARG3), while our collaborative framework
can boost the performance to be close to or even
better than the ACE results.

Our analysis in this section is consistent with
previous work: the TS parser, similar to many other
neural parsers, is fragile to tail and OOD instances
that do not have sufficient representation in the
training data. We also further report the evalua-
tion results for our collaborative neural-semantic
parsing framework (Collab.), where we can see
that it brings improvement for the issues above,
which validates the effectiveness of the collabora-
tive framework.

6 Conclusions and Future Work

In this paper, we present a simple, uncertainty-
based approach to collaborative neural-symbolic
parsing for graph-based meaning representations.

In contrary to the prior neural-symbolic approaches,
we maintain the simplicity of the seq2seq training,
and design a decision-theoretic inference criteria
for beam candidate selection, incorporating model
uncertainty and prior knowledge from an existing
symbolic parser.

Remarkably, despite the simplicity of the
method, our approach strongly outperform all
the previously-known approach on the DeepBank
benchmark (Table 2), and attains strong perfor-
mance even in the tail linguistic categories (Table
4). Our study revealed that the commonly observed
weakness of the neural model may root from a
sub-optimal inference procedure. Therefore, devel-
oping a more calibrated neural semantic parser and
developing principled inference procedure may be
a fruitful avenue for addressing the generalization
issues of neural parsers.

In the future, we plan to apply this approach to
a broader range of graph meaning representations,
e.g., AMR (Banarescu et al., 2013) and UCCA
(Abend and Rappoport, 2013), and build a more
advanced uncertainty estimation approach to quan-
tify model uncertainty about sub-components of
the graph, thereby allowing more fine-grained in-
tegration between neural prediction and symbolic
derivations.



Ethical Consideration

This paper focused on collaborative neural-
symbolic semantic parsing for the English Re-
source Grammar (ERG). Our architecture are built
based on open-source models and datasets (all avail-
able online). We do not anticipate any major ethical
concerns.
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A Graph-based Meaning Representation

Considerable NLP research has been devoted to
the transformation of natural language utterances
into a desired linguistically motivated semantic rep-
resentation. Such a representation can be under-
stood as a class of discrete structures that describe
lexical, syntactic, semantic, pragmatic, as well as
many other aspects of the phenomenon of human
language. In this domain, graph-based representa-
tions provide a light-weight yet effective way to en-
code rich semantic information of natural language
sentences and have been receiving heightened at-
tention in recent years. Popular frameworks un-
der this umbrella includes Bi-lexical Semantic De-
pendency Graphs (SDG; Bos et al., 2004; Ivanova
et al., 2012; Oepen et al., 2015), Abstract Mean-
ing Representation (AMR; Banarescu et al., 2013),
Graph-based Representations for English Resource
Grammar (ERG; Oepen and Lgnning, 2006; Copes-
take, 2009), and Universal Conceptual Cognitive
Annotation (UCCA; Abend and Rappoport, 2013).

B Literature Review on Graph-based
Semantic Parsing

In this section, we present a summary of differ-
ent parsing technologies for graph-based meaning
representations, with a focus on English Resource
Grammar (ERG).

Grammar-based approach. In this type of ap-
proach, a semantic graph is derived according to
a set of lexical and syntactico-semantic rules. For
ERG parsing, sentences are parsed to HPSG deriva-
tions consistent with ERG. The nodes in the deriva-
tion trees are feature structures, from which MRS
is extracted through unification. However, this ap-
proach fails to parse sentences for which no valid
derivation is found. It is implemented in the PET
(Callmeier, 2000) and ACE?> parser. Chen et al.
(2018) also proposed a Synchronous Hyperedge
Replace Grammar (SHRG) based parser by relat-
ing synchronous production rules to the syntacto-
semantic composition process.
Factorization-based approach. This type of ap-
proach is inspired by graph-based dependency tree
parsing (McDonald, 2006). A factorization-based
parser explicitly models the target semantic struc-
tures by defining a score function that can eval-
uate the probability of any candidate graph. For
ERG parsing, Cao et al. (2021) implemented a two-

Shttp://sweaglesw.org/linguistics/ace/
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step pipeline architecture that identifies the concept
nodes and dependencies by solving two optimiza-
tion problems, where prediction of the first step is
utilized as the input for the second step. Chen et al.
(2019) presented a four-stage pipeline to incremen-
tally construct an ERG graph, whose core idea is
similar to previous work.

