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Reinforcement Learning has recently proven extremely successful in the context of robot
control. One of the major reasons is massively parallel simulation in conjunction with con-
trolling for the so-called “sim to real” gap: training on a distribution of environments, which
is assumed to contain the real one, is sufficient for finding neural policies that successfully
transfer from computer simulations to real robots. Often, this is accompanied by a layer
of system identification during deployment to close the gap further. Still, the efficacy of
these approaches hinges on reasonable simulation capabilities with an adequately rich task
distribution containing the real environment. This work aims to provide a complemen-
tary solution in cases where the aforementioned criteria may prove challenging to satisfy.
We combine two approaches, mazimum-entropy reinforcement learning (MaxEntRL) and
rollout, into an inherently robust control method called Maximum-Entropy Learning-
Based Rollout (MELRO). Both promise increased robustness and adaptability on their
own. While MaxEntRL has been shown to be an adversarially-robust approach in disguise,
rollout greatly improves over parametric models through an implicit Newton step on a model
of the environment. We find that our approach works excellently in the vast majority of
cases on both the Real World Reinforcement Learning (RWRL) benchmark and on our own
environment perturbations of the popular DeepMind Control (DMC) suite, which move be-
yond simple parametric noise. We also show its success in “sim to real” transfer with the
Franka Panda robot arm.
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1 Introduction

Reinforcement Learning (RL) identifies optimal behavior strategies through an automated process of trial and
error and constitutes one of today’s standard approaches for addressing complex sequential decision-making
problems. In particular, the application of RL to humanoid robots has achieved extremely impressive results.
For example, they can now successfully navigate through complex terrain (Sun et al., 2025), dexterously
manipulate real-world objects purely from vision (Lin et al., 2025), and even perform complex dynamic
movements (Zhuang et al., 2024). In most cases, learning policies for such tasks rely on massively parallel
simulations, given that training directly on hardware is impractical in nearly all instances: often, millions
of interaction steps are required. However, training control policies exclusively in simulation frequently
uncovers a phenomenon referred to as the “sim to real” gap: a policy that has been extensively optimized
in simulation demonstrates degraded performance, or even complete failure, during real-world deployment.

One successful and commonly used approach is domain randomization (Tobin et al., 2017), where the policy
is exposed to a wide range of simulated environments. Key simulation parameters are randomized during
policy training, creating more diverse experiences and forcing policies to become robust to environmental
variations. The real world is then assumed to be just another variation within that distribution. Fulfilling
this assumption rests on two key desiderata: (i) all critical environment parameters and their ranges need
to be carefully identified such that the real world is close or contained within; (ii) the space needs to be
sufficiently tight to avoid overly conservative policies that need to compromise performance over too many
different instances. Whereas the last point can be addressed in parts by domain identification, this process
requires precise domain knowledge, extra engineering effort, and additional computing power to work well
(Josifovski et al., 2022; 2024; Dulac-Arnold et al., 2021).

In this paper, we present an orthogonal approach to domain randomization tailored to instances where it
is challenging to specify all key simulation parameters or too costly to exhaust all. To that end, we in-
tegrate mazimum-entropy reinforcement learning (MaxEntRL) (Ziebart et al., 2008) and rollout (Tesauro,
1994; Bertsekas, 2024) into an inherently robust method called Maximum-Entropy Learning-Based Rollout
(MELRO). While MaxEntRL enhances policy robustness by promoting exploratory behaviors, rollout com-
pensates for residual uncertainties through real-time re-planning. We demonstrate in extensive evaluations
that MELRO features and extends the strengths of both frameworks. Firstly, we conduct multiple experi-
ments on an illustrative toy example that aim to highlight the differences between the strategies generated
by traditional MaxEntRL, domain randomization and MELRQO. These experiments also provide in-depth
insights into the effects of entropy-regularization planning. Secondly, we benchmark its performance against
a variety of tasks in the Real World Reinforcement Learning (RWRL) suite. Furthermore, we assess its
capabilities on a custom set of challenging environment perturbations applied to the popular DeepMind
Control (DMC) suite, which are designed to probe robustness beyond simple parametric noise. Finally, we
present a successful “sim to real” transfer of MELRO on the Franka Panda robot arm.

2 Preliminaries

2.1 Problem

We assume that the problem consists of an unknown number of Markov Decision Processes (MDPs) (Bell-
mann, 1957) sharing the same action and state space. This can be formalized as a partially observable Markov
Decision Process (POMDP) (Kaelbling et al., 1998), which is characterized by the tuple (S, A, Q, p, 7, 0, po,¥),
where S, A and Q are the state, action and observation spaces, p : S x A — & is the transition function,
r: S X A Ris the reward function, o : § — Q is the observation function, v € [0,1] is a discount factor,
and pg is the initial state distribution (Humplik et al., 2019). The state space S then consists of the state
space of the MDPs, denoted as S™, and a set of task distributions 7. Initially, the task specification 7 is
sampled from 7 and maintained through time, assuming it is the only unobservable part of the state. This
results in S = (SM x T), Q = SM and o((s, 7)) + s, where s € SM. The transition and reward functions
and the initial state distribution are also conditioned on 7. The goal is then to find a policy 7 : SM — A
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that maximizes the expected discounted return under the sampled but unknown task specification 7:

7 (a|sk) = argmax max Ep-
ag Ak+1:T —r

Z’}/tT(St,T, at)] ) (1)

where I'” = si.7 is a state trajectory where the states are sampled from the transition function of the MDP
T,and k< T € N.

2.2 Maximum-Entropy Reinforcement Learning
Maximum-entropy reinforcement learning (MaxEntRL) extends traditional RL by augmenting Equation 1
with a conditional regularization term, the policy entropy H,:

T

Z ’Ytrr(sh T, at)

t=k

+ nHx (ar|sk),

TMaxEnt (@K |Sk) = arg max max Ep-
a Ak+1:T

(2)
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where 7 > 0 is a temperature parameter controlling the entropy trade-off and the entropy H,(ax|sk) is ap-
proximated with Monte Carlo integration. Solving for Equation 2 results in stochastic policies characterized
by non-zero probability for every action at each state. The entropy is higher when more actions lead to
similar rewards and lower when one action is substantially better.

2.3 Learning-Based Rollout

Rollout! is a control method employing a dynamic system model to predict future behavior and optimize
controls online. An elegant theoretical interpretation of rollout positions it as implementing a Newton step
in value space, a perspective described by Bertsekas (2024). At each time step, rollout optimizes the controls
for a given lookahead horizon L € N to minimize the predicted future costs and applies the first optimized
control in a receding-horizon fashion:

kL1
me(ap|sy) = argmax  max  Ep- |r(se,man) + > T (s, T an) + Y R(skrL) | ®)
an Ak41:k+L—1 t=k+1

where R : SM — R7 is the terminal reward function estimating all future rewards and I'" = sp.x4 . The
rollout components, the dynamics model, reward, and terminal cost function are typically hand-engineered.
Instead, we use multi-layer perceptrons (MLPs) whose parameters are learned from environmental interac-
tions.

3 Maximum-Entropy Learning-Based Rollout

MELRO uses the control framework introduced by Bertsekas (2022). It consists of two stages: off-line
training and on-line play. The approach is visualized in Figure 1.

3.1 Off-line Training

In off-line training, we use a model-based reinforcement learning (MBRL) framework to train a model, a
base policy, and a critic.

