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Abstract

We consider the problem of constrained Markov
Decision Process (CMDP) where an agent interacts
with an ergodic Markov Decision Process. At every
interaction, the agent obtains a reward and incurs
K costs. The agent aims to maximize the long-
term average reward while simultaneously keeping
the K long-term average costs lower than a cer-
tain threshold. In this paper, we propose CMDP-
PSRL, a posterior sampling based algorithm using
which the agent can learn optimal policies to inter-
act with the CMDP. We show that with the assump-
tion of slackness, characterized by κ, the optimiza-
tion problem is feasible for the sampled MDPs.
Further, for MDP with S states, A actions, and
mixing time TM , we prove that following CMDP-
PSRL algorithm, the agent can bound the regret of
not accumulating rewards from an optimal policy
by Õ(TMS

√
AT ). Further, we show that the viola-

tions for any of the K constraints is also bounded
by Õ(TMS

√
AT ). To the best of our knowledge,

this is the first work that obtains a Õ(
√
T ) regret

bounds for ergodic MDPs with long-term average
constraints using a posterior sampling method.

1 INTRODUCTION

Consider a wireless sensor network where the devices aim
to update a server with sensor values. At time t, the device
can choose to send a packet to obtain a reward of 1 unit or
to queue the packet and obtain 0 reward. However, commu-
nicating a packet results in pt power consumption. At time t,
if the wireless channel condition, st, is weak and the device
chooses to send a packet, the resulting instantaneous power
consumption, pt, is high. The goal is to send as many pack-
ets as possible while keep the average power consumption,∑T

t=1 pt/T , within some limit, say C. This environment

has state (st, qt) as the channel condition and queue length
at time t. To limit the power consumption, the agent may
choose to send packets when the channel condition is good
or when the queue length grows beyond a certain threshold.
The agent aims to learn the policies in an online manner
which requires efficiently balancing exploration of state-
space and exploitation of the estimated system dynamics
[Singh et al., 2020].

Similar to the example above, many applications require
to keep some costs low while simultaneously maximizing
the rewards [Altman, 1999]. Owing to the importance of
this problem, in this paper, we consider the problem of
constrained Markov Decision Processes (CMDP). We aim
to develop a reinforcement learning algorithm following
which an agent can bound the constraint violations and the
regret in obtaining the optimal reward to o(T ).

The problem setup, where the system dynamics are known,
is extensively studied [Altman, 1999]. For a constrained
setup, the optimal policy is possibly stochastic [Altman,
1999, Puterman, 2014]. In the domain where the agent learns
the system dynamics and aims to learn good policies online,
there has been work where to show asymptotic convergence
to optimal policies [Gattami et al., 2021], or even provide
regret guarantees when the MDP is episodic [Zheng and
Ratliff, 2020, Ding et al., 2021]. Recently, [Singh et al.,
2020] considered the problem of online optimization of
infinite-horizon communicating Markov Decision Processes
with long-term average constraints. They provide an opti-
mism based algorithm where confidence bounds on each
transition probabilities p(s′|s, a) is constructed. Using this,
they obtain a regret bound of Õ

(√
SAT + TMT 2/3

)
1. Ad-

ditionally, finding the optimistic policy is a computationally
intensive task as the number of optimization variables be-
come S2 ×A for MDP with S states and A actions.

In this paper, we consider the reinforcement learning an
infinite-horizon ergodic MDP [Tarbouriech and Lazaric,
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2019, Gattami et al., 2021] with long-term average con-
straints. We use ℓ1 deviation bounds [Jaksch et al., 2010]
and use a Bellman error analysis to bound the reward regret
of the MDP as Õ(TMS

√
AT ). Additionally, we also bound

the constraint violations as Õ(TMS
√
AT ). We propose a

posterior sampling based algorithm where we sample the
transition dynamics using a Dirichlet distribution [Osband
et al., 2013], which achieves this regret bound.

Unlike optimistic algorithms, the sampled MDP may not
be infeasible for the constrained optimization. Hence, we
consider slackness characterized by Slater’s parameter Ding
et al. [2020], which allows us to prove that the optimization
problem is feasible even with the sampled MDPs. Posterior
sampling also helps to reduces the optimization variables, to
find only the optimal policy for the sampled MDP, to only
S × A variables. Finally, we provide numerical examples
where the algorithm converges to the calculated optimal
policies. To the best of our knowledge, this is the first work
to obtain O(

√
T ) regret guarantees for the infinite horizon

long-term average constraint setup with posterior sampling.

2 RELATED WORK

Stochastic Optimization using Markov Decision Processes
has very rich roots [Howard, 1960]. There have been work in
understanding convergence of the algorithm to find optimal
policies for known MDPs [Bertsekas and Tsitsiklis, 1996,
Altman, 1999]. Also, when the MDP is not known, there are
algorithms with asymptotic guarantees for learning the opti-
mal policies [Watkins and Dayan, 1992] which maximize an
objective without any constraints. Recent algorithms even
achieve finite time near-optimal regret bounds with respect
to the number of interactions with the environment [Jaksch
et al., 2010, Osband et al., 2013, Agrawal and Jia, 2017, Jin
et al., 2018]. Jaksch et al. [2010] uses the optimism principle
for minimizing regret for weakly communicating infinite
horizon MDPs with bounded diameter. Osband et al. [2013]
extended the analysis of Jaksch et al. [2010] to posterior
sampling for episodic MDPs and bounded the Bayesian re-
gret and further improved the regret bounds Osband and
Van Roy [2017]. Agrawal and Jia [2017] uses a posterior
sampling based approach and obtains a frequentist regret
for the infinite horizon MDPs with bounded diameter.

In many reinforcement learning settings, the agent not only
wants to maximize the rewards but also satisfy certain cost
constraints [Altman, 1999]. Early works in this area were
pioneered by [Altman and Schwartz, 1991]. They provided
an algorithm which combined forced explorations and fol-
lowing policies optimized on empirical estimates to obtain
an asymptotic convergence. [Borkar, 2005] studied the con-
strained RL problem using actor-critic and a two time-scale
framework [Borkar, 1997] to obtain asymptotic performance
guarantees. Very recently, [Gattami et al., 2021] analyzed
the asymptotic performance for Lagrangian based algo-

rithms for infinite-horizon long-term average constraints.

Inspired by the finite-time performance analysis of rein-
forcement learning algorithm for unconstrained problems,
there has been a significant thrust in understanding the finite-
time performances of constrained MDP algorithms. [Zheng
and Ratliff, 2020] considered an episodic CMDP and use
an optimism based algorithm to bound the constraint vio-
lation as Õ(

√
T 1.5) with high probability. [Kalagarla et al.,

2020] also considered the episodic setup to obtain PAC-style
bound for an optimism based algorithm. [Ding et al., 2021]
considered the setup of H-episode length episodic CMDPs
with d-dimensional linear function approximation to bound
the constraint violations as Õ(d

√
H5T ) by mixing the opti-

mal policy with an exploration policy. [Efroni et al., 2020]
proposes a linear-programming and primal-dual policy op-
timization algorithm to bound the regret as O(S

√
H3T ).

[Qiu et al., 2020] proposed an algorithm which obtains a
regret bound of Õ(S

√
AH2T ) for the problem of adver-

sarial stochastic shortest path. Compared to these works,
we focus on setting with infinite horizon long-term average
constraints.

After developing a better understanding of the policy gradi-
ent algorithms [Agarwal et al., 2020], there has been theo-
retical work in the area of model-free policy gradient algo-
rithms for constrained MDP and safe reinforcement learn-
ing as well. [Xu et al., 2020] consider an infinite horizon
discounted setup with constraints and obtain global conver-
gence using policy gradient algorithms. [Ding et al., 2020]
also considers an infinite horizon discounted setup. They
use a natural policy gradient to update the primal variable
and sub-gradient descent to update the dual variable.

Recently [Singh et al., 2020] considered the setup of infinite-
horizon CMDPs with long-term average constraints and ob-
tain a regret bound of Õ(T 2/3) using an optimism based
algorithm and forced explorations. We consider a similar set-
ting with ergodic CMDP and propose a posterior sampling
based algorithm to bound the regret as Õ(poly(DSA)

√
T )

using explorations assisted by the ergodicity of the MDP.

3 PROBLEM FORMULATION

We consider an infinite horizon discounted Markov
decision process (MDP) M, defined by the tuple(
S,A, P, r, c1, · · · , ck

)
. S denotes a finite set of state space

with |S| = S, and A denotes a finite set of actions with
|A| = A. P : S × A → ∆(S) denotes the probability
P (s′|s, a) of transitioning to state s′ from state s after tak-
ing action a. r : S × A → [0, 1] denotes the average re-
ward in state s after taking action a. ck : S × A → [0, 1]
denotes average cost incurred by the agent for constraint
k ∈ [K] = {1, 2, · · · ,K} after taking action a in state s.
We use a stochastic policy π : S → ∆(A), such that given
state s, π(a|s) is the probability of selecting action a.



Note that the a policy π induces a Markov chain over the
state space of the MDP. Pertaining to the Markov chains
generated by the policies for M, we now define the mixing
time of MDP.

Definition 1 (Mixing Time). Consider the Markov Chain
induced by the policy π on the MDP M. Let Tπ

s→s′ be a
random variable that denotes the first time step when this
Markov Chain enters state s′ starting from state s. Then, the
mixing time of the MDP M is defined as:

TM = max
s′ ̸=s

max
π

E [Tπ
s→s′ ] (1)

Similar to Singh et al. [2020], let P t
π(s) be the t step state

distribution starting from state s following policy π and Pπ

be the steady-state state distribution generated by policy π.

Our first assumption on the MDP allows any policy to reach
any state s′ starting from any state s, and to converge to
a steady state. We formalize the result in the following
assumption:

Assumption 1. The MDP M is ergodic, or ∥P t
π(s) −

Pπ∥TV ≤ Cρt with Pπ being the long-term steady state
distribution induced by policy π, and C > 0 and ρ < 1
are problem specific constants. And, the mixing time of the
MDP M is finite or TM < ∞.

After discussing the transition dynamics of the system, we
move to the rewards and costs of the MDP M.

Assumption 2. The reward function r(s, a) and the costs
ck(s, a), k ∈ [K] are known to the agent.

We note that in most of the problems, rewards are engi-
neered. Hence, Assumption 2 is justified in many setups.
However, the system dynamics are stochastic and typically
not known.

Following a policy π, the expected long-term average cost
are given by ζP,k

π . Also, we denote the average long-term
reward using ζP,k

π . Formally, we have:

ζP,k
π = Es0,a0,s1,a1,···

[
lim
τ→∞

1

τ

τ∑
t=0

ck (st, at)

]
(2)

λP,r
π = Es0,a0,s1,a1,···

[
lim
τ→∞

1

τ

τ∑
t=0

r (st, at)

]
(3)

s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at)

For brevity, in the rest of the paper, Est,at,st+1;t≥0[·] will
be denoted as Eρ,π,P [·], where s0 ∼ ρ0(s0), at ∼
π(st|at), st+1 ∼ P (st+1|st, at). Both, ζP,k

π and λP,r
π sat-

isfy the following form of Bellman equation:

λP,r
π + hP,r

π (s) =
∑
a

π(a|s)r(s, a)

+
∑
s′

∑
a

π(a|s)P (s′|s, a)hP,r
π (s) (4)

ζP,k
π + hP,r

π (s) =
∑
a

π(a|s)ck(s, a) (5)

+
∑
s′

∑
a

π(a|s)P (s′|s, a)hP,k
π (s) (6)

where hP,r
π (s) is the bias for reward and hP,k

π is the bias for
cost k ∈ [K].

