
More Flexible Proximity Wildcards Path Planning with Compressed Path
Databases

Anonymous submission

Abstract

Grid-based path planning is one of the classical problems in
AI, and a popular topic in application areas such as computer
games and robotics. Compressed Path Databases (CPDs) are
recognized as a state-of-the-art method for grid-based path
planning. It is able to find an optimal path extremely fast
without state-space search. In recent years, researchers tend
to focus on improving CPDs from reducing CPD size or im-
proving lookup performance. Among various methods, prox-
imity wildcards is one of the most proven improvements in
reducing the size of CPD. However, its proximity area is sig-
nificantly restricted by complex terrain, which has more sig-
nificant impacts on pathfinding efficiency and generates more
additional costs. In this paper we enhance CPDs from the per-
spective of improving search efficiency and reducing search
costs. Our work is to break the limitation between length
and width of the proximity area, and adopt more flexible ap-
proaches to avoid obstacles, so as to reduce its impact on the
proximity area and improve the search performance. Exper-
iments performed on the benchmarks from Grid-Based Path
Planning Competition (GPPC) demonstrate that the two pro-
posed methods can effectively improve search efficiency and
reduce the search costs by 2-3 orders of magnitude. Remark-
ably, our methods can further reduce storage costs, and im-
prove compression capability of CPDs simultaneously.

Introduction
Path planning is one of the important problems in artifi-
cial intelligence which has been studied for many years and
widely applied in real scenes such as robotics and com-
puter games (Freund and Hoyer 1986; Cui and Shi 2011).
Grid-based path planning is one of the most active research
directions on this problem. Over the years, numerous ex-
cellent algorithms have been proposed, and the Grid-Based
Path Planning Competition (GPPC) (Sturtevant et al. 2015)
is the cornerstone in the development of these novel path-
planning achievements. The impact of these advancements
is essential and far-reaching, and they are poised to revo-
lutionize path planning in the coming years (Botea 2011;
Uras and Koenig 2014; Harabor and Grastien 2014; Rabin
and Sturtevant 2016; Sturtevant and Rabin 2016; Uras and
Koenig 2017; Goldenberg et al. 2017; Cohen et al. 2017;
Harabor and Stuckey 2018; Salvetti et al. 2018; Hu et al.
2019, 2021).

The Compressed Path Databases (CPDs) (Botea 2011;

Botea and Harabor 2013) known as a group of state-of-the-
art techniques for grid-based path planning, is designed to
speed up the response and reduce the first move delay dur-
ing the agent’s path planning tasks (Zhao 2022). Each CPD
is a data structure that provides the optimal first move from
any start cell s to any target cell t. The process of find-
ing an optimal path is to iteratively search such a group of
CPDs to find the optimal move directions to reach the tar-
get without any state space search. The main disadvantage
of CPDs with ultra-fast pathfinding speed is the huge build
cost. Each CPD needs to be encoded by all-pairs of pre-
computation, and then compressed with encodes and store
the result. In recent years, researchers mainly tend to focus
on reducing the size of the CPD such as single row compres-
sion (SRC) (Strasser, Harabor, and Botea 2014), heuristic
redundant symbols (Chiari et al. 2019), proximity wildcards
(Chiari et al. 2019), bidirectional wildcards (Salvetti et al.
2017), or improving lookup performance such as two-oracle
path planning algorithm (Topping) (Salvetti et al. 2018).
Among them, the SRC performed best in GPPC 2014, and
has become an important baseline for improving CPDs.

The CPDs improved by proximity wildcards (CPDs PW),
replaces the storage symbols of qualified nodes in the
largest square centered on any node with wildcards to re-
duce the preprocessing memory on the basis of heuristic
redundant symbols. Their experiments are mainly based on
Dragon Age: Origins (DAO) (Sturtevant 2012), which veri-
fies the excellent compression capability of CPDs PW. It can
achieve better on 99% of the maps, and can even compress
the map size to 1/55 of SRC on the map AR0044SR.

Despite the effectiveness of CPDs PW for compression is
already advanced, there are still the following drawbacks:

1. Severely limited by complex terrain. Its area of concern
is square in shape, which causes it to miss out on oppor-
tunities for expansion and incur more search costs when
it encounters obstacles in any direction.