Model Learning It is important to note that MELRO is model-agnostic; consequently, it can be utilised
in conjunction with any prediction model. In this study, the model architecture and training are based on
the variational state-space model utilised in Bayer et al. (2021), with the following modifications. Given that

1Other related terms are model predictive control (MPC), receding horizon control, and limited lookahead control. We will
use the term “rollout”, as in the work of Bertsekas (2024).
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Figure 1: Overview of MELRO. We propose a framework that uses both maximum-entropy reinforcement
learning and rollout to achieve inherently robust control complementary to domain randomization. Our
method incorporates maximum-entropy regularization during off-line training and on-line planning. To
achieve this, the world model is trained on observations and action distribution parameters. Planning then
occurs directly within the action distribution parameter space.

each individual task considered here is fully observable, the emission model directly propagates the states
forward as the mean of a Gaussian with fixed variance:

p(zelsy) =N (act|,u =5,02 = 0.01) . (4)
Moreover, a cost-function head is introduced, which maps states to rewards:
7o, (rt|st, Gr) = MLPy, (s, @), (5)

where & = (p,0) is the mean and the standard deviation of a Gaussian distribution. The transition is
modeled as a Gaussian residual component where the output is a convex combination of the previous state
s¢—1 and an update §;_;. The mixing coefficient p and the update are outputs of a MLP with parameters
O:

Do, (St|5t717at71) =N (N = RC, (Stflu &tq),of = 0~001) (6)
RCQS (Stfl, (Altfl) = pP*St—1 + (1 — p) * §t71 (7)

JOR N 1 . oa
(P, 84—1) = MLPy_(8¢—1,0¢-1), p= §(softs1gn(p) +1). (8)

This enables states to propagate more easily through transitions. All model components are trained on a
replay buffer containing all previous policy-environment interactions.

Policy Learning The policy is modeled as a normal distribution, parametrized by ¢, where a two-headed
MLP estimates the mean and standard deviation:

mp(atlst) = N (ar|(pe,00) = MLPy(s1)) - 9)

The critic 9, is modeled as a deterministic MLP with parameters x. Both the policy and the critic use
layer normalization (Ba et al., 2016). The critic loss L;, is given by a supervised learning objective on
TD())-targets which are computed on imagined model and policy rollouts:

H,

1 1 9
Loy =Bumrmy | 7= D 5 Ionlst ) = RGs0)I3| (10)
Y t=0
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with TD()\)-targets:
R(s¢) = 1o, (st,a1) + nHr, (arlse) + v ((1 = N)sg (0x(st,a)) + AR(s141)), (11)
R(st+n,) = sg (0x(St+H,, at+H,)) s (12)

where sg is the stop-gradient operator. The policy loss L, is given by the expected values of the TD())-
targets:
Hyr

> R(se)

t=0

L. (13)

¢ = Eaynmy

The optimal parameters for the policy and critic are obtained by maximizing the weighted sum of the policy
and critic loss on model rollouts. Additionally, a regularization term consisting of the norm of the gradients of
the policy and critic loss is introduced to improve the convergence of the optimization problem by increasing
the conservativity (Mescheder et al., 2017). The policy-critic loss is then given by:

2 2
PO 4 2% O LN "
T,Ux T¢ Ux ‘V£ﬂ¢| |v£f;xl )

where the loss is scaled by a weighting hyperparameter ( and the conservativity regularization term by 7.
During training, the gradients of all components are clipped by the Euclidean norm, with a bound specified
for each component.

3.2 On-line Play

In on-line play, we combine the trained components into the rollout algorithm. We thereby improve standard
rollout in the following ways. First, online planning happens in the space of action means and standard
deviations of a Gaussian policy. Secondly, we generate imagined rollouts for the planning horizon based on
the learned world model and the base policy. The resulting base policy action distribution parameters, i.e.
means and standard deviations over time, are utilized as initial values for gradient descent. Thirdly, in an
analogous manner to standard MaxEntRL, the rollout cost function, as defined in Equation 3, is regularized
by the entropy of the action distribution. The idea behind this regularization is that it will lead to more
robust actions being selected during planning. Furthermore, immediately following the model rollouts and
before applying the critic, a fixed number of base policy steps are performed, as suggested by Bertsekas
(2024). This truncated rollout with the base policy enhances the stability property of the rollout policy at
a low additional computational cost.

The resulting rollout problem is then given by the following equations:

TMELRO (Gk|Sk) = argmax max LMELRO:
ar Af4-150005 Ak +L,Ak+L+m
k+L—1 k+L—1
Lyprro =B [ro, (sk,ar) + D> 7 o (si,00) + Bevr | +1 Y Halayls)), 15)
i=k+1 j=k (
k+L+m—1
Reyr = Y ro.(s505) + 7" 00 sk 1ms @b pam),
j=ktL

where a; = (i, 0:), a; ~ N (pi,04) Vi € {k,k+1,...,k+ L ax+L+m}, agyr.k+L+m—1 is sampled from the
base policy 7y, Sk:k+L+m is sampled from the transition function py, and Rk+ 1 is the approximation of the
future rewards starting from the time step k+ L. The final controls are then computed in a receding-horizon
fashion, optimizing Equation 15 using Adam (Kingma & Ba, 2015), where the search direction in the space
of action means and standard deviations is generated using Augmented Random Search (ARS) (Mania et al.,
2018).
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Figure 2: Results for the toy maze. 100 evaluation trajectories in the unperturbed training maze
and the perturbed evaluation maze of the no entropy base policy, MaxEnt base policy, MELRO, and two
policies trained using domain randomization with different domains. The mean reward for each method and
environment is shown in the top left corner of every maze. The goal is visualized by the red star. The red
blocks in the original environment of the two policies trained using domain randomization indicate where an
individual block can appear during training in a rollout with a probability of 0.5. During the evaluation of
the original environment, no block was in the maze.

4 Experiments

To evaluate the robustness and transfer capabilities, experiments were conducted for an illustrative toy
example, in simulation, and on a real Franka Panda robot arm. Training and validation for all experiments
have been conducted on a MIG 1g.10gb partition of an NVIDIA A100 GPU (compare to NVIDIA (2025) for
more details). An evaluation of the computational costs is provided in Appendix C.

4.1 lllustrative Toy Example

To illustrate the challenges posed by traditional MaxEntRL methods and domain randomization, and to
highlight the advantages of MELRO, we use a simple 2-DoF point maze environment modeled with the
Gymnasium-Robotics suite (de Lazcano et al., 2024). The task in this environment is to move a force-actuated
ball from the bottom middle to the top middle of a closed maze, with the exponential negative Euclidean
distance between the current position and the goal position as reward. In order to simulate perturbations
and the “sim to real” gap, the training of all components is performed without the incorporation of any
blocks in the middle of the maze. The evaluation is then conducted on a maze that contains three blocks
directly positioned between the starting position and the goal. To approximate the optimal level of entropy
regularization, we use the perturbed environment to validate multiple MaxEnt base policies with different
entropy weights.

Challenges of traditional MaxEntRL The three left columns of Figure 2 present 100 trajectories and
their mean rewards for the base policy without entropy regularization, the MaxEnt base policy, and MELRO.
The results highlight that policies with no or insufficient entropy regularization tend to overfit to the un-
perturbed environment and fail completely once perturbations are introduced, as all trajectories become
stuck at the blocks. When the entropy weight is tuned appropriately, MaxEntRL generates more entropic
and diverse trajectories, improving robustness and enabling more trajectories to reach the goal. However,
performance in the unperturbed environment deteriorates significantly, and identifying the appropriate reg-
ularization level is computationally costly, as a change of the entropy weight necessitates a complete MBRL
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run. Moreover, high entropy regularization results in highly stochastic trajectories that can degrade policy
learning, as shown in Figure 4.