The objective is find a policy π∗ which is the solution of the
following optimization problem.

max
π

λP,r
π s.t. (7)

ζP,k
π ≤ Ck ∀ k ∈ [K] (8)

where Ck ∀ k ∈ [K] are the bounds on the average costs
which the agent needs to satisfy.

After formulating the optimization problem, we now state
our next assumption characterizing the slackness.

Assumption 3. There exists a policy π, and one constant

κ ≥ 2STM

√
14A log(AT )/

√
T + CSTM/((1 − ρ)

√
T )

such that

ζP,k
π ≤ Ck − κ (9)

The slackness assumption is mild because, in various ap-
plications some a priori knowledge about a strictly feasible
policy is available. Hence, this assumption is again a stan-
dard assumption in the constrained RL literature Efroni et al.
[2020], Ding et al. [2021, 2020]. κ is referred as Slater’s con-
stant. Ding et al. [2021] assumes that the Slater’s constant κ
is known.

Any online algorithm starting with no prior knowledge will
require to obtain estimates of transition probabilities P and
obtain reward r and costs ck,∀ k ∈ [K] for each state
action pair. Initially, when algorithm does not have good
estimates of the model, it accumulates a regret as well as
violates constraints as it does not know the optimal policy.
We define reward regret R(T ) as the difference between the
cumulative reward obtained rt vs the expected rewards from
running the optimal policy π∗ for T steps, or

R(T ) = TλP,r
π∗ −

T∑
t=1

r(st, at) (10)

Additionally, we define constraint regret Rk(T ) for each
constraint k ∈ [K] as the gap between the cumulative cost
incurred ckt , k ∈ [K] and constraint bounds, or

Rk(T ) =

(
T∑

t=1

ck(st, at)− TCk

)
+

, (11)

where (x)+ = max(0, x).

In the following section, we present a model-based algo-
rithm to obtain this policy π∗, and reward regret and the
constraint regret accumulated by the algorithm.



4 THE CMDP-PSRL ALGORITHM

For infinite horizon optimization problems (or τ → ∞),
we can use steady state distribution of the state to obtain
expected long-term rewards or costs [Puterman, 2014]. We
use

ζP,k
π =

∑
s∈S

∑
a∈A

ck(s, a)d
P
π (s, a), ∀ k ∈ [K] (12)

λP,r
π =

∑
s∈S

∑
a∈A

r(s, a)dPπ (s, a) (13)

where dPπ (s, a) is the steady state joint distribution of the
state and actions under policy π.

Based on the above formulation, we can solve the joint
optimization problem of following form

max
d(s,a)

∑
s∈S

∑
a∈A

r(s, a)d(s, a) (14)

with the following set of constraints,∑
a∈A

d(s′, a) =
∑

s∈S,a∈A
P (s′|s, a)d(s, a) (15)

∑
s∈S,a∈A

d(s, a) = 1, d(s, a) ≥ 0 (16)

∑
s∈S

∑
a∈A

ck(s, a)d(s, a) ≤ Ck ∀ k ∈ [K] (17)

for all s′ ∈ S, ∀ s ∈ S, and ∀ a ∈ A. Equation (15) denotes
the constraint on the transition structure for the underlying
Markov Process. Equation (16) ensures that the solution is a
valid probability distribution. Finally, Equation (17) are the
constraints for the constrained MDP setup which the policy
must satisfy.

Note that arguments in Equation (14) are linear, and the
constraints in Equation (15) and Equation (16) are linear,
this is a linear programming problem. Since convex opti-
mization problems can be solved in polynomial time [Potra
and Wright, 2000], we can use standard approaches to solve
Equation (14). After solving the optimization problem, we
obtain the optimal policy from the obtained steady state
distribution d∗(s, a) as,

π∗(a|s) = P(s, a)
P(s)

=
d∗(s, a)∑
b∈A d∗(s, b)

∀ s ∈ S (18)

Since we assumed that the CMDP is ergodic, the Markov
Chain induced from policy π is ergodic. Hence, every state
is reachable following the policy π∗, we have P(s) > 0 and
Equation (18) is defined for all states s ∈ S.

Further, since we assumed that the induced Markov Chain
is irreducible for all stationary policies, we assume Dirich-
let distribution as prior for the state transition probability
P (s′|s, a). Dirichlet distribution is also used as a standard

prior in literature [Agrawal and Jia, 2017, Osband et al.,
2013]. Further, there exists a steady state distribution when
the transition probability is sampled from a Dirichlet distri-
bution [Agarwal et al., 2022, Proposition 1].

The complete constrained posterior sampling based algo-
rithm, which we name CMDP-PSRL, is described in Algo-
rithm 1. The algorithm proceeds in epochs, and a new epoch
is started whenever the visitation count in epoch e, νe(s, a),
is at least the total visitations before episode e, Ne(s, a),
for any state action pair (Line 8). In Line 9, we sample
transition probabilities P̃ using the updated posterior and in
Line 10, we update the policy using the optimization prob-
lem specified in Equation (14)-(17) for P = P̃e. Further,
if the sampled MDP does not satisfy the cost constraint in
Equation (17), we ignore that constraint 2 for that epoch.

Algorithm 1 CMDP-PSRL
1: Input: S,A, r, c1, · · · , cK
2: Initialize N(s, a, s′) = 1 ∀(s, a, s′) ∈ S×A×S, πe(a|s) =

1
|A| ∀ (a, s) ∈ A × S, e = 0, νe(s, a) = Ne(s, a) =

0 ∀(s, a) ∈ S ×A
3: for time index t = 1, 2, · · · do
4: Observe state s
5: Play action a ∼ π(·|s)
6: Observe rewards {rk} and next state s′

7: νe(s, a)+ = 1, N(s, a, s′)+ = 1
8: if νe(s, a) ≥ max(1, Ne(s, a)) for any s, a then
9: P̃e(s

′|a, s) ∼ Dir(N(s, a, s′)) ∀ (s, a, s′)
10: Solve steady state distribution d(s, a) as the solution

of the optimization problem in Equations (14-17) for P̃e.
11: Obtain optimal policy for next epoch, e+ 1, πe+1 as

πe+1(a|s) =
d(s, a)∑

a∈A d(s, a)

12: e = e+ 1
13: te = t
14: νe(s, a) = 0, Ne(s, a) =

∑e
e′ νe′(s, a) ∀(s, a)

15: end if
16: end for

5 ANALYSIS

We first obtain the feasibility of the optimization problem
Equation (14)-(17) for the sampled MDP. We note that we
assumed slackness in the true MDP with transition probabil-
ities P . Hence, if the the sampled MDP is close to the true
MDP, the deviation in the cost will be less and there will be
a policy which satisfies the constraint in Equation (17). We
formalize this intuition in the following result.

Lemma 1. Following Algorithm 1, if te+1 − te ≥
√
T and

∥P̃e(·|s, a)−P (·|s, a)∥1 ≤
√

14S log(2At)
Ne(s,a)

∀ s, a there exists

2We will show in the analysis that cumulative constraint viola-
tions are still bounded.



a policy π which satisfies,

ζP̃e,k
π ≤ Ck ∀ k ∈ [K], (19)

and the optimization problem in Equation (14)-(17) is feasi-
ble, where te is the start time of epoch e.

Proof Outline. We consider the policy π which satisfies the
Slater’s condition in Equation (9). We then consider the Bell-
man error of taking one step in MDP with transition prob-
abilities P̃e and then following policy π on the MDP with
transition probabilities P . Now, using [Agarwal et al., 2022,
Lemma 1] relating the average costs following policy π with
P and P̃e (ζP,k

π , and ζP̃e,k
π for all k ∈ [K] respectively) with

the Bellman error gives the required result. The complete
proof is provided in the supplementary material.

After obtaining a feasible policy πe maximizing rewards
for the sampled MDP, we now quantify is regret. We note
that when optimizing for long-term average rewards and
long-term average constraints, we want to simultaneously
minimize the reward regret and the constraint regrets. Fur-
ther, if we know the optimal policy π∗ before hand, the
deviations resulting from the stochasticity of the process
can still result in some constraint violations. Also, since we
sample a MDP, the policy which is feasible for the MDP
may violate constraints on the true MDP. We want to bound
this gap between K costs for the two MDPs as well.

We aim to quantify the regret from (R.1) deviation of long-
term average rewards of the optimal policy because of incor-
rect knowledge of the MDP (λP,r

π∗ − λP̃e,r
πe

), (R.2) deviation
of the long-term average rewards generated by the optimal
policy for the sampled MDP on the sampled MDP and the
long-term average rewards generated by the optimal policy
for the sampled MDP on the true MDP (λP̃e,r

πe
− λP,r

πe
), and

(R.3) deviation of the expected rewards from following the
optimal policy of the sampled MDP (λP,r

πe
− r(st, at)).

Similarly, the constraint violations for each k ∈ [K] are
incurred from (C.1) deviation of long-term average rewards
of the optimal policy because of incorrect knowledge of the
MDP (Ck − ζP̃e,k

πe
), (C.2) deviation of the long-term aver-

age costs generated by the optimal policy for the sampled
MDP on the sampled MDP and the long-term average costs
generated by the optimal policy for the sampled MDP on
the true MDP (ζP̃e,r

πe
− λP,r

πe
), and (C.3) deviation of the

expected costs from following the optimal policy of the
sampled MDP (ζP,r

πe
− ck(st, at)).

We now prove the regret bounds for Algorithm 1. We first
give the high level ideas used in obtaining the bounds on re-
gret. We divide the regret into regret incurred in each epoch
e. Then, we use the posterior sampling lemma [Osband et al.,
2013, Lemma 1] to obtain the equivalence between the long-
term average rewards of the true MDP M and the long-term
average rewards for the optimal value of the sampled MDP

M̂. This step allows us to deal with the regret from (R.1).
Then we use the Bellman error formulation to relate average
rewards for the policy πe on P and P̃e [Agarwal et al., 2022].
Combining this with Azuma’s concentration inequality for
Martingales allows us to bound the regret from (R.2) and
(R.3).

Bounding constraint violations requires similar considera-
tions for (C.2) and (C.3). Further, (C.1) becomes zero if
Equation (17) is feasible for the sampled MDP. However,
if Equation (17) is not feasible, the cost may be as high as
1 (ck(s, a) ≤ 1 ∀ k ∈ [K]). We bound the violations by
bounding the time-steps for which the optimal policy for
unconstrained optimization runs.

To obtain bounds on the regret, we first note that the total
number of epochs, E, for which the Algorithm 1 runs is
bounded by O(1 + 2SA+ SA log(T ) from [Jaksch et al.,
2010, Proposition 1].

We formally state the regret bounds and constraint violation
bounds in Theorem 1 which we prove rigorously in the
supplementary material.