2. Inefficient search. The compression is not efficient
enough, resulting in more binary searches to find the tar-
get from during pathfinding, leading to inefficient search.

In this paper, our idea for the above problems is to expand
the proximity area by breaking its shape limitation without
weakening the compression capability. We propose the fol-
lowing two methods:

1. Rectangular Proximity Wildcards (RPW): This method
breaks the limitation of length and width, and expands
the shape of proximity area to a rectangle, so that when
obstacles are encountered in any direction of length or
width, the other that does not encounter obstacles can
continue to be expanded.

2. Coordinates Proximity Wildcards (CPW): This method
breaks the limitations of traditional geometry. In order to
avoid obstacles more flexibly and improve the expansion
opportunities, four quadrants are divided with the current
node as the center, and the largest rectangle is expanded
in each quadrant. The areas drawn by the four quadrants
are all proximity areas of the current node.

We also expand the scale of the experiment, adding Baldurs
Gate II (BGII) (Sturtevant 2012) and Starcraft (Sturtevant
2012) on the top of DAO, a total of 351 maps, and take
SRC and CPDs PW as the experimental baselines. The ex-
perimental results show that the two methods we proposed
can effectively improve the search efficiency and reduce
search costs by 2-3 orders of magnitude. In addition, they
can also improve compression capability of CPDs. Experi-
ments demonstrate that the more flexible the method is to
avoid obstacles, the less it is affected by complex terrain,
and the more obvious the improvement in efficiency.

The paper is structured as follows: First, we provide an
overview of related work. Then, we introduce the fundamen-
tal principles of the CPDs and the key technologies utilized.
After that, we present a detailed description of the RPW and
CPW, along with description diagrams and algorithm pseudo
codes. We also present the experimental results and analysis,
and conclude the paper at the end.

Related Work
As a leading technique for optimal pathfinding, CPDs (Botea
2011) has received extensive attention since it was proposed.
Its main idea is to achieve speedup through preprocessing
and additional memory, which has shown excellent perfor-
mance in solving speed, but its huge memory requirements
seem to be a huge burden.

Therefore, exploring better compression methods for
CPDs has become a research hotspot. The Copa (Botea and
Harabor 2013), which combined list trimming, run length
encoding, and sliding window compression to improve com-
pression capabilities at the cost of lost time, is one of the best
competitors in GPPC 2012. In 2014, SRC (Strasser, Harabor,
and Botea 2014), an algorithm combined with run length en-
coding (RLE) to compress rows, outperforms Copa in both
compression and query time, and became one of the winners
in GPPC 2014. Although SRC has excellent performance in
compression ability and speed, it still requires huge mem-
ory overhead on large maps. In order to solve this practical
bottleneck, wildcard substitutions (Salvetti et al. 2017) are
introduced, which uses wildcards to replace part of the CPD-
encoded data, and can be combined with heuristics to reduce
the size of CPD. Its main idea is that given any start node s
and target t, as long as either route from s to t or t to s is
feasible, a complete optimal path can be established. This
method is proven to be effective, and the proximity wild-

cards (Chiari et al. 2019) is its extension with a new concept
of redundant symbols proposed at the same time. The prox-
imity wildcards uses redundant symbols to define a square
centered on the current node, which is called the proximity
area, and all nodes in it can be optimally reached through the
heuristic move. Experiments verified that proximity wild-
cards is one of the most effective methods to improve the
compression capability of CPDs, but it is seriously affected
by obstacles and therefore runs with limited efficiency. Our
work is related to proximity wildcards, but we choose to re-
duce the impact of obstacles on efficiency in more flexible
ways (e.g. rectangle, quadrants).

The above works are all approaches to reduce the mem-
ory overhead of CPDs with the goal of finding optimal so-
lutions, often accompanied by a significant loss of prepro-
cessing time. In 2020, a centroid-based bounded suboptimal
method (Zhao et al. 2020) reduces storage costs by only cal-
culating the first-move data of selected nodes, which ensures
that path costs within the fixed bound of the optimal solu-
tion. This approach innovatively reduces preprocessing time
and storage costs by trading some suboptimality.