Advantages of MELRO In contrast, MELRO consistently achieves the optimal balance: it relinquishes
only a minimal amount of reward in the unperturbed environment and attains the maximum mean reward
under the perturbation. One reason for this is its capability for adapting the entropy regularization during
the on-line play phase for the specific perturbation. This makes tuning the regularization far more effi-
cient. Furthermore, adjusting the entropy weight within MELRO has an intuitive and interpretable effect
of smoothly broadening the diversity of the paths taken. This is the direct effect of entropy regularization
increasing the standard deviation of the action distribution. Consequently, this results in a greater degree
of diversification in the plans during the planning process, as illustrated in Figure 3. Lastly, given that the
components of the best-performing MELRO configuration are trained in a low-entropy regularized MBRL
run, the trajectories are more directed towards the goal. The reason for this is that MELRO can maintain

dynamic entropy adaptation in a manner analogous to the low-entropy base policy. Further evaluations of
MELRO can be found in Appendix G.1.

Comparison of MELRO to Domain Randomization To compare MELRO with domain randomiza-
tion, two policies have been trained under two randomized domains. The domains differ in regions where
blocks can appear, during training and for each single rollout, with a probability of 0.5. These and the
resulting trajectories are depicted in the most right columns of Figure 2. The policy trained on the first
domain converged to a conservative strategy that nearly always avoids the area where blocks can appear,
resulting in identical trajectories across mazes. While this approach yields the highest mean reward in the
perturbed environment, it slightly underperforms MELRO in the unperturbed setting and risks failure if the
sole traversed path becomes blocked. Conversely, the policy trained on the second domain, where every path
to the goal may be obstructed, learns to follow approximately the shortest route, effectively disregarding
perturbations. This strategy achieves slightly higher performance on the unperturbed maze, but exhibits a
significantly lower level of robustness when compared with trajectories of MELRO on the perturbed maze.

These results highlight the sensitivity of domain randomization to the chosen simulation parameter distri-
bution: if the randomized domain is too narrow, resulting policies may become overly conservative or insuf-
ficiently robust. Moreover, the comparison underscores that domain randomization and maximum-entropy
regularization induce robustness through complementary and orthogonal mechanisms.

4.2 Simulation

We evaluated MELRO across four simulated environments from the DMC suite (Tassa et al., 2018), paired
with five distinct perturbations. Four perturbation types - torso and thigh length for “Walker Walk”,
and shin length and joint damping for “Quadruped Walk” - have been adapted from the RWRL suite
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Figure 7: Individual results of all simulation experiments. Average reward and 95%-CI of the non-
MaxFEnt base policy, rollout, MaxEnt base policy, and MELRO for a subset of perturbation tasks from the
RWRL and the DMC suite. The horizontal brackets indicate the positioning of the joints.

(Dulac-Arnold et al., 2020). The fifth perturbation type — disabled joints for “Walker Walk”, “Quadruped
Walk”, and “Cheetah Run” — has been extended on Nagabandi et al. (2019). Even though the joints repeat
for each extremity, we still observed differences in the performance of all evaluated methods, so we disabled
the joints individually. This perturbation type introduces strong non-parametric disturbances, which move
beyond simple noise. The joints for each environment are visualized in Figure 5.

We ablate MELRO against its MaxEnt base policy, the base policy trained without MaxEntRL, and standard
rollout over the latter. Despite the evident advantage of policies trained under domain randomization in terms
of the opportunity to encounter the specific validation perturbations during the MBRL phase, an additional
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comparison is made between MELRO and policies trained using domain randomization. The MaxFEnt base
policy, the base policy trained without entropy regularization, and their corresponding dynamics models
were initially trained on standard DMC environments. We then picked the best-performing model, policy,
and critic combination and optimized the rollout parameters for each perturbation through hyperparameter
search. An evaluation of the hyperparameters and a sensitivity analysis can be found in Appendix B and
D. The base policies using domain randomization have been trained directly on the respective perturbed
simulations. During training, the specific disabled joint or perturbation value was randomly sampled from
the entire domain. Final performance metrics were obtained by assessing each methodology across all
perturbation tasks through ten independent random seed evaluations, each comprising ten independent
rollouts.

Main Simulation Results The overall aggregated metrics are visualized in Figure 6. The results for
a subset of perturbations of the entropy-regularized methods are shown in Figure 7, and of the domain
randomization policies are shown in Figure 11 (Figures presenting all the perturbations are in Appendix G.2).
In general, the MaxEnt policies produce superior results to the non-MaxEnt policies, and rollout enhances
the performance of the respective base policy. This results in MELRO achieving the best overall performance
compared with the non-regularized and entropy-regularized methods. MELRO even outperforms the base
policy trained using domain randomization in the disabled joint task.

Increased Inherent Robustness of MELRO The MaxEnt base policy has already demonstrated robust
performance across a broad spectrum of perturbations, achieving consistently high returns relative to the
perturbation, in particular for all “Quadruped Walk” environments and the “Walker Walk” thigh length
perturbations. Nevertheless, there were still some perturbations where the MaxEnt base policy exhibited
significant degeneration in performance, often underperforming the non-regularized base policy in those cases.
This phenomenon is especially apparent in the disabled back hip joint perturbation of “Cheetah Run”, the
shin length perturbation of 1.0 for “Quadruped Walk”, and the torso length perturbation of 0.5 for “Walker
Walk”, as shown in Figure 7. In the disabled back hip joint perturbation of “Cheetah Run”, the MaxEnt
base policy even gets completely stuck at the beginning of all evaluated episodes. By contrast, MELRO
consistently outperformed the MaxEnt base policy across all tested perturbation scenarios, particularly in
cases where the MaxEnt base policy’s performance deteriorated significantly, thereby demonstrating an
enhanced dynamic entropy adaptation capability.

Effects of Maximum-Entropy Regularization on World Models and Rollout The training of a
world model using MaxEntRL has already been demonstrated to enhance exploration, consequently leading
to a more accurate world model (Ma et al., 2022). As demonstrated in Figure 8, this approach also results
in a more robust model and lower prediction errors. Additionally, the superior model yields superior control
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Figure 11: MELRO vs. domain randomization perturbed simulation results. Average reward and
95%-CI of domain randomization and MELRO for a subset of perturbation tasks from the RWRL and the
DMC suite. The horizontal brackets indicate the positioning of the joints.

results. This is apparent from the more pronounced improvement of MELRO over its base policy, compared
to the improvements shown by standard rollout (refer to Figure 9). A further explanation for this observa-
tion could be provided by Ahmed et al. (2019), in which the authors demonstrate that maximum-entropy
regulation smooths the optimization landscape. This would also benefit the online optimization of rollout in
MELRO.

Limitations of Maximum-Entropy Regularization Although maximum-entropy regularization has
been demonstrated to improve robustness and exploration by introducing adaptive stochasticity in the ac-
tion space, its effectiveness hinges on the environment (Ahmed et al., 2019; Eysenbach & Levine, 2022). In
environments that require precise control, or where the perturbations differ just slightly from the training
environment, maximum-entropy regularization can negatively impact performance. In our simulation experi-
ments, this is evident in the “Cheetah Run” disabled back knee and front ankle, as well as some “Walker Walk”
tasks, where both the MaxEnt base policy and MELRO perform slightly worse than the standard base policy.

