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ABSTRACT

Off-policy Evaluation (OPE) methods are crucial for evaluating policies in high-
stakes domains such as healthcare, where exploration is often infeasible or expen-
sive. However, the extent to which such methods can be trusted under adversarial
threats to data quality is largely unexplored. In this work, we make the first attempt
at investigating the sensitivity of OPE methods to adversarial perturbations to the
data. We design a data poisoning attack framework that leverages influence func-
tions to construct perturbations that maximize error in the policy value estimates.
Our experimental results show that many OPE methods are highly prone to data
poisoning attacks, even for small adversarial perturbations.

1 INTRODUCTION

In reinforcement learning (RL), off-policy evaluation (OPE) methods are popularly used to estimate
the value of a policy from previously collected data (Thomas et al., 2015; Voloshin et al., 2020;
Levine et al., 2020). These methods are instrumental in high-stakes decision problems such as in
medicine and finance, where exploration is often infeasible, unethical, or expensive (Gottesman et al.,
2020; Ernst et al., 2006). In such cases, one must estimate the value solely from a batch of data
collected using a different and possibly unknown policy. Only if the OPE methods estimate the value
of a policy sufficiently high will the stakeholders deploy it. Otherwise, the policy will be rejected. It
is therefore essential that OPE methods do not severely overestimate the values of bad policies or
underestimate the values of good policies (Gottesman et al., 2020).

Despite the importance of OPE methods, their sensitivity to adversarial contamination of logged data
is not well understood. The complexity of OPE methods offers ample opportunities for attackers to
introduce significant errors in OPE estimates with only small perturbations to the input data. For
example, some OPE methods compute the value of a policy in a given state as a function of its value
in future states. Therefore, even small errors introduced in the value estimates of these future states
can accumulate and result in significant errors in the value estimates at the initial states, where critical
strategic decisions are often made. Thus, attackers can exploit this property. Another possible avenue
for an attack is the importance sampling weights. Popular OPE methods, such as the Doubly Robust
and the Importance Sampling methods (Jiang and Li, 2016; Voloshin et al., 2020) use importance
sampling weights to correct for dataset mismatch when evaluating the given policy with logged
data from a different policy. The weights depend on the estimate of the logging policy. Attackers
could perturb the data in a way that forces the agent to wrongly estimate the logging policy and
consequently introduce significant errors in the value estimates. Such vulnerabilities motivate the
need for a thorough analysis of the effect of data poisoning attacks on OPE methods.

In this work, we study the effect of data poisoning attacks on OPE methods. More specifically, we ask
the following question: Can we construct small perturbations to the training data that significantly
change a given OPE method’s estimate of the value of a given policy? To this end, we propose a
novel data poisoning framework to analyze the sensitivity of model-free OPE methods to adversarial
data contamination at train-time. We formulate the data poisoning problem as a bi-level optimization
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problem and show that it can be adapted to diverse model-free OPE methods, namely, Bellman
Residual Minimization (BRM) (Farahmand et al., 2008), Weighted Importance Sampling (WIS),
Weighted Per-Decision Importance Sampling (PDIS) (Precup, 2000; Powell and Swann, 1966;
Rubinstein, 1981), Consistent Per-Decision Importance Sampling (CPDIS) (Thomas, 2015), and
Weighted Doubly Robust methods (WDR) (Jiang and Li, 2016). We solve the optimization problem
in a computationally tractable manner, we using influence functions from robust statistics (Koh and
Liang, 2017). We evaluate our framework using five different datasets spanning medical (e.g., Cancer
and HIV) and control (e.g., Mountain Car, Cartpole, and Continuous Gridworld) domains. Our
experiments show that corrupting only 3%–5% of the observed states achieves more than 101% and
276% error in the estimate of the value function of the optimal policy in the Cancer and HIV domains,
respectively. Our experimental results show that out of the five OPE methods, WDR and BRM are the
least statistically robust, and CPDIS is the most statistically robust to such adversarial contamination.

