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ABSTRACT

Covariate shift across clients is a major challenge for federated learning (FL).
This work studies the generalization properties of FL under intra-client and inter-
client covariate shifts. To this end, we propose Federated Importance-weighteD
Empirical risk Minimization (FIDEM) to optimize a global FL model, along
with new variants of density ratio matching methods, aiming to handle covariate
shifts. These methods trade off some level of privacy for improving the overall
generalization performance. We theoretically show that FIDEM achieves smaller
generalization error than classical empirical risk minimization under some certain
settings. Experimental results demonstrate the superiority of FIDEM over federated
averaging (McMahan et al., 2017) and other baselines, which would open the door
to study FL under distribution shifts more systematically.

1 INTRODUCTION

Federated learning (FL) (Li et al., 2020; Kairouz et al., 2021; Wang et al., 2021) is an efficient and
powerful paradigm to collaboratively train a shared machine learning model among multiple clients,
such as hospitals and cellphones, without sharing local data.

Existing FL literature mainly focuses on training a model under the classical empirical risk min-
imization (ERM) paradigm in learning theory, with implicitly assuming that the training and test
data distributions of each client are the same. However, this stylized setup overlooks the specific
requirements of each client. Statistical heterogeneity is a major challenge for FL, which has been
mainly studied in terms of non-identical data distributions across clients, i.e., inter-client distribution
shifts (Li et al., 2020; Kairouz et al., 2021; Wang et al., 2021). Even for a single client, the distribution
shift between training and test data, i.e., intra-client distribution shift, has been a major challenge for
decades (Wang & Deng 2018; Kouw & Loog 2019, and references therein). For instance, scarce dis-
ease data for training and test in a local hospital can be different. To adequately address the statistical
heterogeneity challenge in FL, we need to handle both intra-client and inter-client distribution shifts
under stringent requirements in terms of privacy and communication costs.

We focus on the overall generalization performance on multiple clients by considering both intra-
client and inter-client distribution shifts. There exist three major challenges to tackle this problem: 1)
how to modify the classical ERM to obtain an unbiased estimate of an overall true risk minimizer
under intra-client and inter-client distribution shifts; 2) how to develop an efficient density ratio
estimation method under stringent privacy requirements of FL; 3) are there theoretical guarantees for
the modified ERM under the improved density ratio method in FL?

We aim to address the above challenges in our new paradigm for FL. For description simplicity, in our
problem setting, we focus on covariate shift, which is the most commonly used and studied in theory
and practice in distribution shifts (Sugiyama et al., 2007; Kanamori et al., 2009; Kato & Teshima,
2021; Uehara et al., 2020; Tripuraneni et al., 2021; Zhou & Levine, 2021).1 To be specific, for any
client k, covariate shift assumes the conditional distribution ptrk (y|x) = ptek (y|x) := p(y|x) remains
the same; while marginal distributions ptrk (x) and ptek (x) can be arbitrarily different, which gives
rise to intra-client and inter-client covariate shifts. Handling covariate shift is a challenging issue,
especially in federated settings (Kairouz et al., 2021).

1Our results can be extended to other typical distribution shifts, e.g., target shift (Azizzadenesheli, 2022). We
provide experimental results on target shift in Section 5.
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Figure 1: An overview of FIDEM. Marginal train and
test distributions of clients are arbitrarily different lead-
ing to intra-client and inter-client covariate shifts. To
control privacy leakage, the server randomly shuffles
unlabelled test samples and broadcasts to the clients.

To this end, motivated by Sugiyama et al. (2007)
under the classical covariate shift setting, we
propose Federated Importance-weighteD Empir-
ical risk Minimization (FIDEM), that considers
covariate shifts across multiple clients in FL.
We show that the learned global model under
intra/inter-client covariate shifts is still unbiased
in terms of minimizing the overall true risk, i.e.,
FIDEM is consistent in FL. To handle covariate
shifts accurately, we propose a histogram-based
density ratio matching method (DRM) under both
intra/inter-client distribution shifts. Our method
unifies well-known DRMs in FL, which has its
own interest in the distribution shift community
for ratio estimation (Zadrozny, 2004; Huang
et al., 2006; Sugiyama et al., 2007; Kanamori
et al., 2009; Sugiyama et al., 2012; Zhang et al., 2020; Kato & Teshima, 2021). To fully eliminate any
privacy risks, we introduce another variant of FIDEM, termed as Federated Independent Importance-
weighteD Empirical risk Minimization (FIIDEM). It does not require any form of data sharing among
clients and preserves the same level of privacy and same communication costs as those of baseline
federated averaging (FedAvg) (McMahan et al., 2017). An overview of FIDEM is shown in Fig. 1.

1.1 TECHNICAL CHALLENGES AND CONTRIBUTIONS

Learning on multiple clients in FL under covariate shifts via importance-weighted ERM is challenging
due to multiple data owners with own learning objectives, multiple potential but unpredictable
train/test shift scenarios, privacy, and communication costs (Kairouz et al., 2021). To be specific,
1) It is non-trivial to control privacy leakage to other clients while estimating ratios and relax the
requirement to have perfect estimates of the supremum over true ratios, which is a key step for non-
negative BD (nnBD) DRM. Our work is the first step towards handling inter/inter-client distribution
shifts in FL;
2) It is challenging to obtain per-client generalization bounds for a general nnBD DRM with multiple
clients and imperfect estimates of the supremum due to intra/inter-client couplings in ratios. Note that,
even if we have access to perfect estimates of density ratios, it is still unclear whether importance-
weighted ERM results in smaller excess risk compared to classical ERM. Our work gives an initial
attempt by providing an affirmative answer for ridge regression;
3) While well-established benchmarks for multi-client FL have been used, they are usually designed
in a way that each client’s test samples are drawn uniformly from a set of classes. However, we
believe this might not be the case in real-world applications and then design realistic experimental
settings in our work.

To address those technical challenges, we

• Algorithmically propose an intuitive framework to minimize average test error in FL, design
efficient mechanisms to control privacy leakage while estimating ratios (FIDEM) along with
a privacy-preserving and communication-efficient variant (FIIDEM), and improve nnBD
DRM under FL without requiring perfect knowledge of the supremum over true ratios.

• Theoretically establish generalization guarantees for general nnBD DRM with multiple
clients under imperfect estimates of the supremum, which unifies a number of DRMs, and
show benefits of importance weighting in terms of excess risk decoupled from density ratio
estimation through bias-variance decomposition.

• Experimentally demonstrate more than 16% overall test accuracy improvement over existing
FL baselines when training ResNet-18 (He et al., 2016) on CIFAR10 (Krizhevsky) in
challenging imbalanced federated settings in terms of data distribution shifts across clients.

In conclusion, we expand the concept and application scope of FL to a general setting under intra/inter-
client covariate shifts, provide an in-depth theoretical understanding of learning with FIDEM via a
general DRM, and experimentally validate the utility of the proposed framework. We hope that our
work opens the door to a new FL paradigm.
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1.2 RELATED WORK

In this section, we overview a summary of related work. See Appendix B for complete discussion.

The current FL literature largely focuses on minimizing the empirical risk, under the same train-
ing/test data distribution assumption over each client (Li et al., 2020; Kairouz et al., 2021; Wang
et al., 2021). In contrast, we focus on learning under both intra-client and inter-client covariate
shifts. Communication-efficient, robust, and secure aggregations can be viewed as complementary
technologies, which can be used along with FIDEM to improve FIDEM’s scalability and security
while addressing overall generalization. Shimodaira (2000) introduced covariate shift where the input
train and test distributions are different while the conditional distribution of the output variable given
the input variable remains unchanged. Importance-weighted ERM is widely used to improve general-
ization performance under covariate shift (Zadrozny, 2004; Sugiyama & Müller, 2005; Huang et al.,
2006; Sugiyama et al., 2007; Kanamori et al., 2009; Sugiyama et al., 2012; Fang et al., 2020; Zhang
et al., 2020; Kato & Teshima, 2021). Sugiyama et al. (2012) proposed a Bregman divergence-based
DRM, which unifies various DRMs. Kato & Teshima (2021) proposed a non-negative Bregman
divergence-based DRM when using deep neural networks for density ratio estimation. Our work
largely differs from Kato & Teshima (2021) in our problem setting that allows multiple clients,
algorithm design to estimate different ratios across clients while controlling privacy leakage, and
theoretical analyses to show the benefit of importance weighting in generalization.

2 COVARIATE SHIFT AND FIDEM FOR FL

We first provide the problem setting under intra/inter client covariate shifts, and then describe the
proposed FIDEM as an unbiased estimate in terms of minimizing the overall true risk2.

2.1 PROBLEM SETTING

Let X ⊆ Rdx be a compact metric space, Y ⊆ Rdy , and K be the number of clients in an FL setting.
Let Sk = {(xtr

k,i,y
tr
k,i)}

ntr
k

i=1 denote the training set of client k with ntr
k samples drawn i.i.d from an

unknown probability distribution ptrk on X × Y .3 The test data of client k, is drawn from another
unknown probability distribution ptek on X × Y . Under the covariate shift setting (Sugiyama et al.,
2007; Kanamori et al., 2009; Kato & Teshima, 2021; Uehara et al., 2020; Tripuraneni et al., 2021;
Zhou & Levine, 2021), the conditional distribution ptrk (y|x) = ptek (y|x) := p(y|x) is assumed
to be the same for all k, while ptrk (x) and ptek (x) can be arbitrarily different, which gives rise to
intra-client and inter-client covariate shifts. We consider supervised learning where the goal is to find
a hypothesis hw : X → Y , parameterized by w ∈ Rd e.g., weights and biases of a neural network,
such that hw(x) (for short h(x)) is a good approximation of the label y ∈ Y corresponding to a new
sample x ∈ X . Let ℓ : X × Y → R+ denote a loss function. In our FL setting, the true (expected)
risk of client k is given by Rk(hw) = E(x,y)∼pte

k (x,y)[ℓ(hw(x),y)].

2.2 FIDEM FOR FL UNDER COVARIATE SHIFT

For a scenario with K clients, we first focus on minimizing Rl (l ∈ [K]) under intra/inter-client
covariate shifts, i.e., ptrk (x) ̸= ptel (x) for all k. We then formulate FIDEM to minimize the average
test error over K clients under covariate shifts by optimizing a global model under our FL setting.

FIDEM for one client. Under ptrk (x) ̸= ptel (x) ∀k, FIDEM focusing on minimizing Rl is given
by:

min
w∈Rd

K∑
k=1

1

ntr
k

ntr
k∑

i=1

ptel (xtr
k,i)

ptrk (x
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i) . (2.1)

In Appendix C, we elaborate on four special cases of the above scenario, i.e., ptrk (x) ̸= ptel (x) ∀k,
focusing on one client under various covariate shifts and formulate their FIDEM’s.

2Notations are provided in Appendix A.
3For notational simplicity, we use the same notation for probability distributions and density functions.
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Proposition 1. Let l ∈ [K]. FIDEM in Eq. (2.1) is consistent. i.e., the learned function converges in
probability to the optimal function in terms of minimizing Rl.

