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Abstract

Reinforcement Learning has recently proven extremely successful in the context of robot
control. One of the major reasons is massively parallel simulation in conjunction with con-
trolling for the so-called “sim to real” gap: training on a distribution of environments, which
is assumed to contain the real one, is sufficient for finding neural policies that successfully
transfer from computer simulations to real robots. Often, this is accompanied by a layer
of system identification during deployment to close the gap further. Still, the efficacy of
these approaches hinges on reasonable simulation capabilities with an adequately rich task
distribution containing the real environment. This work aims to provide a complemen-
tary solution in cases where the aforementioned criteria may prove challenging to satisfy.
We combine two approaches, maximum-entropy reinforcement learning (MaxEntRL) and
rollout, into an inherently robust control method called Maximum-Entropy Learning-
Based Rollout (MELRO). Both promise increased robustness and adaptability on their
own. While MaxEntRL has been shown to be an adversarially-robust approach in disguise,
rollout greatly improves over parametric models through an implicit Newton step on a model
of the environment. We find that our approach works excellently in the vast majority of
cases on both the Real World Reinforcement Learning (RWRL) benchmark and on our own
environment perturbations of the popular DeepMind Control (DMC) suite, which move be-
yond simple parametric noise. We also show its success in “sim to real” transfer with the
Franka Panda robot arm.

1 Introduction

Reinforcement Learning (RL) identifies optimal behavior strategies through an automated process of trial and
error and constitutes one of today’s standard approaches for addressing complex sequential decision-making
problems. In particular, the application of RL to humanoid robots has achieved extremely impressive results.
For example, they can now successfully navigate through complex terrain (Sun et al., 2025), dexterously
manipulate real-world objects purely from vision (Lin et al., 2025), and even perform complex dynamic
movements (Zhuang et al., 2024). In most cases, learning policies for such tasks rely on massively parallel
simulations, given that training directly on hardware is impractical in nearly all instances: often, millions
of interaction steps are required. However, training control policies exclusively in simulation frequently
uncovers a phenomenon referred to as the “sim to real” gap: a policy that has been extensively optimized
in simulation demonstrates degraded performance, or even complete failure, during real-world deployment.

One successful and commonly used approach is domain randomization (Tobin et al., 2017), where the policy
is exposed to a wide range of simulated environments. Key simulation parameters are randomized during
policy training, creating more diverse experiences and forcing policies to become robust to environmental
variations. The real world is then assumed to be just another variation within that distribution. Fulfilling
this assumption rests on two key desiderata: (i) all critical environment parameters and their ranges need
to be carefully identified such that the real world is close or contained within; (ii) the space needs to be
sufficiently tight to avoid overly conservative policies that need to compromise performance over too many
different instances. Whereas the last point can be addressed in parts by domain identification, this process
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requires precise domain knowledge, extra engineering effort, and additional computing power to work well
(Josifovski et al., 2022; 2024; Dulac-Arnold et al., 2021).

In this paper, we present an orthogonal approach to domain randomization tailored to instances where
it is challenging to specify all key simulation parameters or too costly to exhaust all. To that end, we
integrate maximum-entropy reinforcement learning (MaxEntRL) (Ziebart et al., 2008) and rollout (Tesauro,
1994; Bertsekas, 2024) into an inherently robust method called Maximum-Entropy Learning-Based Rollout
(MELRO). We demonstrate that MELRO features and extends the strengths of both frameworks. While
MaxEntRL enhances policy robustness by promoting exploratory behaviors, rollout compensates for residual
uncertainties through real-time re-planning. We conduct extensive evaluations in simulation and in a “sim to
real” transfer to demonstrate the adaptability and the robustness of our proposed approach. We benchmark
its performance on the diverse Real World Reinforcement Learning (RWRL) suite tasks. Furthermore, we
assess its capabilities on a custom set of challenging environment perturbations applied to the popular
DeepMind Control (DMC) suite, which are designed to probe robustness beyond simple parametric noise.
Finally, we present a successful “sim to real” transfer of MELRO on the Franka Panda robot arm.