2 PRELIMINARIES

We model a sequential decision-making problem as a Markov Decision Process (MDP). An MDP is
a tuple of the form ⟨S,A, R, P, p0, γ⟩ representing the set of states, set of actions, reward function,
transition probability model, initial state distribution, and discount factor respectively. When taking
action a ∈ A in state s ∈ S and transitioning to state s′ ∈ S , the scalar R(s, a, s′) denotes the reward
received by the agent and P (s, a, s′) denotes the probability of transitioning to state s′ on taking action
a in state s. A randomized policy π : S → ∆|A| prescribes the probability of taking each action from
A in a state s. The value function of a policy vπ : S → R at state s is the expected discounted returns
of the policy starting from state s and is given by vπ(s) = E

[∑∞
t=0 γ

tR(St, At, S
′
t+1) | π, S0 = s

]
.

The value of a policy is computed as pT0 v
π. The state-action value function (also termed as the

Q-value function) of a policy qπ : S × A → R at state s and action a is the expected discounted
returns obtained by taking action a in state s and following policy π thereafter. The state-action value
function qπ for a policy π is the unique fixed point of the Bellman operator T π : S ×A → RS×A

defined as (T πq)(s, a) =
∑
s′∈S

∑
a′∈A(R(s, a, s

′) + γP (s, a, s′)π(a′ | s′)q(s′, a′)) .

We assume the standard batch RL setting (e.g., (Levine et al., 2020)) in which the agent is given
a batch of n=N × T transition tuples D=((sij , a

i
j , r

i
j)
T
j=1)

N
i=1, observed on simulating a behavior

policy πb for N episodes of length T . The goal of OPE is to use D to evaluate the value of the
evaluation policy π. Let D0 be a set of initial states sampled from distribution p0.

The value function is approximated using features ξ : S → Rd. As is standard in linear value function
approximation, we assume also that the state-action value function qπ is approximated as a linear
combination of state-action features ϕ : S × A → R|A|·d. The state-action features for a given
state-action pair (s, a) are constructed by using the state features ξ(s) at the indices corresponding
to a and zero elsewhere, i.e. ϕ(s, a)[ad : (a+1)d]← ξ(s). Because the value function is estimated
from data, we need to define a sample feature matrix Φ ∈ Rn×d where the rows correspond to the
state-action features ϕ(s, a) for the n state-action pairs in D. We will use r ∈ Rn×1 to represent the
sample reward matrix.

We discuss the OPE methods targeted by our attack framework in detail in Appendix D.

3 DOPE FRAMEWORK

We first present our attack framework called DOPE for Data poisoning attacks on Off-Policy
Evaluation. Then we demonstrate how to use the framework to attack the three types of OPE
methods discussed in Section 2. The objective and scope of the attacks considered in DOPE are as
follows.

Scope: The attacker has access to the batch D and evaluation policy π and the value of the discount
factor γ. We also assume that the attacker knows how the agent estimates the behavior policy and
the state-action value function from the data. For the attack to be unnoticeable, the attack can only
perturb α fraction of the transitions in D while conforming to some perturbation budget ϵ ≥ 0 to be
defined later.
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Objective: The goal of the attacker is to add small adversarial perturbations to a subset of transitions
in D such that it maximizes the error in the value estimate of a given policy in the desired direction.
This means that the attacker may choose to decrease or increase its estimated value for the policy
being evaluated such that a good evaluation policy is rejected or a bad evaluation policy is approved.

Components: The DOPE framework for a given OPE method has four major components: Features
(Ψ): the part of the transition tuples targeted by the attack; Value estimation function (ρ): function
used by the OPE method for computing the value; Estimated parameter (θ): model parameters
learned by the OPE method from the data; Loss function (L): loss optimized by the OPE method for
model-fitting. We define each component in detail in Section 3.1. We can now formulate our attack
model as the problem of finding the perturbation matrix ∆ = (δi)

n
i=1, δi ∈ RQ that maximizes the

difference between values found using the perturbed and the original data under constraints dictating
that the perturbations are small. Formally,

maximize
∆∈Rn×Q

ρ(θpert,Ψ+∆)− ρ(θorg,Ψ) (1a)

subject to θpert ∈ argmin
θ∈RP

L(θ,Ψ+∆) (1b)

θorg ∈ argmin
θ∈RP

L(θ,Ψ) (1c)

∥δi∥p ≤ ϵ, i = 1, . . . , N (1d)
n∑

i=1

1∥δi∥≠0 ≤ α · n. (1e)

Method Parameters θ Features Ψ Function ρ(Ψ) Loss L(θ,Ψ)
BRM (Farahmand et al. (2008)) η in qη Φ or r vBRM MSBR
WIS (Rubinstein (1981)) θb in πθbb Φ or r vWIS MLE
PDIS (Precup (2000)) θb Φ or r vPDIS MLE
CPDIS (Thomas (2015)) θb Φ or r vCPDIS MLE
WDR/DR (Jiang and Li (2016)) θb, η Φ or r vWDR or vDR MLE + MSBR

or MSBR

Table 1: Settings for the four components of the DOPE attack for five different OPE methods.