See Appendix C for the proof. Proposition 1 implies that, under intra/inter-client covariate shifts,
FIDEM outputs an unbiased estimate of a true risk minimizer of client l. In Appendix C.1, we show
usefulness of importance weighting under no intra-client covariate shifts but inter-client covariate
shifts, which is a special and important case of our setting.

Building on Eq. (2.1) that aims to minimize Rl, we now formulate FIDEM to minimize the average
test error over all clients and explain its costs and benefits for federated settings.

FIDEM for K clients. Let w be the global model. For K clients under intra/inter-clinet covariate
shifts, FIDEM minimizes the average test error over all clients and is formulated as:

min
w∈Rd

F (w) :=

K∑
k=1

Fk(w) , (FIDEM)

where

Fk(w) =
1

ntr
k

ntr
k∑

i=1

∑K
l=1 p

te
l (xtr

k,i)

ptrk (x
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i). (2.2)

Each client requires an estimate of a ratio in the form of sum test over own train. We emphasize
that Fk(w) should not be viewed as the local loss function of client k. Our formulation FIDEM is
meant to minimize the overall test error over all clients given intra/inter-client covariate shifts. To
solve FIDEM, we employ the stochastic gradient descent (SGD) algorithm for T iterations starting
from an initial parameter w0: wt+1 = wt − ηt

∑K
k=1 gk(wt) where ηt > 0 is the step size, gk(wt)

is an unbiased estimate of ∇wFk(wt), and wT is the output.

Under no covariate shift, both FIDEM and classical ERM result in the same solution, which is a
minimizer of the overall empirical risk. The main difference happens under intra-client and inter-
client covariate shifts. In those challenging settings, FIDEM’s solution is an unbiased estimate of a
minimizer of the overall true risk, while the solution of ERM minimizes the overall empirical risk.

2.3 PRIVACY, COMMUNICATION, AND COMPUTATION IN FL

Privacy and communication efficiency are major concerns in FL (Kairouz et al., 2021). We elaborate
on them and introduce another variant of FIDEM with the same guarantees and costs as FedAvg.

Communication/computational costs and security benefits. Compared to classical ERM, the
communication/computational overhead of FIDEM is negligible.4 To solve FIDEM, client k should
compute an unbiased estimate of the weighted gradient ∇wFk(wt), which requires a single back-
ward pass at a single parameter w = wt. Hence, given the ratios, there is no extra computa-
tional/communication overhead compared to classical ERM. Clients compute the ratios in parallel.
In Appendix E, we provide a concrete example and show that the number of communication bits
needed during training in standard FL is usually many orders of magnitudes larger than the size of
samples shared for estimating the ratios. To further reduce communication costs of density ratio
estimation and gradient aggregation, compression methods such as quantization, sparsification, and
local updating rules, can be used along with FIDEM on the fly. More importantly, due to importance
weighting, gk(w) can be arbitrarily different from an unbiased stochastic gradient of classical ERM
for client k, i.e., 1

ntr
k

∑ntr
k

i=1 ∇wℓ(hw(xtr
k,i),y

tr
k,i). The formulation FIDEM makes it impossible for

an adversary to apply gradient inversion attack and obtain private training data of clients (Zhu et al.,
2019). In particular, the attacker cannot find the vanilla (stochastic) gradients and reconstructs data
unless the attacker has a perfect knowledge of the ratio rk(x) =

∑K
l=1 p

te
l (x)/ptrk (x).

Privacy. Given {rk(x)}Kk=1, FIDEM efficiently minimizes the overall test error over all clients in
a privacy-preserving manner. To estimate those ratios, if clients can tolerate some level of privacy

4The analyses of computational/communication overheads are provided in Appendices P and E, respectively.
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leakage, clients send unlabelled samples xte
l,j for l ∈ [K] and j ∈ [nte] from their test distributions. To

control privacy leakage to other clients, we propose that the server randomly shuffles these unlabelled
samples before broadcasting to clients. In Appendix Q, we discuss an alternative method instead of
sending original unlabelled samples and discuss its limitations.

To fully eliminate any privacy risks compared to classical ERM, clients may opt to minimize
the following surrogate objective, which we name Federated Independent Importance-weighteD
Empirical risk Minimization (FIIDEM):

min
w

F̃ (w) :=

K∑
k=1

1

ntr
k

ntr
k∑

i=1

ptek (xtr
k,i)

ptrk (x
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i). (FIIDEM)

The formulation FIIDEM preserves the same level of privacy and same communication costs as those
of classical ERM, e.g., FedAvg. However, to exploit the entire data distributed among all clients and
achieve the optimal global model in terms of overall test error, clients need to compromise some level
of privacy and share unlabelled test samples with the server. Hence, in this paper, we focus on the
original objective in FIDEM.

3 RATIO ESTIMATION FOR FL UNDER COVARIATE SHIFT

To solve FIDEM, client k should have access to an accurate estimate of this ratio

rk(x) =

∑K
l=1 p

te
l (x)

ptrk (x)
. (3.1)

Ratio estimation is a key step for importance weighting (Sugiyama et al., 2007; 2012). The discrep-
ancy between the true ratio r∗k for client k in Eq. (3.1) and the estimated one rk using our ratio model
can be measured by Eptr

k
[BDf (r

∗
k(x) ∥ rk(x))] where the Bregman divergence (BD) associated with

a strictly convex f leads to BD-based DRMs (Kato & Teshima, 2021; Kiryo et al., 2017):
Definition 1 (Bregman 1967). Let Bf ⊂ [0,∞) and f : Bf → R be a strictly convex function with
bounded gradient. The BD associated with f from z̃ to z is given by BDf (z̃ ∥ z) = f(z̃)− f(z)−
∇f(z)(z̃ − z).

Note that BDf (z̃ ∥ z) is a convex function w.r.t. z̃; however, it is not necessarily convex w.r.t. z.
Motivated by Kato & Teshima (2021); Kiryo et al. (2017), we propose a new histogram-based DRM
(HDRM) for FL with multiple clients. HDRM overcomes the over-fitting issue (Kiryo et al., 2017;
Kato & Teshima, 2021) while providing an estimate for the upper bound rk = supx∈X tr r∗k(x),
which is a key step for non-negative BD (nnBD) DRM. We now extend nnBD DRM to FL settings.

3.1 EXTENSION OF NNBD DRM TO FL

We assume that ptrk (x
tr) > 0 for k ∈ [K] and all xtr ∈ X tr ⊆ X with X te ⊆ X tr, i.e., we need a

common data domain with strictly positive train density, which is a common assumption (Kanamori
et al., 2009; Kato & Teshima, 2021). Let Hr ⊂ {r : X → Bf} denote a hypothesis class for our
ratios rk, e.g., neural networks with a given architecture. Our goal is to estimate rk by minimizing the
discrepancy Eptr

k
[BDf (r

∗
k(x) ∥ rk(x))], which leads to BD-based DRM for FL and is formulated in

Appendix D.2. Let {xtr
k,i}

ntr
k

i=1 and {xte
l,j}n

te

j=1 denote unlabelled samples drawn i.i.d from distributions
ptrk and ptel , respectively, for l ∈ [K]. Standard BD-based DRM is shown to suffer from an over-fitting
issue where − 1

nte

∑nte

j=1 ∇f(rk(xte
l,j)) diverges if there is no lower bound on this term (Kiryo et al.,

2017; Kato & Teshima, 2021). To resolve this issue in FL, we consider non-negative BD (nnBD)
DRM for client k, i.e., minrk∈Hr Ê+

f (rk) where

Ê+
f (rk) = ReLU

( 1

ntr
k

ntr
k∑

i=1

ℓ1(rk(x
tr
k,i))−

Ck

nte

nte∑
j=1

K∑
l=1

ℓ1(rk(x
te
l,j))

)
+

1

nte

nte∑
j=1

K∑
l=1

ℓ2(rk(x
te
l,j)), (3.2)

ReLU(z) = max{0, z}, 0 < Ck < 1
rk

, rk = supx∈X tr r∗k(x), ℓ1(z) = ∇f(z)z − f(z), and
ℓ2(z) = C(∇f(z)z−f(z))−∇f(z). Intuitively, ReLU is used for non-negativity and 0 < Ck < 1

rk
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acts as a regularization parameter. Substituting different f ’s into Eq. (3.2) leads to different variants
of nnBD, which covers previous work (Basu et al., 1998; Hastie et al., 2001; Gretton et al., 2009;
Nguyen et al., 2010; Kato et al., 2019). We provide explicit expressions of those variants for client k
in Appendix H. In this work, we focus on f(z) = (z−1)2

2 leading to the well-known least-squares
importance fitting (LSIF) variant of nnBD for client k.

3.2 ESTIMATION OF THE UPPER BOUND rk

Estimating rk = supx∈X tr r∗k(x) is a key step for nnBD DRM. For a single train and test distribution,
it is shown that overestimating r leads to significant performance degradation (Kato & Teshima,
2021, Section 5). Kato & Teshima (2021) considered C as a hyper-parameter, which can be tuned.
However, obtaining an efficient estimate of rk is desirable, in particular when training a deep model.
Here we propose a histogram-based method for estimation of rk.

Let B ⊂ X tr, and assume ptrk and ptel are continuous for l ∈ [K]. Since B is connected and
Lebesgue-measurable with finite measure, by applying intermediate value theorem (Russ, 1980),
there exist x̃tr and x̂te such that Pr{Xtr

k ∈ B} = ptrk (x̃
tr)Vol(B) and

∑K
l=1 Pr{Xte

l ∈ B} =∑K
l=1 p

te
l (x̂te)Vol(B) where Vol(B) =

∫
x∈B dx. We note that supx∈B r∗k(x) ≤

supx∈B
∑K

l=1 pte
l (x)

infx∈B ptr
k (x)

and
∑K

l=1 pte
l (x̂te)

ptr
k (x̃tr)

≤ supx∈B
∑K

l=1 pte
l (x)

infx∈B ptr
k (x)

. To estimate rk , we first partition X tr into M bins where

for each bin Bm, if there exists some xtr
k,i ∈ Bm, then we define r̃k,m :=

∑K
l=1 Pr{Xte

l ∈Bm}
Pr{Xtr

k ∈Bm} ≃
1

nte

∑nte

j=1

∑K
l=1 1(x

te
l,j∈Bm)

1
ntr
k

∑ntr
k

i=1 1(x
tr
k,i∈Bm)

for m ∈ [M ]. Otherwise, r̃k,m = 0. Finally, we propose to use Ck =

1
r̃k

where r̃k = max{r̃k,1, · · · , r̃k,M}. Convergence of r̃k to rk is established in Appendix G.
Furthermore, for high-dimensional data, an efficient implementation of HDRM using k-means
clustering is provided in Appendix G.