2 Preliminaries

2.1 Problem

We assume that the problem consists of an unknown number of Markov Decision Processes (MDPs) (Bell-
mann, 1957) sharing the same action and state space. This can be formalized as a partially observable Markov
Decision Process (POMDP) (Kaelbling et al., 1998), which is characterized by the tuple (S,A,Ω, p, r, o, p0, γ),
where S, A and Ω are the state, action and observation spaces, p : S × A 7→ S is the transition function,
r : S × A 7→ R is the reward function, o : S 7→ Ω is the observation function, γ ∈ [0, 1] is a discount factor,
and p0 is the initial state distribution (Humplik et al., 2019). The state space S then consists of the state
space of the MDPs, denoted as SM, and a set of task distributions T . Initially, the task specification τ is
sampled from T and maintained through time, assuming it is the only unobservable part of the state. This
results in S = (SM × T ), Ω = SM and o((s, τ)) 7→ s, where s ∈ SM. The transition and reward functions
and the initial state distribution are also conditioned on τ . The goal is then to find a policy π : SM 7→ A
that maximizes the expected discounted return under the sampled but unknown task specification τ :

π (ak|sk) = arg max
ak

max
ak+1:T

EΓτ

[
T∑
t=k

γtr(st, τ, at)
]
, (1)

where Γτ = sk:T is a state trajectory where the states are sampled from the transition function of the MDP
τ , and k ≤ T ∈ N.

2.2 Maximum-Entropy Reinforcement Learning

Maximum-Entropy Reinforcement Learning (MaxEntRL) extends traditional RL by augmenting Equation 1
with a conditional regularization term, the policy entropy Hπ:

πMaxEnt(ak|sk) = arg max
ak

max
ak+1:T

EΓτ

[
T∑
t=k

γtr(st, τ, at)
]

+ ηHπ(ak|sk),

Hπ(ak|sk) = −
∫
π(ak|sk) log π(ak|sk) dak,

(2)

where η > 0 is a temperature parameter controlling the entropy trade-off and the entropy Hπ(ak|sk) is ap-
proximated with Monte Carlo integration. Solving for Equation 2 results in stochastic policies characterized
by non-zero probability for every action at each state. The entropy is higher when more actions lead to
similar rewards and lower when one action is substantially better.
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Figure 1: Approach. We propose a framework that uses both maximum-entropy reinforcement learning
and rollout to achieve inherently robust control complementary to domain randomization. Our method
incorporates maximum-entropy regularization during off-line training and on-line planning. To achieve this,
the world model is trained on observations and action distribution parameters. Planning then occurs directly
within the action distribution parameter space.

2.3 Learning-based Rollout

Rollout is a control method employing a dynamic system model to predict future behavior and optimize
controls online. An elegant theoretical interpretation of rollout positions it as implementing a Newton step
in value space, a perspective described by Bertsekas (2024). At each time step, rollout optimizes the controls
for a given lookahead horizon L ∈ N to minimize the predicted future costs and applies the first optimized
control in a receding-horizon fashion:

πr(ak|sk) = arg max
ak

max
ak+1:k+L−1

EΓτ

[
r(sk, τ, ak) +

k+L−1∑
t=k+1

γt−kr(st, τ, at) + γLR(sk+L)
]
, (3)

where R : SM 7→ R+ is the terminal reward function estimating all future rewards and Γτ = sk:k+L. The
rollout components, the dynamics model, reward, and terminal cost function are typically hand-engineered.
Instead, we use multi-layer perceptrons (MLPs) whose parameters are learned from environmental interac-
tions.

3 Maximum-Entropy Learning-based Rollout

MELRO uses the control framework introduced by Bertsekas (2022). It consists of two stages: off-line
training and on-line play. The approach is visualized in Figure 1.

3.1 Off-line Training

In off-line training, we use a model-based reinforcement learning (MBRL) framework to train a world model,
a base policy, and a critic.