Transition-based approach. In these parsing sys-
tems, the meaning representations graph is gen-
erated via a series of actions, in a process that is
very similar to dependency tree parsing (Yamada
and Matsumoto, 2003; Nivre, 2008), with the dif-
ference being that the actions for graph parsing
need to allow reentrancies. For ERG parsing, Buys
and Blunsom (2017) proposed a neural encoder-
decoder transition-based parser, which uses stack-
based embedding features to predict graphs jointly
with unlexicalized predicates and their token align-
ments.

Composition-based approach. Following a prin-
ciple of compositionality, a semantic graph can
be viewed as the result of a derivation process, in
which a set of lexical and syntactico-semantic rules
are iteratively applied and evaluated. For ERG pars-
ing, based on Chen et al. (2018), Chen et al. (2019)
proposed a composition-based parser whose core
engine is a graph rewriting system that explicitly
explores the syntactico-semantic recursive deriva-
tions that are governed by a synchronous SHRG.

Translation-based approach. This type of ap-
proach is inspired by the success of seq2seq mod-
els which are the heart of modern Neural Machine
Translation. A translation-based parser encodes
and views a target semantic graph as a string from
another language. In a broader context of graph
semantic parsing, simply applying seq2seq models
is not successful, in part because effective lineariza-
tion (encoding graphs as linear sequences) and data
sparsity were thought to pose significant challenges
(Konstas et al., 2017). Alternatively, some specifi-
cally designed preprocessing procedures for vocab-
ulary and entities can help to address these issues
(Konstas et al., 2017; Peng et al., 2017). These pre-
processing procedures are very specific to a certain
type of meaning representation and are difficult to
transfer to others. However, we show that by devis-
ing proper linearization and tokenization (Section
3.1), we can successfully transfer the ERG parsing
problem into a translation problem, which can be
solved by a state-of-the-art seq2seq model TS5 (Raf-
fel et al., 2020). This linearization and tokenization
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can be applied to any meaning representations.

C Detailed Implementation of
Linearization

The original PENMAN styled linearization for
graph in Figure 1 can be written as:

(x0 / _introduced_v_to
:ARG2 (x1 / _drug_n_1
:BV-of (x2 / _the_q))
:ARGl-of (e0 / parg_d
:ARG2 x1)
:ARGl-of (el / loc_nonsp
:ARG2 (x3 / _year_n_1
:BV-of (x4 / _this_d_dem)))
:ARGl-of (x5 / _in_p
:ARG2 (e2 / named
:BV-of (e3 / proper_q)
:ARGl-of (e4 / compound
:ARG2 (e5 / named
:BV-of (e6 / proper_qg))))))

The term —of is used for reversing the edge
direction for graph traversing. Nodes in the
graph get identifiers (e.g., x0, €0), which can
be referred to later to establish a reentrancy,
e.g., the node _drug_n_1 serves as ARG2 of
_introduced_v_to and ARG2 of parg_d at
the same time, so the identifier x_ 1 appears twice
in the notation. However, in our settings, these
identifiers can be randomly set to any unique sym-
bols, which will confuse the model to learn the
real meaningful mappings. To tackle this issue and
create a variable-free version of the PENMAN no-
tation, we replace these identifiers with star mark-
ers to indicate reentrancy, e.g., replacing x1 with
_drug_n_1 =.

The rewriting process can be done by Algorithm
1. It is noted that there can be more than one reen-
trancy in the graph, and we use different numbers
of star marks to indicate this (line 10 in Algorithm
1).

To illustrate more about reentrancies, we con-
sider two different types of cases:

(1) For cases where the second reentrancy
still points back to the first _drug_n_1, e.g.,
in the sentence “the drug was introduced and
used this year”, the node will still be marked as
_drug_n_1 =.