Theorem 1. The expected reward regret E [R(T )], and the
expected constraint regret E [Rk(T )] ∀ k ∈ [K] of Algo-
rithm 1 are bounded as

E [R(T )] ≤ O

(
TMS

√
AT log(AT ) +

CS2A log T

1− ρ

)
E
[
Rk(T )

]
≤ O

(
TMS

√
AT log(AT ) +

CS2A log T

1− ρ

)
Proof Outline. We break the cumulative regret into the re-
gret incurred in each epoch e. This gives us:

E [RT ] = E

[
E∑

e=1

te+1−1∑
t=te

(
λP,r
π∗ − r(st, at)

)]
(20)

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
π∗ − r(st, at)

)]
(21)

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP̃e,r
πe

− r(st, at)
)]

(22)

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP̃e,r
πe

− λP,r
πe

+ λP,r
πe

− r(st, at)
)]

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP̃e,r
πe

− λP,r
πe

)]

+ E

[
E∑

e=1

te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(23)

The Equation (22) follows from [Osband et al., 2013,
Lemma 1] for regret each each epoch of Equation (21).
Proceeding from Equation (23) requires additional consider-
ation. Typical proof techniques to bound regret requires a



bounded bias-span (maxs,s′(h
P̃e,r
π (s)− hP̃e,r

π (s′))) which
may be large for the sampled MDP. For this, we consider an
MDP for the transition probability P r

e satisfies

λ
P r

e ,r
πe ≥ max

P ′∈Pte

λP ′,r
πe

,where (24)

Pte =
{
P ′ : ∥P ′(·|s, a)− P̄te(·|s, a)∥1

≤

√
14S log(AT )

Ne(s, a)

}
∀ s, a

where P̄te(·|s, a) is the estimated transition probability
given s, a at time te. We now have,

R(T ) ≤
E∑

e=1

E

[
te+1−1∑
t=te

(
λ
P r

e ,r
πe − λP,r

πe

)]

+

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(25)

The first term of Equation (25) is bounded by bounding
the expected Bellman error. The second term is converted
to a Martingale sequence by conditioning it on the state
ste and is bounded using the ergodicity of the MDP M
and Azuma’s concentration inequality. The complete proof
on bounding the regret is provided in the supplementary
material.

Regarding the constraint violations, for each k ∈ [K], we
want to bound,

E
[
Rk(T )

]
= E

[(
T∑

t=1

ck(st, at)− TCk

)
+

]
(26)

We divide the constraint violation regret into regret over
epochs as well. Now, for each epoch, we know that the
constraint is satisfied by the policy for the sampled MDP.
This allows us to obtain:

E
[
Rk(T )

]
= E

(∑
e

te+1−1∑
t=te

(ck(st, at)− Ck)

)
+


(27)

= E
[(∑

e

te+1−1∑
t=te

( (
ck(st, at)− ζP,k

πe

)
+
(
ζP,k
πe

− ζP̃e,k
πe

)
+
(
ζP̃e,k
πe

− Ck

)))
+

]
(28)

= E
[(∑

e

te+1−1∑
t=te

ck(st, at)− ζP,k
πe

)
+

+

(∑
e

te+1−1∑
t=te

ζP,k
πe

− ζP̃e,k
πe

)
+

+

(∑
e

te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

]
(29)

= E
[∣∣∣∑

e

te+1−1∑
t=te

(
ck(st, at)− ζP,k

πe

) ∣∣∣
+

∣∣∣∣∣∑
e

te+1−1∑
t=te

ζP,k
πe

− ζP̃e,k
πe

∣∣∣∣∣
+

(∑
e

te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

]
(30)

The first term in Equation (28) denotes the difference be-
tween the incurred costs and the expected costs from fol-
lowing policy πe. The second term denotes the differ-
ence between the expected costs from policy πe on the
true MDP and on the sampled MDP. The third terms de-
notes the violations of the policy πe which would be zero
if the policy πe satisfies constraint Eqution (17) for the
sampled MDP. Equation (29) is obtained from the fact
max(0, x + y) ≤ max(0, x) + max(0, y) and Equation
(28) is obtained from the fact max(0, x) ≤ |x|.

The first and second term in Equation (28) are bounded
similar to Equation (23), and we focus our attention to the
third term. If the optimization problem in Equation (14)-(17)
is feasible, the term (ζP̃e,k

πe
−Ck) ≤ 0 and if the optimization

equation is infeasible, the term is upper bounded by 1 as
Ck ≥ 0 and ζP̃e

πe
≤ 1. Hence, we get:(∑

e

te+1−1∑
t=te

(
ζP̃e,k
πe

− Ck

))
+

≤
∑
e

(
te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

(31)

=
∑
e

(
te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

1
{
te+1 − te >

√
T
}

+
∑
e

(
te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

1
{
te+1 − te ≤

√
T
}
(32)

≤
∑
e

te+1−1∑
t=te

1
{
te+1 − te ≤

√
T
}

(33)

≤
∑
e

√
T = E

√
T (34)

≤ (1 + 2SA+ SA log2(T/SA))
√
T (35)

where Equation (31) follows from the fact that total vio-
lations are less than the cumulative violations are consid-
ered per epoch. Equation (33) follows from Lemma 1 as(
ζP̃e,k
πe

− Ck

)
≤ 0 when te >

√
T and Equation (35)



(a) Reward growth w.r.t. time

(b) Regret w.r.t. time

Figure 1: Reward and regret performance of the proposed
CMDP-PSRL algorithm on a flow and service control prob-
lem for a single queue. The algorithms is compared against
the optimistic algorithm from Singh et al. Singh et al. [2020]
compared to which our algorithm extremely well.

comes from [Jaksch et al., 2010, Proposition 1].

We note that the fundamental setup of unconstrained op-
timization (K = 0), the bound is loose compared to that
of UCRL2 algorithm Jaksch et al. [2010]. This is because
we use a stochastic policy instead of a deterministic policy.
Recall that the optimal policy for CMDP setup is possibly
stochastic Altman [1999].

6 EVALUATION OF THE PROPOSED
ALGORITHM

To validate the performance of the proposed CDMP-PSRL
algorithm and the understanding of our analysis, we run
the simulation on the flow and service control in a single-
serve queue, which is introduced in [Altman and Schwartz,

(a) Service constraints w.r.t. time

(b) Flow constraints w.r.t. time

Figure 2: Constraint violation performance of the proposed
CMDP-PSRL algorithm on a flow and service control prob-
lem for a single queue. The average constraint violations
become zero as the algorithm proceeds, however, it never
crosses zero to increase the reward further.

1991]. A discrete-time single-server queue with a buffer of
finite size L is considered in this case. The number of the
customer waiting in the queue is considered as the state
in this problem and thus |S| = L + 1. Two kinds of the
actions, service and flow, are considered in the problem
and control the number of customers together. The action
space for service is a finite subset A in [amin, amax], where
0 < amin ≤ amax < 1. Given a specific service action
a, the service a customer is successfully finished with the
probability b. If the service is successful, the length of the
queue will reduce by 1. Similarly, the space for flow is
also a finite subsection B in [bmin, bmax]. In contrast to the
service action, flow action will increase the queue by 1 with
probability b if the specific flow action b is given. Also, we
assume that there is no customer arriving when the queue is
full. The overall action space is the Cartesian product of the
A and B. According to the service and flow probability, the



transition probability can be computed and is given in the
Table 1.

For the reward function as r(s, a, b) and the constraints for
service and flow as c1(s, a, b) and c2(s, a, b), respectively,
and stationary policies for service and flow as πa and πb,
respectively, the problem can be defined as

max
πa,πb

lim
T→∞

1

T

T∑
t=1

r(st, πa(st), πb(st))

s.t. lim
T→∞

1

T

T∑
t=1

c1(st, πa(st), πb(st)) ≥ 0

lim
T→∞

1

T

T∑
t=1

c2(st, πa(st), πb(st)) ≥ 0

(36)

According to the discussion in [Altman and Schwartz, 1991],
we define the reward function as r(s, a, b) = 5− s, which
is an decreasing function only dependent on the state. It
is reasonable to give higher reward when the number of
customer waiting in the queue is small. For the constraint
function, we define c1(s, a, b) = −10a+ 6 and c2 = −8 ∗
(1 − b)2 + 2, which are dependent only on service and
flow action, respectively. Higher constraint value is given
if the probability for the service and flow are low and high,
respectively.

In the simulation, the length of the buffer is set as L = 5.
The service action space is set as [0.2, 0.4, 0.6, 0.8] and the
flow action space is set as [0.4, 0.5, 0.6, 0.7]. We use the
length of horizon T = 50000 and run 50 independent sim-
ulations of the proposed CMDP-PSRL algorithm. We also
plot the standard deviation around the mean value in the
shadow to show the random error. In order to compare this
result to the optimal, we assume that the full information
of the transition dynamics is known and then use Linear
Programming to solve the problem. The optimal cumulative
reward from LP is shown to be 4.47. The reward perfor-
mance of the CMDP-PSRL algorithm is shown in the Fig-
ure 1 where we observe that the reward converges towards
the optimal value. We also plot the constraint violations in
Figure 2. The service and flow constraints converge to 0 as
expected. We note that the reward of the proposed CMDP-
PSRL algorithm becomes closer the optimal reward as the
algorithm proceeds, and to further increase the reward, it
does not violates the constraint.

We also compared our algorithm against the optimistic al-
gorithm of Singh et al. [2020]. We note that their algorithm
performs significantly worse compared to our algorithm.
We account this poor performance on two accounts. An
optimistic algorithm does not find a policy for transition
probabilities close to P for significantly large time. The
other issue is because they consider confidence interval for
each P (s′|s, a). This also shows in their analysis and hence
they obtain a O(T 2/3) regret bound. Further, the optimiza-

tion problem takes a significantly more time to solve for
optimistic setup. However, the variance of their optimistic
algorithm is significantly lower compared to the variance of
our CMDP-PSRL algorithm.

7 CONCLUSION

This paper, considers the setup of reinforcement learning
in ergodic infinite-horizon constrained Markov Decision
Processes with K long-term average constraint. We pro-
pose a posterior sampling based algorithm, CMDP-PSRL,
which proceeds in epochs. At every epoch, we sample a
new CMDP and generate a solution for the constraint op-
timization problem. A major advantage of the posterior
sampling based algorithm over an optimistic approach is,
that it reduces the complexity of solving for the optimal so-
lution of the constraint problem. We also study the proposed
CMDP-PSRL algorithm from regret perspective. We bound
the regret of the reward collected by the CMDP-PSRL al-
gorithm as Õ(TMS

√
AT + CS2A/(1 − ρ)). Further, we

bound the gap between the long-term average costs of the
sampled MDP and the true MDP to bound the K constraint
violations as Õ(TMS

√
AT + CS2A/(1− ρ)). Finally, we

evaluate the proposed CMDP-PSRL algorithm on a flow
control problem for single queue and show that the proposed
algorithm performs empirically well. This paper is the first
work which obtains a Õ(

√
T ) regret bounds for ergodic

MDPs with long-term average constraints using a posterior
sampling algorithm. A model-free algorithm that obtains
similar regret bounds for infinite horizon long-term average
constraints remains an open problem.
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Abstract

We consider the problem of constrained Markov Decision Process (CMDP) where an agent interacts with an
ergodic Markov Decision Process. At every interaction, the agent obtains a reward and incurs K costs. The agent
aims to maximize the long-term average reward while simultaneously keeping the K long-term average costs
lower than a certain threshold. In this paper, we propose CMDP-PSRL, a posterior sampling based algorithm
using which the agent can learn optimal policies to interact with the CMDP. We show that with the assumption
of slackness, characterized by κ, the optimization problem is feasible for the sampled MDPs. Further, for MDP
with S states, A actions, and mixing time TM , we prove that following CMDP-PSRL algorithm, the agent can
bound the regret of not accumulating rewards from an optimal policy by Õ(TMS

√
AT ). Further, we show that the

violations for any of the K constraints is also bounded by Õ(TMS
√
AT ). To the best of our knowledge, this is

the first work that obtains a Õ(
√
T ) regret bounds for ergodic MDPs with long-term average constraints using a

posterior sampling method.