Disabled Joints RWRL
Comparison to Domain Randomization 1000
As shown in the aggregated mean rewards in 750 MVWM o «W"‘WM
Figure 6, domain randomization achieves the £ 500 {J )
best performance under the RWRL perturba- 3 /"" a
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while MELRO provides superior robustness

in scenarios where the perturbations have a Figure 10: MaxEntRL vs.
smaller impact on the dynamics. A notable
exception is the disabled joint “Quadruped
Walk” task, where MELRO demonstrates sig-
nificantly higher robustness, particularly when

domain randomization
training curves. Mean and 95%-CI reward training curves
for the base policies trained using MaxEntRL and domain
randomization aggregated across all evaluated tasks.

10
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Figure 12: Real-world Franka trajectory. Example of a real-world trajectory of the Franka Panda robot
arm, controlled by MELRO. The movement took approximately five seconds.
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Figure 13: Overview of the
“sim to real” results for the Figure 14: MaxEnt base policy vs. MELRO individual

Franka Panda reach task. differences after the “sim to real” transfer to the Franka
Mean of the absolute goal dis- Panda. Difference in cm between the absolute distances between
tances in cm of the MaxEnt base MELRO and the target, and between the MaxEnt base policy
policy, MELRO without entropy and the target, for all test runs on the real Franka Panda arm.
regularization during planning, Values above zero mean that MELRO was closer to the target
and MELRO on the real-world than the MaxEnt base policy. Vice versa for values below zero.

Franka Panda.

joints from the two front legs are disabled. This phenomenon can potentially be attributed to the extensive
variability induced by domain randomization in this task, forcing the policy to compromise across a wide
range of possible dynamics. The reward training curves in Figure 10 indicate that training using domain
randomization requires more environment interactions until the policy converges, and is, in general, noisier.
However, this must be taken with a caveat, as the reward for the domain randomized policy is computed in
perturbed environments.

4.3 Franka Panda Robot Arm

We evaluated MELRO’s “sim to real” capabilities by testing it on a simple reach task using the Franka
Emika Panda robot arm. The objective was to maneuver the end-effector at the end of the robot arm to
a randomly selected position in front of the robot. To train the components in simulation, we modeled the
task in MuJoCo (Todorov et al., 2012) using the Franka Panda MuJoCo Menagerie model (Zakka et al.,
2022). The reward function has been selected as the negative sum of squares of the difference between
the current end-effector position and the goal, minus a scaled penalty for rotating the end-effector out of
a neutral orientation. It is important to note that no further reward shaping has been applied. Here, all
policies — the base policy, rollout, MaxEnt base policy, and MELRO — have been trained to generate joint
velocity actions given the current joint angles, joint velocities, and the current goal. Detailed information
about the simulation is given in the Appendix E. The same training process as explained in Chapter 4.2
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has been used. During deployment, all policies generated new joint velocity actions at a frequency of 10 Hz.
These were then converted into joint torque commands using a PD-controller running at 1 kHz.

Although we evaluated multiple sets of hyperparameters for both the base policy and rollout, none of
them produced stable and safe actions on the real robot. Since we did not apply extensive reward shap-
ing, we believe that exploration for the non-MaxEnt components during the MBRL stage was insufficient.
Consequently, MELRO was only evaluated against the MaxEnt base policy and MELRO without entropy
regularization during planning. The mean distance for each method over the 20 test runs on the real Franka
Panda is shown in Figure 13. Additionally, Figure 14 visualizes the differences in the absolute distances be-
tween MELRO and the target, and between the MaxEnt base policy and the target, for each test trajectory
individually.

MELRO tightens the “sim to real” gap On average, MELRO was 11.7% closer to the goal than the
MaxFnt base policy. This was achieved through faster convergence and generally bringing the end-effector
closer to the goal. As can be seen from MELRO’s good performance without entropy regularization, rollout
already significantly improves the MaxEnt base policy. Additionally, the introduction of maximum-entropy
regularization during planning further decreased the overall distance to the goal.

5 Related Work

5.1 Maximum-Entropy RL

It is well-known that MaxEntRL improves exploration (Haarnoja et al., 2017; Huang et al., 2020). This
approach is also widely adopted, underpinning prominent model-free algorithms like SAC (Haarnoja et al.,
2018), influencing implementations of methods like PPO (Schulman et al., 2017), and featuring in model-
based approaches such as DreamerV3 (Hafner et al., 2023) and TD-MPC2 (Hansen et al., 2024). The primary
distinction between the usage of MaxEntRL in MELRO and the aforementioned algorithms is that MELRO
incorporates maximum-entropy regularization in the online planning objective.

Recent theoretical work has established that MaxEntRL implicitly optimizes a lower bound on a robust
RL objective, conferring inherent resilience against perturbations in dynamics and rewards without the
need for specialized robust optimization techniques (Eysenbach & Levine, 2022; Brekelmans et al., 2022).
Despite this advantage, the resulting policies can sometimes be overly conservative, potentially sacrificing
peak performance (Josifovski et al., 2022). Furthermore, standard MaxEntRL lacks explicit mechanisms
for targeted adaptation, potentially hindering swift responses to rapidly evolving environments. Our work
aims to address these limitations by harnessing the benefits of MaxEntRL while enabling more controlled
robustness and faster adaptation by adding maximum-entropy regularized online planning.

5.2 Robustness in Model-Based Reinforcement Learning

In model-based reinforcement learning (MBRL), model inaccuracies are commonly addressed by incorporat-
ing model uncertainty into the learning objective (Janner et al., 2019; Wang et al., 2024) or directly into the
decision-making process (Chua et al., 2018; Wu et al., 2022). Epistemic uncertainty is typically estimated by
ensemble disagreement, but can also be predicted directly by the model. Although this method encourages
the selection of actions that are more predictable and therefore likely to be more robust, it also leads to less
exploration and, consequently, to suboptimal policies. Additionally, all methods rely on accurate estimates
of uncertainty. Particularly for longer planning horizons, reduced performance and sampling efficiency have
been observed as the inevitable model inaccuracies are interpreted as model uncertainty (Wang et al., 2024).
Given that MELRO employs MaxFEnt regularization, it is not subject to these limitations.

6 Conclusion
We introduced MELRO, a novel, inherently robust control method that combines maximum-entropy rein-

forcement learning (Haarnoja et al., 2018) with rollout, an online planning method (Tesauro, 1994). Instead
of relying on extensive domain randomization to bridge the “sim to real” gap, we explored methods that are
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inherently more robust to such deviations from the model at hand. It is hence able to cope with variations
that are unknown a priori. Experimentally, this approach significantly enhances system robustness against
diverse and unforeseen dynamical perturbations, as well as the success of “sim to real” transfers. Our results
clearly confirm that rollout consistently improves performance and robustness across various scenarios, sub-
stantiating and extending the findings presented by Bertsekas (2024). Another appealing aspect of MELRO
is its capacity for adaptive online regularization; regularizing the lookahead reward during online planning
allows for the on-the-fly modification of the entropy weight, thereby significantly facilitating and enhancing
the computational efficiency of identifying the optimal regularization trade-off in comparison to conventional
MaxEntRL and domain randomization. We believe that our work constitutes an important contribution to
the research and deployment of autonomous agents that are robust to the unexpected.

References

Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding the impact
of entropy on policy optimization, 2019. URL https://arxiv.org/abs/1811.11214.

Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. CoRR, abs/1607.06450,
2016. URL http://arxiv.org/abs/1607.06450.