There are also works focus on improving search perfor-
mance, such as Topping (Salvetti et al. 2018), which is a
combination of SRC and Jump Point Search+ (JPS+) (Hara-
bor and Grastien 2014). It first calls SRC to find the best
move direction from the current node to the target, and then
calls JPS+ to judge the feasible steps in this direction. In
most cases, Topping can be more than an order of mag-
nitude faster than SRC, but at the cost of nearly doubling
memory consumption. To deal with the huge memory over-
head, TOPS (Hu et al. 2021) and Topping+ (Hu et al. 2021)
are proposed. The TOPS reduces preprocessing memory by
calculating only the CPD data of the jump points. The Top-
ping+ extracts a series of complete paths from the successor
start nodes to the target. Their search performance are com-
petitive with Topping, while having smaller space require-
ments and better time performance.

Background
Gridmap. A gridmap is a two-dimensional mobile agent
operating environment, where each cell is either traversable
(white squares) or obstacle (black squares). It has two
common ways for defining neighboring relationships:
4-connected grids and 8-connected grids. In 4-connected
grids, a traversable cell has at most four neighbors, and
the movable directions are: East, South, West and North
(symbolized as E, S, W, N), with a move cost of 1 per
cell. As shown in Figure 1, for any node n on the map, the
8-connected grid map allows diagonal movement, adding
movable directions: Northwest, Northeast, Southwest, and
Southeast (symbolized as NW, NE, SW, SE), the cost of
linear movement c⃗ is 1, and the cost of diagonal movement
d⃗ is
√
2 . A path planning problem on a gridmap starts at

cell s called start node and ends with cell t called the target
node. Its goal is to find the most efficient path with the
minimum cost from the start node to the target node. The
formula s′ = s+ kd⃗+mc⃗ (k and m are integers) indicates
that moving from node s to node s′ needs k times along the

Figure 1: 8-Connected grid map.

direction d⃗ and m times along the direction c⃗. If k and m
are negative integers, it means reverse movement. In this
paper, we assume that diagonal movements are not allowed
if they will touch an obstacle cell.
Compressed Path Databases (CPDs). CPD is a data
structure that encodes the optimal first move from any node
s to a target node t on a map. It is the result of compressing
the first move array using run length encoding (RLE).
(Strasser, Harabor, and Botea 2014). The first move array
T (s) of node s stores the first move of the shortest path
from node s to each reachable node t, which is calculated by
Dijkstra. CPDs are constructed by computing a first move
array for each node in the map in offline preprocessing.
Chiari et al. redefined CPD as consisting of the first move
array (the original meaning of CPD) and auxiliary search
data because of the particularity of their methods (such as
proximity wildcards). We use this definition. According
to Chiari et al.’s definition, the CPD size is the sum of the
first move array size and the auxiliary data size. The size
of the first move array represents the method’s capability in
compression. Each binary search extracts the next move in
the first move array of the current node based on the target
position.
Run Length Encoding (RLE). RLE compresses the first-
move array by more compactly representing the substrings
(called runs) composed of the repetition of the same symbol.
It labels obstacles and source node with the wildcard ”*”,
because they don’t need to be searched. Taking Figure
2 as an example, the first row can be compressed into
NNN*NNNNN. Usually we use a substring to represent the
whole map, so the first row is represented as 1N, and this
map is represented as 1N 15E 19W 23N 24E 28W 33E 37W
41S 42SE. Where the letters denote optimal first moves for
moving the source node s to the corresponding position and
the numbers are subscripts starting from 1 after reducing
the 2D first-move array to a 1D array.
Heuristic move. Heuristic move refers to the first move of
node s to ignore obstacles and move towards the goal. It is
determined by the shortest heuristic distance calculated by
heuristic function Fe(n, t), where ω(s, n) is the cost from
source s to node n and fe(n, t) is the heuristic distance
function from n to t. In this paper we use the Euclidean

Figure 2: Example of the first move array for node s.