A INTRODUCTION

Consider a wireless sensor network where the devices aim to update a server with sensor values. At time t, the device can
choose to send a packet to obtain a reward of 1 unit or to queue the packet and obtain 0 reward. However, communicating a
packet results in pt power consumption. At time t, if the wireless channel condition, st, is weak and the device chooses to
send a packet, the resulting instantaneous power consumption, pt, is high. The goal is to send as many packets as possible
while keep the average power consumption,

∑T
t=1 pt/T , within some limit, say C. This environment has state (st, qt) as

the channel condition and queue length at time t. To limit the power consumption, the agent may choose to send packets
when the channel condition is good or when the queue length grows beyond a certain threshold. The agent aims to learn the
policies in an online manner which requires efficiently balancing exploration of state-space and exploitation of the estimated
system dynamics [Singh et al., 2020].

Similar to the example above, many applications require to keep some costs low while simultaneously maximizing the
rewards [Altman, 1999]. Owing to the importance of this problem, in this paper, we consider the problem of constrained
Markov Decision Processes (CMDP). We aim to develop a reinforcement learning algorithm following which an agent can
bound the constraint violations and the regret in obtaining the optimal reward to o(T ).

The problem setup, where the system dynamics are known, is extensively studied [Altman, 1999]. For a constrained
setup, the optimal policy is possibly stochastic [Altman, 1999, Puterman, 2014]. In the domain where the agent learns the
system dynamics and aims to learn good policies online, there has been work where to show asymptotic convergence to
optimal policies [Gattami et al., 2021], or even provide regret guarantees when the MDP is episodic [Zheng and Ratliff,
2020, Ding et al., 2021]. Recently, [Singh et al., 2020] considered the problem of online optimization of infinite-horizon
communicating Markov Decision Processes with long-term average constraints. They provide an optimism based algorithm
where confidence bounds on each transition probabilities p(s′|s, a) is constructed. Using this, they obtain a regret bound of
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Õ
(√

SAT + TMT 2/3
)

1. Additionally, finding the optimistic policy is a computationally intensive task as the number of

optimization variables become S2 ×A for MDP with S states and A actions.

In this paper, we consider the reinforcement learning an infinite-horizon ergodic MDP [Tarbouriech and Lazaric, 2019,
Gattami et al., 2021] with long-term average constraints. We use ℓ1 deviation bounds [Jaksch et al., 2010] and use a Bellman
error analysis to bound the reward regret of the MDP as Õ(TMS

√
AT ). Additionally, we also bound the constraint violations

as Õ(TMS
√
AT ). We propose a posterior sampling based algorithm where we sample the transition dynamics using a

Dirichlet distribution [Osband et al., 2013], which achieves this regret bound.

Unlike optimistic algorithms, the sampled MDP may not be infeasible for the constrained optimization. Hence, we consider
slackness characterized by Slater’s parameter Ding et al. [2020], which allows us to prove that the optimization problem is
feasible even with the sampled MDPs. Posterior sampling also helps to reduces the optimization variables, to find only the
optimal policy for the sampled MDP, to only S ×A variables. Finally, we provide numerical examples where the algorithm
converges to the calculated optimal policies. To the best of our knowledge, this is the first work to obtain O(

√
T ) regret

guarantees for the infinite horizon long-term average constraint setup with posterior sampling.

B RELATED WORK

Stochastic Optimization using Markov Decision Processes has very rich roots [Howard, 1960]. There have been work in
understanding convergence of the algorithm to find optimal policies for known MDPs [Bertsekas and Tsitsiklis, 1996,
Altman, 1999]. Also, when the MDP is not known, there are algorithms with asymptotic guarantees for learning the optimal
policies [Watkins and Dayan, 1992] which maximize an objective without any constraints. Recent algorithms even achieve
finite time near-optimal regret bounds with respect to the number of interactions with the environment [Jaksch et al., 2010,
Osband et al., 2013, Agrawal and Jia, 2017, Jin et al., 2018]. Jaksch et al. [2010] uses the optimism principle for minimizing
regret for weakly communicating infinite horizon MDPs with bounded diameter. Osband et al. [2013] extended the analysis
of Jaksch et al. [2010] to posterior sampling for episodic MDPs and bounded the Bayesian regret and further improved the
regret bounds Osband and Van Roy [2017]. Agrawal and Jia [2017] uses a posterior sampling based approach and obtains a
frequentist regret for the infinite horizon MDPs with bounded diameter.

In many reinforcement learning settings, the agent not only wants to maximize the rewards but also satisfy certain cost
constraints [Altman, 1999]. Early works in this area were pioneered by [Altman and Schwartz, 1991]. They provided
an algorithm which combined forced explorations and following policies optimized on empirical estimates to obtain
an asymptotic convergence. [Borkar, 2005] studied the constrained RL problem using actor-critic and a two time-scale
framework [Borkar, 1997] to obtain asymptotic performance guarantees. Very recently, [Gattami et al., 2021] analyzed the
asymptotic performance for Lagrangian based algorithms for infinite-horizon long-term average constraints.

Inspired by the finite-time performance analysis of reinforcement learning algorithm for unconstrained problems, there has
been a significant thrust in understanding the finite-time performances of constrained MDP algorithms. [Zheng and Ratliff,
2020] considered an episodic CMDP and use an optimism based algorithm to bound the constraint violation as Õ(

√
T 1.5)

with high probability. [Kalagarla et al., 2020] also considered the episodic setup to obtain PAC-style bound for an optimism
based algorithm. [Ding et al., 2021] considered the setup of H-episode length episodic CMDPs with d-dimensional linear
function approximation to bound the constraint violations as Õ(d

√
H5T ) by mixing the optimal policy with an exploration

policy. [Efroni et al., 2020] proposes a linear-programming and primal-dual policy optimization algorithm to bound the
regret as O(S

√
H3T ). [Qiu et al., 2020] proposed an algorithm which obtains a regret bound of Õ(S

√
AH2T ) for the

problem of adversarial stochastic shortest path. Compared to these works, we focus on setting with infinite horizon long-term
average constraints.

After developing a better understanding of the policy gradient algorithms [Agarwal et al., 2020], there has been theoretical
work in the area of model-free policy gradient algorithms for constrained MDP and safe reinforcement learning as well.
[Xu et al., 2020] consider an infinite horizon discounted setup with constraints and obtain global convergence using policy
gradient algorithms. [Ding et al., 2020] also considers an infinite horizon discounted setup. They use a natural policy gradient
to update the primal variable and sub-gradient descent to update the dual variable.

Recently [Singh et al., 2020] considered the setup of infinite-horizon CMDPs with long-term average constraints and
obtain a regret bound of Õ(T 2/3) using an optimism based algorithm and forced explorations. We consider a similar setting
with ergodic CMDP and propose a posterior sampling based algorithm to bound the regret as Õ(poly(DSA)

√
T ) using

1Õ(·) hides the logarithmic terms



explorations assisted by the ergodicity of the MDP.

C PROBLEM FORMULATION

We consider an infinite horizon discounted Markov decision process (MDP) M, defined by the tuple
(
S,A, P, r, c1, · · · , ck

)
.

S denotes a finite set of state space with |S| = S, and A denotes a finite set of actions with |A| = A. P : S ×A → ∆(S)
denotes the probability P (s′|s, a) of transitioning to state s′ from state s after taking action a. r : S ×A → [0, 1] denotes
the average reward in state s after taking action a. ck : S × A → [0, 1] denotes average cost incurred by the agent for
constraint k ∈ [K] = {1, 2, · · · ,K} after taking action a in state s. We use a stochastic policy π : S → ∆(A), such that
given state s, π(a|s) is the probability of selecting action a.

Note that the a policy π induces a Markov chain over the state space of the MDP. Pertaining to the Markov chains generated
by the policies for M, we now define the mixing time of MDP.

Definition 2 (Mixing Time). Consider the Markov Chain induced by the policy π on the MDP M. Let Tπ
s→s′ be a random

variable that denotes the first time step when this Markov Chain enters state s′ starting from state s. Then, the mixing time
of the MDP M is defined as:

TM = max
s′ ̸=s

max
π

E [Tπ
s→s′ ] (37)

Similar to Singh et al. [2020], let P t
π(s) be the t step state distribution starting from state s following policy π and Pπ be the

steady-state state distribution generated by policy π.

Our first assumption on the MDP allows any policy to reach any state s′ starting from any state s, and to converge to a steady
state. We formalize the result in the following assumption:

Assumption 4. The MDP M is ergodic, or ∥P t
π(s)− Pπ∥TV ≤ Cρt with Pπ being the long-term steady state distribution

induced by policy π, and C > 0 and ρ < 1 are problem specific constants. And, the mixing time of the MDP M is finite or
TM < ∞.

After discussing the transition dynamics of the system, we move to the rewards and costs of the MDP M.

Assumption 5. The reward function r(s, a) and the costs ck(s, a), k ∈ [K] are known to the agent.

We note that in most of the problems, rewards are engineered. Hence, Assumption 2 is justified in many setups. However,
the system dynamics are stochastic and typically not known.

Following a policy π, the expected long-term average cost are given by ζP,k
π . Also, we denote the average long-term reward

using ζP,k
π . Formally, we have:

ζP,k
π = Es0,a0,s1,a1,···

[
lim
τ→∞

1

τ

τ∑
t=0

ck (st, at)

]
(38)

λP,r
π = Es0,a0,s1,a1,···

[
lim
τ→∞

1

τ

τ∑
t=0

r (st, at)

]
(39)

s0 ∼ ρ0(s0), at ∼ π(at|st), st+1 ∼ P (st+1|st, at)

For brevity, in the rest of the paper, Est,at,st+1;t≥0[·] will be denoted as Eρ,π,P [·], where s0 ∼ ρ0(s0), at ∼ π(st|at), st+1 ∼
P (st+1|st, at). Both, ζP,k

π and λP,r
π satisfy the following form of Bellman equation:

λP,r
π + hP,r

π (s) =
∑
a

π(a|s)r(s, a)

+
∑
s′

∑
a

π(a|s)P (s′|s, a)hP,r
π (s) (40)

ζP,k
π + hP,r

π (s) =
∑
a

π(a|s)ck(s, a) (41)

+
∑
s′

∑
a

π(a|s)P (s′|s, a)hP,k
π (s) (42)



where hP,r
π (s) is the bias for reward and hP,k

π is the bias for cost k ∈ [K].

The objective is find a policy π∗ which is the solution of the following optimization problem.

max
π

λP,r
π s.t. (43)

ζP,k
π ≤ Ck ∀ k ∈ [K] (44)

where Ck ∀ k ∈ [K] are the bounds on the average costs which the agent needs to satisfy.

After formulating the optimization problem, we now state our next assumption characterizing the slackness.

Assumption 6. There exists a policy π, and one constant κ ≥ 2STM

√
14A log(AT )/

√
T + CSTM/((1− ρ)

√
T ) such

that

ζP,k
π ≤ Ck − κ (45)

The slackness assumption is mild because, in various applications some a priori knowledge about a strictly feasible policy is
available. Hence, this assumption is again a standard assumption in the constrained RL literature Efroni et al. [2020], Ding
et al. [2021, 2020]. κ is referred as Slater’s constant. Ding et al. [2021] assumes that the Slater’s constant κ is known.