Model Learning The model architecture and training are based on the variational state-space model used
in Bayer et al. (2021), with the following modifications. Given that each individual task considered here is
fully observable, the emission model directly propagates the states forward as the mean of a Gaussian with
fixed variance:

p(xt|st) = N
(
xt|µ = st, σ

2
x = 0.01

)
. (4)
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Moreover, a cost-function head is introduced, which maps states to rewards:

rθr
(rt|st, ât) = MLPθr

(st, ât), (5)

where â = (µ, σ) is the mean and the standard deviation of a Gaussian distribution. The transition is
modeled as a Gaussian residual component where the output is a convex combination of the previous state
st−1 and an update ŝt−1. The mixing coefficient ρ and the update are outputs of a MLP with parameters
θs:

pθs
(st|st−1, ât−1) = N

(
µ = RCθs

(st−1, ât−1), σ2
s = 0.001

)
(6)

RCθs(st−1, ât−1) = ρ ∗ st−1 + (1 − ρ) ∗ ŝt−1 (7)

(ρ̂, ŝt−1) = MLPθs
(st−1, ât−1), ρ = 1

2(softsign(ρ̂) + 1). (8)

The inference model, parametrized by θq, is given by a backward-oriented GRU (Cho et al., 2014) model:

q(st|x1:T , â1:T ) = GRUθq (x1:T , r1:T , â1:T )t. (9)

All model components are trained on a replay buffer containing all policy-environment interactions. This is
achieved by optimizing the model parameters θr, θs, and θq such that the evidence lower bound (ELBO) is
maximized.

Policy Learning The policy is modeled as a normal distribution, parametrized by ϕ, where a two-headed
MLP estimates the mean and standard deviation:

πϕ(a|s) = N (a|(µ, σ) = MLPϕ(s)) . (10)

The critic v̂χ is modeled as a deterministic MLP with parameters χ. Both the policy and the critic use
layer normalization (Ba et al., 2016). The critic loss Lv̂χ is given by a supervised learning objective on
TD(λ)-targets which are computed on imagined model and policy rollouts:

Lv̂χ = Eat∼πϕ

[
1
Hv

Hv∑
t=0

1
2 ∥v̂χ(st, at) −R(st)∥2

2

]
, (11)

with TD(λ)-targets:

R(st) = rθr (st, at) + ηHπϕ
(at|st) + γ ((1 − λ)sg (v̂χ(st, at)) + λR(st+1)) , (12)

R(st+Hv ) = sg (v̂χ(st+Hv , at+Hv )) , (13)

where sg is the stop-gradient operator. The policy loss Lπ̂ϕ
is given by the expected values of the TD(λ)-

targets:

Lπϕ
= Eat∼πϕ

[
Hπ∑
t=0

R(st)
]
. (14)

The optimal parameters for the policy and critic are obtained by maximizing the weighted sum of the policy
and critic loss on model rollouts. Additionally, a regularization term consisting of the norm of the gradients of
the policy and critic loss is introduced to improve the convergence of the optimization problem by increasing
the conservativity (Mescheder et al., 2017). The policy-critic loss is then given by:

Lπϕ,v̂χ
= ζLπϕ

+ Lv̂χ
+ η ∗

(∥∥∇Lπϕ

∥∥2
2

|∇Lπϕ
|

+
∥∥∇Lv̂χ

∥∥2
2

|∇Lv̂χ |

)
, (15)

where the loss is scaled by a weighting hyperparameter ζ and the conservativity regularization term by η.
During training, the gradients of all components are clipped by the Euclidean norm, with a bound specified
for each component, and zero-centered Gaussian noise is added to the actions to enhance exploration.
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Figure 2: Disabled joints tasks. Vi-
sualization of the Walker, Cheetah, and
Quadruped joints.

Figure 3: Overview. Average reward of all evaluated meth-
ods over all simulated environments and perturbations.

3.2 On-line Play

In on-line play, we combine the trained components into the rollout algorithm. We thereby improve standard
rollout in the following ways. First, online planning happens in the space of action means and standard
deviations of a Gaussian policy. Secondly, we generate imagined rollouts for the planning horizon based on
the learned world model and the base policy. The resulting base policy action distribution parameters, i.e.
means and standard deviations over time, are utilized as initial values for gradient descent. Thirdly, in an
analogous manner to standard MaxEntRL, the rollout cost function, as defined in Equation 3, is regularized
by the entropy of the action distribution. The idea behind this regularization is that it will lead to more
robust actions being selected during planning. Furthermore, immediately following the model rollouts and
before the application of the critic, a fixed number of base policy steps are performed as suggested by
Bertsekas (2024). This truncated rollout with the base policy improves the stability property of the rollout
policy at low additional computational costs.