Justin Bayer, Maximilian Soelch, Atanas Mirchev, Baris Kayalibay, and Patrick van der Smagt. Mind the gap
when conditioning amortised inference in sequential latent-variable models. In 9th International Conference
on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021.
URL https://openreview.net/forum?id=a2gqxKDvYys.

Richard Bellmann. A markovian decision process. Journal of Mathematics and Mechanics, 6(5):679-684,
1957. ISSN 00959057, 19435274.

Dimitri Bertsekas. Newton’s method for reinforcement learning and model predictive control. Results in
Control and Optimization, 7:100121, 2022. ISSN 2666-7207. doi: https://doi.org/10.1016/j.rico.2022.
100121. URL https://www.sciencedirect.com/science/article/pii/S2666720722000157.

Dimitri P. Bertsekas. Model predictive control and reinforcement learning: A unified framework based on
dynamic programming. CoRR, abs/2406.00592, 2024. doi: 10.48550/ARXIV.2406.00592. URL https:
//doi.org/10.48550/arXiv.2406.00592.

Leo Breiman. Manual on setting up, using, and understanding random forests v3. 1. Statistics Department
University of California Berkeley, CA, USA, 1(58):3-42, 2002.

Rob Brekelmans, Tim Genewein, Jordi Grau-Moya, Grégoire Delétang, Markus Kunesch, Shane Legg, and
Pedro A. Ortega. Your policy regularizer is secretly an adversary. Trans. Mach. Learn. Res., 2022, 2022.
URL https://openreview.net/forum?id=berNQMTYWZ.

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learning
in a handful of trials using probabilistic dynamics models. In Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicold Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 31: Annual Conference on Neural Information Processing Systems 2018,
NeurIPS 2018, December 3-8, 2018, Montréal, Canada, pp. 4759-4770, 2018. URL https://proceedings.
neurips.cc/paper/2018/hash/3de568£8597b94bdab3149c7d7£5958c-Abstract .html.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gymnasium
robotics, 2024. URL http://github.com/Farama-Foundation/Gymnasium-Robotics.

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and

Todd Hester. An empirical investigation of the challenges of real-world reinforcement learning. CoRR,
abs/2003.11881, 2020. URL https://arxiv.org/abs/2003.11881.

13


https://arxiv.org/abs/1811.11214
http://arxiv.org/abs/1607.06450
https://openreview.net/forum?id=a2gqxKDvYys
https://www.sciencedirect.com/science/article/pii/S2666720722000157
https://doi.org/10.48550/arXiv.2406.00592
https://doi.org/10.48550/arXiv.2406.00592
https://openreview.net/forum?id=berNQMTYWZ
https://proceedings.neurips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/3de568f8597b94bda53149c7d7f5958c-Abstract.html
http://github.com/Farama-Foundation/Gymnasium-Robotics
https://arxiv.org/abs/2003.11881

Published in Transactions on Machine Learning Research (12/2025)

Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Paduraru, Sven Gowal, and Todd
Hester. Challenges of real-world reinforcement learning: definitions, benchmarks and analysis. Mach.
Learn., 110(9):2419-2468, 2021. doi: 10.1007/S10994-021-05961-4. URL https://doi.org/10.1007/
s10994-021-05961-4.

Benjamin Eysenbach and Sergey Levine. Maximum entropy RL (provably) solves some robust RL problems.
In The Tenth International Conference on Learning Representations, ICLR 2022, Virtual Event, April
25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/forum?id=PtSAD3caaA2.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with deep
energy-based policies. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70
of Proceedings of Machine Learning Research, pp. 1352-1361. PMLR, 2017. URL http://proceedings.
mlr.press/v70/haarnojal7a.html.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In Jennifer G. Dy and Andreas Krause (eds.),
Proceedings of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pp. 1856—
1865. PMLR, 2018. URL http://proceedings.mlr.press/v80/haarnojal8b.html.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy P. Lillicrap. Mastering diverse domains through
world models. CoRR, abs/2301.04104, 2023. doi: 10.48550/ARXIV.2301.04104. URL https://doi.org/
10.48550/arXiv.2301.04104.

Nicklas Hansen, Hao Su, and Xiaolong Wang. TD-MPC2: scalable, robust world models for continuous
control. In The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna,
Austria, May 7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=0xh5CstDJU.

Shiyu Huang, Hang Su, Jun Zhu, and Ting Chen. SVQN: sequential variational soft g-learning networks.
In 8th International Conference on Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April
26-30, 2020. OpenReview.net, 2020. URL https://openreview.net/forum?id=r1xPh2VtPB.

Jan Humplik, Alexandre Galashov, Leonard Hasenclever, Pedro A. Ortega, Yee Whye Teh, and Nicolas
Heess. Meta reinforcement learning as task inference. CoRR, abs/1905.06424, 2019. URL http://arxiv.
org/abs/1905.06424.

Michael Janner, Justin Fu andx Marvin Zhang, and Sergey Levine. When to trust your model: Model-
based policy optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Florence d’Alché-
Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouwver, BC, Canada, pp. 12498-12509, 2019. URL https://proceedings.neurips.cc/paper/2019/
hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html.

Josip Josifovski, Mohammadhossein Malmir, Noah Klarmann, Bare Luka Zagar, Nicolds Navarro-Guerrero,
and Alois C. Knoll. Analysis of randomization effects on sim2real transfer in reinforcement learning for
robotic manipulation tasks. In IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS 2022, Kyoto, Japan, October 23-27, 2022, pp. 10193-10200. IEEE, 2022. doi: 10.1109/TROS47612.
2022.9981951. URL https://doi.org/10.1109/IR0S47612.2022.9981951.

Josip Josifovski, Sayantan Auddy, Mohammadhossein Malmir, Justus H. Piater, Alois Knoll, and Nicolas
Navarro-Guerrero. Continual domain randomization. In IEEE/RSJ International Conference on Intelli-
gent Robots and Systems, IROS 2024, Abu Dhabi, United Arab Emirates, October 14-18, 2024, pp. 4965—
4972. IEEE, 2024. doi: 10.1109/TR0S58592.2024.10802060. URL https://doi.org/10.1109/IR0S58592.
2024.10802060.

Leslie Pack Kaelbling, Michael L. Littman, and Anthony R. Cassandra. Planning and acting in partially
observable stochastic domains. Artif. Intell., 101(1-2):99-134, 1998. doi: 10.1016,/S0004-3702(98)00023-X.
URL https://doi.org/10.1016/S0004-3702(98)00023-X.

14


https://doi.org/10.1007/s10994-021-05961-4
https://doi.org/10.1007/s10994-021-05961-4
https://openreview.net/forum?id=PtSAD3caaA2
http://proceedings.mlr.press/v70/haarnoja17a.html
http://proceedings.mlr.press/v70/haarnoja17a.html
http://proceedings.mlr.press/v80/haarnoja18b.html
https://doi.org/10.48550/arXiv.2301.04104
https://doi.org/10.48550/arXiv.2301.04104
https://openreview.net/forum?id=Oxh5CstDJU
https://openreview.net/forum?id=r1xPh2VtPB
http://arxiv.org/abs/1905.06424
http://arxiv.org/abs/1905.06424
https://proceedings.neurips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/5faf461eff3099671ad63c6f3f094f7f-Abstract.html
https://doi.org/10.1109/IROS47612.2022.9981951
https://doi.org/10.1109/IROS58592.2024.10802060
https://doi.org/10.1109/IROS58592.2024.10802060
https://doi.org/10.1016/S0004-3702(98)00023-X

Published in Transactions on Machine Learning Research (12/2025)

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua Bengio and
Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Toru Lin, Kartik Sachdev, Linxi Fan, Jitendra Malik, and Yuke Zhu. Sim-to-real reinforcement learning for
vision-based dexterous manipulation on humanoids. CoRR, abs/2502.20396, 2025. doi: 10.48550/ARXIV.
2502.20396. URL https://doi.org/10.48550/arXiv.2502.20396.