Any online algorithm starting with no prior knowledge will require to obtain estimates of transition probabilities P and
obtain reward r and costs ck,∀ k ∈ [K] for each state action pair. Initially, when algorithm does not have good estimates of
the model, it accumulates a regret as well as violates constraints as it does not know the optimal policy. We define reward
regret R(T ) as the difference between the cumulative reward obtained rt vs the expected rewards from running the optimal
policy π∗ for T steps, or

R(T ) = TλP,r
π∗ −

T∑
t=1

r(st, at) (46)

Additionally, we define constraint regret Rk(T ) for each constraint k ∈ [K] as the gap between the cumulative cost incurred
ckt , k ∈ [K] and constraint bounds, or

Rk(T ) =

(
T∑

t=1

ck(st, at)− TCk

)
+

, (47)

where (x)+ = max(0, x).

In the following section, we present a model-based algorithm to obtain this policy π∗, and reward regret and the constraint
regret accumulated by the algorithm.

D THE CMDP-PSRL ALGORITHM

For infinite horizon optimization problems (or τ → ∞), we can use steady state distribution of the state to obtain expected
long-term rewards or costs [Puterman, 2014]. We use

ζP,k
π =

∑
s∈S

∑
a∈A

ck(s, a)d
P
π (s, a), ∀ k ∈ [K] (48)

λP,r
π =

∑
s∈S

∑
a∈A

r(s, a)dPπ (s, a) (49)

where dPπ (s, a) is the steady state joint distribution of the state and actions under policy π.

Based on the above formulation, we can solve the joint optimization problem of following form

max
d(s,a)

∑
s∈S

∑
a∈A

r(s, a)d(s, a) (50)



with the following set of constraints, ∑
a∈A

d(s′, a) =
∑

s∈S,a∈A
P (s′|s, a)d(s, a) (51)

∑
s∈S,a∈A

d(s, a) = 1, d(s, a) ≥ 0 (52)

∑
s∈S

∑
a∈A

ck(s, a)d(s, a) ≤ Ck ∀ k ∈ [K] (53)

for all s′ ∈ S, ∀ s ∈ S, and ∀ a ∈ A. Equation (15) denotes the constraint on the transition structure for the underlying
Markov Process. Equation (16) ensures that the solution is a valid probability distribution. Finally, Equation (17) are the
constraints for the constrained MDP setup which the policy must satisfy.

Note that arguments in Equation (14) are linear, and the constraints in Equation (15) and Equation (16) are linear, this is a
linear programming problem. Since convex optimization problems can be solved in polynomial time [Potra and Wright,
2000], we can use standard approaches to solve Equation (14). After solving the optimization problem, we obtain the optimal
policy from the obtained steady state distribution d∗(s, a) as,

π∗(a|s) = P(s, a)
P(s)

=
d∗(s, a)∑
b∈A d∗(s, b)

∀ s ∈ S (54)

Since we assumed that the CMDP is ergodic, the Markov Chain induced from policy π is ergodic. Hence, every state is
reachable following the policy π∗, we have P(s) > 0 and Equation (18) is defined for all states s ∈ S.

Further, since we assumed that the induced Markov Chain is irreducible for all stationary policies, we assume Dirichlet
distribution as prior for the state transition probability P (s′|s, a). Dirichlet distribution is also used as a standard prior in
literature [Agrawal and Jia, 2017, Osband et al., 2013]. Further, there exists a steady state distribution when the transition
probability is sampled from a Dirichlet distribution [Agarwal et al., 2022, Proposition 1].

The complete constrained posterior sampling based algorithm, which we name CMDP-PSRL, is described in Algorithm 1.
The algorithm proceeds in epochs, and a new epoch is started whenever the visitation count in epoch e, νe(s, a), is at least
the total visitations before episode e, Ne(s, a), for any state action pair (Line 8). In Line 9, we sample transition probabilities
P̃ using the updated posterior and in Line 10, we update the policy using the optimization problem specified in Equation
(14)-(17) for P = P̃e. Further, if the sampled MDP does not satisfy the cost constraint in Equation (17), we ignore that
constraint 2 for that epoch.

E ANALYSIS

We first obtain the feasibility of the optimization problem Equation (14)-(17) for the sampled MDP. We note that we assumed
slackness in the true MDP with transition probabilities P . Hence, if the the sampled MDP is close to the true MDP, the
deviation in the cost will be less and there will be a policy which satisfies the constraint in Equation (17). We formalize this
intuition in the following result.

Lemma 2. Following Algorithm 1, if te+1 − te ≥
√
T and ∥P̃e(·|s, a)− P (·|s, a)∥1 ≤

√
14S log(2At)

Ne(s,a)
∀ s, a there exists a

policy π which satisfies,

ζP̃e,k
π ≤ Ck ∀ k ∈ [K], (55)

and the optimization problem in Equation (14)-(17) is feasible, where te is the start time of epoch e.

Proof Outline. We consider the policy π which satisfies the Slater’s condition in Equation (9). We then consider the Bellman
error of taking one step in MDP with transition probabilities P̃e and then following policy π on the MDP with transition
probabilities P . Now, using [Agarwal et al., 2022, Lemma 1] relating the average costs following policy π with P and
P̃e (ζP,k

π , and ζP̃e,k
π for all k ∈ [K] respectively) with the Bellman error gives the required result. The complete proof is

provided in the supplementary material.
2We will show in the analysis that cumulative constraint violations are still bounded.



Algorithm 2 CMDP-PSRL
1: Input: S,A, r, c1, · · · , cK
2: Initialize N(s, a, s′) = 1 ∀(s, a, s′) ∈ S ×A× S, πe(a|s) = 1

|A| ∀ (a, s) ∈ A× S, e = 0, νe(s, a) = Ne(s, a) = 0 ∀(s, a) ∈
S ×A

3: for time index t = 1, 2, · · · do
4: Observe state s
5: Play action a ∼ π(·|s)
6: Observe rewards {rk} and next state s′

7: νe(s, a)+ = 1, N(s, a, s′)+ = 1
8: if νe(s, a) ≥ max(1, Ne(s, a)) for any s, a then
9: P̃e(s

′|a, s) ∼ Dir(N(s, a, s′)) ∀ (s, a, s′)
10: Solve steady state distribution d(s, a) as the solution of the optimization problem in Equations (14-17) for P̃e.
11: Obtain optimal policy for next epoch, e+ 1, πe+1 as

πe+1(a|s) =
d(s, a)∑

a∈A d(s, a)

12: e = e+ 1
13: te = t
14: νe(s, a) = 0, Ne(s, a) =

∑e
e′ νe′(s, a) ∀(s, a)

15: end if
16: end for

After obtaining a feasible policy πe maximizing rewards for the sampled MDP, we now quantify is regret. We note that
when optimizing for long-term average rewards and long-term average constraints, we want to simultaneously minimize the
reward regret and the constraint regrets. Further, if we know the optimal policy π∗ before hand, the deviations resulting from
the stochasticity of the process can still result in some constraint violations. Also, since we sample a MDP, the policy which
is feasible for the MDP may violate constraints on the true MDP. We want to bound this gap between K costs for the two
MDPs as well.

We aim to quantify the regret from (R.1) deviation of long-term average rewards of the optimal policy because of incorrect
knowledge of the MDP (λP,r

π∗ − λP̃e,r
πe

), (R.2) deviation of the long-term average rewards generated by the optimal policy for
the sampled MDP on the sampled MDP and the long-term average rewards generated by the optimal policy for the sampled
MDP on the true MDP (λP̃e,r

πe
− λP,r

πe
), and (R.3) deviation of the expected rewards from following the optimal policy of the

sampled MDP (λP,r
πe

− r(st, at)).

Similarly, the constraint violations for each k ∈ [K] are incurred from (C.1) deviation of long-term average rewards of the
optimal policy because of incorrect knowledge of the MDP (Ck − ζP̃e,k

πe
), (C.2) deviation of the long-term average costs

generated by the optimal policy for the sampled MDP on the sampled MDP and the long-term average costs generated by
the optimal policy for the sampled MDP on the true MDP (ζP̃e,r

πe
− λP,r

πe
), and (C.3) deviation of the expected costs from

following the optimal policy of the sampled MDP (ζP,r
πe

− ck(st, at)).

We now prove the regret bounds for Algorithm 1. We first give the high level ideas used in obtaining the bounds on regret.
We divide the regret into regret incurred in each epoch e. Then, we use the posterior sampling lemma [Osband et al., 2013,
Lemma 1] to obtain the equivalence between the long-term average rewards of the true MDP M and the long-term average
rewards for the optimal value of the sampled MDP M̂. This step allows us to deal with the regret from (R.1). Then we use
the Bellman error formulation to relate average rewards for the policy πe on P and P̃e [Agarwal et al., 2022]. Combining
this with Azuma’s concentration inequality for Martingales allows us to bound the regret from (R.2) and (R.3).

Bounding constraint violations requires similar considerations for (C.2) and (C.3). Further, (C.1) becomes zero if Equation
(17) is feasible for the sampled MDP. However, if Equation (17) is not feasible, the cost may be as high as 1 (ck(s, a) ≤
1 ∀ k ∈ [K]). We bound the violations by bounding the time-steps for which the optimal policy for unconstrained
optimization runs.

To obtain bounds on the regret, we first note that the total number of epochs, E, for which the Algorithm 1 runs is bounded
by O(1 + 2SA+ SA log(T ) from [Jaksch et al., 2010, Proposition 1].

We formally state the regret bounds and constraint violation bounds in Theorem 1 which we prove rigorously in the
supplementary material.



Theorem 2. The expected reward regret E [R(T )], and the expected constraint regret E [Rk(T )] ∀ k ∈ [K] of Algorithm 1
are bounded as

E [R(T )] ≤ O

(
TMS

√
AT log(AT ) +

CS2A log T

1− ρ

)
E
[
Rk(T )

]
≤ O

(
TMS

√
AT log(AT ) +

CS2A log T

1− ρ

)
Proof Outline. We break the cumulative regret into the regret incurred in each epoch e. This gives us:

E [RT ] = E

[
E∑

e=1

te+1−1∑
t=te

(
λP,r
π∗ − r(st, at)

)]
(56)

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
π∗ − r(st, at)

)]
(57)

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP̃e,r
πe

− r(st, at)
)]

(58)

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP̃e,r
πe

− λP,r
πe

+ λP,r
πe

− r(st, at)
)]

=

E∑
e=1

E

[
te+1−1∑
t=te

(
λP̃e,r
πe

− λP,r
πe

)]

+ E

[
E∑

e=1

te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(59)

The Equation (22) follows from [Osband et al., 2013, Lemma 1] for regret each each epoch of Equation (21). Proceeding
from Equation (23) requires additional consideration. Typical proof techniques to bound regret requires a bounded bias-span
(maxs,s′(h

P̃e,r
π (s)− hP̃e,r

π (s′))) which may be large for the sampled MDP. For this, we consider an MDP for the transition
probability P r

e satisfies

λ
P r

e ,r
πe ≥ max

P ′∈Pte

λP ′,r
πe

,where (60)

Pte =
{
P ′ : ∥P ′(·|s, a)− P̄te(·|s, a)∥1

≤

√
14S log(AT )

Ne(s, a)

}
∀ s, a

where P̄te(·|s, a) is the estimated transition probability given s, a at time te. We now have,

R(T ) ≤
E∑

e=1

E

[
te+1−1∑
t=te

(
λ
P r

e ,r
πe − λP,r

πe

)]

+

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(61)

The first term of Equation (25) is bounded by bounding the expected Bellman error. The second term is converted to a
Martingale sequence by conditioning it on the state ste and is bounded using the ergodicity of the MDP M and Azuma’s
concentration inequality. The complete proof on bounding the regret is provided in the supplementary material.