distance to calculate the heuristic move. We also use
redundant symbol h to mark the nodes where the heuristic
move coincides with the first move to improve efficiency.
That is, if the Fe(n, t) returns a first move belonging to the
first move array T (s), add the redundant symbol h to T (s).

fe(s, t) =
√
(s.x− t.x)2 + (s.y − t.y)2 (1)

Fe(s, t) = argmax
(s,n)∈E

{ω(s, n) + fe(n, t)} (2)

Proximity Wildcards. Proximity wildcards computes the
largest square proximity area centered on s, where
traversable nodes must have the heuristic redundant symbol
h. If the target node t is within the proximity area of s, the
heuristic move can be applied directly, otherwise look for
the first move.

Rectangular Proximity Wildcards
Typically, when using the proximity wildcards, nodes within
the proximity area of node s can usually use heuristic moves
as the first move to optimally reach. However, its proximity
area is square, meaning that obstacles in either direction will
cause the proximity area to stop expanding, so this method is
not effective in complex terrain. In this section, we introduce
a method called Rectangular Proximity Wildcard (RPW),
whose region of interest is rectangular, its outstanding ad-
vantage is that when obstacles are encountered in either di-
rection of length and width, the other direction is unaffected
and can still continue to be expanded, as shown in Figure 3.
Definition 1: Given a node s and a function Fx(s, t), the
width of largest proximity rectangle R centered on s is ex-
pressed as rec(s).x and length is expressed as rec(s).y, for
any node n ∈ R, there is fx(s, n) ∈ T (n), T is the first-
move array of s, and rec(s).x ∗ rec(s).y is the maximum
value d ∈ N .

The cells in the proximity rectangle are all optimally
reachable from s by heuristic moves, and we denote each
such cell with the wildcard character ”*”. As depicted in Fig-
ure 3, the compression result of the first move array with the
proximity wildcards is 1N; 5h; 10N; 14h; 19W; 26h; 27E;
28h; 37W; 43h, a total of 10 RLE runs. On the other hand,
the compression result of the first move array with RPW is
1N; 5h; 10N; 14h; 19W; 27E; 28h; 37W; 45h, a total of 9
RLE runs.

Figure 3: Proximity areas. RPW’s line is solid while proxim-
ity wildcards ’s line is dashed. Source node is shown in gray.
Heuristic moves coinciding with the first moves are shown
in bold.

Algorithm 1: CPDHRP(s, t)
Input: start node s, target node t
Output: first-move m

1: X ← rec(s).x.
2: Y ← rec(s).y.
3: if |s.x− t.x| ≤ X

2 ∧ |s.y − t.y| ≤ Y
2 then

4: return Fx(s, t)
5: else
6: m← CPD(s, t)
7: if m = h then
8: return Fx(s, t)
9: else

10: return m
11: end if
12: end if

RPW has a larger proximity area than proximity wild-
cards, which typically leads to more efficient compression
and more readable encoding due to the need for fewer RLE
runs. This solid foundation for the improvement of search
performance. In the online search, RPW is able to flexibly
respond to complex terrain changes, and its larger proximity
area can help to use more heuristic moves, which effectively
improves search efficiency and reduces cost. Algorithm 1
presents the CPD search function CPDHRP(s, t) that utilizes
the RPW and Algorithm 2 shows the improved CPDs algo-
rithm CPDs RPW(s, t) with the CPDHRP(s, t).

Coordinates Proximity Wildcards
In the previous section, we introduced a flexible method to
improve search performance, and it also has a certain effect
on compression. Although RPW has effectively improved
the search efficiency of CPDs, the use of traditional geome-
try as proximity areas still has significant limitations. When
confronted with extremely complex and narrow maps (such
as bridge maps), in more cases, the area of RPW would be
very restricted, even as large as proximity wildcards. In this
section, we propose a more flexible method called Coordi-
nates Proximity Wildcards (CPW), as shown in Figure 4.