The DOPE objective in equation 1a increases the estimated value from the original value, thereby
increasing the error. Alternatively, if the attacker wants to decrease the estimated value of the given
policy, they may do so by simply changing the sign of the objective. The constraint equation 1b
estimates the optimal parameter θpert from D after perturbing Ψ to Ψ+∆. The constraint equation 1d
ensures that the perturbation added to each sample δi, i.e. ith row of ∆, is limited to the user-defined
budget ϵ. This prevents the attack framework from generating adversarial transitions that can be
easily detected as anomalous. Further, the constraint equation 1e limits the number of transitions that
the attacker can perturb. Finally, note that ρ(θorg,Ψ) is a constant and can be ignored while solving
the optimization problem.

3.1 ATTACKING OPE METHODS USING DOPE

We are now ready to formally define the four components of the DOPE framework. Table 1 summa-
rizes the choice of these components for each OPE method we attack.
(a) Features: Let ψ(s, a, r) ∈ RQ be an arbitrary component of the transition tuple ⟨s, a, r⟩ in D that
is perturbed by the attacker. For example, ψ(s, a, r) could either be the state features Φ or the reward
vector r. We will use Ψ ∈ Rn×Q to represent the sample matrix of ψ(s, a, r) constructed from the
n samples in D. (b) Parameters: The parameters θ(Ψ) ∈ RP are the parameters of interest for a
given OPE method, written as a function of Ψ to clarify that these are estimated from samples in
D. In BRM, θ represents the parameters of the Q-value function qη(s, a), whereas in IS methods,
θ represents the parameters of the estimated behavior policy πθbb (a|s). (c) Loss function: The loss
function L(θ,Ψ) with L : RP × Rn×Q → R is the empirical loss optimized by the OPE method to
derive the optimal parameter θ(Ψ) ∈ argminθ′∈RP L(θ′,Ψ) from the data. As an example, L in
BRM and DR is the MSBR error, whereas in IS methods, L is the MLE loss optimized to estimate
the behavior policy. (d) Value estimation function: Finally, the value estimation function ρ(θ(Ψ),Ψ)
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with ρ : RP × Rn×Q → R is the function used by the OPE method to compute the mean value
of π at the initial states. For example, in BRM, ρ represents vBRM. We will use the shorthand
ρ(Ψ) := ρ(θ(Ψ),Ψ).

The loss function L(θ,Ψ) must be twice continuously differentiable and linearly separable with
respect to the transitions in D. The value estimation function ρ(θ,Ψ) also needs to be continuously
differentiable with respect to θ and ψ. These assumptions, as Section 4 shows, are important for the
influence functions to be well-defined (Koh and Liang, 2017).

4 OPTIMIZATION

There are two major challenges with optimizing the DOPE problem in equation 1. First, the
constraint equation 1e requires perturbing all possible subsets of data Ψ whose size is at most αn
and re-estimating the optimal parameter θ for each perturbation, which is computationally infeasible.
Second, equation 1 is a bilevel optimization problem where the inner-level problem equation 1b is
often non-linear for OPE methods which makes it an NP-Hard problem (Wiesemann et al., 2013).
We address these two challenges by deriving an approximation to the bilevel optimization problem
(1) using the Taylor expansion. We show that the resulting problem is simpler to optimize and has a
closed-form solution.

Approximation We define the influence score of the ith data point as IΨi = ∇Ψiρ(Ψ) as the rate of
change in the value estimate ρ(Ψ) with respect to the data point Ψi ≡ ψ(si, ai, ri). Then, using the
first-order Taylor expansion of ρ(Ψ + ∆), we can approximate the net error in the value-function
estimate ρ(Ψ +∆)− ρ(Ψ) as the weighted sum of the influence scores of individual data points,

ρ(Ψ +∆)− ρ(Ψ) ≈
n∑

i=1

(∇Ψiρ(Ψ))⊤δi. (2)

Using Eq. equation 2 reduces the optimization in equation 1 to

max
s∈{0,1}n

max
{δi}Ni=1∈Rn×Q

n∑
i=1

si · I⊤Ψi
δi

subject to
n∑

i=1

si = α · n, ∥δi∥p ≤ ϵ · si, i = 1, . . . n.