Regarding the constraint violations, for each k ∈ [K], we want to bound,

E
[
Rk(T )

]
= E

[(
T∑

t=1

ck(st, at)− TCk

)
+

]
(62)



We divide the constraint violation regret into regret over epochs as well. Now, for each epoch, we know that the constraint is
satisfied by the policy for the sampled MDP. This allows us to obtain:

E
[
Rk(T )

]
= E

(∑
e

te+1−1∑
t=te

(ck(st, at)− Ck)

)
+

 (63)

= E
[(∑

e

te+1−1∑
t=te

( (
ck(st, at)− ζP,k

πe

)
+
(
ζP,k
πe

− ζP̃e,k
πe

)
+
(
ζP̃e,k
πe

− Ck

)))
+

]
(64)

= E
[(∑

e

te+1−1∑
t=te

ck(st, at)− ζP,k
πe

)
+

+

(∑
e

te+1−1∑
t=te

ζP,k
πe

− ζP̃e,k
πe

)
+

+

(∑
e

te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

]
(65)

= E
[∣∣∣∑

e

te+1−1∑
t=te

(
ck(st, at)− ζP,k

πe

) ∣∣∣
+

∣∣∣∣∣∑
e

te+1−1∑
t=te

ζP,k
πe

− ζP̃e,k
πe

∣∣∣∣∣
+

(∑
e

te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

]
(66)

The first term in Equation (28) denotes the difference between the incurred costs and the expected costs from following
policy πe. The second term denotes the difference between the expected costs from policy πe on the true MDP and on the
sampled MDP. The third terms denotes the violations of the policy πe which would be zero if the policy πe satisfies constraint
Eqution (17) for the sampled MDP. Equation (29) is obtained from the fact max(0, x+ y) ≤ max(0, x) + max(0, y) and
Equation (28) is obtained from the fact max(0, x) ≤ |x|.

The first and second term in Equation (28) are bounded similar to Equation (23), and we focus our attention to the third term.
If the optimization problem in Equation (14)-(17) is feasible, the term (ζP̃e,k

πe
− Ck) ≤ 0 and if the optimization equation is



(a) Reward growth w.r.t. time (b) Regret w.r.t. time

Figure 3: Reward and regret performance of the proposed CMDP-PSRL algorithm on a flow and service control problem for
a single queue. The algorithms is compared against the optimistic algorithm from Singh et al. Singh et al. [2020] compared
to which our algorithm extremely well.

infeasible, the term is upper bounded by 1 as Ck ≥ 0 and ζP̃e
πe

≤ 1. Hence, we get:(∑
e

te+1−1∑
t=te

(
ζP̃e,k
πe

− Ck

))
+

≤
∑
e

(
te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

(67)

=
∑
e

(
te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

1
{
te+1 − te >

√
T
}

+
∑
e

(
te+1−1∑
t=te

ζP̃e,k
πe

− Ck

)
+

1
{
te+1 − te ≤

√
T
}

(68)

≤
∑
e

te+1−1∑
t=te

1
{
te+1 − te ≤

√
T
}

(69)

≤
∑
e

√
T = E

√
T (70)

≤ (1 + 2SA+ SA log2(T/SA))
√
T (71)

where Equation (31) follows from the fact that total violations are less than the cumulative violations are considered per
epoch. Equation (33) follows from Lemma 1 as

(
ζP̃e,k
πe

− Ck

)
≤ 0 when te >

√
T and Equation (35) comes from [Jaksch

et al., 2010, Proposition 1].

We note that the fundamental setup of unconstrained optimization (K = 0), the bound is loose compared to that of UCRL2
algorithm Jaksch et al. [2010]. This is because we use a stochastic policy instead of a deterministic policy. Recall that the
optimal policy for CMDP setup is possibly stochastic Altman [1999].

F EVALUATION OF THE PROPOSED ALGORITHM

To validate the performance of the proposed CDMP-PSRL algorithm and the understanding of our analysis, we run the
simulation on the flow and service control in a single-serve queue, which is introduced in [Altman and Schwartz, 1991]. A



(a) Service constraints w.r.t. time (b) Flow constraints w.r.t. time

Figure 4: Constraint violation performance of the proposed CMDP-PSRL algorithm on a flow and service control problem
for a single queue. The average constraint violations become zero as the algorithm proceeds, however, it never crosses zero
to increase the reward further.

discrete-time single-server queue with a buffer of finite size L is considered in this case. The number of the customer waiting
in the queue is considered as the state in this problem and thus |S| = L+ 1. Two kinds of the actions, service and flow, are
considered in the problem and control the number of customers together. The action space for service is a finite subset A
in [amin, amax], where 0 < amin ≤ amax < 1. Given a specific service action a, the service a customer is successfully
finished with the probability b. If the service is successful, the length of the queue will reduce by 1. Similarly, the space for
flow is also a finite subsection B in [bmin, bmax]. In contrast to the service action, flow action will increase the queue by 1
with probability b if the specific flow action b is given. Also, we assume that there is no customer arriving when the queue is
full. The overall action space is the Cartesian product of the A and B. According to the service and flow probability, the
transition probability can be computed and is given in the Table 1.

Table 2: Transition probability of the queue system

Current State P (xt+1 = xt − 1) P (xt+1 = xt) P (xt+1 = xt + 1)
1 ≤ xt ≤ L− 1 a(1− b) ab+ (1− a)(1− b) (1− a)b

xt = L a 1− a 0
xt = 0 0 1− b(1− a) b(1− a)

For the reward function as r(s, a, b) and the constraints for service and flow as c1(s, a, b) and c2(s, a, b), respectively, and
stationary policies for service and flow as πa and πb, respectively, the problem can be defined as

max
πa,πb

lim
T→∞

1

T

T∑
t=1

r(st, πa(st), πb(st))

s.t. lim
T→∞

1

T

T∑
t=1

c1(st, πa(st), πb(st)) ≥ 0

lim
T→∞

1

T

T∑
t=1

c2(st, πa(st), πb(st)) ≥ 0

(72)

According to the discussion in [Altman and Schwartz, 1991], we define the reward function as r(s, a, b) = 5− s, which is
an decreasing function only dependent on the state. It is reasonable to give higher reward when the number of customer
waiting in the queue is small. For the constraint function, we define c1(s, a, b) = −10a+ 6 and c2 = −8 ∗ (1− b)2 + 2,



which are dependent only on service and flow action, respectively. Higher constraint value is given if the probability for the
service and flow are low and high, respectively.

In the simulation, the length of the buffer is set as L = 5. The service action space is set as [0.2, 0.4, 0.6, 0.8] and the flow
action space is set as [0.4, 0.5, 0.6, 0.7]. We use the length of horizon T = 50000 and run 50 independent simulations of the
proposed CMDP-PSRL algorithm. We also plot the standard deviation around the mean value in the shadow to show the
random error. In order to compare this result to the optimal, we assume that the full information of the transition dynamics is
known and then use Linear Programming to solve the problem. The optimal cumulative reward from LP is shown to be
4.47. The reward performance of the CMDP-PSRL algorithm is shown in the Figure 1 where we observe that the reward
converges towards the optimal value. We also plot the constraint violations in Figure 2. The service and flow constraints
converge to 0 as expected. We note that the reward of the proposed CMDP-PSRL algorithm becomes closer the optimal
reward as the algorithm proceeds, and to further increase the reward, it does not violates the constraint.

We also compared our algorithm against the optimistic algorithm of Singh et al. [2020]. We note that their algorithm
performs significantly worse compared to our algorithm. We account this poor performance on two accounts. An optimistic
algorithm does not find a policy for transition probabilities close to P for significantly large time. The other issue is because
they consider confidence interval for each P (s′|s, a). This also shows in their analysis and hence they obtain a O(T 2/3)
regret bound. Further, the optimization problem takes a significantly more time to solve for optimistic setup. However, the
variance of their optimistic algorithm is significantly lower compared to the variance of our CMDP-PSRL algorithm.

G CONCLUSION

This paper, considers the setup of reinforcement learning in ergodic infinite-horizon constrained Markov Decision Processes
with K long-term average constraint. We propose a posterior sampling based algorithm, CMDP-PSRL, which proceeds
in epochs. At every epoch, we sample a new CMDP and generate a solution for the constraint optimization problem. A
major advantage of the posterior sampling based algorithm over an optimistic approach is, that it reduces the complexity of
solving for the optimal solution of the constraint problem. We also study the proposed CMDP-PSRL algorithm from regret
perspective. We bound the regret of the reward collected by the CMDP-PSRL algorithm as Õ(TMS

√
AT+CS2A/(1−ρ)).

Further, we bound the gap between the long-term average costs of the sampled MDP and the true MDP to bound the K
constraint violations as Õ(TMS

√
AT + CS2A/(1− ρ)). Finally, we evaluate the proposed CMDP-PSRL algorithm on a

flow control problem for single queue and show that the proposed algorithm performs empirically well. This paper is the first
work which obtains a Õ(

√
T ) regret bounds for ergodic MDPs with long-term average constraints using a posterior sampling

algorithm. A model-free algorithm that obtains similar regret bounds for infinite horizon long-term average constraints
remains an open problem.
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A PROOF FOR REGRET BOUNDS

We now complete the proof of Theorem 1 here.

A.1 VARIABLE DEFINITIONS

We first define some important variables required for the proof.

We define value V P,r
γ,π , V P,k

γ,π function for rewards r and cost ck as:

V P,r
γ,π (s) = E

[ ∞∑
t=0

γtr(st, at)|s0 = s

]
(73)

V P,k
γ,π (s) = E

[ ∞∑
t=0

γtck(st, at)|s0 = s

]
(74)

We also define Q-value QP,r
γ,π, Q

P,k
γ,π function for rewards r and cost ck as:

QP,r
γ,π(s, a) = E

[ ∞∑
t=0

γtr(st, at)|s0 = s, a0 = a

]
(75)

QP,k
γ,π(s, a) = E

[ ∞∑
t=0

γtck(st, at)|s0 = s, a0 = a

]
(76)

Based on this, we define Bellman error BP ′,r
π , BP ′,k

π function for rewards r and cost ck as:

BP ′,r
π = lim

γ→1

(
r(s, a) +

∑
s′

P ′(s′|s, a)V P,r
γ,π (s, a)−QP,r

γ,π(s, a)

)
(77)

BP ′,k
π = lim

γ→1

(
ck(s, a) +

∑
s′

P ′(s′|s, a)V P,k
γ,π (s, a)−QP,k

γ,π(s, a)

)
(78)



A.2 AUXILIARY LEMMAS

We now state and prove various lemmas required to complete the proof of Theorem 1.

The first lemma obtains concentration bounds for the sampled MDP. We have:

Lemma 3. The probability that the event

Et =

{
∥P̄t(·|s, a)− P (·|s, a)∥1 ≤

√
14S log(2AT )

max{1, nt(s, a)}
∀(s, a) ∈ S ×A

}
(79)

fails to occur for any t ≤ T is bounded by 1
T 5 .