Hongying Ma, Wuyang Xue, Rendong Ying, and Peilin Liu. Maxent dreamer: Maximum entropy reinforce-
ment learning with world model. In International Joint Conference on Neural Networks, IJCNN 2022,
Padua, Italy, July 18-23, 2022, pp. 1-9. IEEE, 2022. doi: 10.1109/TJCNN55064.2022.9892381. URL
https://doi.org/10.1109/IJCNN55064.2022.9892381.

Horia Mania, Aurelia Guy, and Benjamin Recht. Simple random search of static linear policies is competitive
for reinforcement learning. In Samy Bengio, Hanna M. Wallach, Hugo Larochelle, Kristen Grauman,
Nicolo Cesa-Bianchi, and Roman Garnett (eds.), Advances in Neural Information Processing Systems 31:
Annual Conference on Neural Information Processing Systems 2018, NeurIPS 2018, December 3-8, 2018,
Montréal, Canada, pp. 1805-1814, 2018. URL https://proceedings.neurips.cc/paper/2018/hash/
7634ea65a4e6d9041cfd3f7de18e334a-Abstract.html.

Lars M. Mescheder, Sebastian Nowozin, and Andreas Geiger. The numerics of gans. In Isabelle Guyon, Ulrike
von Luxburg, Samy Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Garnett
(eds.), Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 1825-1835, 2017. URL https://
proceedings.neurips.cc/paper/2017/hash/4588e674d3f0faf985047d4c3f13ed0d-Abstract.html.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S. Fearing, Pieter Abbeel, Sergey Levine, and Chelsea
Finn. Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. In
7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9,
2019. OpenReview.net, 2019. URL https://openreview.net/forum?id=HyztsoC5Y7.

NVIDIA. NVIDIA Multi-Instance GPU User Guide, 9.2 A100 MIG Profiles. https://docs.nvidia.com/
datacenter/tesla/mig-user-guide/#al00-mig-profiles, 2025. [Accessed 16-10-2025].

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy optimiza-
tion algorithms. CoRR, abs/1707.06347, 2017. URL http://arxiv.org/abs/1707.06347.

Wandong Sun, Baoshi Cao, Long Chen, Yongbo Su, Yang Liu, Zongwu Xie, and Hong Liu. Learning
perceptive humanoid locomotion over challenging terrain. CoRR, abs/2503.00692, 2025. doi: 10.48550/
ARXIV.2503.00692. URL https://doi.org/10.48550/arXiv.2503.00692.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de Las Casas, David Budden, Abbas
Abdolmaleki, Josh Merel, Andrew Lefrancq, Timothy P. Lillicrap, and Martin A. Riedmiller. Deepmind
control suite. CoRR, abs/1801.00690, 2018. URL http://arxiv.org/abs/1801.00690.

Gerald Tesauro. Td-gammon, a self-teaching backgammon program, achieves master-level play. Neural
Comput., 6(2):215-219, 1994. doi: 10.1162/NECO0.1994.6.2.215. URL https://doi.org/10.1162/neco.
1994.6.2.215.

Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter Abbeel. Do-
main randomization for transferring deep neural networks from simulation to the real world. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2017, Vancouver, BC,
Canada, September 24-28, 2017, pp. 23-30. IEEE, 2017. doi: 10.1109/IR0S.2017.8202133. URL
https://doi.org/10.1109/IR0S.2017.8202133.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control. In 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026-5033. IEEE, 2012. doi:
10.1109/IR0OS.2012.6386109.

15


http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.2502.20396
https://doi.org/10.1109/IJCNN55064.2022.9892381
https://proceedings.neurips.cc/paper/2018/hash/7634ea65a4e6d9041cfd3f7de18e334a-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/7634ea65a4e6d9041cfd3f7de18e334a-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/4588e674d3f0faf985047d4c3f13ed0d-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/4588e674d3f0faf985047d4c3f13ed0d-Abstract.html
https://openreview.net/forum?id=HyztsoC5Y7
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a100-mig-profiles
https://docs.nvidia.com/datacenter/tesla/mig-user-guide/#a100-mig-profiles
http://arxiv.org/abs/1707.06347
https://doi.org/10.48550/arXiv.2503.00692
http://arxiv.org/abs/1801.00690
https://doi.org/10.1162/neco.1994.6.2.215
https://doi.org/10.1162/neco.1994.6.2.215
https://doi.org/10.1109/IROS.2017.8202133

Published in Transactions on Machine Learning Research (12/2025)

Xiyao Wang, Ruijie Zheng, Yanchao Sun, Ruonan Jia, Wichayaporn Wongkamjan, Huazhe Xu, and Furong
Huang. Coplanner: Plan to roll out conservatively but to explore optimistically for model-based RL. In
The Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria, May
7-11, 2024. OpenReview.net, 2024. URL https://openreview.net/forum?id=jnFcKjtUPN.

Zifan Wu, Chao Yu, Chen Chen, Jianye Hao, and Hankz Hankui Zhuo. Plan to predict: Learning an
uncertainty-foreseeing model for model-based reinforcement learning. In Sanmi Koyejo, S. Mohamed,
A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Information Processing
Systems 35: Annual Conference on Neural Information Processing Systems 2022, NeurIPS 2022, New
Orleans, LA, USA, November 28 - December 9, 2022, 2022. URL http://papers.nips.cc/paper_files/
paper/2022/hash/65beb73449888fabcf601b3a3ef4b3a7-Abstract-Conference.html.

Kevin Zakka, Yuval Tassa, and MuJoCo Menagerie Contributors. MuJoCo Menagerie: A collection of
high-quality simulation models for MuJoCo, 2022. URL http://github.com/google-deepmind/mujoco_
menagerie.

Ziwen Zhuang, Shenzhe Yao, and Hang Zhao. Humanoid parkour learning. In Pulkit Agrawal, Oliver
Kroemer, and Wolfram Burgard (eds.), Conference on Robot Learning, 6-9 November 2024, Munich,
Germany, volume 270 of Proceedings of Machine Learning Research, pp. 1975-1991. PMLR, 2024. URL
https://proceedings.mlr.press/v270/zhuang25a.html.

Brian D. Ziebart, Andrew L. Maas, J. Andrew Bagnell, and Anind K. Dey. Maximum entropy inverse
reinforcement learning. In Dieter Fox and Carla P. Gomes (eds.), Proceedings of the Twenty-Third AAAT
Conference on Artificial Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, pp. 1433-1438.
AAAT Press, 2008. URL http://www.aaai.org/Library/AAAI/2008/aaai08-227 .php.

16


https://openreview.net/forum?id=jnFcKjtUPN
http://papers.nips.cc/paper_files/paper/2022/hash/65beb73449888fabcf601b3a3ef4b3a7-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/65beb73449888fabcf601b3a3ef4b3a7-Abstract-Conference.html
http://github.com/google-deepmind/mujoco_menagerie
http://github.com/google-deepmind/mujoco_menagerie
https://proceedings.mlr.press/v270/zhuang25a.html
http://www.aaai.org/Library/AAAI/2008/aaai08-227.php

19
20

Published in Transactions on Machine Learning Research (12/2025)

A  MELRO in Detail

In Algorithm 1 and in Algorithm 2, we provide a detailed description of the off-line training and on-line play
of MELRO.