Algorithm 2: CPDs RPW(s, t)
Input: start node s, target node t
Output: Path p

1: p[].
2: while s ̸= t do
3: (s, n)← CPDHRP(s, t)
4: p← p+ [(s, n)]
5: s← n
6: end while
7: return p

Figure 4: Proximity areas of CPW

Definition 2: Given a node s and a function Fx(s, n), the
CPW area C consists of four largest rectangles Rm with s as
the corner. The length and width of each quadrant rectangle
Rm are expressed as rec(s)m.x and rec(s)m.y, m ∈ [1, 4].
For any node n ∈ C, fx(s, n) ∈ T (n), T is the first-move
array of s.

We replace the traditional geometry centered on the
source node with quadrants centered on the source node,
and expand the largest rectangle in each quadrant. For the
sake of illustration, we use PW here to represent the proxim-
ity wildcard method. As shown in Figure 5, a more flexible
expansion method can make the proximity area larger. The
area of the proximity area of CPW is three times larger than
RPW, and six times larger than PW, which means more effi-
cient search and compression. However, this method needs
to store four times the size of auxiliary data, because each

Figure 5: Comparison of proximity areas

of its proximity areas needs to store the side lengths of the
four largest rectangles. Algorithm 3 checks if target node t is
within proximity area to any source node s. The CPD search
function in Algorithm 4 utilizes CPW for device control, and
is implemented in Algorithm 5.

Algorithm 3: GetCPW(s, t)

Input: start node s, target node t
Output: true or false

1: for n = 1 to 4 do
2: X.n← rec(s)n.x.
3: Y.n← rec(s)n.y.
4: if |s.x− t.x| ≤ X.n ∧ |s.y − t.y| ≤ Y.n then
5: return true.
6: end if
7: end for
8: return false.

Algorithm 4: CPDHCP(s, t)
Input: node s, node t
Output: first-move m

1: if GetCPW(s, t) then
2: return Fx(s, t)
3: else
4: m← CPD(s, t)
5: if m = h then
6: return Fx(s, t)
7: else
8: return m
9: end if

10: end if

Algorithm 5: CPDs CPW(s, t)
Input: node s, node t
Output: Path p

1: p[].
2: while s ̸= t do
3: (s, n)←CPDHCP(s, t)
4: p← p+ [(s, n)]
5: s← n
6: end while
7: return p

Experiments
We performed experiments on three game benchmarks from
GPPC (Sturtevant et al. 2015): BGII, DAO and Starcraft.
The BGII has a total of 120 maps, mainly composed of
small maps, with nodes distributed between 100 and 60,000.
The DAO is mainly composed of medium-sized maps, and
the number of nodes in its 156 maps is between 100 and
140,000. The Starcraft is a large map set with 75 members,
ranging from 50,000 to 760,000 nodes. We use SRC and
CPDs PW as experimental baselines, the former is our main

Figure 6: Compression cost factor CRLE−runs. (x’) is an
enlarged version of (x)’s box. The compression cost factor
is CRLE−runs for completing a compression task.

improvement and the latter is essential reference. After ap-
plying our methods to SRC, the resulting algorithms are as
follows:

• CPDs RPW, improved by rectangular proximity wild-
cards (RPW).

• CPDs CPW, implements the coordinates proximity wild-
cards (CPW).

The experiments use runtime to measure search efficiency
and the number of binary searches used to find the target
during the search as the search costs. They are the two main
metrics of the experiments. In addition, we also verify the
compression costs through RLE runs and identify the com-
pression capability with the first move array size. It is im-
portant to mention that the CPD for CPDs PW, CPDs RPW,
and CPDs CPW are all composed of the first move array and
the auxiliary data, where the first move array size can illus-
trate the strength of compression capability, and the auxil-
iary data stores the proximity areas’ sides. Due to the large
difference in map size, there is a huge difference in data dis-
tribution. Therefore, for other performance metrics except
runtime, we use the ”factor” to describe the algorithms’ per-
formance. The factor is the result of dividing the SRC run-
ning results for the same map by the running results of other
CPDs variants. Our definition of ”factor” is shown in Equa-

Figure 7: Compression capability factor Cfirst−move and Memory factor CCPD. (a) to (c) show the compression capability
factor Cfirst−move, indicating the compression capability of methods. (d) to (f) show the memory factors CCPD, indicating
the memory occupied by the CPD size, and the CPD size is the sum of the first move array and auxiliary data sizes.

tion 3.