The resulting rollout problem is then given by the following equations:

πMELRO(âk|sk) = arg max
âk

max
âk+1,...,âk+L,âk+L+m

LMELRO,

LMELRO = E

[
rθr

(sk, ak) +
k+L−1∑
i=k+1

γi−krθr
(si, ai) + R̃k+L

]
+ η

k+L−1∑
j=k

Hπ(âj |sj),

R̃k+L =
k+L+m−1∑
j=k+L

rθr
(sj , aj) + γk+L+mv̂χ(sk+L+m, ak+L+m),

(16)

where âi = (µi, σi), ai ∼ N (µi, σi) ∀i ∈ {k, k+1, . . . , k+L, ak +L+m}, ak+L:k+L+m−1 is sampled from the
base policy πϕ, sk:k+L+m is sampled from the transition function pθs and R̃k+L is the approximation of the
future rewards starting from the time step k+L. The final controls are then computed in a receding-horizon
fashion, optimizing Equation 16 using Adam (Kingma & Ba, 2015), where the search direction in the space
of action means and standard deviations is generated using Augmented Random Search (ARS) (Mania et al.,
2018).

4 Experiments

To evaluate the robustness and transfer capabilities, experiments were conducted both in simulation and on
a real Franka Panda robot arm.
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Figure 4: Individual simulation results. Average reward and 95%-CI for a subset of perturbations. The
horizontal brackets indicate the positioning of the joints.

4.1 Simulation

We evaluated MELRO across four simulated environments from the DMC suite (Tassa et al., 2018), paired
with five distinct perturbations. Four perturbation types - torso and thigh length for “Walker Walk”, and
shin length and joint damping for “Quadruped Walk” - have been adapted from the RWRL suite (Dulac-
Arnold et al., 2020). The fifth perturbation type - disabled joints for “Walker Walk”, “Quadruped Walk”,
and “Cheetah Run” - has been extended on Nagabandi et al. (2019). Even though the joints repeat for
each extremity, we still noticed differences in the performance of all evaluated methods, so we disabled all
the joints individually. This perturbation type introduces strong non-parametric disturbances, which move
beyond simple noise. The joints for each environment are visualized in Figure 2.

We ablate MELRO against its MaxEnt base policy, the base policy trained without MaxEntRL and stan-
dard rollout over the latter. Both baseline policies and their corresponding dynamics models were initially
trained on standard DMC environments. We then picked the best-performing model, policy, and critic com-
bination and optimized the rollout parameters for each perturbation through hyperparameter search. Final
performance metrics were obtained by assessing each methodology across all perturbation tasks through 10
independent random seed evaluations containing 10 independent rollouts.

The overall aggregated metrics are visualized in Figure 3, and the results for a subset of perturbations are
shown in Figure 4 (Figures showing all the perturbations are in the appendix). In general, the MaxEnt
policies produce superior results to the non-MaxEnt policies, and rollout enhances the performance of the
respective base policy.

4.1.1 Improvement of Rollout over Neural Base Policies

The MaxEnt base policy already demonstrated robust performance across a broad spectrum of perturba-
tions, achieving consistently high returns relative to the perturbation. Nevertheless, there were still some
perturbations where the MaxEnt base policy exhibited catastrophic degradation in performance, highlighting
inherent limitations in its generalization capacity (compare to Figure 4). In contrast, MELRO outperformed
the MaxEnt base policy in almost all tested perturbation scenarios. Notably, for perturbations where the
performance of the MaxEnt base policy deteriorated significantly, the MELRO algorithm demonstrated gen-
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Figure 5: Model Predictions. Comparison of the abso-
lute, accumulated error between the world model trained
in a MaxEnt framework and the one without for all per-
turbations.

Figure 6: Improvements. ECDFs of re-
ward improvements of MELRO and stan-
dard rollout relative to the respective base
policy.

erally a considerable enhancement in its effectiveness in adapting to the new situation (compare, for example,
to the disabled back hip joint of the Cheetah in Figure 4). Also, the standard rollout demonstrates a clear
enhancement in performance when compared with the non-MaxEnt base policy.

4.1.2 Effects of Maximum-Entropy on World Models and Rollout

The training of a world model using MaxEntRL has already been demonstrated to enhance exploration,
consequently leading to a more accurate world model (Ma et al., 2022). As demonstrated in Figure 5, this
approach also results in a more robust model and lower prediction errors. In addition, the superior model
produces superior control results. This is apparent from the more pronounced improvement of MELRO over
its base policy, compared to the improvements shown by standard rollout (refer to Figure 6).