In HDRM, K clients estimate their ratios in parallel. To be specific, clients first share unlabelled test
samples with the server. The server returns the randomly shuffled pool of samples to all clients. Then
clients find Ck’s in parallel. Given Ck’s, clients estimate their corresponding ratios in parallel. To
handle high-dimensional data samples and deep ratio estimation models, we adopt a variant of SGD.
For client k, we divide unlabelled samples {xtr

k,i}
ntr
k

i=1 and {xte
l,j}n

te

j=1 for l ∈ [K] into Nk batches

{xtr
k,n,i}

Btr
k

i=1 and {xte
k,n,j}

Bte
k

j=1 for n ∈ [Nk]. Client k first computes 1
Btr

k

∑Btr
k

i=1 ℓ1(rk(x
tr
k,n,i)) −

KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(x
te
k,n,j)). If it becomes negative, then we apply a gradient ascent step to increase

this term. We may also opt to apply 1-norm or 2-norm regularizations. The details of the HDRM
algorithm are shown in Algorithm 1 in Appendix A.

4 THEORETICAL GUARANTEES

To address learning on multiple clients in FL, it is essential to obtain per-client generalization bounds
for a general nnBD DRM with imperfect estimates of rk’s. Even if we have access to perfect estimates
of density ratios, it is still unclear the usefulness of importance weighting. In this section, we firstly
study the high-probability generalization guarantees of nnBD DRM under imperfect estimate of rk in
terms of BD risk. We then show the benefit of importance weighting in term of excess risk through a
refined bias-variance decomposition on a ridge regression problem. Theorem 1, Lemma 1, Theorem 2
are proved in Appendix I, Appendix L, and Appendix M, respectively.

4.1 GENERALIZATION ERROR IN TERMS OF BD RISK

We establish a high-probability bound on the generalization error of nnBD DRM with an arbitrary f
for client k in terms of BD risk given by

Ef (rk) = Ẽk(x)[ℓ1(rk(x))] +

K∑
l=1

Epte
l
[ℓ2(rk(x))] , (4.1)
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where Ẽk := Eptr
k
− Ck

∑K
l=1 Epte

l
. Our bound for client k depends on the Rademacher com-

plexity (Shalev-Shwartz & Ben-David, 2014) of the hypothesis class for our density ratio model
Hr ⊂ {r : X → Bf} w.r.t. client k train distribution ptrk and all client’s test distributions ptel for
l ∈ [K]. Let Rp

n(H) denotes the Rademacher complexity of function class H w.r.t. distribution p,
formally defined in Appendix A. We first make the following assumptions on ℓ1(z) = ∇f(z)z−f(z)
and ℓ2(z) = C(∇f(z)z − f(z))−∇f(z).
Assumption 1 (Basic assumptions on ℓ1 and ℓ2). We assume 1) supz∈Bf

maxi∈{1,2} |ℓi(z)| < ∞;
2) ℓ1 is L1-Lipschitz and ℓ2 is L2-Lipschitz on X ; 3) infr∈Hr

Ẽk[ℓ1(rk(x))] > 0 for k ∈ [K].

The first two assumptions are satisfied if inf{z|z ∈ Bf} > 0 for commonly used loss functions, e.g.,
unnormalized Kullback– Leibler and logistic regression. The third assumption is mild, commonly
used in DRM literature (Kiryo et al., 2017; Lu et al., 2020; Kato & Teshima, 2021).

Theorem 1 (Generalization error bound for client k). Let f be a strictly convex function with
bounded gradient. Denote ∆ℓ := supz∈Bf

maxi∈{1,2} |ℓi(z)|, r̂k := argminrk∈Hr Ê+
f (rk) and

r∗k := argminrk∈Hr
Ef (rk) where Ê+

f and Ef are defined in Eqs. (3.2) and (4.1), respectively.
Suppose that ℓ1 and ℓ2 satisfy Assumption 1, then for any 0 < δ < 1, with probability at least 1− δ:

Ef (r̂k)− Ef (r∗k) ≲ R
ptr
k

ntr
k
(Hr) + Ck

K∑
l=1

R
pte
l

nte(Hr) +

√
Υ log

1

δ
+KCk∆ℓ exp

(−1

Υ

)
(4.2)

where Υ = ∆2
ℓ(1/n

tr
k + C2

kK/nte).

Remark 1. Theorem 1 provides generalization guarantees for a general nnBD DRM in a federated
setting under a strictly convex f with bounded gradient. We make the following remarks.
1) Our results are general to cover various ratio models. For example, in Corollary 1 of Appendix J,
we consider neural networks with depth L and bounded Frobenius norm ∥Wi∥F ≤ ∆Wi and
establish explicit generalization error bounds for client k in O

(√
L
∏L

i=1 ∆Wi
(1/
√
ntr
k +K/

√
nte)+√

Υ log 1
δ +KCk∆ℓ exp

(−1
Υ

))
.

2) If the additional error due to estimation of rk with HDRM in Section 3 using M bins is considered,
it leads to O(K∆ℓ

(
1
M +

√
M
ntr
k

)
) under mild assumptions. Refer to Appendix K for details.

3) Our error bound increases with K due to the structure of BD risk. Note that K is in a constant
order. Our goal is to show that nnBD DRM is guaranteed to generalize in a general federated setting.

4.2 EXCESS RISK AND BENEFIT OF FIDEM

In this section, we aim to demonstrate the benefit of importance weighting in term of excess risk
through bias-variance decomposition. We consider the classical least squares problem, a good starting
point to understand the superiority of FIDEM over ERM with generalization guarantees. We consider
the single client setting K = 1 for the ease of description, and our results can be extended to the
multiple clients setting.

Let (x, y) denote the (test) data sampled from an unknown probability measure ρ. The least squares
problem is to estimate the true parameter θ∗, which is assumed to be the unique solution that
minimizes the population risk in a Hilbert space H: L(θ∗) = minθ∈H L(θ) where L(θ) :=
1
2E(x,y)∼ρ[(y − θ⊤x)]2. Moreover, we have L(θ∗) = σ2

ϵ corresponding to the noise level. For an
estimate θ found by a learning algorithm such as ridge regression, its performance is measured by the
expected excess risk, E[L(θ)]− L(θ∗), where the expectation is over the random noise, randomness
of the algorithm, and training data. In the following, we consider two settings: random-design setting
and fixed-design settings where the training data matrix is random and given, respectively.

Bias variance decomposition. We need the following noise assumption for our proof.

Assumption 2 (Dhillon et al. 2013; Zou et al. 2021, bounded variance). Let ϵ := y − θ⊤
∗ x. We

assume that E[ϵ] = 0 and E[ϵ2] = σ2
ϵ .

We have the following lemma on the bias-variance decomposition of the ridge regression FIDEM
estimate in the random-design setting.

7



Under review as a conference paper at ICLR 2023

Lemma 1. Let X ∈ Rn×d be the training data matrix. Let W = diag(w1, . . . , wn) with wi =

pte(xi)/p
tr(xi) for i ∈ [n], θ̂ be the regularized least square estimate with importance weighting:

θ̂ = argminθ
∑n

i=1 wi(θ
⊤xi − yi)

2 + λ∥θ∥22 where λ is the regularization parameter. Denote
θ∗ be the true estimate, then the excess risk can be decomposed as the bias B and the variance V:
E[L(θ̂)]− L(θ∗) = B+ V , with

B := λ2E
[
θ⊤
∗ Σ

−1
W,λΣ

teΣ−1
W,λθ∗

]
, V :=σ2

ϵE
[
tr
(
Σ−1

W,λX
⊤W2XΣ−1

W,λΣ
te
)]

,

where ΣW,λ := X⊤WX+λI, and Σte = Ex[xx
⊤]. Note that the expectation is taken over the

randomness of the training data matrix X and label noise.
Remark 2. Our results in Lemma 1 hold under the fixed-design setting where the training data are
given (Dhillon et al., 2013; Hsu et al., 2012), by omitting the expectations from B and V.

One-hot case. To theoretically prove that FIDEM outperforms ERM in non-trivial settings, we start
from the one-hot case, along the lines of Zou et al. (2021), and strictly show that, under which level
of covariate shift, the excess risk of FIDEM is always smaller than the classical ERM.

To be specific, in the one-hot case, every training data x is sampled from the set of natural basis
{e1, e2, . . . , ed} according to the data distribution given by Pr{x = ei} = λi where 0 < λi ≤ 1
and

∑
i λi = 1. The class of one-hot least square instances is characterized by the following problem

set:
{
(θ∗;λ1, . . . , λd) : θ∗ ∈ H,

∑
iλi = 1

}
. It is not difficult to show that the population second

momentum matrix is Σtr = E[xix
⊤
i ] = diag(λ1, . . . , λd) for i ∈ [n]. Similarly, we assume that each

test data follows the same scheme but with different probabilities Pr{x = ei} = λ′
i, and hence, we

have Σte = diag(λ′
1, . . . , λ

′
d). This is a relatively simple setting, which admits covariate shift.Take

{µ1, µ2, . . . , µd} as the eigenvalues of X⊤X. Since xi can only take on natural basis, the eigenvalue
µi can be understood as the number of training data that equals ei. For notational simplicity, we
rearrange the order of the training data following the decreasing order of the ratio, such that the i-th
sample xi corresponds to the ratio wi as the exact i-th largest value.

Theorem 2. Let θ̂ be the estimate of FIDEM, θv be the classical ERM, and ξi :=
λ

λ+µi
. Under the

fixed-design setting in the one-hot case, label noise assumption, and data correlation assumption, if
the ratio wi := pte(xi)/p

tr(xi) satisfies√
λ′
i

λi
− 1 ≤ wi ≤ ξi

√
λi

λ′
i

, (4.3)

then we have R(θ̂) ⩽ R(θv) .

Remark 3. We have the following remarks:

1) The condition (4.3) is equivalent to
√

λ′
i

λi
∈
(
0, 1+

√
1+4ξi
2

)
, which requires the training and test

data to behave similarly in terms of eigenvalues, avoiding significant differences under distribution
shifts for learnability. Other metrics, e.g., similarity on eigenvectors (Tripuraneni et al., 2021) also
coincide with the spirit of our assumption.
2) The ratio matrix is W ∈ Rn×n. However, we only need its top d eigenvalue, i.e., the top-d ratios.
In particular, the last n− d ratios have no effect on the final excess risk. This makes our algorithm
robust to noise and domain shift.
3) For the special case by taking the ratio as wi :=

√
λ′
i

λi
, we have

B(θ̂) = λ2
d∑

i=1

[(θ∗)i]
2λ′

i

[µiwi + λ]
2 = λ2

d∑
i=1

[(θ∗)i]
2λi[

µi +
√

λi

λ′
i
λ
]2 ,

which implies that the ratio can be regarded as an implicit regularization (Zou et al., 2021).

5 EXPERIMENTAL EVALUATION

In this section we illustrate conditions under which FIDEM is favored over both Federated Averaging
without ratio estimation (FedAvg) (McMahan et al., 2017) and FIIDEM. In all experiments, we
use a LeNet (LeCun et al., 1989) with cross entropy loss and compute standard deviations over 5
independent executions. Due to the page limit, the implementation details are in Appendix O.
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Table 1: Fashion MNIST with label shift across two clients, where each client receives different fractions of
examples from each class. In this case, FIDEM achieves a better average accuracy than the baselines.