Cmetrici =
realnumSRC(metrici)

realnumx(metrici)
(3)

metrici represents the i-th metric, and realnumx(metrici)
represents the real value of the i-th metric of algorithm x. x
can be assigned to CPDs PW, CPDs RPW, and CPDs CPW.
All algorithms are implemented in C++, and the experi-
mental environment is Ubuntu 20.04.3 LTS, with processor
AMD R⃝ Ryzen 9 5900*12core processer*24 and 31.4GiB
RAM.

Preprocessing
Before searching online, each map needs to be preprocessed
offline. The use of more flexible proximity wildcards in
the preprocessing stage reduces compression costs and im-
proves compression capability.

The compression cost factor CRLE−runs is the quotient
of RLE runs required by SRC and CPDs X to complete a
compression task. Higher compression cost factor means
fewer RLE runs, leading to lower compression costs. As
shown in Figure 6, our methods are effective in saving
the compression cost, where CPDs CPW has the highest
CRLE−runs and the best performance. This means they
can yield leaner compression results and lower compression
costs, and contribute to search efficiency due to more read-
able compressed results.

Figure 7 (a), (b), (c) displays the distribution of com-
pression capabilit Cfirst−move. A higher Cfirst−move im-
plies a smaller first move array size, which results in bet-
ter compression performance. We can visualize that both
of our methods have improved compression capability, with

CPDs CPW performing best. From Figure 7 (e), (d), (f), it
can be seen that the memory factor CCPD of CPDs RPW
is slightly higher than that of CPDs PW, while CPDs CPW
has been at a disadvantage. It is due to the fact that the size
of CPDs CPW’s auxiliary data (proximity distance) is four
times larger compared to CPDs PW and CPDs RPW, result-
ing in larger CPD sizes and more memory costs. Therefore,
sometimes we may encounter a scenario where the memory
gain is lower than the expenditure. We can also see that as
the map sizes increase, the memory factor of CPDs CPW
becomes higher and higher. It fully demonstrates the per-
formance advantage of our methods in solving large-scale
maps.

Online Search
The search efficiency increases with shorter runtime, as
shown in Figure 8. The runtime of our methods is sig-
nificantly less than that of CPDs PW. Because they have
larger proximity areas which effectively reduces binary
searches and makes the search faster. We can also find
that CPDs CPW takes more runtime than CPDs RPW.
Since CPDs CPW’s CPD lookup function is more com-
plex, so each call takes more time. Both CPDs RPW and
CPDs CPW’s lookup functions are more complex than
CPDs PW’s, so each call to the find function takes more
runtime, but both take less time than CPDs PW due to their
huge search efficiency gains.

The binary search factor Cbinary−search is the quotient of
the binary searches required by SRC and each CPDs vari-
ant when performing the same search task. If a CPDs vari-
ant performs a search that requires fewer binary searches, it

Figure 8: Runtime (unit: ns). Runtime is the time taken to perform an online search task, and we use it to measure search
efficiency

Figure 9: Binary search factor Cbinary−search. (x’) is an
enlarged version of (x)’s box. The binary search factor
Cbinary−search is the quotient of binary searches required
by SRC and CPDs X to complete a search task.

The number of binary searches
Map #Cell SRC PW RPW CPW

AR0041SR 2282 8258 131 76 2
AR0418SR 1428 2501 13 6 0
AR0408SR 354 1092 25 13 3

orz105d 679 2642 36 12 5
orz107d 637 1791 54 22 4
lgr605d 2983 8169 83 36 21

Table 1: Examples of exceptional binary searches. #Cell is
the number of nodes contained in the map.