4.2 Franka Panda Robot Arm

We evaluated MELRO’s “sim to real” capabilities by testing it on a simple reach task using the Franka
Emika Panda robot arm. The objective was to maneuver the end-effector robot arm to a randomly selected
position in front of the robot. To train the components in simulation, we modeled the task in MuJoCo
(Todorov et al., 2012) using the Franka Panda MuJoCo Menagerie model (Zakka et al., 2022). The reward
function has been selected as the negative sum of squares of the difference between the current end-effector
position and the goal, minus a scaled penalty for rotating the end-effector out of a neutral orientation. It
is important to note that no further reward shaping has been applied. Here, all policies - the base policy,
rollout, MaxEnt base policy, and MELRO - have been trained to generate joint velocity actions given the
current joint angles, joint velocities, and the current goal. Detailed information about the simulation is given
in the appendix. The same training process as explained in Chapter 4.1 has been used. During deployment,
both policies generated new joint velocity actions at a frequency of 10 Hz. These were then converted into
joint torque commands using a PD-controller running at 1 kHz.

Although we evaluated multiple sets of hyperparameters for both the base policy and rollout, none of them
produced stable and safe actions on the real robot. Since we did not apply extensive reward shaping, we
believe that exploration for the non-MaxEnt components during the MBRL stage was insufficient. Conse-
quently, MELRO was only evaluated against the MaxEnt base policy. The mean distance for each method
over the 20 test runs on the real Franka Panda is shown in Figure 8. Additionally, Figure 9 visualizes the
individual differences between MELRO and the MaxEnt base policy for each test trajectory. On average,
MELRO was 11.7% closer to the goal than the MaxEnt base policy. This was achieved through faster
convergence and generally bringing the end-effector closer to the goal.
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Figure 7: Franka Trajectory. Example of a real-world trajectory of the Franka Panda robot arm, controlled
by MELRO. The movement took approximately five seconds.

Figure 8: Franka Panda.
Mean goal distances in cm
of the MaxEnt base policy
and MELRO on the real-
world Franka Panda.

Figure 9: Test trajectories. Difference between
MELRO and the MaxEnt base policy for all test runs
in cm.

5 Related Work

5.1 Maximum-Entropy RL

It is well-known that MaxEntRL improves exploration (Haarnoja et al., 2017; Huang et al., 2020). This
approach is also widely adopted, underpinning prominent model-free algorithms like SAC (Haarnoja et al.,
2018), influencing implementations of methods like PPO (Schulman et al., 2017), and featuring in model-
based approaches such as DreamerV3 (Hafner et al., 2023) and TD-MPC2 (Hansen et al., 2024). The primary
distinction between the usage of MaxEntRL in MELRO and the aforementioned algorithms is that MELRO
additionally incorporates maximum entropy regularization in the online planning objective.

Recent theoretical work established that MaxEntRL implicitly optimizes a lower bound on a robust RL
objective, conferring inherent resilience against perturbations in dynamics and rewards without specialized
robust optimization techniques (Eysenbach & Levine, 2022; Brekelmans et al., 2022). Despite this advan-
tage, the resulting policies can sometimes be overly conservative, potentially sacrificing peak performance
(Josifovski et al., 2022). Furthermore, standard MaxEntRL lacks explicit mechanisms for targeted adapta-
tion, potentially hindering swift responses to rapidly evolving environments. Our work aims to address these
limitations, harnessing MaxEntRL benefits while enabling more controlled robustness and faster adaptation,
by adding online planning.

5.2 Robustness in Model-Based Reinforcement Learning

In model-based reinforcement learning (MBRL), model inaccuracies are commonly addressed by incorporat-
ing model uncertainty into the learning objective (Janner et al., 2019; Wang et al., 2024) or directly into the
decision-making process (Chua et al., 2018; Wu et al., 2022). Epistemic uncertainty is typically estimated by
ensemble disagreement but can also be predicted directly by the model. Although this method encourages
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the selection of actions that are more predictable and therefore likely to be more robust, it also leads to less
exploration and, consequently, to suboptimal policies. In addition, all methods depend on accurate estimates
of the uncertainty. Particularly for longer planning horizons, reduced performance and sampling efficiency
have been observed as the inevitable model inaccuracies are interpreted as model uncertainty (Wang et al.,
2024). Given that MELRO employs MaxEnt regularization, it is not subject to these limitations.