(3)

Here, s ∈ {0, 1}N is a vector of binary indicators such that si = 1 indicates that the ith transition is
amongst the αn transitions selected to be perturbed. We can now compute an approximately optimal
set of perturbations in polynomial time as shown in Theorem 4.1 for norms p = 1, 2,∞.

Theorem 4.1. Let (s∗,∆∗) be an optimal solution to the optimization problem in equation 3 and
define the approximate influential set as S∗

α = {i : s∗i = 1,∀i = 1, . . . , n}. Then,

1. S∗
α can be constructed by choosing the set of αn transitions with the largest q-norm of their

influence scores IΨi
. Here, q-norm is the dual of p-norm used in equation 3.

2. For all i ∈ [1, . . . n], the optimal δ∗i for p = 1, 2,∞ can be computed in closed-form as

If p = ∞, then δ∗i = ϵ · sign(IΨi)

If p = 2, then δ∗i = ϵ · IΨi

∥IΨi∥2
.

If p = 1, then ∀j ∈ [1, Q], δ∗i,j =

{
sign(IΨi(j)) · ϵ if j ∈ argmaxm∈[1,Q] IΨi(m)

0 otherwise

Influence scores Finally, it remains to discuss how to compute the influence scores of each transition
in D, i.e., IΨi = ∇Ψiρ(Ψ). Recall that ρ(Ψ) is not only a function of Ψ but also θ(Ψ) which is also
a function of Ψi. Hence, using the chain rule, we get for each i ∈ [1 . . . n] that

IΨi ≈
∂ρ(θ,Ψ)

∂Ψi

∣∣∣∣
θorg(Ψ)

+
∂ρ(θ,Ψ)

∂θ

∣∣∣∣
θorg(Ψ)

∂θ(Ψ)

∂Ψi
. (4)
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The computation of the partial derivative ∂θ(Ψ)
∂Ψi

is not straightforward. However, we can approximately
compute it as ∂θ(Ψ)/∂Ψi = H−1

θorg(Ψ)
∂2L(θ,Ψi)/∂θ∂Ψi

∣∣
θorg(Ψ)

where Hθorg(Ψ) = ∂2L(θ,Ψ)/∂θ2
∣∣
θorg(Ψ)

(Koh and Liang, 2017, Section 2.2). See Appendix C for more details on how to compute the
influence score efficiently.
We provide the complete pseudocode and description of our DOPE Attack algorithm in Appendix C.

5 EXPERIMENTS

In this section, we investigate the strengths and weaknesses of the DOPE attack. First, we evaluate
the effectiveness of the DOPE attack on OPE methods for different values of the attack budget. To
measure the effectiveness of our attack model, we compute the percentage error in the value function
estimate relative to the initial value estimate. We report the 95% bootstrap confidence intervals of the
interquartile mean (IQM) of percentage error using our results from the 10 runs (10 datasets) (Agarwal
et al., 2021). Second, we compare the performance of DOPE with two custom baselines: Random
DOPE and Random Attack. We evaluate our DOPE attack on two medical (HIV (Ernst et al., 2006)
and Cancer (Gottesman et al., 2020)), two control (Cartpole and MountainCar) (Brockman et al.,
2016) and Continuous Gridworld (see Appendix B) domains.

Experimental Results: In our first experiment, we fix the percentage of corrupt data points α = 0.05
and vary the budget ϵ as frac · σ, where frac varies from 0.0 to 0.51 in step-sizes of 0.05 and
σ2 = 2

N ·(N−1)