Proof Outline. From the result of ?, the ℓ1 distance of a probability distribution over S events with n samples is bounded as:

P
(
∥P (·|s, a)− P̄t(·|s, a)∥1 ≥ ϵ

)
≤ (2S − 2) exp

(
−n(s, a)ϵ2

2

)
≤ (2S) exp

(
−n(s, a)ϵ2

2

)
(80)

Thus, for ϵ =
√

2
n(s,a) log(2

S20SAT 7) ≤
√

14S
n(s,a) log(2AT ) ≤

√
14S

n(s,a) log(2AT ), we have

P

(
∥P (·|s, a)− P̄t(·|s, a)∥1 ≥

√
14S

n(s, a)
log(2AT )

)
≤ (2S) exp

(
−n(s, a)

2

2

n(s, a)
log(2S20SAT 7)

)
(81)

= 2S
1

2S20SAT 7
(82)

=
1

20AST 7
(83)

We sum over the all the possible values of n(s, a) till t time-step to bound the probability that the event Et does not occur as:

t∑
n(s,a)=1

1

20SAT 7
≤ 1

20SAT 6
(84)

Finally, summing over all the s, a, we get

P

(
∥P (·|s, a)− P̄t(·|s, a)∥1 ≥

√
14S

n(s, a)
log(2AT ) ∀s, a

)
≤ 1

20t6
(85)

Further, using union bounds and summing over all the t ≤ T , we get

P

(
∥P (·|s, a)− P̄t(·|s, a)∥1 ≥

√
14S

n(s, a)
log(2AT ) ∀s, a ∀ t ≤ T

)
≤

T∑
t=1

1

20T 6
(86)

≤ 1

T 5
(87)

The next lemma relates the difference between average per step reward λP,r
π (or cost λP,k

π ) for following policy π on
true MDP with transition probabilities and average per step reward λP̃ ,r

π for following policy π on MDP with transition
probabilities P̃ with the Bellman error BP̃ ,r

π (s, a) as:



Lemma 4. The difference of long-term average rewards for running the policy π on the MDP, λP̃ ,r
π , and the average

long-term average rewards for running the policy π on the true MDP, λP̃ ,r
π , is the long-term average Bellman error as

λP̃ ,r
π − λP,r

π =
∑
s,a

dπ(s, a)B
P̃ ,r
π (s, a) = Eπ,P

[
BP̃ ,r

π (s, a)
]
. (88)

Proof. Note that for all s ∈ S, we have:

V P̃ ,r
γ,π (s) = Ea∼π

[
QP̃ ,r

γ,π (s, a)
]

(89)

= Ea∼π

[
BP̃ ,r

γ,π (s, a) + r(s, a) + γ
∑
s′∈S

P (s′|s, a)V P̃ ,r
γπ (s′)

]
(90)

where Equation (54) follows from the definition of the Bellman error for state action pair s, a.

Similarly, for the true MDP, we have,

V P,r
γ,π (s) = Ea∼π

[
QP,r

γ,π(s, a)
]

(91)

= Ea∼π

[
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V P,r
γ,π (s′)

]
(92)

Subtracting Equation (56) from Equation (54), we get:

V P̃ ,r
γ,π (s)− V P,r

γ,π (s) = Ea∼π

[
BP̃ ,r

γ,π (s, a) + γ
∑
s′∈S

P (s′|s, a)
(
V P̃ ,r
γ,π − V P,r

γ,π

)
(s′)

]
(93)

= Ea∼π

[
BP̃ ,r

γ,π (s, a)
]
+ γ

∑
s′∈S

Pπ

(
V P̃ ,r
γ,π − V P,r

γ,π

)
(s′) (94)

Using the vector format for the value functions, we have,

V̄ P̃ ,r
γ,π − V̄ P,r

γ,π = (I − γPπ)
−1

BP,r
γ,π (95)

Now, converting the value function to average per-step reward we have,

λP̃ ,r
π 1S − λP,r

π 1S = lim
γ→1

(1− γ)
(
V̄ P̃ ,r
γ,π − V̄ P,r

γ,π

)
(96)

= lim
γ→1

(1− γ) (I − γPπ)
−1

BP̃ ,r
γ,π (97)

=

(∑
s,a

dPπ (s, a)B
P̃ ,r
π (s, a)

)
1S (98)

where the last equation follows from the definition of occupancy measures by Puterman [2014], and the existence of the
limit limγ→1 B

P̃ ,r
γ,π in Equation (72).

After relating the gap between the long-term average rewards of policy πe on the two MDPs, we now want to bound the sum
of Bellman error over an epoch. For this, we first bound the Bellman error for a particular state action pair s, a in the form of
following lemma. We have,

Lemma 5. For an MDP with rewards r(s, a) and transition probability P̃ (s′|s, a) such that ∥P̃ (·|s, a)−P (·|s, a)∥1 ≤ ϵs,a,
the Bellman error BP̃ ,r

πe
(s, a) for state-action pair s, a is upper bounded as

BP̃ ,r
π (s, a) ≤

∥∥P̃ (·|s, a)− P (·|s, a)
∥∥
1
∥hP̃ ,r

π (·)∥∞ (99)

where ∥hP̃ ,r
π (·)∥∞ is the bias-span of the MDP with transition probability P̃ .



Proof. Starting with the definition of Bellman error in Equation (41), we get

BP̃ ,r
π (s, a) = lim

γ→1
BP̃ ,r

γ,π (s, a) (100)

= lim
γ→1

(
QP̃ ,r

γ,π (s, a)−

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V P̃ ,r
γ,π

))
(101)

= lim
γ→1

((
r(s, a) + γ

∑
s′∈S

P̃ (s′|s, a)V P̃ ,r
γ,π (s′)

)
−

(
r(s, a) + γ

∑
s′∈S

P (s′|s, a)V P̃ ,r
γ,π (s′)

))
(102)

= lim
γ→1

γ
∑
s′∈S

(
P̃ (s′|s, a)− P (s′|s, a)

)
V P̃ ,r
γ,π (s′) (103)

= lim
γ→1

γ

(∑
s′∈S

(
P̃ (s′|s, a)− P (s′|s, a)

)
V P̃ ,r
γ,π (s′) + V P̃ ,r

γ,π (s)− V P̃ ,r
γ,π (s)

)
(104)

= lim
γ→1

γ
( ∑

s′∈S

(
P̃ (s′|s, a)− P (s′|s, a)

)
V P̃ ,r
γ,π (s′)−

∑
s′∈S

P̃ (s′|s, a)V P̃ ,r
γ,π (s)

+
∑
s′∈S

P (s′|s, a)V P̃ ,r
γ,π (s)

)
(105)

= lim
γ→1

γ

(∑
s′∈S

(
P̃ (s′|s, a)− P (s′|s, a)

)(
V P̃ ,r
γ,π (s′)− V P̃ ,r

γ,π (s)
))

(106)

=

(∑
s′∈S

(
P̃ (s′|s, a)− P (s′|s, a)

)
lim
γ→1

γ
(
V P̃ ,r
γ,π (s′)− V P̃ ,r

γ,π (s)
))

(107)

=

(∑
s′∈S

(
P̃ (s′|s, a)− P (s′|s, a)

)
hP̃ ,r
π (s′)

)
(108)

≤
∥∥∥P̃ (·|s, a)− P (·|s, a)

∥∥∥
1
∥hP̃ ,r

π (·)∥∞ (109)

≤ ϵs,aT̃M (110)

where Equation (67) comes from the assumption that the rewards are known to the agent. Equation (71) follows from the
fact that the difference between value function at two states is bounded. Equation (72) comes from the definition of bias term
Puterman [2014] where h is the bias of the policy π when run on the sampled MDP. Equation (73) follows from Hölder’s
inequality. In Equation (74), the ℓ1 norm of probability vector difference is bounded from the definition.

Additionally, note that the ℓ1 norm in Equation (73) is bounded by 2. Thus the Bellman error is loose upper bounded by
2∥hP̃ ,r

π (·)∥∞ for all state-action pairs.

Lemma 6 (Bounded Span of optimal MDP in confidence interval). For a MDP with rewards r(s, a) and transition
probabilities P r

e = argmaxPe∈Pte
λPe,r
πe

, for policy πe, the difference of bias of any two states s, and s′, is upper bounded
by the mixing time of the true MDP TM as:

h
P r

e ,r
πe (s)− h

P r
e ,r

πe (s′) ≤ TM ∀ s, s′ ∈ S (111)

Proof. Note that λP r
e ,r

πe ≥ λP ′,r
πe

for all P ′ ∈ Pte . Now, consider the following Bellman equation:

h
P r

e ,r
πe (s) = rπe

(s, a)− λ
P r

e ,r
πe + < P r

πe,e(·|s), h
P r

e ,r
πe >

= Th
P r

e ,r
πe (s) (112)

where rπe
(s) =

∑
a πe(a|s)r(s, a) and P r

πe,e(s
′|s) =

∑
a π(a|s)P r

e (s
′|s, a).

Consider two states s, s′ ∈ S. Also, let τ be a random variable defined as:

τ = min{t ≥ 1 : st = s′, s1 = s} (113)



We also define another operator,

T̄ h(s) =

{
mins,a r(s, a)− λ

P r
e ,r

πe + < Pπe(·|s), h >, s ̸= s′

h
P r

e ,r
πe (s′), s = s′

(114)

where Pπe
(·|s) =

∑
a πe(a|s)P (s′|s, a).

Now, note that

h(s) = Th(s) (115)

= max
P ′∈Pte

(
rrπe

(s)− λ
P r

e ,r
πe + < P ′

πe
, h >

)
(116)

≥ rrπe
(s)− λ

P r
e ,r

πe + < Pπe , h > (117)

≥ min
s,a

r(s, a)− λ
P r

e ,r
πe + < Pπe , h > (118)

= T̄ h(s) (119)

Further, for any two vectors u, v, where all the elements of u are not smaller than w we have T̄ u ≥ T̄w. Hence, we have
T̄nhP,r

π (s) ≤ hP,r
π (s) for all s. Unrolling the recurrence, we have

h
P r

e ,r
π (s) ≥ T̄nh

P r
e ,r

π (s) = E
[
−(λ

P r
e ,r

π −min
s,a

r(s, a))(n ∧ τ) + h
P r

e ,r
π (sn∧τ )

]
(120)

For limn → ∞, we have h
P r

e ,r
π (s) ≥ h

P r
e ,r

π (s′)− TM , completing the proof.

A.3 PROOF OF RESULTS FROM MAIN TEXT

After stating the necessary lemmas, we can now prove Lemma 1 and Theorem 1.