Number of wins
Set SRC PW RPW CPW

Starcraft (75) 1 15 19 28
DAO (156) 1 53 60 106
BGII (120) 0 92 102 115

Table 2: Comparative results with Topping on the number of
binary searches. The number in brackets is the map number.

is equivalent to a higher binary search factor, implying less
search cost. As shown in Figure 9, we can intuitively see
the improvement effect of the three CPDs variants on the bi-
nary search, in which the Cbinary−search of CPDs RPW and
CPDs CPW are remarkably higher than CPDs PW. In both
BGII and DAO, we experience remarkable effects that are
magnified by hundreds or even thousands of times, despite
taking place on small maps. Some of these exceptional cases
are listed in Table 1. We find Cbinary−search stable and con-
centrated as map size increases. For example, CPDs CPW
has 14 (21-7) quartile distance in small map set BGII, 5
(10-5) in medium map set DAO, and less than 2 in large
map set Starcraft. It is also evident that CPDs CPW per-
forms better than CPDs RPW and CPDs RPW outperforms
CPDs PW based on their median, mean, and quartiles. The
average binary search factor Cbinary−search for CPDs PW
on BGII is 5.3, while CPDs RPW’s is 7.0 and CPDs CPW’s
is 15.2, which is twice that of CPDs RPW and three times
that of CPDs PW. On DAO maps, CPDs CPW has an aver-
age binary search factor of 7.5, which is twice as much as

that of CPDs PW and 1.7 times that of CPDs RPW. Even
on Starcraft, the average binary search factor of CPDs CPW
can reach 1.6 times that of CPDs PW and 1.4 times that of
CPDs RPW.

It is because a more flexible proximity wildcards method
avoids more obstacles, further reduces the impact of com-
plex terrain, and allows for a larger proximity area. In other
words, CPDs CPW has the largest proximity area, while the
area of CPDs RPW is at least as large as that of CPDs PW. A
larger proximity area can enhance search performance from
two different perspectives:

1. More powerful heuristics. Both theory and intuition indi-
cate a larger proximity area means that more heuristic in-
formation can be used to find the target during the search
process.

2. More effective search preparation. A larger proximity
area in the preprocessing stage makes compression more
efficient, resulting in more compact RLE encoding and
efficient search.

Our methods vs Topping
Our methods have enhanced the search performance of
CPDs based on reducing the size of CPD. We compare SRC,
CPDs PW, CPDs RPW, and CPDs CPW, in terms of both
search and compression. We also conduct comparative ex-
periments with Topping, a representative algorithm in an-
other research area, which significantly improves search per-
formance but at the expense of huge memory and ineffi-
cient compression. Experiments verify the effectiveness of
our methods, and CPDs CPW even is competitive with Top-
ping in search costs. The pathfinding process of Topping is
jointly conducted by the SRC oracle and the JPS+ oracle.
What we compare is only the number of binary searches
of the SRC oracle in Topping. Experiment result show that
CPDs CPW performs best among variants, and has an ab-
solute advantage in binary searches on 68% medium-sized
maps and 96% small maps, and occupies a place in large
maps. Noted that our methods utilize only half the storage
cost used by Topping.

Conclusion and Future Work
As a leading technology for path planning, CPDs has the
bottleneck of huge storage overhead. A method called prox-
imity wildcards significantly enhances the compression ca-
pability of CPDs with surprising results in reducing storage
costs. However, it is severely limited by complex terrain,
making the search inefficient and and generating more costs.

In this paper, we extend proximity wildcards and pro-
pose two methods RPW and CPW that can be more flexi-
ble in avoiding obstacles to compute larger proximity areas
in response to complex terrain changes. Meanwhile, we ex-
tended the experiment scale to three full datasets. The exper-
imental results demonstrate that rectangular proximity wild-
cards (RPW) and coordinates proximity wildcards (CPW)
can flexibly deal with complex terrain, and significantly im-
prove the search performance, and further improve its com-
pression performance.

Our future work mainly focus on the following directions:

1. Exploring ways to reduce time while maintaining opti-
mality, compression and search capability. Investigating
new encoding alternatives to RLE is an interesting re-
search direction.

2. Exploring a combination algorithm compatible with
CPDs that has powerful search performance without
causing internal interaction storage costs.