Algorithm 1: MELRO (off-line training)
input : 0,,0,,0,,1, x: initial transition, reward, inference, policy and critic parameters
w,y: expected return weighting factor and discount factor
Ninit, Linit: number of samples, and time steps for model pre-training
ng, Tirain: number of samples, and time steps for model training
D, D: optimization steps for model and for policy and critic
Hpoticy, Tpoticy: number of samples and time steps for policy and critic training
B: replay buffer
€NVtrqin: Unperturbed training environment.
output: py_, 79, and gy, : learned transition, reward and inference functions
Ty, Vy: learned neural base policy and critic

begin

// Pre-train model:

Sample npi: trajectories {Tinit F1:n,,,;, €ach with length Ty, from envipqin and a random policy

B=BU{linit}1:n,,,, // Add initial trajectories to buffer

while not converged do

// Train model:

{Th.m,oay ~ B // Sample H trajectories from buffer

ford=1,...,D do

‘ Update model parameters using the ELBO and Adam

end

// Update policy and critic:

ford=1,...,D do
Sample Hopicy trajectories {T}1. Hporicy €ach with length Tjoricy from Py and 7y using my
Compute TD(A) returns R using Equation 11 Vt € {1 : Tpoticy } and Vh € {1 : Hpolicy }
Update policy and critic parameters using Equation 14 and Adam

end

Sample n; trajectories {I'}1.,, each with length Tyyqip from enviyq, and my,

B=BU{l'}1.,, // Add trajectories to buffer

end

end
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Algorithm 2: MELRO (on-line play)

input : pg_,7p, and gy, : learned transition, reward and inference functions
Ty, Uy: learned neural base policy and critic
B, D: learning rate and optimization steps for MPC
ENVdeploy: Perturbed deploy environment.
output: (ay,...,ar): actions
1 begin

2 50 = €NVdeploy-reset()
3 fort=1,...,T do
4 Sample initial action mean and standard deviation trajectory 'Y = (a¢,ay, y, ...,ay, ;) from 7,
and py,
5 Add small uniform noise to I'V.
6 ford=1,...,D do
7 Compute search direction AF? based on Equation 15 starting from Fffl using ARS, 7y, and
Ux
8 Update action distribution parameter trajectory I'¢ in the direction AF? using Adam
9 end
10 ar ~ N((p,0) =a;) // Sample action
11 St+1 = eNVgeploy-Step(az)
12 end
13 end
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B Hyperparameter

In this section, we list the hyperparameter search space and the optimal parameters found for all the methods
used. Note that the entropy_ weight for the base policy for the policy parameters, as well as for rollout, was
fixed to zero. Additionally, the exploration_ noise, which describes the standard deviation of a zero-centered
Gaussian noise, has been added to the actions to enable exploration only in the non-entropy-regularized
MBRL setting.

Table 1: MBRL Hyperparameter

Search Space Maze Simulation | Franka
Critic Parameter
max_ iter 1000
activation [softsign, elu] softsign | softsign elu
n__hidden [128, 256, 512, 1024] 256 512 1024
n_ layers 2
Policy Parameter
exploration_ noise [0.0, 0.05, 0.1] 0.1 0.0 0.01
step__size [3e-4, le-4] 3e-4 3e-4 3e-4
max_ iter [20, 40, 60, 100, 120] 60 100 60
activation softsign
n_hidden 64, 128, 256, 512 256 64 64
n_layers 2, 3] 2 2 3
discount 0.95, 0.975, 0.99, 0.995] 0.99 0.975 0.95
entropy_ weight 0.0, 0.0001, 0.005, 0.01, 0.05, 0.1] | 32 0.01 0.0001
n_ samples 64, 128, 256) 64 128 64
n_ time_ steps [4, 6, 8, 16, 24, 32] 10 6 6
td_lambda [0.9, 0.95, 0.99] 0.95 0.95 0.99
max_grad_ norm [1, 10, 100] 100 10 100
Model Parameter
batch__size [32, 64, 128, 256] 256 32 32
emission_ scale [0.01, 0.05, 0.1, 0.2 0.2 0.01 0.01
max_ grad_ norm [10, 100, 1000] 100 100 100
max__iter [10, 20, 40, 100] 10 40 100
n_time_ steps [4, 6, 8, 10] 4 4 10
step_size [3e-3, 1e-3, 3e-4, le-4] 3e-4 3e-4 3e-4
initial_iter [100, 250, 500, 1000] 1000 100 250
rnn__activation softsign
rnn_n_hidden [24, 64, 128] | 24 | 24 | 128
mlp_activation softsign
mlp_n_ hidden [128, 256, 512] 256 256 128
mlp_n_ layers 2, 3] 2 3 3
MBRL Parameter
action_ repeat 2
conservativity [0.01, 0.05, 0.1] 0.05 0.05 0.05
critic_weight [0.05, 0.1, 0.25, 0.5, 1.0] 0.05 1 0.25
n_iter_per_eval le6
n_steps_ per_eval 10000
max_ env__steps 500_000
n_ collect_ steps [10, 20, 40, 100] 100 40 100
n__initial_time_ steps | [100, 500, 1000, 2500) 100 1000 1000

2We used the following search space for the entropy_weight for the maze [1, 2, 3, 4, 5, 6]

19



Published in Transactions on Machine Learning Research (12/2025)

Table 2: Rollout Hyperparameter Search Space

Parameter Values

entropy weight 0.0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1]

n_base_policy_steps | [0, 1, 2, 4, 6, §]

ars_n_ perturbations | [8, 12, 16, 24]

ars_std 0.05, 0.1, 0.15, 0.2, 0.25, 0.3]
ars_top_k (2, 4, 8]

discount [0.8, 0.9, 0.95, 0.999]
n_optimize_steps [1, 2, 5, 10, 15, 20, 35, 45]

n_ parallel_rollouts 1

n_planning steps 1,2, 4, 6,8, 12, 20]
optimizer Adam
step__size [0.001, 0.003, 0.01, 0.03, 0.1, 0.125, 0.15, 0.175, 0.2, 0.25]
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C Analysis of the computational costs

Although the many benefits of rollout are evident, performing online optimization can quickly become
computationally expensive. In order to run MELRO at 10 Hz, as stated in Section 4.3, we implemented all
components of MELRO in JAX. We further compile all computationally intensive functions, such as all world
model functions, online optimization, and base policy calls, using JAX’s jit functionality. Additionally,
we deployed MELRO for inference on a MIG 1g.10gb partition of an NVIDIA A100 GPU (compare to
NVIDIA (2025). This not only makes inference of the neural components faster, but also enables ARS
to be completely parallelizable. As a result, the computational time of MELRO scales only linearly with
the number of planning steps, the number of optimization steps, and the number of base policy steps, as
visualized in Figure 15. By keeping those parameters as small as possible, MELRO can operate reliably at
10 Hz, as shown in Table 3. The same table also shows that entropy regularization during planning increases

the inference time only marginally, and that the MaxEnt Base Policy can still run around ten times faster
than MELRO.
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Figure 15: Computational Costs MELRO. Average inference times of MELRO for different hyperpa-
rameters computed during the evaluation of the Franka experiments. The red dotted line shows the mean
inference time for the optimal hyperparameters used for the Franka experiments.