∑N
i=1

∑N
j=i+1 ∥ξ(si) − ξ(sj)∥2p is the standard deviation of all pairwise distances

between the state-features in the dataset. Figure 1 compares the percentage error in the value estimate
of the OPE methods in all domains. Our results show that with a perturbation budget as small as
ϵ = 0.5σ, DOPE can result in a substantial error in the policy’s value in HIV, Cancer, and Continuous
Gridworld domains. Further, a larger attacker’s budget means the DOPE model has more leeway
on the perturbations that it can add to the dataset, and hence, we observe larger errors for larger
budget values. In our second experiment (Figure 2), we fix frac = 0.1 and compare the percentage
error in the value estimate of the OPE methods for different percentages of corrupt data points (α) in
HIV, Cancer, and Continuous Gridworld domains. We observe that a larger percentage of corrupt
data points yields a larger percentage error in the value estimates. This is not surprising since the
attacker’s budget ϵ is local to each data point and is not impacted by the number of points perturbed.
Finally, in our third experiment, we compare the DOPE attack to two custom baselines: Random
Attack and Random DOPE Attack on the Continuous Gridworld domain. Here, Random Attack
chooses αn random points to perturb and sample perturbations for these points from a uniform l1
norm ball with a radius equal to the perturbation budget ϵ (Calafiore et al., 1998). On the other hand,
Random DOPE selects points randomly but updates them using Theorem 4.1. The purpose of using
this ablation is to investigate the benefit of selecting data points to perturb based on their influence
scores as suggested in Theorem 4.1. We fix the value of α to 0.05. For each dataset and each value
of the budget ϵ, we average the percentage change in the value estimate for Random DOPE attack
and Random attack over 50 trials. Figure 3 demonstrates that the Random Attack fails to introduce
any significant error in the value-function estimate and, therefore, cannot be used as an alternative
to the DOPE attack model. Further, as expected, it can be seen that when the points to perturb are
randomly selected (Random DOPE), it is likely to result in a smaller adversarial impact than when
influential data points are chosen for perturbations (DOPE). We summarize the impact of DOPE
attack (ϵ = 0.5σ and α = 1.0, p = 1) on all OPE methods and domains in Table 2.

Domain BRM WIS PDIS CPDIS WDR
lb ub lb ub lb ub lb ub lb ub

Cancer 0.9 1.2 0.7 0.7 13.7 16.2 0.7 0.9 89.0 101.9
HIV 254.1 276.9 0.0 0.1 1.2 1120.0 0.0 0.1 54.4 101.2
Gridworld 96.8 99.3 0.0 0.0 97.9 98.2 0.0 0.0 16.7 17.7
Cartpole 0.0 0.0 0.0 0.1 3.44e12 5.33e13 0.0 0.0 0.0 0.0
MountainCar 0.1 0.1 100.0 100.0 98.2 99.6 47.4 98.7 0.0 0.0

Table 2: Summary of the errors achieved by data poisoning across domains and OPE algorithms. Here lb
and ub denote the lower limit and upper limit of 95% bootstrap confidence intervals of interquartile mean of
percentage error in the value estimates, over 10 runs. We observe that the attack is successful on most methods
across domains. CPDIS and WIS are the most resilient OPE methods.
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6 CONCLUSION

We proposed a novel data poisoning framework to analyze the sensitivity of OPE methods to
adversarial contamination at train-time. We formulated the data poisoning problem as a bilevel-
optimization problem and proposed a computationally tractable solution that leverages the notion
of influence functions from robust statistics literature. Using the proposed framework, we analyzed
the sensitivity of five popular OPE methods on multiple datasets from medical and control domains.
Our experimental results on various medical and control domains demonstrated that existing OPE
methods are highly vulnerable to adversarial contamination thus highlighting the need for developing
OPE methods that are statistically robust to train-time data poisoning attacks.
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A PROOFS

Proof of Theorem 4.1. Consider the optimization problem in equation 3: Notice that in equation 3,
∀k ∈ [1, . . . N ], IΨi

is independent of δk and so the optimal perturbation δ∗k can be independently
computed by solving δ∗k ∈ argmaxx I

T
Ψk,θ,Ψ

x s. t. ∥x∥p ≤ ϵ. Further, from the theory of convex
optimization (Boyd and Vandenberghe, 2004), we know that the p-norm ∥x∥p of any vector x ∈ RM
can be expressed using its dual norm as ∥x∥p = max zTx s. t. ∥z∥q ≤ 1 where 1/p+ 1/q = 1. Thus,
given the optimal-perturbation δ∗k ∀k ∈ [1, . . . n], the problem in Equation (3) boils down to solving

max
s∈{0,1}N

n∑
k=1

∥IΨk,θ,Ψ∥q∑
k

sk = α · n.
(5)

It is now easy to see that the optimal set of transitions for the approximate attack problem in equation 3
is simply the set of αn transitions with the largest value of the q-norm of their influence scores. The
closed form solution for δ∗k at p = 1, 2,∞ follows from standard convex optimization results for
∥x∥q = max zTx s. t. ∥z∥p ≤ 1 in (Boyd and Vandenberghe, 2004).