6 Conclusion

We introduced MELRO, a novel, inherently robust control method that combines maximum-entropy rein-
forcement learning (Haarnoja et al., 2018) with rollout, an online planning method (Tesauro, 1994). Instead
of relying on extensive domain randomization to bridge the “sim to real” gap, we explored methods that are
inherently more robust to such deviations from the model at hand. It is hence able to cope with variations
that are unknown a priori. Experimentally, this approach significantly enhances system robustness against
diverse and unforeseen dynamical perturbations and the success of “sim to real” transfers. Our results clearly
confirm that rollout consistently improves performance and robustness across various scenarios, substanti-
ating and extending the findings presented by Bertsekas (2024). Another appeal of this approach is its
computational efficiency; it allows for the direct reuse of pre-trained world models, policies, and critics from
standard model-based RL frameworks, without the necessity of retraining them from scratch. We believe
that our work constitutes an important contribution to the research and deployment of autonomous agents
that are robust to the unexpected.
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A MELRO in Detail

In Algorithm 1 and in Algorithm 2, we provide a detailed description of the off-line training and on-line play
of MELRO.

Algorithm 1: MELRO (off-line training)
input : θs, θr, θq, ψ, χ: initial transition, reward, inference, policy and critic parameters

ω, γ: expected return weighting factor and discount factor
ninit, Tinit: number of samples, and time steps for model pre-training
nt, Ttrain: number of samples, and time steps for model training
D, D̄: optimization steps for model and for policy and critic
Hpolicy, Tpolicy: number of samples and time steps for policy and critic training
B: replay buffer
envtrain: unperturbed training environment.

output: pθs
, rθr

and qθq
: learned transition, reward and inference functions

πψ, vχ: learned neural base policy and critic
1 begin
2 // Pre-train model:
3 Sample ninit trajectories {Γinit}1:ninit each with length Tinit from envtrain and a random policy
4 B = B ∪ {Γinit}1:ninit

// Add initial trajectories to buffer
5 while not converged do
6 // Train model:
7 {Γ}1:Hmodel ∼ B // Sample H trajectories from buffer
8 for d = 1, . . . , D do
9 Update model parameters using the ELBO and Adam

10 end
11 // Update policy and critic:
12 for d̄ = 1, . . . , D̄ do
13 Sample Hpolicy trajectories {Γ}1:Hpolicy

each with length Tpolicy from p̂θ and r̂θ using πθ
14 Compute TD(λ) returns R using Equation 12 ∀t ∈ {1 : Tpolicy} and ∀h ∈ {1 : Hpolicy}
15 Update policy and critic parameters using Equation 15 and Adam
16 end
17 Sample nt trajectories {Γ}1:nt

each with length Ttrain from envtrain and πψ
18 B = B ∪ {Γ}1:nt

// Add trajectories to buffer
19 end
20 end
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Algorithm 2: MELRO (on-line play)
input : pθs

, rθr
and qθq

: learned transition, reward and inference functions
πψ, vχ: learned neural base policy and critic
β,D: learning rate and optimization steps for MPC
envdeploy: perturbed deploy environment.

output: (a1, ..., aT ): actions
1 begin
2 s0 = envdeploy.reset()
3 for t = 1, . . . , T do
4 Sample initial action mean and standard deviation trajectory Γ0

t = (â0
t , â

0
t+1, ..., â

0
t+H) from πψ

and pθs

5 Add small uniform noise to Γ0
t .

6 for d = 1, . . . , D do
7 Compute search direction ∆Γd

t
based on Equation 16 starting from Γd−1

t using ARS, rθs
and

vχ
8 Update action distribution parameter trajectory Γdt in the direction ∆Γd

t
using Adam

9 end
10 at ∼ N ((µ, σ) = ât) // Sample action
11 st+1 = envdeploy.step(at)
12 end
13 end
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B Hyperparameter

In the following tables, we list all hyperparameters of all the methods used. Note that the entropy_weight
for the base policy in Table 2 as well as for rollout in Table 5 was fixed to zero.