FIDEM FIIDEM FedAvg

Average accuracy 0.8245 ± 0.0111 0.7942 ± 0.0096 0.5475 ± 0.0093
Client 1 accuracy 0.8627 ± 0.0175 0.8336 ± 0.0066 0.3978 ± 0.0215
Client 2 accuracy 0.9308 ± 0.0057 0.8896 ± 0.0124 0.9143 ± 0.0048
Client 3 accuracy 0.7742 ± 0.0618 0.7275 ± 0.0261 0.3677 ± 0.0297
Client 4 accuracy 0.7933 ± 0.0598 0.8204 ± 0.0152 0.6566 ± 0.0447
Client 5 accuracy 0.7616 ± 0.0593 0.6998 ± 0.0649 0.4009 ± 0.0642

Table 2: A challenging binary classification task on Colored MNIST with covariate shift across two clients.
FIDEM is close to the idealised baseline that ignores the spurious correlation (Grayscale).

Upper Bound (Grayscale) FIDEM FIIDEM FedAvg
Average accuracy 0.68 ± 0.01 0.66 ± 0.01 0.63 ± 0.00 0.58 ± 0.01

Target shift. We consider the case of target shift where the label distribution p(y) changes but
the conditional distribution p(x|y) remains invariant. We split the 10-class Fashion MNIST dataset
between 5 clients and simulate a target shift by including different fractions of examples from
each class across the training data and test data. We further consider the separable case in order
to compute the exact ratio for FIDEM and FIIDEM in closed form. The specific distribution and
the construction of the ratio can be found in Appendix O.1. The results in Table 1 illustrate that
FIIDEM can outperform FedAvg on average while preserving the same level of privacy. By relaxing
the privacy slightly the proposed FIDEM improves on FedAvg uniformly across all clients. Even
though the proportions of the classes have been artificially created, we believe that this demonstrates a
realistic scenario where clients have a different fraction of samples per class. Additional experiments
using larger models on the CIFAR10 dataset under a challenging target shift setting can be found in
Appendix O.1 where FIDEM is observed to improve uniformly over FedAvg.

Covariate shift. We now focus on covariate shift, where p(x) undergoes a shift while p(y|x)
remains unchanged. For this setting, we extend the Colored MNIST dataset in Arjovsky et al. (2019)
to the multi-client setting. The dataset is constructed by first assigning a binary label 0 to digits from
0-4 and label 1 for digits between 5-9. The label is then flipped with probability 0.25 to make the
dataset non-separable. A spurious correlation is introduced by coloring the digits according to their
assigned labels and then flipping the colors according to a different probability for each distribution
(see Appendix O.2). For this experimental setup, we introduce an idealized scheme, which ignores the
color and thus the spurious correlation, i.e., provides an upper bound, and is referred to as Grayscale.
FIDEM outperforms both baselines in terms of the average accuracy even in a two-client setting.
FIDEM is also close to Grayscale upper bound that by construction ignores the spurious correlations.

6 CONCLUSIONS AND FUTURE WORK

In this work, we focus on FL under both intra-client and inter-client distribution shifts and propose
FIDEM to improve the overall generalization performance. We establish high-probability general-
ization guarantees for a general DRM method in a federated setting. We further show the benefit of
importance weighting in term of excess risk through bias-variance decomposition in a ridge regression
problem. Our theoretical guarantees indicate how FIDEM can provably solve a learning task under
distribution shifts. We experimentally evaluate FIDEM under both label shift and covariate shift
cases. Our experimental results validate that under certain covariate and target shifts, the proposed
method can learn the task, while baselines such as vanilla federated averaging fails to do so. We
anticipate that our methods to be applicable in learning from e.g., medical data, where there might
be arbitrary skews on the distribution. In addition, we believe our study can further encourage the
investigation of distribution shifts in FL, as this is a critical subject for learning across clients.
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A CONTENT OF THE APPENDIX

Notation: We use E[·] to denote the expectation and ∥ · ∥ to represent the Euclidean norm of a vector.
We use lower-case bold font to denote vectors. Sets and scalars are represented by calligraphic and
standard fonts, respectively. We use [n] to denote {1, · · · , n} for an integer n. We use ≲ to ignore
terms up to constants and logarithmic factors.

The appendix is organized as follows:

• Definition of Rademacher complexity, examples of f for BD-based DRM, and the steps of
HDRM in Algorithm 1 are provided in Appendix A.

• Complete related work is provided in Appendix B.
• FIDEM with a focus on minmizing R1 are provided in Appendix C.
• Details of density ratio estimation are provided in Appendix D.
• Communication costs of FIDEM and FIIDEM are analyzed in in Appendix E.
• UKL, LR, and PU variants of nnBD are provided in Appendix F.
• Convergence of r̃ and k-means clustering for HDRM are provided in Appendix G.
• UKL, LR, and PU variants of nnBD for multiple clients are provided in Appendix H.
• The proof of the core Theorem 1 exists in Appendix I.
• Generalization bounds for multi-layer perceptron and multiple clients are established in Ap-

pendix J.
• Additional error due to estimation of rk with HDRM is analyzed in Appendix K.
• Lemma 1 is proved in Appendix L.
• Theorem 2 is proved in Appendix M.
• A counterexample under which FIDEM cannot outperform ERM is provided in Appendix N.
• Additional experimental details are included in Appendix O.
• Computational complexity of Algorithm 1 is analyzed in Appendix P.
• The limitations of our work are described in Appendix Q.
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Table 3: Examples of f for BD-based methods (Sugiyama et al., 2012; Kato & Teshima, 2021), LSIF =
least-squares importance fitting, LR = logistic regression, BKL = binary Kullback–Leibler, UKL = unnormalized
Kullback– Leibler, KLIEP = Kullback– Leibler importance estimation procedure, KMM = kernel mean matching
, PULogLoss = positive and unlabeled learning with log Loss.

Reference Algorithm f(z)

Basu et al. (1998) Robust zα+1−z
α , α > 0

Hastie et al. (2001) LR (BKL) z log(z)− (z + 1) log(z + 1)

Kanamori et al. (2009) LSIF (z−1)2

2

Gretton et al. (2009) KMM (z−1)2

2

Nguyen et al. (2010) KLIEP z log(z)− z

Nguyen et al. (2010) UKL z log(z)− z

Kato et al. (2019) PULogLoss C log(1− z) + Cz(log(z)− log(1− z)), z ∈ (0, 1), C ≤ r

Input: Samples {{xtr
k,i}

ntr
k

i=1}Kk=1, {{xte
l,j}n

te

j=1}Kl=1, learning rate α, regularization Λ(r) and
regularization coefficient λ.

Output: Ratio model parameters {θrk}Kk=1.
1 for k = 1 to K (in parallel) do
2 Send nte samples to the server ;
3 Server randomly shuffles and broadcasts samples {{xte

l,j}n
te

j=1}Kl=1 to clients ;
4 for k = 1 to K (in parallel) do

5 Create M bins and compute r̃k,m =
1/nte ∑nte

j=1

∑K
l=1 1(x

te
l,j∈Bm)

1/ntr
k

∑ntr
k

i=1 1(x
tr
k,i∈Bm)

;

6 Estimate Ck = 1
max{r̃k,1,··· ,r̃k,M} ;

7 for t = 1 to T do
8 for k = 1 to K (in parallel) do
9 for n = 1 to Nk do

10 if 1
Btr

k

∑Btr
k

i=1 ℓ1(rk(x
tr
k,n,i))−

KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(x
te
k,n,j)) ≥ 0 then

11 gk = −∇θr

(
1

Btr
k

∑Btr
k

i=1 ℓ1(rk(x
tr
k,n,i))−

KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(x
te
k,n,j)) +

K
Bte

k

∑Bte
k

j=1 ℓ2(rk(x
te
k,n,j)) +

λ
2Λ(rk)

)
;

12 else
13 gk = ∇θr

(
1

Btr
k

∑Btr
k

i=1 ℓ1(rk(x
tr
k,n,i))−

KCk

Bte
k

∑Bte
k

j=1 ℓ1(rk(x
te
k,n,j)) +

λ
2Λ(rk)

)
;

14 Update ratio model parameters θrk = θrk + αgk;
Algorithm 1: Histogram-based density ratio matching. Loops are executed in parallel on each
client.

Definition 2. Let n ∈ Z+ and p be a distribution, S = {x1, · · · ,xn} be i.i.d. random variables
drawn from p, and H be a function class. The Rademacher complexity of H w.r.t. p is given by:

Rp
n(H) = ESEσ

[
sup
r∈H

∣∣∣ 1
n

n∑
i=1

σir(xi)
∣∣∣]

where {σi}ni=1 are Rademacher variables uniformly chosen from {−1, 1}.

B RELATED WORK

Federated learning. One well-known method in FL is FedAvg (McMahan et al., 2017). FedAvg
and its variants are extensively studied in optimization with a focus on communication efficiency and
partial participation of clients while preserving privacy.
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Indeed, a host of techniques, such as gradient quantization, sparsification, and local updating rules,
have been proposed to improve communication efficiency in FL (Alistarh et al., 2017). Furthermore,
robust and secure aggregation schemes have been also proposed to provide robustness against training-
time attacks launched by an adversary, and to compute aggregated values without being able to inspect
the clients’ local models and data, respectively (Li et al., 2020; Kairouz et al., 2021; Wang et al.,
2021).

Taken together, these work largely focus on minimizing the empirical risk in the optimization
objective, under the same training/test data distribution assumption over each client. Differences
across clients are handled using personalization methods based on heuristics and currently do not have
a statistical learning theoretical support (Smith et al., 2017; Khodak et al., 2019; Li et al., 2021b).

In contrast, we focus on learning and overall generalization performance under both intra-client
and inter-client distribution shifts. Communication-efficient, robust, and secure aggregations can be
viewed as complementary technologies, which can be used along with our proposed FIDEM method
to improve the generalization performance. In our setting, clients can also all participate in every
training iteration, such as cross-silo FL.

We note that (Hanzely et al., 2020; Gasanov et al., 2022) focus on minimizing the empirical risk,
under the same training/test data distribution assumption over each client. Our formulation in FIDEM
does not require specific assumptions on function Fk’s for k ∈ [K] to provide an unbiased estimate
of true risk minimizer. Under strong convexity and smoothness assumptions w.r.t. model parameters,
similar optimal algorithms to those proposed in (Hanzely et al., 2020; Gasanov et al., 2022) will be
optimal for FIDEM.

Different from recent FL work by Duan et al. (2021) and Li et al. (2021c), our work introduces new
FIDEM formulation and shows statistical consistency.