B EXPERIMENTAL DETAILS

B.1 ADDITIONAL DOMAIN DETAILS

Continuous Gridworld: The gridworld domain consists of a 2-dimensional state space that represent
the coordinates of the agent and 2 actions (a0, a1) that determines the direction and step size of
the agent. The task is to begin at coordinate (1, 1) and move towards coordinates (50, 50). Taking
action a0 at (x, y) transitions the agent to (x+0.2, y+0.45) with probability 1.0. On the other hand,
taking action a1 transitions the agent to (x+ 0.3, y + 0.5) with probability 0.95 and to (1, 1) with
probability 0.05. If the agent transitions to (x′, y′), the agent receives a reward of (x+ 0.5y). We set
the maximum length of the episode to 50 and collected 500 trajectories using the behavior policy.

B.2 EXPERIMENTAL RESULTS

(a) Cancer (b) HIV (c) Gridworld

Figure 1: Figures 1a to 1c compares the effect of DOPE attack on BRM, WIS, PDIS and CPDIS and WDR
methods in the Cancer, HIV and Continuous Gridworld domains (left to right) for different values of attacker’s
budget ϵ = frac · σ and p = 1 (ℓ1 norm). Larger the value of frac, the larger are the perturbations added by the
DOPE attack, and accordingly we observe larger errors in the value estimates.

C ALGORITHM

Algorithm outline We outline how to approximately solve the DOPE optimization equation 1 in
Algorithm 1, which consists of two main steps. In the first step, we compute an approximation of the
optimal set of transitions to perturb S∗

α by choosing αn points in Ψ with the largest q-norm of their
influence scores ∥Iψ·∥q. In the second step, we compute ∆ for all points in S∗

α using Theorem 4.1
and use line search to find the optimal step size that guarantees an increase in the error of the value
estimate. The second step may be repeated until no further perturbation to data points in S∗

α results in
an increase in error in the value estimate.
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(a) Cancer (b) HIV (c) Gridworld

Figure 2: Figures 2b to 2c compares the effect of DOPE attack on BRM, WIS, PDIS and CPDIS and WDR
methods in Cancer, HIV and Continuous Gridworld domains (left to right) for different percentages of corruption
α at ϵ = 1.0σ and p = 1 (l1 norm). Larger the value of α, the larger is the number of points perturbed by the
DOPE attack, and accordingly we observe larger errors in the value estimates.

(a) BRM (b) IS (c) WDR

Figure 3: Figures 3a to 3c compare the effects of Random attack, Random DOPE attack (an ablated version of
DOPE), and DOPE attack on the error in the value function estimates of BRM, IS and DR methods (left to right)
in Continuous Gridworld domain. DOPE attack outperforms both the Random DOPE and Random attacks at
nearly all values of the attacker’s budget.

Algorithm 1: OPE Attack Algorithm
Input: Features Ψ, attack budget ϵ, % of corrupt transitions α, norm-type p, threshold µ
Compute ∥IΨk,θ,Ψ∥q for all i = 1, . . . , n ;
S∗
α ← αn indices with largest ∥IΨi,θ,Ψ∥q ;
θorg ← argminθ∈RP L(θ,Ψ) ;
for k ∈ S∗

α do
Compute IΨk,θ,Ψ using equation 4 ;
Compute δ∗i ∈ argmaxδ∈RQ I⊤Ψi,θ,Ψ

δ where ∥δ∥p ≤ ϵ using Item 2 in Theorem 4.1;
end
Use line search to find appropriate step-size β s. t. the value estimate increases
ρ(θ, β × (Ψ + δ∗))− ρ(θ,Ψ) > 0;

Set Ψ← β × (Ψ + δ∗) ;
return Ψ

Efficient Computation of Influence Score: The derivatives in equation 4 can be easily computed
using automatic-differentiation software like PyTorch (Paszke et al., 2019). Computing the influence
score IΨi can be very expensive due to the the Hessian-inverse term H−1

θorg(Ψ) which requires
O(P 3) operations to compute. Fortunately, as shown in (Koh and Liang, 2017), we can avoid
the computation of the Hessian-inverse term while computing IΨi

by instead first approximately

computing the Hessian-inverse vector product cprod = H−1
θorg(Ψ)

∂ρ(θ,Ψ)
∂θ

∣∣∣∣
θorg(Ψ)

in O(nP ) time using

the Pearlmutter’s method (Pearlmutter, 1994)

D ADDITIONAL PRELIMINARIES

OPE methods are broadly classified into three categories: Direct, Importance Sampling, and Hybrid
Methods (Voloshin et al., 2020).