Table 1: Critic Parameters

Parameter Values
max_iter 1000
activation [softsign, elu]
n_hidden [128, 256, 512, 1024]
n_layers 2
use_layer_norm true

Table 2: Policy Parameters

Parameter Values
exploration_noise [0.0, 0.05, 0.1]
n_cells 8
step_size [3e-4, 1e-4]
max_iter [20, 40, 60, 100, 120]
activation softsign
n_hidden [64, 128, 256, 512]
n_layers [2, 3]
use_layer_norm true
discount [0.95, 0.975, 0.99, 0.995]
entropy_weight [0.01, 0.05, 0.1]
n_samples [64, 128, 256]
n_time_steps [4, 6, 8, 16, 24, 32]
td_lambda [0.9, 0.95, 0.99]
max_grad_norm [1, 10, 100]

Table 3: VRSSM Parameters

Parameter Values
batch_size [32, 64, 128, 256]
emission_scale [0.01, 0.05, 0.1, 0.2]
max_grad_norm [10, 100, 1000]
max_iter [10, 20, 40, 100]
n_time_steps 4
step_size [3e-3, 1e-3, 3e-4, 1e-4]
initial_iter [100, 250, 500, 1000]
rnn_activation softsign
rnn_n_hidden [24, 64, 128]
mlp_activation softsign
mlp_n_hidden [128, 256, 512]
mlp_n_layers [2, 3]
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Table 4: MBRL Parameters

Parameter Values
action_repeat 2
conservativity [0.01, 0.05, 0.1]
critic_weight [0.05, 0.1, 0.25, 0.5, 1.0]
n_iter_per_eval 1e6
n_steps_per_eval 10000
max_env_steps 3e6
n_initial_rollouts 1
n_rollouts_per_iter 1
n_time_steps 998
n_collect_steps [10, 20, 40, 100]
n_initial_time_steps [100, 500, 1000, 2500]

Table 5: Rollout Parameters

Parameter Values
entropy_weight [0.0001, 0.005, 0.01, 0.05, 0.1, 0.5]
n_base_policy_steps [0, 1, 2, 4, 6, 8]
ars_n_perturbations [8, 12, 16, 24]
ars_std [0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
ars_top_k [2, 4, 8]
discount [0.8, 0.9, 0.95, 0.999]
n_optimize_steps [1, 2, 5, 10, 15, 20, 35, 45]
n_parallel_rollouts 1
n_planning_steps [1, 2, 4, 6, 8, 12, 20]
optimizer Adam
step_size [0.001, 0.003, 0.01, 0.03, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25]
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C Franka Panda Robot Simulation Details

Figure 10: Franka Reach Goal Region. Visualization of the goal range in the MuJoCo simulation. The
red dots mark the corners of the cube where the goals are sampled from.

As mentioned in the main text, the Franka Panda MuJoCo Menagerie model (Zakka et al., 2022) has been
used to train the methods in simulation. The desired goal position g has been sampled for each trajectory
uniformly from a cube relative to the base of the robot arm:

g ∼ U

 0.2
−0.35
0.15

 ,

 0.5
0.35
0.6

 . (17)

The borders of the box are defined in meters. 10 visualizes the goal cube in the simluation. Besides the goal
position, a fixed straight downward-facing quaternion gq = (0, 1, 0, 0) has been used to penalize any other
end-effector rotations. The reward for an end-effector position s and rotation sq has then been computed as
follows:

r(s, sq, g, gq) = −
3∑
i=1

(si − gi)2 −min{|sq − gq|, |sq + gq|}, (18)

using the antipodal symmetry of quaternions.

D Additional Task Visualizations

Figure 11 provides some additional task visualization of different perturbation types and values for the Real
World Reinforcement Learning benchmark.

(a) Walker Walk thigh length (b) Walker Walk torso length

(c) Quadruped Walk shin length

Figure 11: RWRL tasks. Visualization of some RWRL perturbations.
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E Additional Experiments Results

In this chapter, we provide the complete results for all simulated experiments.

Figure 12: Disabled joints results. Average reward and 95%-CI for all disabled joint perturbations. The
horizontal brackets indicate the positioning of the joints.
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Figure 13: Walker RWRL perturbations results. Average reward and 95%-CI for all Walker RWRL
perturbations.

Figure 14: Quadruped RWRL perturbations results. Average reward and 95%-CI for all Quadruped
RWRL perturbations.
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