Importance-weighted ERM and density ratio matching. Density ratio estimation is an important
step in various machine learning problems such as learning under covariate shift, learning under
noisy labels, anomaly detection, two-sample testing, causal inference, change-pint detection, and
classification from positive and unlabelled data (Qin, 1998; Shimodaira, 2000; Cheng & Chu, 2004;
Keziou & Leoni-Aubin, 2005; Sugiyama et al., 2007; Kawahara & Sugiyama, 2009; Smola et al.,
2009; Hido et al., 2011; Kanamori et al., 2011; Sugiyama et al., 2011; Yamada et al., 2011; Reddi
et al., 2015; Liu & Tao, 2015; Kato et al., 2019; Fang et al., 2020; Uehara et al., 2020; Zhang
et al., 2020; Kato & Teshima, 2021). In particular, covariate shift has been observed in real-world
applications including brain-computer interfacing, emotion recognition, human activity recognition,
spam filtering, and speaker identification (Bickel & Scheffer, 2007; Li et al., 2010; Yamada et al.,
2010; Hachiya et al., 2012; Jirayucharoensak et al., 2014). Shimodaira (2000) introduced covariate
shift where the input train and test distributions are different while the conditional distribution of the
output variable given the input variable remains unchanged. Importance-weighted ERM is widely
used to improve generalization performance under covariate shift (Zadrozny, 2004; Sugiyama &
Müller, 2005; Huang et al., 2006; Sugiyama et al., 2007; Kanamori et al., 2009; Sugiyama et al.,
2012; Fang et al., 2020; Zhang et al., 2020; Kato & Teshima, 2021). Zhang et al. (2020) proposed
a one-step approach that jointly learns the predictive model and the corresponding weights in one
optimization problem. Sugiyama et al. (2012) proposed a Bregman divergence-based DRM, which
unifies various DRMs. Kato & Teshima (2021) proposed a non-negative Bregman divergence-based
DRM to resolve the overfitting issue when using deep neural networks for density ratio estimation.
While this line of work focuses on DRM with a single train and test distributions, we consider a
federated setting with multiple clients in this paper.

Domain adaptation. Distribution shifts between a source and a target domain have been a promi-
nent problem in machine learning for several decades (Kouw & Loog, 2019; Wang & Deng, 2018).
The premise behind such shifts is that data is frequently biased, and this results in distribution
shifts that can be estimated by assuming some (unlabelled) knowledge of the target distribution.
The following two categories of domain adaptation methods are most closely related to our work:
a) sample-based, and b) feature-based methods. In feature-based methods, the goal is to find a
transformation that maps the source samples to target samples (Ganin et al., 2016; Bousmalis et al.,
2017; Das & Lee, 2018; Damodaran et al., 2018). Contrary to feature-based methods, sample-based
methods aim at minimizing the target risk through data in the source domain. Importance weighting
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Table 4: Details of scenarios described in Section 2.

Scenario #Clients Assumptions on Distributions What client 1 Knows
No-CS in (C.1) 2 ptr1 (x) = pte1 (x), ptr1 (x) ̸= ptr2 (x) ptr1 (x)/p

tr
2 (x)

CS on one in (C.2) 2 ptr1 (x) ̸= pte1 (x), ptr2 (x) = pte2 (x) pte1 (x)/ptr1 (x), pte1 (x)/ptr2 (x)
CS on both in (C.2) 2 ptr1 (x) ̸= pte1 (x), ptr2 (x) ̸= pte2 (x) pte1 (x)/ptr1 (x), pte1 (x)/ptr2 (x)

CS on multi. in (C.3) K ptrk (x) ̸= pte1 (x) for all k pte1 (x)/ptrk (x) for all k

is often used in sample-based methods (Shimodaira, 2000; Jiang & Zhai, 2007; Baktashmotlagh
et al., 2014). However, the focus on domain adaptation has been mainly to adapt to a single target
distribution, not the overall generalization performance on multiple clients, which is addressed in this
paper.

Statistical generalization and excess risk bounds. Understanding generalization performance of
learning algorithms is one essential topic in modern machine learning. Typical techniques to establish
generalization guarantees include uniform convergence by Rademacher complexity (Bartlett, 1998),
and its variants (Bartlett et al., 2005), bias-variance decomposition (Geman et al., 1992; Adlam
& Pennington, 2020), PAC-Bayes (McAllester, 1999), and stability-based analysis (Bousquet &
Elisseeff, 2002; Shalev-Shwartz et al., 2010). Our work employs the first two techniques to analyze
our density ratio estimation method in a federated setting and establish generalization guarantees for
FIDEM, respectively. Rademacher complexity has been used in FL to obtain theoretical guarantees on
the centralized model (Mohri et al., 2019) and personalized model (Mansour et al., 2020). Mohri et al.
(2019) considered a scenario where a single target distribution is modeled as an unknown mixture
of multiple domain distributions and obtained a global modal by minimizing the worst-case loss.
This is different from our setting where we consider multiple test distributions for clients and focus
on the overall test error. Mansour et al. (2020) studied personalization under the same training/test
data distribution assumption over each client, which is different from our setting. Bias-variance
decomposition provides a relatively refined characterization of generalization error (or excess risk),
where a large bias indicates that a model is not flexible enough to learn from the data and a high
variance indicates that the model performs unstably. Bias-variance decomposition is typically studied
in two settings, i.e., the fixed and random design setting, which is categorized by whether the (training)
data are fixed or random. This technique has been extensively applied in least squares (Hsu et al.,
2012; Dieuleveut et al., 2017), analysis of SGD (Jain et al., 2018; Zou et al., 2021), and double
descent (Adlam & Pennington, 2020).

Information-theoretic bounds on the generalization error and privacy leakage in federated settings
were established in (Yagli et al., 2020). Under partial participation of clients, Yuan et al. (2021)
proposed a framework, which distinguishes performance gaps due to unseen client data from perfor-
mance gap due to unseen client distributions. Still, these work study FL under the same training/test
data distribution assumption over each client.

C FIDEM WITH A FOCUS ON MINMIZING R1

Without loss of generality and for simplicity of notation, in this section, we set l = 1. We consider
four typical scenarios under various distribution shifts and formulate their FIDEM with a focus on
minmizing R1. The details of these scenarios are summarized in Table 4.
Remark 4. Covariance shift (as well as its assumption) is the most commonly used and studied
in theory and practice in distribution shifts (Sugiyama et al., 2007; Kanamori et al., 2009; Kato
& Teshima, 2021; Uehara et al., 2020; Tripuraneni et al., 2021; Zhou & Levine, 2021). Handling
covariate shift is a challenging issue, especially in federated settings (Kairouz et al., 2021).

No intra-client covariate shift: (No-CS) For description simplicity, we assume that there are
only 2 clients but our results can be directly extended to multiple clients. This scenario assumes
ptrk (x) = ptek (x) for k = 1, 2. Client 1 aims to learn hw assuming ptr

1 (x)
ptr
2 (x)

is given. We consider the
following FIDEM that is proved to be consistent in terms of minimizing minimizing R1:

min
w∈Rd

1

ntr
1

ntr
1∑

i=1

ℓ(hw(xtr
1,i),y

tr
1,i) +

1

ntr
2

ntr
2∑

i=1

ptr1 (x
tr
2,i)

ptr2 (x
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i). (C.1)

18



Under review as a conference paper at ICLR 2023

Covariate shift only for client 1: (CS on one) We now consider covariate shift only for client 1, i.e.,
ptr1 (x) ̸= pte1 (x) and ptr2 (x) = pte2 (x). We consider the following FIDEM

min
w∈Rd

1

ntr
1

ntr
1∑

i=1

pte1 (xtr
1,i)

ptr1 (x
tr
1,i)

ℓ(hw(xtr
1,i),y

tr
1,i) +

1

ntr
2

ntr
2∑

i=1

pte1 (xtr
2,i)

ptr2 (x
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i). (C.2)

Covariate shift for both clients: (CS on both) We assume ptr1 (x) ̸= pte1 (x) and ptr2 (x) ̸= pte2 (x),
i.e., covariate shift for both clients. The corresponding FIDEM is the same as Eq. (C.2).

Multiple clients: (CS on multi.) Finally, we consider a general scenario with K clients. We assume
both intra-client and inter-client covariate shifts by the following FIDEM:

min
w∈Rd

K∑
k=1

λk

ntr
k

ntr
k∑

i=1

pte1 (xtr
k,i)

ptrk (x
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i) (C.3)

where
∑K

k=1 λk = 1 and λk ≥ 0.
Proposition 2. Let l ∈ [K]. In above settings, FIDEM defined in Eqs. (C.1), (C.2), and (C.3) is
consistent. i.e., the learned function converges in probability to the optimal function in terms of
minimizing R1.

Proposition 2 implies that, under various settings, FIDEM outputs an unbiased estimate of a minimizer
of the true risk.

Proof. For the scenario without intra-client covariate shift, FIDEM in Eq. (C.1) can be expressed as

1

ntr
2

ntr
2∑

i=1

ptr1 (x
tr
2,i)

ptr2 (x
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i)

ntr
2 →∞−−−−−→ Eptr

2 (x,y)

[
ptr1 (x)

ptr2 (x)
ℓ(hw(x),y)

]
= Ep(y|x)

[∫
X

ptr1 (x)

ptr2 (x)
ℓ(hw(x),y)ptr2 (x) dx

]
= Ep(y|x)

[∫
X
ptr1 (x)ℓ(hw(x),y) dx

]
= Ep(y|x)

[∫
X
pte1 (x)ℓ(hw(x),y) dx

]
= Epte

1 (x,y) [ℓ(hw(x),y)]

= R1(hw).

For the scenario with covariate shift only for client 1 or for both clients, FIDEM in Eq. (C.2) admits

1

ntr
2

ntr
2∑

i=1

pte1 (xtr
2,i)

ptr2 (x
tr
2,i)

ℓ(hw(xtr
2,i),y

tr
2,i)

ntr
2 →∞−−−−−→ Eptr

2 (x,y)

[
pte1 (x)

ptr2 (x)
ℓ(hw(x),y)

]
= Ep(y|x)

[∫
X

pte1 (x)

ptr2 (x)
ℓ(hw(x),y)ptr2 (x) dx

]
= Ep(y|x)

[∫
X
pte1 (x)ℓ(hw(x),y) dx

]
= Epte

1 (x,y) [ℓ(hw(x),y)]

= R1(hw).

We note that pte
1 (x)

ptr
2 (x)

=
pte
1 (x)

ptr
1 (x)

ptr
1 (x)

ptr
2 (x)

, which is the product of ratios due to intra-client covariate shift on
client 1 and inter-client covariate shift.

For multiple clients, let k ∈ [K]. Similarly, we have

1

ntr
k

ntr
k∑

i=1

pte1 (xtr
k,i)

ptrk (x
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i)

ntr
k →∞−−−−−→ R1(hw).
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Then we have

K∑
k=1

λk

ntr
k

ntr
k∑

i=1

pte1 (xtr
k,i)

ptrk (x
tr
k,i)

ℓ(hw(xtr
k,i),y

tr
k,i)

ntr
1 ,··· ,ntr

K→∞−−−−−−−−−→ R1(hw).