Table 3: Inference time MELRO. Statistics of the inference time in seconds of the MaxEnt base policy,
MELRO without entropy regularization, and MELRO using the hyperparameters used for the Franka ex-
periments.

Method average min max standard deviation
MaxEnt Base Policy 0.00955 | 0.008731 | 0.013814 0.000678
MELRO w/o entropy | 0.105343 | 0.104021 | 0.109615 0.000668
MELRO (ours) 0.105479 | 0.10413 | 0.109755 0.000667
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D Sensitivity Analysis
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Figure 18: Sensitivity analysis entropy weight in rollout. Ratios of the entropy regularization weight
of the top-5% experiments per perturbations divided into groups with a mean reward below and above 800.

To investigate the role of maximum-entropy regularization during planning, we first trained a random forest
model on the complete set of conducted experiments, using the rollout parameters as input features and
the final reward as the prediction target. Feature importance was then quantified using the Mean Decrease
Impurity (MDI) metric (Breiman, 2002), with results presented in Figure 16. In a complementary analysis, we
examined the distribution of entropy weights among the top-5% performing experiments for each perturbation
and environment, with the resulting ratios shown in Figure 17. In order to differentiate between entropy
regularization levels depending on the severity of the perturbation, we separated the perturbations based on
the mean reward of the top-5% experiments into two groups: one with a mean reward above 800 and one with
a mean reward below 800. The results are shown in Figure 18. Together, these evaluations highlight that
entropy weight is the second most influential rollout hyperparameter, that moderate entropy regularization
consistently improves planning performance, but also that excessive regularization degrades performance by
inducing overly stochastic action distributions. Furthermore, in the case of less severe perturbations, small
entropy regularization is more beneficial. Conversely, for more severe perturbations, greater entropic actions
are more effective.
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E Franka Panda Robot Simulation Details

Figure 19: Franka reach goal region. Visualization of the goal range in the Franka Reach MuJoCo
simulation. The red dots mark the corners of the cube where the goals are sampled from.

As mentioned in the main text, the Franka Panda MuJoCo Menagerie model (Zakka et al., 2022) has been
used to train the methods in simulation. The desired goal position g has been sampled for each trajectory
uniformly from a cube relative to the base of the robot arm:

0.2 0.5
g~u||-035],(035]]. (16)
0.15 0.6

The borders of the box are defined in meters. Figure 19 visualizes the goal cube in the simulation. Besides
the goal position, a fixed straight downward-facing quaternion g, = (0,1,0,0) has been used to penalize
any other end-effector rotations. The reward for an end-effector position s and rotation s, has then been
computed as follows:

2 )
(Si_gi) —mm{|3q _gq‘7‘3q+gq|}v (17)
1

T(S,Sq,g,gq) = -

3
1=

using the antipodal symmetry of quaternions.
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F Additional Task Visualizations

Figure 20 provides some additional task visualization of different perturbation types and values for the Real

World Reinforcement Learning benchmark.

) Walker Walk thlgh 1ength Walker Walk torso length

(¢) Quadruped Walk shin length

0.125

Figure 20: RWRL tasks. Visualization of some RWRL perturbations.
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G Additional Experiments Results

G.1 Toy Example

MELRO MELRO MELRO
(No Entropy) (Low Entropy) (Optimal Entropy)

Original

Perturbed

) No entropy MBRL setting.

MELRO MELRO MELRO
(No Entropy) (Low Entropy) (Medium Entropy)

MaxEnt Base Polic

Original

Perturbed

(b) MaxEntRL MBRL setting.

Figure 21: Entropy regularization toy maze. 100 evaluation trajectories of the no entropy base policy,
MaxEnt base policy, and MELRO with different entropy regularization weights for the unperturbed training
magze and the perturbed evaluation maze. The components of MELRO have been trained here in the standard
MBRL setting in (a) and in a maximum-entropy regularized MBRL setting in (b). The mean reward for
each method and environment is shown in the top left corner of every maze. The goal is visualized by the
red star.

Impact of Entropy Regularization Weights for Planning Figure 21 compares the trajectories gen-
erated by MELRO with different entropy regularization weights during planning. The components were
trained in two frameworks: a standard MBRL framework (Figure 21a) and a maximum-entropy-regularized
MBRL framework (Figure 21b). In addition to the results presented in Section 4.1, these findings demon-
strate that MELRO enhances performance in low as well as in highly maximum-entropy-regularized MBRL
settings. Furthermore, the trajectories demonstrate that MELRO achieves superior outcomes in the original
training maze, even without or with low entropy regularization during planning. This finding indicates that
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rollout itself can improve performance for specific perturbations if the model, base policy, and critic have
been trained using MaxEntRL.

Base Polic 30 14 1.4
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Figure 22: Entropy visualization toy maze. Hexbin heatmaps showing the mean entropy values at
different positions in the toy maze of 100 evaluation trajectories of the low entropy base policy, MaxEnt base
policy, and MELRO. The goal is visualized by the red star.

Entropy Visualization As shown by (Eysenbach & Levine, 2022), maximum-entropy regularization en-
ables dynamic adaptation of the action noise level according to the current state. This enables the policy to
reduce the entropy level, provided that the reward can be increased accordingly. As illustrated in Figure 22,
this phenomenon is also evident in the entropy levels of the low entropy base policy in the toy maze. At the
beginning of each episode and when the point mass collides with the blocks in the middle of the maze, the
entropy values are small. They then increase as the velocity increases. However, this is only possible if the
reward signal is sufficiently strong to compensate for the maximum-entropy regularization penalty. This is
particularly challenging at the initial positions of the maze, due to the minimal change in reward resulting
from the exponential reward function. Evidence of this phenomenon is apparent in the entropy heatmap
of the MaxEnt base policy in Figure 22. At the start of each episode, the MaxEnt base policy consistently
generates high entropy values, causing the pointmass to be steered in all directions. It is only when the
pointmass is closer to the goal that the MaxEnt base policy adapts the entropy values.

As illustrated in Figure 22, MELRO enhances entropy regularization in two distinct ways. Firstly, the
overall entropy scale is increased to match the scale of the MaxEnt base policy, which introduces more
diverse paths and ultimately enables the pointmass to overcome obstacles. Secondly, despite the overall
increase in entropy, MELRO can maintain dynamic entropy adaptation in a manner analogous to the low
entropy base policy. This enables MELRO to steer the pointmass with greater precision towards the target,
particularly at significant states such as the beginning of each episode, in the proximity of the blocks, and
after passing them.
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G.2 Simulation
In this chapter, we provide the complete results for all simulated experiments.
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Figure 23: Disabled joints results. Average reward and 95%-CI for all disabled joint perturbations. The
horizontal brackets indicate the positioning of the joints.
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Figure 24: Walker RWRL perturbations results. Average reward and 95%-CI for all Walker RWRL
perturbations.
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Figure 25: Quadruped RWRL perturbations results. Average reward and 95%-CI for all Quadruped
RWRL perturbations.
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Figure 26: Disabled joints results. Average reward and 95%-CI for all disabled joint perturbations. The
horizontal brackets indicate the positioning of the joints.
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Figure 27: Walker RWRL perturbations results. Average reward and 95%-CI for all Walker RWRL
perturbations.
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Figure 28: Quadruped RWRL perturbations results. Average reward and 95%-CI for all Quadruped
RWRL perturbations.
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Figure 29: MaxEntRL vs. domain randomization training curves. Reward training curves for the

base policies trained using MaxEntRL and domain randomization for all evaluated tasks individually.
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