Proof of Theorem 1. We continue our proof from Equation (25). We had:

R(T ) ≤
E∑

e=1

E

[
te+1−1∑
t=te

(
λ
P r

e ,r
πe − λP,r

πe

)]
+

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(121)

= R1(T ) +R2(T ) (122)

where R1(T ) and R2(T ) are:

R1(T ) =

E∑
e=1

E

[
te+1−1∑
t=te

(
λ
P r

e ,r
πe − λP,r

πe

)]
(123)

R2(T ) =

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(124)

We first consider R2(T ) term. We start by defining filtration Ht = {s0, a0, · · · , st, at} as the set of of observed states and
played actions. Further, we have λP,r

πe
as

λP,r
πe

= E(s,a)∼πe,P [r(s, a)] (125)

We have,

E(s,a)∼πe,P [r(s, a)] = E(s,a)∼πe,P [r(s, a)]± E(st,at)∼πe,P [r(st, at)|Hte−1] (126)

= E(st,at)∼πe,P [r(st, at)|Hte−1] +
(
E(s,a)∼πe,P [r(s, a)]− E(st,at)∼πe,P [r(st, at)|Hte−1]

)
(127)

≤ E(st,at)∼πe,P [t(st, at)|Hte−1] + 2
(
∥πe(a|s)dπe(s)− πe(a|s)P t−te+1

π,ste−1
(s)∥TV

)
(128)

≤ E(st,at)∼πe,P [r(st, at)|Hte−1] + 2CSρt−te (129)



Hence, we have,
te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)
=

te+1−1∑
t=te

(
E(s,a)∼πe,P [r(s, a)]− r(st, at)

)
(130)

≤
te+1−1∑
t=te

(
E(st,at)∼πe,P [r(st, at)|Hte−1] + 2CSρt−te − r(st, at)

)
(131)

≤
te+1−1∑
t=te

(
E(st,at)∼πe,P [r(st, at)|Hte−1]− r(st, at)

)
+

∞∑
t=te

2CSρt−te (132)

≤
te+1−1∑
t=te

(
E(st,at)∼πe,P [r(st, at)|Hte−1]− r(st, at)

)
+

2CS

1− ρ
(133)

Using Azuma-Hoeffding’s inequality, we get,

te+1−1∑
t=te

(
E(st,at)∼πe,P [r(st, at)|Hte−1]− r(st, at)

)
≤ 2
√

(te+1 − te) log(2T ) (134)

with probability at least 1− 1/T . Summing over all the epochs and using Cauchy-Schwarz inequality, we get:

te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)
=

E∑
e=1

(
te+1−1∑
t=te

(
E(st,at)∼πe,P [r(st, at)|Hte−1]− r(st, at)

)
+

2CS

1− ρ

)
(135)

≤
E∑

e=1

2
√
(te+1 − te) log(2T ) +

2CSE

1− ρ
(136)

≤ 2

√√√√E

E∑
e=1

(te+1 − te) log(2T ) +
2CSE

1− ρ
(137)

= 2
√
ET log(2T ) +

2CSE

1− ρ
(138)

with probability at least 1 − E/T . Further, the maximum value of the sum is bounded by T and that event occurs with
probability less than 1/T which gives,

E [R2(T )] =

E∑
e=1

E

[
te+1−1∑
t=te

(
λP,r
πe

− r(st, at)
)]

(139)

≤ 4
√

T log(2T ) +
2CSE

1− ρ
+

E

T
T (140)

= E + 4
√
ET log(2T ) +

2CSE

1− ρ
(141)

We can now focus on the R1(T ) term. We have:

R1(T ) =

T∑
e=1

E

[
te+1−1∑
t=te

(λ
P r

e ,r
πe − λP,r

πe
)

]
(142)

=

T∑
e=1

E

[
te+1−1∑
t=te

Es,a∼π,P

[
B

P r
e ,r

πe (s, a)
]]

(143)

Similar to Equations (90)-(93), we have:

E∑
e=1

te+1−1∑
t=te

Es,a∼π,P

[
B

P r
e ,r

πe (s, a)
]
≤

E∑
e=1

te+1−1∑
t=te

Es,a∼π,P

[
B

P r
e ,r

πe (s, a)|Hte−1

]
+

E∑
e=1

te+1−1∑
t=te

2CTMSρt−te (144)



Again, using Azuma-Hoeffding’s inequality, with probability at least 1− 1/T we have:

te+1−1∑
t=te

Es,a∼π,P

[
B

P r
e ,r

πe (s, a)|Hte−1

]
≤

te+1−1∑
t=te

B
P r

e ,e
πe (st, at) + 2TM

√
(te+1 − te) log(2T ) (145)

Summing over all the epochs, we get, with probability at least 1− E/T :

E∑
e=1

te+1−1∑
t=te

Es,a∼π,P

[
B

P r
e ,r

πe (s, a)|Hte−1

]
≤

E∑
e=1

te+1−1∑
t=te

B
P r

e ,e
πe (st, at) +

E∑
e=1

te+1−1∑
t=te

2TM

√
(te+1 − te) log(2T ) (146)

≤
E∑

e=1

te+1−1∑
t=te

B
P r

e ,e
πe (st, at) + 2TM

√√√√E

E∑
e=1

(te+1 − te) log(2T ) (147)

=

E∑
e=1

te+1−1∑
t=te

B
P r

e ,e
πe (st, at) + 2TM

√
ET log(2T ) (148)

≤
E∑

e=1

te+1−1∑
t=te

∥∥∥P̃ (·|s, a)− P (·|s, a)
∥∥∥
1
∥hP̃ ,r

π (·)∥∞ + 2TM

√
ET log(2T )

(149)

≤
E∑

e=1

∑
s,a

νe(s, a)2

√
14S log(2AT )

Ne(s, a)
∥hP̃ ,r

π (·)∥∞ + 2TM

√
ET log(2T )

(150)

≤ 2TM

√
14S log(2AT )

∑
s,a

E∑
e=1

νe(s, a)√
Ne(s, a)

+ 2TM

√
ET log(2T ) (151)

≤ 2(
√
2 + 1)TM

√
14S log(2AT )

∑
s,a

√
N(s, a) + 2TM

√
ET log(2T )

(152)

≤ 2(
√
2 + 1)TM

√
14S log(2AT )

√
SAT + 2TM

√
ET log(2T ) (153)

where Equation (113) follows from Lemma 4. Equation (114) follows from Lemma 2 with probability 1− 1/T 5. Equation
(115) comes from Lemma 5. Equation (116) follows from [Jaksch et al., 2010, Lemma 19] and Equation (117) follows from
Cauchy-Schwarz inequality.

Together with Equation (108), we get:

R1(T ) ≤ 2(
√
2 + 1)TMS

√
AT log(AT ) + 2TM

√
ET log(2T ) +

2TMSE

1− ρ
+ E +

√
T (154)

Combining R1(T ) and R2(T ) we get the required bound on regret. The bound on constraint violations follows similarly.

Proof of Lemma 1. We begin with considering the policy π in Assumption 3. We now prove the result for one k ∈ [K]
and the result follows for all k ∈ [K]. We consider an MDP with transition dynamics P k

e which maximizes ζP
′,k

π for all

∥P ′(·|s, a)− P (·|s, a)∥1 ≤
√

14S log(2At)
Ne(s,a)

for all s, a. Consider the difference between the average cost k incurred from
following policy π on the MDP with true transition probabilities P and the average cost k incurred from following policy π
on the MDP with transition probabilities P k

e and using Lemma 3. We have:

ζP̃e,k
π − ζP,k

π ≤ ζ
Pk

e ,k
π − ζP,k

π (155)

=
∑
s,a

dPπ (s, a)B
Pk

e ,k
π (s, a) (156)

= E
[
B

Pk
e ,k

π (s, a)
]

(157)



where the of Bellman error BPk
e ,k

π (s, a) is of the following form,

BP̃e,k
π (s, a) = lim

γ→1

(
QP̃ ,k

γ,π (s, a)− ck(s, a)− γ
∑

s′∈S
P (s′|s, a)V P̃ ,k

γ,π (s, a)
)
,

and the value function, V P̃ ,k
γ,π (s) and Q-value, QP̃ ,k

γ,π (s, a), function become:

V P̃ ,k
γ,π (s) =

∞∑
t=1

γt−1Eat∼π,st+1∼P

[
ck(st, at)|s1 = s

]
QP̃ ,k

γ,π (s, a) =

∞∑
t=1

γt−1Eat∼π,st+1∼P

[
ck(st, at)|s1 = s, a1 = a

]
.

We bound the expectation using Azuma-Hoeffdings inequality as follows:

E
[
B

Pk
e ,k

π (s, a)
]
= E

[
B

Pk
e ,k

π (st, at)|Hte−1

]
+ C∥hPe,k

π (·)∥∞ρt−te (158)

=
1

te+1 − te

te+1−1∑
t=te

(
E
[
B

Pk
e ,k

π (st, at)|Hte−1

]
+ C∥hPe,k

π (·)∥∞ρt−te
)

(159)

≤ 1

te+1 − te

te+1−1∑
t=te

(
E
[
B

Pk
e ,k

π (st, at)|Hte−1

])
+

CS∥hPe,k
π (·)∥∞

(1− ρ)(te+1 − te)
(160)

≤ 1

te+1 − te

(
TM

√
14S logAT

∑
s,a

νe(s, a)√
Ne(s, a)

+ 4TM

√
7(te+1 − te) log(te+1 − te)

)

+
CSTM

(1− ρ)(te+1 − te)
(161)

≤ 1

te+1 − te

(
TM

√
14S logAT

∑
s,a

√
νe(s, a) + 4TM

√
7(te+1 − te) log(te+1 − te)

)

+
CSTM

(1− ρ)(te+1 − te)
(162)

≤ 1

te+1 − te

TMS
√
14A logAT

√∑
s,a

νe(s, a) + 4TM

√
7(te+1 − te) log(te+1 − te)


+

CSTM

(1− ρ)(te+1 − te)
(163)

≤ 1

te+1 − te

(
TMS

√
14A logAT

√
(te+1 − te) + 4TM

√
7(te+1 − te) log(te+1 − te)

)
+

CSTM

(1− ρ)(te+1 − te)
(164)

≤

(
TMS

√
14A logAT

(te+1 − te)
+ 4TM

√
7 log(te+1 − te)

(te+1 − te)

)
+

CSTM

(1− ρ)(te+1 − te)
(165)

where Equation (123) is obtained by summing both sides from t = te to t = te+1. Equation (124) is obtained by summing
over the geometric series with ratio ρ. Equation (125) comes from analysis used in the proof of Theorem 1. Equation (126)
comes from the fact that Ne(s, a) ≥ νe(s, a) for all s, a, and then replacing the lower bound of Ne(s, a). Equation (127)
follows from the Cauchy Schwarz inequality. Equation (128) follows from the fact that the epoch length te+1 − te is same
as the number of visitations to all state action pairs in an epoch.



Combining Equation (129) with Equation (121), we obtain the required result as follows:

ζP̃e,k
π ≤ ζ

Pk
e ,k

π − ζP,k
π + ζP,k

π (166)

≤

(
TMS

√
14A logAT

(te+1 − te)
+ 4TM

√
7 log(te+1 − te)

(te+1 − te)

)
+

CSTM

(1− ρ)(te+1 − te)
+ ζP,k

π (167)

≤

TMS

√
14A logAT√

T
+ 4TM

√
7 log(

√
T )√

T

+
CSTM

(1− ρ)
√
T

+ ζP,k
π (168)

≤

TMS

√
14A logAT√

T
+ 4TM

√
7 log(

√
T )√

T

+
CSTM

(1− ρ)
√
T

+ Ck − κ (169)

≤ Ck (170)

where Equation (132) comes from the fact that we consider epoch length te+1 − te ≥
√
T and Equation (133) comes from

Assumption 3 and Equation (134) comes from the value of Slater’s constant κ in Assumption 3. Replicating the analysis for
all k ∈ [K], for the policy π, ζP̃e,k

π satisfy the constraint for all k ∈ [K] and hence, the optimization problem in Equation
(14)-(17) is feasible.
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