The consistency of FIDEM, i.e., convergence in probability, is immediately followed the standard
arguments in e.g., (Shimodaira, 2000)[Section 3] and (Sugiyama et al., 2007)[Section 2.2] using the
law of large numbers. ■

Note that to solve Eq. (C.3), client 1 needs to estimate pte
1 (x)

ptr
k (x)

for all clients k with λk > 0 in (C.3).

Remark 5. Scaling
∑K

k=1 λk does not affect the optimal parameters in Eq. (C.3). For rotational
simplicity, we set λk = 1 for k ∈ [K].

C.1 NO INTRA-CLIENT SHIFT

In this section, we consider the important and special case of the setting described in Section 2.1
under no intra-client covariate shifts but inter-client covariate shifts. For simplicity, we consider
a two clients with train/test distributions P and Q whose train/test densities are denoted by p and
q, respectively. We also suppose that we have a sample z ∼ P and z′ ∼ Q to learn with the goal
is to find an unbiased estimate of the overall risk with the smallest variance. In this setting, the
classical ERM (FedAvg) objective ℓ(z, θ) + ℓ(z′, θ) is an unbiased estimate for the overall risk
L(θ) = EP [ℓ(z, θ)] +EQ[ℓ(z

′, θ)]5. In this setting, the objective of FIDEM, i.e., 1
2 (L̂P (θ) + L̂Q(θ))

with L̂P (θ) =
(
1 + q(z)

p(z)

)
ℓ(z, θ) and L̂Q(θ) =

(
1 + p(z′)

q(z′)

)
ℓ(z′, θ) is an unbiased estimate for the

overall risk L(θ).

We now show that the our method (FIDEM) has a smaller variance than FedAvg under certain
conditions. Let EP [(ℓ(z, θ)− EP [ℓ(z, θ)])

2] = σ2
P and EQ[(ℓ(z

′, θ)− EQ[ℓ(z
′, θ)])2] = σ2

Q.

For FedAvg, the variance is given by

EP,Q[(ℓ(z, θ) + ℓ(z′, θ)− L(θ))2] = σ2
P + σ2

Q.

For FIDEM, the variance is given by

EP,Q[(
1

2
(L̂P (θ) + L̂Q(θ))− L(θ))2] = VP + VQ

where VP = 1
4EP [(L̂P (θ)− L(θ))2] and VQ = 1

4EQ[(L̂Q(θ)− L(θ))2].

We now expand each term VP and VQ. We can show that

VP =
1

4
EP

[(
(1 +

q(z)

p(z)
)ℓ(z, θ)− EP [ℓ(z, θ)]− EQ[ℓ(z

′, θ)]
)2]

=
σ2
P + σ̃2

P

4

where σ̃2
P = EP

[(
q(z)
p(z)ℓ(z, θ) − EQ[ℓ(z

′, θ)]
)2]

+ 2EP

[(
ℓ(z, θ) − EP [ℓ(z, θ)]

)(
q(z)
p(z)ℓ(z, θ) −

EQ[ℓ(z
′, θ)]

)]
. Similarly, we have

VQ =
1

4
EQ

[(
(1 +

p(z′)

q(z′)
)ℓ(z′, θ)− EP [ℓ(z, θ)]− EQ[ℓ(z

′, θ)]
)2]

=
σ2
Q + σ̃2

Q

4

where σ̃2
Q = EQ

[(
p(z′)
q(z′) ℓ(z

′, θ)−EP [ℓ(z, θ)]
)2]

+ 2EQ

[(
ℓ(z′, θ)−EQ[ℓ(z

′, θ)]
)(

p(z′)
q(z′) ℓ(z

′, θ)−

EP [ℓ(z, θ)]
)]

.

We note if σ̃2
P + σ̃2

Q ≤ 3(σ2
P + σ2

Q) then, FIDEM will have smaller variance than FedAvg, i.e.,
VP + VQ ≤ σ2

P + σ2
Q. The exact condition depends on the loss and densities. To show a concrete

5For notational simplicity, we overload ℓ(z, θ) to denote the loss of model θ on example z.
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example, for the more general and practical case with both intra/inter-client , in Section 4.2, we
show that FIDEM results in smaller excess risk compared to FedAvg through a refined bias-variance
decomposition. Given two distributions, considering the case of no intra-client shift is a special case,
where it is true that FedAvg is an unbiased estimate of the overall risk. However, this unbiasedness
breaks as soon as there is only one client whose test and train distributions are different, which is very
common in theory and practice. Please note that FIDEM is an unbiased estimate of the overall risk in
a general FL setting without requiring any prior knowledge/assumptions on the potential covariate
shifts.

D RATIO ESTIMATION

D.1 NNBD DRM FOR A SINGLE CLIENT

For simplicity, we firstly focus on the problem of estimating r(x) = pte(x)
ptr(x) and then extend our

consideration to the estimation of rk(x) in Eq. (3.1). Let r∗ denote the true density ratio. Our goal is
to estimate r∗ by optimizing our ratio model r. The discrepancy between r and r∗ is measured by
Eptr [BDf (r

∗(x) ∥ r(x))]. We note that Eptr [BDf (r
∗(x) ∥ r(x))] = Ef (r) + Eptr [f(r∗(x))] where

Ef (r) = Eptr [∇f(r(x))r(x) − f(r(x))] − Epte [∇f(r(x))]. Note that Eptr [f(r∗(x))] is constant
w.r.t. r. Let {xtr

i }n
tr

i=1 and {xte
j }nte

j=1 denote unlabelled samples drawn i.i.d from distributions ptr and
pte, respectively. Let Hr ⊂ {r : X → Bf} denote a hypothesis class for our model r. Using an
empirical approximation of Ef (r∗(x) ∥ r(x)), Sugiyama et al. (2012) formulated BD-based DRM
problem as minr∈Hr

Êf (r) where

Êf (r) =
1

ntr

ntr∑
i=1

(
∇f(r(xtr

i ))r(x
tr
i )− f(r(xtr

i ))
)
− 1

nte

nte∑
j=1

∇f(r(xte
j )). (D.1)

Sugiyama et al. (2012) showed that BD-based DRM unifies well-known density ratio estimation
methods by substituting an appropriate f in (D.1). However, it is shown that solving BD-based DRM
with highly flexible models such as neural networks typically leads to an over-fitting issue (Kato &
Teshima, 2021; Kiryo et al., 2017). In particular, Kato & Teshima (2021) called such issue “train-loss
hacking” where − 1

nte

∑nte

j=1 ∇f(r(xte
j )) in (D.1) diverges if there is no lower bound on this term.

Even when there exists a lower bound, the model r tends to increase to the largest possible values of
its output range at points {xte

j }nte

j=1. To resolve such issue, Kato & Teshima (2021) proposed to use
non-negative BD (nnBD) DRM, i.e., minr∈Hr

Ê+
f (r) where

Ê+
f (r) = ReLU

( 1

ntr

ntr∑
i=1

ℓ1(r(x
tr
i ))−

C

nte

nte∑
j=1

ℓ1(r(x
te
j ))
)
+

1

nte

nte∑
j=1

ℓ2(r(x
te
j )), (D.2)

ReLU(z) = max{0, z}, 0 < C < 1
r , r = supx∈X tr r∗(x), ℓ1(z) = ∇f(z)z − f(z), and ℓ2(z) =

C(∇f(z)z − f(z))−∇f(z). Substituting f(z) = (z−1)2

2 into (D.2), the least-squares importance
fitting (LSIF) variant of nnBD is given by

Ê+
LSIF(r) = ReLU

( 1

2ntr

ntr∑
i=1

r2(xtr
i )−

C

2nte

nte∑
j=1

r2(xte
j )

)
− 1

nte

nte∑
j=1

(
r(xte

j )− C

2
r2(xte

j )
)
.

In Appendix F, we show explicit expressions for unnormalized Kullback–Leibler (UKL), logistic
regression (LR), and positive and unlabeled learning (PU) variants of nnBD.

Estimating r = supx∈X tr r∗(x) is a key step for density ratio estimation. It is shown that underes-
timating C leads to significant performance degradation (Kato & Teshima, 2021, Section 5). Kato
& Teshima (2021) considered C as a hyper-parameter, which can be tuned. However, obtaining an
efficient estimate of r is desirable, in particular when training a deep model.

Let B ⊂ X tr. Assume ptr and pte are continuous. Since B is connected and Lebesgue-measurable
with finite measure, by applying intermediate value theorem (Russ, 1980), there exist x̃tr and x̂te

such that Pr{Xtr ∈ B} = ptr(x̃tr)Vol(B) and Pr{Xte ∈ B} = pte(x̂te)Vol(B) where Vol(B) =
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∫
x∈B dx. We note that supx∈B r∗(x) ≤ supx∈B pte(x)

infx∈B ptr(x) and pte(x̂te)
ptr(x̃tr) ≤ supx∈B pte(x)

infx∈B ptr(x) . We partition
X tr into M bins where for each bin Bm, if there exists some xtr

i ∈ Bm, then we define r̃m :=

Pr{Xte∈Bm}
Pr{Xtr∈Bm} ≃

1
nte

∑nte

j=1 1(x
te
j ∈Bm)

1
ntr

∑ntr

i=1 1(x
tr
i ∈Bm)

for m ∈ [M ]. Otherwise, r̃m = 0. Finally, we propose to use

C ≤ 1
r̃ where r̃ = max{r̃1, · · · , r̃M}. Convergence of r̃ to r is established in Appendix G.

Now, suppose there are K clients where each client provides nte unlabelled test samples to the pool of
samples. Our goal is to estimate rk in Eq. (3.1) for k = 1, · · · ,K. The BD-based DRM for client k
is given by minrk∈Hr

Êf (rk) where Êf (rk) = 1
ntr
k

∑ntr
k

i=1

(
∇f(rk(xtr

k,i))rk(x
tr
k,i)− f(rk(x

tr
k,i))

)
−

1
nte

∑nte

j=1

∑K
l=1 ∇f(rk(xte

l,j)). The nnBD DRM problem for client k is minrk∈Hr
Ê+
f (rk) where

Ê+
f (rk) = ReLU(Ŝ1,ℓ1) +

1

nte

nte∑
j=1

K∑
l=1

ℓ2(rk(x
te
l,j)), (D.3)

Ŝ1,ℓ1 = 1
ntr
k

∑ntr
k

i=1 ℓ1(rk(x
tr
k,i)) − Ck

nte

∑nte

j=1

∑K
l=1 ℓ1(rk(x

te
l,j)), 0 < Ck < 1

rk
, and rk =

supx∈X tr r∗k(x). Substituting f(z) = (z−1)2

2 into (D.3), the LSIF variant of nnBD for client k
is given by minrk∈Hr Ê+

LSIF(rk) where

Ê+
LSIF(rk) = ReLU(ŜLSIF)−

1

nte

nte∑
j=1

K∑
l=1

(
rk(x

te
l,j)−

Ck

2
r2k(x

te
l,j)
)
, (D.4)

and ŜLSIF = 1
2ntr

k

∑ntr
k

i=1 r
2
k(x

tr
k,i)−

Ck

2nte

∑nte

j=1

∑K
l=1 r

2
k(x

te
l,j). We provide explicit expressions for

UKL, LR, and PU variants of nnBD for client k in Appendix H.