9



ICLR 2022 PAIR2Struct Workshop

Direct Methods estimate the value of the evaluation policy by solving for the fixed point of the
Bellman Equation with an assumed model for the state-action value function q or the transition model
P . We illustrate our attack on one of the most popular Direct Methods, namely the Bellman Residual
Minimization (BRM) method (Voloshin et al., 2020; Farahmand et al., 2008). This method solves a
sequence of supervised learning problems with state-action features ϕ(s, a) as the predictor and the
1-step Bellman update T πq = r+ γPq as the target response. T π : RS → RS is commonly referred
to as the Bellman operator. The objective optimized in BRM is the Mean Squared Bellman residual
(MSBR), defined as a weighted L2 norm:

MSBR(η) = ∥qη − T πqη∥2W . (6)
Here, the linear Q-value function qη is parameterized by η, i.e., q = Φη. Weight matrix W =
diag[µπ] where µπ ∈ [0, 1]S represents the stationary state distribution of policy π. The value of a
policy can then be computed as

vBRM =
∑
s∈D0

∑
a∈A

p0(s) · π(s, a) · qη(s, a) . (7)

Importance Sampling Methods (IS) (Kahn and Marshall, 1953) are based on Monte-Carlo techniques
and compute unbiased but high-variance value estimates. The key idea is to compute the value of
policy π as the weighted average of the returns of the trajectories in D, where each trajectory is re-
weighted by its probability of being observed under evaluation policy πb. We focus on attacking three
popular variants of importance sampling methods, namely the Per-Decision, Consistent Weighted Per-
Decision, and Weighted IS methods (PDIS, CPDIS, WIS) (Precup, 2000; Thomas, 2015; Rubinstein,
1981). Let giT =

∑T
t=0 γ

trit represent the returns observed for the ith trajectory in the dataset D
and assume that that the behavior policy is parameterized by θ and estimated from data D using
maximum likelihood estimation (MLE) (Vaart, 1998). In order to define the OPE estimates of the
value functions, we need the importance sampling weights ρi0:t for time step t defined as

ρi0:t =

t∏
t′=0

π(ait′ |sit′)
πθbb (ait′ |sit′)

.

Here, the estimate of the behavior policy is defined as πθbb (a|s) =
exp(ϕ(s, a)θb)(

∑
a′∈A exp(ϕ(s, a)θb))

−1 for each s ∈ S and a ∈ A. Then the WIS, PDIS,
and CPDIS value function estimates are defined as

vWIS =

(
N∑
i=1

ρi0:T

)−1 N∑
i=1

ρi0:Lg
i
T , (8)

vPDIS =
1

N

N∑
i=1

T∑
t=1

γt−1ρi0:tr
i
t, (9)

vCPDIS =

T∑
t=1

γt−1

∑N
i=1 ρ

i
0:tr

i
t∑N

i=1 ρ
i
0:t

. (10)

Hybrid Methods combine both Direct and IS methods to generate value estimates with low bias and
variance. An important hybrid method is the Doubly Robust (DR) estimator (Jiang and Li, 2016),
which decreases the variance in the IS estimate by using the estimate from a method like BRM. The
DR and Weighted DR (WDR) estimators are given by

vDR =
1

N

N∑
i=1

T−1∑
t=0

ρi0:tw
i
t +

1

N

N∑
i=1

vη(s
i
0).

vWDR =

N∑
i=1

T−1∑
t=0

ρi0:t∑N
i=1 ρ

i
0:t

wi
t +

1

N

N∑
i=1

vη(s
i
0).

(11)

where wit = (rit− qη(sit, ait)+vη(sit)) and vη(sit) =
∑
a∈A π(s, a) · qη(s, a). Here the parameters of

the value function q are estimated using Direct Methods like BRM. Because empirical studies show
that are no clear winners among the three methods (Voloshin et al., 2020), we investigate attacks on
representative methods from each type.
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