References
Botea, A. 2011. Ultra-fast optimal pathfinding without run-
time search. In Proceedings of the AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment,
volume 7, 122–127.
Botea, A.; and Harabor, D. 2013. Path planning with com-
pressed all-pairs shortest paths data. In Proceedings of
the International Conference on Automated Planning and
Scheduling, volume 23, 293–297.
Chiari, M.; Zhao, S.; Botea, A.; Gerevini, A. E.; Harabor,
D.; Saetti, A.; Salvetti, M.; and Stuckey, P. J. 2019. Cutting
the size of compressed path databases with wildcards and re-
dundant symbols. In Proceedings of the International Con-
ference on Automated Planning and Scheduling, volume 29,
106–113.
Cohen, L.; Uras, T.; Jahangiri, S.; Arunasalam, A.; Koenig,
S.; and Kumar, T. 2017. The FastMap algorithm for shortest
path computations. arXiv preprint arXiv:1706.02792.
Cui, X.; and Shi, H. 2011. A*-based pathfinding in modern
computer games. International Journal of Computer Sci-
ence and Network Security, 11(1): 125–130.
Freund, E.; and Hoyer, H. 1986. Pathfinding in multi-robot
systems: Solution and applications. In Proceedings. 1986
IEEE International Conference on Robotics and Automa-
tion, volume 3, 103–111.
Goldenberg, M.; Felner, A.; Palombo, A.; Sturtevant, N.;
and Schaeffer, J. 2017. The compressed differential heuris-
tic. AI Communications, 30(6): 393–418.
Harabor, D.; and Grastien, A. 2014. Improving jump point
search. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 24, 128–135.
Harabor, D.; and Stuckey, P. 2018. Forward search in con-
traction hierarchies. In Proceedings of the International
Symposium on Combinatorial Search, volume 9, 55–62.
Hu, Y.; Harabor, D.; Qin, L.; and Yin, Q. 2021. Regarding
goal bounding and jump point search. Journal of Artificial
Intelligence Research, 70: 631–681.
Hu, Y.; Harabor, D.; Qin, L.; Yin, Q.; and Hu, C. 2019. Im-
proving the combination of JPS and geometric containers. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 29, 209–213.
Rabin, S.; and Sturtevant, N. 2016. Combining bounding
boxes and JPS to prune grid pathfinding. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 30,
746–752.
Salvetti, M.; Botea, A.; Gerevini, A.; Harabor, D.; and Saetti,
A. 2018. Two-oracle optimal path planning on grid maps. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 28, 227–231.

Salvetti, M.; Botea, A.; Saetti, A.; and Gerevini, A. E. 2017.
Compressed path databases with ordered wildcard substitu-
tions. In Proceedings of the International Conference on
Automated Planning and Scheduling, volume 27, 250–258.
Strasser, B.; Harabor, D.; and Botea, A. 2014. Fast first-
move queries through run-length encoding. In Proceedings
of the International Symposium on Combinatorial Search,
volume 5, 157–165.
Sturtevant, N. 2012. Benchmarks for Grid-Based Pathfind-
ing. Transactions on Computational Intelligence and AI in
Games, 4(2): 144 – 148.
Sturtevant, N.; Traish, J.; Tulip, J.; Uras, T.; Koenig, S.;
Strasser, B.; Botea, A.; Harabor, D.; and Rabin, S. 2015.
The grid-based path planning competition: 2014 entries and
results. In Proceedings of the International Symposium on
Combinatorial Search, volume 6, 241–250.
Sturtevant, N. R.; and Rabin, S. 2016. Canonical Orderings
on Grids. In Proceedings of the Twenty-Fifth International
Joint Conference on Artificial Intelligence, 683–689.
Uras, T.; and Koenig, S. 2014. Identifying hierarchies for
fast optimal search. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 28, 878–884.
Uras, T.; and Koenig, S. 2017. Feasibility study: Subgoal
graphs on state lattices. In Proceedings of the International
Symposium on Combinatorial Search, volume 8, 100–108.
Zhao, S. 2022. Improving Pruning and Compression Tech-
niques in Path Planning. Ph.D. thesis, Monash University.
Zhao, S.; Chiari, M.; Botea, A.; Gerevini, A. E.; Harabor, D.;
Saetti, A.; and Stuckey, P. J. 2020. Bounded suboptimal path
planning with compressed path databases. In Proceedings
of the International Conference on Automated Planning and
Scheduling, volume 30, 333–341.