Our goal is to estimate rk = supx∈X tr

∑K
l=1 pte

l (x)

ptr
k (x)

. For HDRM method, we first partition X tr

into M bins where for each bin Bm, if there exists some xtr
k,i ∈ Bm, then we define r̃k,m :=∑K

l=1 Pr{Xte
l ∈Bm}

Pr{Xtr
k ∈Bm} ≃

1
nte

∑nte

j=1

∑K
l=1 1(x

te
l,j∈Bm)

1
ntr
k

∑ntr
k

i=1 1(x
tr
k,i∈Bm)

for m ∈ [M ]. Otherwise, r̃k,m = 0. Finally, we

propose to use Ck = 1
r̃k

where r̃k = max{r̃k,1, · · · , r̃k,M}.

D.2 BD-BASED DRM FOR FL

Our goal is to estimate rk by minimizing the discrepancy Eptr
k
[BDf (r

∗
k(x) ∥ rk(x))], which is

equivalent to minrk∈Hr
Ef (rk) where

Ef (rk) = Eptr
k
[∇f(rk(x))rk(x)− f(rk(x))]−

K∑
l=1

Epte
l
[∇f(rk(x))] , (D.5)

since Eptr
k
[BDf (r

∗
k(x) ∥ rk(x))] = Ef (rk) + Eptr

k
[f(r∗k(x))] and Eptr

k
[f(r∗k(x))] is constant w.r.t.

rk. Let {xtr
k,i}

ntr
k

i=1 and {xte
l,j}n

te

j=1 denote unlabelled samples drawn i.i.d from distributions ptrk and ptel ,
respectively, for l ∈ [K]. A natural way to solve minrk∈Hr

Ef (rk) is to substitute empirical averages
in Eq. (D.5) (Sugiyama et al., 2012), leading to BD-based DRM for FL: minrk∈Hr

Êf (rk) where

Êf (rk) =
1

ntr
k

ntr
k∑

i=1

(
∇f(rk(xtr

k,i))rk(x
tr
k,i)− f(rk(x

tr
k,i))

)
− 1

nte

nte∑
j=1

K∑
l=1

∇f(rk(xte
l,j)).

E COMMUNICATION COSTS AND FIIDEM

To estimate density ratios for FIDEM, clients require to send a few unlabelled test samples only
once. The server shuffles those samples and broadcasts the shuffled version to clients only once. The
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communication overhead to estimate ratios is negligible compared to the communication costs for
sharing high-dimensional stochastic gradients over the course of training.

Consider the example of CIFAR10 consisting of 32 by 32 images with 3 channels represented
by 8 bits. If one shares 1000 unlabelled images6, the communication amounts to sharing roughly
3× 106 values each with 8 bits, i.e., 25× 106 total communication bits or 3.1MB. In contrast, during
training, the network size alone easily surpasses this size (e.g. the common ResNet-18 has 11 million
parameters, each represented by a 32-bit floating point). Standard training of ResNet-18 requires
8 × 104 iterations and aggregations, which amounts to 2.816 × 1013 total communicated bits per
client, i.e., 3.5TB during training.

In other words, the number of communication bits needed during training in standard federated
learning is usually many orders of magnitudes larger than the size of samples shared for estimating
the ratios. To further reduce communication costs of density ratio estimation and gradient aggregation,
compression methods such as quantization, sparsification, and local updating rules, can be used along
with FIDEM on the fly (Alistarh et al., 2017).

Alternatively, to eliminate any privacy risks, clients may minimize the following surrogate objective,
which we name FIIDEM:

min
w

F̃ (w) :=

K∑
k=1

F̃k(w) (E.1)

where F̃k(w) = 1
ntr
k

∑ntr
k

i=1

pte
k (xtr

k,i)

ptr
k (xtr

k,i)
ℓ(hw(xtr

k,i),y
tr
k,i).

We note that privacy risks are eliminated by solving E.1. However, to exploit the entire data distributed
among all clients and achieve the optimal global model in terms of overall test error, clients need to
compromise some level of privacy and share unlabelled samples generated from their test distribution
with the server. Hence, in this paper, we focus on the original objective F (w) in FIDEM, which is
different from F̃ (w).

F VARIANTS OF NNBD.

In this section, we show explicit expressions for unnormalized Kullback–Leibler (UKL), logistic
regression (LR), and positive and unlabeled learning (PU) variants of nnBD.

Substituting f(z) = z log(z)− z into Eq. (D.2), we have ℓ1(z) = z and ℓ2(z) = zC − log(z), and
the UKL variant of nnBD is given by

Ê+
UKL(r) = ReLU

( 1

ntr

ntr∑
i=1

r(xtr
i )−

C

nte

nte∑
j=1

r(xte
j )
)

− 1

nte

nte∑
j=1

(
log(r(xte

j ))− Cr(xte
j )
)
.

(F.1)

Substituting f(z) = z log(z)− (z + 1) log(z + 1) into Eq. (D.2), we have ℓ1(z) = log(z + 1) and
ℓ2(z) = C log(z + 1) + log

(
z+1
z

)
, and the LR (BKL) variant of nnBD is given by

Ê+
LR(r) = ReLU

( 1

ntr

ntr∑
i=1

log(r(xtr
i ) + 1)− C

nte

nte∑
j=1

log(r(xte
j ) + 1)

)

− 1

nte

nte∑
j=1

(
log

(
r(xte

j )

r(xte
j ) + 1

)
− C log(r(xte

j ) + 1)

)
.

(F.2)

6A total number of 1000 images are shown to be sufficient to learn density ratios on CIFAR10 (Kato &
Teshima, 2021)[10, Section 5.1].
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Substituting f(z) = C log(1 − z) + Cz(log(z) − log(1 − z)) into Eq. (D.2), we have ℓ1(z) =
−C log(1− z) and ℓ2(z) = −C log(z) + (C −C2) log(1− z), and the PU variant of nnBD is given
by

Ê+
PU(r) = ReLU

(−C

ntr

ntr∑
i=1

log(1− r(xtr
i )) +

C2

nte

nte∑
j=1

log(1− r(xte
j ))
)

− 1

nte

nte∑
j=1

(
C log(r(xte

j ))− (C − C2) log(1− r(xte
j ))
)
.

(F.3)

G CONVERGENCE OF r̃ AND k-MEANS CLUSTERING.

Lemma 2. If ntr
k , nte, and M go to infinity with supm Vol(Bm) → 0, then r̃k → rk.

Proof. Let x ∈ X tr. Note that when ntr
k , nte, and M go to infinity, the numerator and denominator

of r̃k become
∑K

l=1 p
te
l (x)Vol(Bm) and ptrk (x)Vol(Bm), respectively, where x ∈ Bm. ■

Please note that our density ratio in Eq. (3.1) is in the form of a sum of test densities over own train
density. So even if one or a few number of ratios are poorly estimated, it will not impact the entire
ratio in Eq. (3.1) as nested estimation errors. The error does not propagate in a multiplicative manner
but in an additive way.

k-means clustering for HDRM. We note that partitioning the space and counting the number
of samples in each bin is not necessarily an easy task when data is high dimensional. In practice,
one simple method is to cluster train and test samples using an efficient implementation of k-means
clustering with M clusters and count the number of train and test samples in each cluster (Lloyd,
1982). To estimate the ratios, we need a batch of samples from the test distribution of each client
in addition to a batch of samples from the train distribution for each estimating client. The running
time of Lloyd’s algorithm with M clusters is O(ndxM) where n is the total number of samples with
dimension dx.

H UKL, LR, AND PU VARIANTS OF NNBD FOR MULTIPLE CLIENTS.

In this section, we provide explicit expressions for UKL, LR, and PU variants of nnBD for client k.

The UKL variant of nnBD for client k is given by minrk∈Hr
Ê+
UKL(rk) where

Ê+
UKL(rk) = ReLU

( 1

ntr
k

ntr
k∑

i=1

rk(x
tr
k,i)−

Ck

nte

nte∑
j=1

K∑
l=1

rk(x
te
l,j)
)

− 1

nte

nte∑
j=1

K∑
l=1

(
log(rk(x

te
l,j))− Ckrk(x

te
l,j)
)
.

(H.1)

The LR variant of nnBD for client k is given by minrk∈Hr
Ê+
LR(rk) where

Ê+
LR(rk) = ReLU

( 1

ntr
k

ntr
k∑

i=1

log(rk(x
tr
k,i) + 1)− Ck

nte

nte∑
j=1

K∑
l=1

log(rk(x
te
l,j) + 1)

)

− 1

nte

nte∑
j=1

K∑
l=1

(
log

(
rk(x

te
l,j)

rk(xte
l,j) + 1

)
− Ck log(rk(x

te
l,j) + 1)

)
.

(H.2)
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The PU variant of nnBD for client k is given by minrk∈Hr
Ê+
PU(rk) where

Ê+
PU(rk) = ReLU

(−Ck

ntr
k

ntr
k∑

i=1

log(1− rk(x
tr
k,i)) +

C2
k

nte

nte∑
j=1

K∑
l=1

log(1− rk(x
te
l,j))

)

− 1

nte

nte∑
j=1

K∑
l=1

(
Ck log(rk(x

te
l,j))− (Ck − C2

k) log(1− rk(x
te
l,j))

)
.

(H.3)

I PROOF OF THEOREM 1

In this section, we prove Theorem 1, which establishes an upper bound on the generalization error of
nnBD DRM (HDRM method with an arbitrary f ) for client k in terms of BD risk, which holds with
high probability along the lines of (Kiryo et al., 2017; Lu et al., 2020; Kato & Teshima, 2021).

We remind that client k’s goal is to estimate this ratio:

rk(x) =

∑K
l=1 p

te
l (x)

ptrk (x)
. (I.1)

For client k, the BD risk given by

Ef (rk) = Ẽk(x)[ℓ1(rk(x))] +

K∑
l=1

Epte
l
[ℓ2(rk(x))] (I.2)

where Ẽk := Eptr
k
− Ck

∑K
l=1 Epte

l
, 0 < Ck < 1

rk
, rk = supx∈X tr =

∑K
l=1 pte

l (x)

ptr
k (x)

, ℓ1(z) =

∇f(z)z− f(z), and ℓ2(z) = C(∇f(z)z− f(z))−∇f(z). We note that the definition of Ck implies
p̃k = ptrk −Ck

∑K
l=1 p

te
l > 0. We remind that f : Bf → R is a strictly convex function with bounded

gradient ∇f where Bf ⊂ [0,∞), and Hr ⊂ {r : X → Bf} denotes a hypothesis class for our model
r.