(2) For cases where the second reentrancy refers
to another token span in the sentences, e.g., in
the sentence “The drug was introduced this year,
and another drug will be introduced next year”,
the second node reentrancy will be marked as
_drug_n_1 =xx.

In other words, the max number of star markers
indicates the total number of different reentrancies
in the sentences. This will not confuse the model to
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Algorithm 1 Variable-free PENMAN rewriting
Input: G = (N, E) is the EDS graph
Output: Variable-free PENMAN notations of G

I: R+ 0 I> reenrancy set
2: np <+ 0 > number of of reenrancies
3: forn € N do

4: if child(n) N child(parent(n)) # 0 then
5: R’ + child(n) N child(parent(n))

6 R+ RUR

7 end if

8: end for

9: forr € Rdo
10 G + rewrite(G,r,r+' *' X (ng + 1))
11: nrp < np+1
12: end for
13: return PENMAN(G)

do the reentrancy prediction as it can always refer
to how many reentrancies have been predicted in
the previous sequences.

D Details about Tokenization

ERG makes an explicit distinction between nodes
with surface relations (prefixed by an underscore),
and with grammatical meanings. The former,
called the surface node, consists of a lemma fol-
lowed by a coarse part-of-speech tag and an op-
tional sense label. For example, for the node

_drug_n_1 in Figure 1, the surface lemma is

drug (_drug), the part-of-speech is noun (_n),
and _1 here specifies that it is the first sense un-
der the noun “drug”. The later, called the abstract
node, is used to represent the semantic contribu-
tion of grammatical constructions or more special-
ized lexical entries, e.g., parg_d (for passive),
proper_(q (for quantification of proper words),
compound (for compound words), and named
(for named entities).

It is noted that the set of abstract concepts and
edges are fixed and relatively small (88 for abstract
nodes and 11 for edges in the training set), while
the surface nodes have high productivity, i.e., many
different lemmas can fit into some fixed patterns
such as _n_1 and _v_to. Therefore, we rewrite
those fixed abstract, concepts surface patterns and
edges into some non-tokenizable tokens in the T5
vocabulary to inform the model that these units are
non-compositional in ERG graphs.
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Figure 2: SMATCH scores of the TS and ACE parsers
across test examples

F Details for OOD Datasets

The Borwn Corpus The Brown Corpus was a
carefully compiled selection of current American
English, totalling about a million words drawn
from a wide variety of sources.

Wikipedia The DeepBank team contructed a
treebank for 100 Wikipedia articles on Computa-
tional Linguistics and closely related topics. The
treebank of 11558 sentences comprises 16 sets of
articles. The corpus contains mostly declarative,
relatively long sentences, along with some frag-
ments.

The Eric Raymond Essay The treebank is based
on translations of the essay “The Cathedral and the
Bazaar” by Eric Raymond. The average length
and the linguistic complexity of these sentences is
markedly higher than the other treebanked corpora.

E-commerce While the ERG was being used in
a commercial software product developed by the
YY Software Corporation for automated response
to customer emails, a corpus of training and test
data was constructed and made freely available,
consisting of email messages composed by people
pretending to be customers of a fictional consumer
products online store. The messages in the corpus
fall into four roughly equal-sized categories: Prod-
uct Availability, Order Status, Order Cancellation,
and Product Return.

The Tanaka Corpus This treebank is based on
parallel Japanese-English sentences, which was
adopted to be used with in the WWWIJDIC dictio-
nary server as a set of example sentences associated
within words in the dictionary.
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G Uncertainty Estimates and Calibration
Performance

There has been some work exploring the model
uncertainty for seq2seq parser or some other non
seq2seq models (Dong et al., 2018; Kamath et al.,
2020). In this section, we are also interested in
investigating the calibration quality of model un-
certainty of a seq2seq neural parser. For the pro-
posed criteria (2) to perform robustly in practice,
the uncertainty estimator # () should be well cal-
ibrated, i.e., the magnitude of H is indicative of
the model’s predictive error. To this end, we notice
that a reliable uncertainty measure for sequence
prediction tasks is still an open research challenge
(Malinin and Gales, 2020). In this work, we experi-
ment with several well-known estimators of model
uncertainty:

Margin probability. The simplest estimator for
model uncertainty is the predictive margin, i.e., the
difference in probability of the top 1 prediction
minus the likelihood of the top 2 prediction based
on the beam score:

Honargin (0(y|2, D)) = p(y Y|z, D) — p(y? |2, D)

Weighted entropy. Considering that our model
uses beam-search for inference, and with regards to
the Monte-Carlo estimators, beam-search can be in-
terpreted as a form of importance-sampling which
yields hypotheses from high-probability regions
of the hypothesis space. We can estimate uncer-
tainty which is importance-weighted in proportion
to p(y® |, D) such that

B
T
Henvopy (p(yl2. D)) = = >~ mp(y® |, D),
b=1

p(y"|z,D)
X p(y®eD) _ o
tance weight for each beam candidate (Malinin and

Gales, 2020).

In our experiment, we investigate the calibration
of the above uncertainty estimations (see below),
and experiment with their respective efficacy in
improving the collaborative parsing system’s pre-
dictive performance (Table 5).

A common approach to evaluate a model’s un-
certainty quality is to measure its calibration per-
formance, i.e., whether the model’s predictive un-
certainty is indicative of the predictive error (Guo
et al., 2017). To understand how well the T5
parser’s neural uncertainty correlates with its pre-
diction reliability, we plot the diagrams for the

where 7, = is the estimated impor-
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Figure 3: Diagrams for the model’s confidence verses
SMATCH scores on the test set. Each bin contains 50
examples.

model’s confidence verses SMATCH scores on the
test set in Figure 3. As shown, comparing to the
weighted entropy, margin probability is qualita-
tively much better calibrated. ® Correspondingly,
Table 5 shows that the collaborative result using
margin probability yields much strongly perfor-
mance, confirming the connection between a uncer-
tainty model’s calibration quality and its effective-
ness is collaborative prediction (Kivlichan et al.,
2021).

Model

ACE’

Transition-based (Buys and Blunsom, 2017)
SHRG-based (Chen et al., 2018)
Composition-based (Chen et al., 2019)
Factorization-based (Chen et al., 2019)
Factorization-based (Cao et al., 2021)
ACE-TS5 (following Shaw et al. (2021))

T5 (Ours)
Collaborative w/ margin probability
Collaborative w/ weighted entropy

‘ Node

93.18
89.06

SMATCH

90.94
87.00

Table 5: F1 score for node and edge predictions and the
SMATCH scores on the test set.

H Fine-grained Linguistic Phenomena

Lexical construction ERG uses the abstract
node compound to denote compound words. The
edge labeled with ARG1 refers to the root of the
compound word, and thus can help to further dis-
tinguish the type of the compound into (1) nominal
with normalization, e.g., “flag burning”; (2) nomi-
nal with noun, e.g., “pilot union”; (3) verbal, e.g.,
“state-owned”; (4) named entities, e.g., “West Ger-
many”.

Argument structure In ERG, there are differ-
ent types of core predicates in argument struc-
tures, specifically, verbs, nouns and adjectives.
We also categorize verb in to basic verb (e.g.,

®We hypothesize that the inferior performance of entropy
is due to the well-known "length bias" (Yang et al., 2018), i.e.,
shorter predictions tend to have higher beam score, which also
tend to have lower SMATCH score
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_look_v_1) and verb particle constructions (e.g.,
_look_v_up). The verb particle construction is
handled semantically by having the verb contribute
a relation particular to the combination.

Coreference ERG resolves sentence-level coref-
erence, i.e., if the sentence referring to the same
entity, the entity will be an argument for all the
nodes that it is an argument of, e.g., in the sentence,
“What we want to do is take a more aggressive
stance”, the predicates “want” (_want_v_1) and
“take” (_take_v_1) share the same agent “we”
(pron). As discussed before, this can be presented
as reentrancies in the ERG graph, we notice that
one important type of reentrancies is the passive
construction (e.g., parg_d in Figure 1), so we
also report evaluation on passive construction in
Table 4.