The nnBD DRM problem for client k is minrk∈Hr
Ê+
f (rk) where

Ê+
f (rk) = ReLU

(
(Êptr

k
− Ck

K∑
l=1

Êpte
l
)[ℓ1(rk(x))]

)
+

K∑
l=1

Êpte
l
[ℓ2(rk(x))] (I.3)

with Êptr
k

is the sample average over {xtr
k,i}

ntr
k

i=1, and Êpte
l

is the sample average over {xte
l,j}n

te

j=1. In

the following, we denote Êk := Êptr
k
− Ck

∑K
l=1 Êpte

l
for notational simplicity.

Let r̂k := argminrk∈Hr Ê+
f (rk) and r∗k := argminrk∈Hr Ef (rk). We first decompose the general-

ization error into maximal deviation and bias terms:

Ef (r̂k)− Ef (r
∗
k) ≤ Ef (r̂k)− Ê+

f (r̂k) + Ê+
f (r̂k)− Ef (r

∗
k)

≤ Ef (r̂k)− Ê+
f (r̂k) + Ê+

f (r∗k)− Ef (r
∗
k)

≤ 2 sup
rk∈Hr

|Ef (rk)− Ê+
f (rk)|

≤ 2 sup
rk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]|+ 2 sup
rk∈Hr

|E[Ê+
f (rk)]− Ef (rk)|

(I.4)

where the second inequality holds since r̂k := argminrk∈Hr
Ê+
f (rk). The first term in the RHS of

(I.4) is the maximal derivation and the second term is the bias.

In the following two lemmas, we find an upper bound on the maximal deviation suprk∈Hr
|Ê+

f (rk)−
E[Ê+

f (rk)]| and bias suprk∈Hr
|E[Ê+

f (rk)]− Ef (rk)|, respectively.
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Lemma 3 (Maximal deviation bound). Denote ∆ℓ := supz∈Bf
maxi∈{1,2} |ℓi(z)|, then for any

0 < δ < 1, the maximal deviation term is upper bounded with probability at least 1− δ

sup
rk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]| ≤ 4L1R
ptr
k

ntr
k
(Hr) + 4(CkL1 + L2)

K∑
l=1

R
pte
l

nte(Hr)

+ ∆ℓ

√
2
( 1

ntr
k

+
K(1 + Ck)2

nte

)
log

1

δ
.

(I.5)

Proof. Denote Φ(Sk) := suprk∈Hr
|Ê+

f (rk) − E[Ê+
f (rk)]| with Sk =

{xtr
k,1, · · · ,xtr

ntr
k ,1,x

te
1,1, · · · ,xte

K,nte}. Let S(i)
k be obtained by replacing element i of set Sk

by an independent data point taking values from the set X tr. We now measure the absolute value
of the difference caused by changing one data point in the maximal deviation term (I.5), i.e.,
|Φ(Sk)−Φ(S(i)

k )|. If the changed point is sampled from ptrk , then the absolute value of the difference
caused in the maximal deviation term is upper bounded by 2∆ℓ

ntr
k

. If the changed point is sampled from
ptel , the the absolute value of the difference caused in the maximal deviation term is upper bounded
by 2∆ℓ(Ck+1)

nte for l = 1, · · · ,K. Applying McDiarmid’s inequality (McDiarmid et al., 1989), with
probability at least 1− δ, we have

sup
rk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]| ≤ E[ sup
rk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]|]

+ ∆ℓ

√
2
( 1

ntr
k

+
K(1 + Ck)2

nte

)
log

1

δ
.

In the following, we establish an upper bound on the expected maximal deviation
E[suprk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]|] by generalization the symmetrization argument in (Kiryo et al.,
2017; Lu et al., 2020) followed by applying Talagrand’s contraction lemma for two-sided Rademacher
complexity.

Let m ∈ [M ] and Nm ∈ Z+ for M ∈ Z+. Let gm : R → R be a Lgm-Lipschitz function. Let pm,p

denote a probability distribution over X tr. Suppose that {xi}
nm,p

i=1 are drawn i.i.d. from pm,p for
p ∈ [Nm] and m ∈ [M ]. Let ℓm,p : Bf → R+ be a Lm,p-Lipschitz function and C̃m,p be a constant
∀m, p. Consider the following stochastic process:

R̂k(rk) :=

M∑
m=1

gm
( Nm∑
p=1

C̃m,pÊm,p[ℓ(m,p)(rk(x))]
)

where Êm,p denotes sample average over {xi}
nm,p

i=1 . In the rest of the proof, we show that

E[ sup
rk∈Hr

|R̂k(rk)− E[R̂k(rk)]|] ≤ 4

M∑
m=1

Nm∑
p=1

Lgm |C̃m,p|Lm,pR
pm,p
nm,p

(Hr). (I.6)

To prove (I.6), we consider a continuous extension of ℓ(m,p) defined on the origin. We note that
such extension does not change R̂k(rk) since ℓ(m,p) takes values only in Bf . If Bf = {(z1, z2)}
for some 0 ≤ z1 < z2, then for any z ∈ [0, z1], we define ℓ(m,p)(z) = limz↓z1 ℓ(m,p)(z) where
limz↓z1 ℓ(m,p)(z) exists since ℓ(m,p) is uniformly continuous due to Lipschitz continuity. Then ℓ(m,p)

will be Lm,p-Lipschitz on z ∈ [0, z2]. Let {x̃i}
nm,p

i=1 be an independent copy of {xi}
nm,p

i=1 . Let denote
δR̂ := E[suprk∈Hr

|R̂k(rk)− E[R̂k(rk)]|]. Following a symmetrization argument (Vapnik, 1999),
an upper bound on the symmetrized process can be established by Rademacher complexity:
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δR̂ ≤ E

[
sup

rk∈Hr

M∑
m=1

∣∣∣∣∣gm( Nm∑
p=1

C̃m,pÊm,p[ℓ(m,p)(rk(x))]
)
− Ẽ

[
gm

( Nm∑
p=1

C̃m,p
ˆ̃Em,p[ℓ(m,p)(rk(x))]

)]∣∣∣∣∣
]

≤ EẼ

[
sup

rk∈Hr

M∑
m=1

∣∣∣∣∣gm( Nm∑
p=1

C̃m,pÊm,p[ℓ(m,p)(rk(x))]
)
− gm

( Nm∑
p=1

C̃m,p
ˆ̃Em,p[ℓ(m,p)(rk(x))]

)∣∣∣∣∣
]

≤
M∑

m=1

Lgm

Nm∑
p=1

|C̃m,p|EẼ

[
sup

rk∈Hr

∣∣∣Êm,p[ℓ(m,p)(rk(x))]− ˆ̃Em,p[ℓ(m,p)(rk(x))]
∣∣∣]

=

M∑
m=1

Lgm

Nm∑
p=1

|C̃m,p|EẼ
[
sup

rk∈Hr

∣∣Êm,p[ℓ(m,p)(rk(x))− ℓ(m,p)(0)]− ˆ̃Em,p[ℓ(m,p)(rk(x))− ℓ(m,p)(0)]
∣∣]

≤ 4

M∑
m=1

Lgm

Nm∑
p=1

|C̃m,p|E

[
sup

rk∈Hr

∣∣∣Êm,p[σm,p(ℓ(m,p)(rk(x))− ℓ(m,p)(0))]
∣∣∣]

≤ 4

M∑
m=1

Lgm

Nm∑
p=1

|C̃m,p|Rpm,p
nm,p(Hr)

(I.7)

where σm,p are Rademacher variables uniformly chosen from {−1, 1}, Ẽ and ˆ̃Em,p denote the
expectation and sample average over data distribution pm,p and the independent copy {x̃i}

nm,p

i=1 ,
respectively, the third inequality holds by the Lipschitz continuous property of gm, and the last in-
equality is obtained by applying Talagrand’s contraction lemma for two-sided Rademacher complexity
(Ledoux & Talagrand, 1991; Bartlett & Mendelson, 2002).

Applying (I.6), we can show that

E[ sup
rk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]|] ≤ 4L1R
ptr
k

ntr
k
(Hr) + 4(CkL1 + L2)

K∑
l=1

R
pte
l

nte(Hr),

which completes the proof. ■

Next we find an upper bound on the bias suprk∈Hr
|E[Ê+

f (rk)]− Ef (rk)|.
Lemma 4 (Bias bound). Denote ∆ℓ := supz∈Bf

maxi∈{1,2} |ℓi(z)|. Assume

infr∈Hr E[Êk[ℓ1(rk(x))]] > 0 for k ∈ [K]. Then, an upper bound on the bias term is
given by

sup
rk∈Hr

|E[Ê+
f (rk)]− Ef (rk)| ≤ (1 +KCk)∆ℓ exp

( −2η2k
∆2

ℓ/n
tr
k +KC2

k∆
2
ℓ/n

te

)
(I.8)

for some constant ηk > 0.

Proof. Let ˆ̃Ek := Êptr
k
− Ck

∑K
l=1 Êpte

l
. We first note that

|E[Ê+
f (rk)]− Ef (rk)| = |E[Ê+

f (rk)− Êf (rk)]|

=
∣∣∣E [ReLU( ˆ̃Ek[ℓ1(rk(x))]

)
− ˆ̃Ek[ℓ1(rk(x))]

]∣∣∣
≤ E

[∣∣∣ReLU( ˆ̃Ek[ℓ1(rk(x))]
)
− ˆ̃Ek[ℓ1(rk(x))]

∣∣∣]
= E

[
1
{
ReLU

(
ˆ̃Ek[ℓ1(rk(x))]

)
̸= ˆ̃Ek[ℓ1(rk(x))]

}]
·
∣∣∣ReLU( ˆ̃Ek[ℓ1(rk(x))]

)
− ˆ̃Ek[ℓ1(rk(x))]

∣∣∣
= E

[
1
{
ReLU

(
ˆ̃Ek[ℓ1(rk(x))]

)
̸= ˆ̃Ek[ℓ1(rk(x))]

}]
sup

z:|z|≤(1+KCk)∆ℓ

(ReLU(z)− z)
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where the third inequality holds due to Jensen’s inequality.

We note that ˆ̃Ek[ℓ1(rk(x))] ≤ (1 +KCk)∆ℓ implies

sup
z:|z|≤(1+KCk)∆ℓ

(ReLU(z)− z) ≤ (1 +KCk)∆ℓ.

Due to the assumption infr∈Hr
E[Êk[ℓ1(rk(x))]] > 0, there exists an ηk > 0 such that

E[Êk[ℓ1(rk(x))]] ≥ ηk for all rk ∈ Hr. Then we have

E
[
1
{
ReLU

(
ˆ̃Ek[ℓ1(rk(x))]

)
̸= ˆ̃Ek[ℓ1(rk(x))]

}]
= Pr

{ ˆ̃Ek[ℓ1(rk(x))] ∈ supp(R̃eLU)
}

= Pr
{ ˆ̃Ek[ℓ1(rk(x))] < 0

}
= Pr

{ ˆ̃Ek[ℓ1(rk(x))] < E[ ˆ̃Ek[ℓ1(rk(x))]]− ηk
}

where R̃eLU(z) = ReLU(z)− z.

Denote Φ̃(Sk) := ˆ̃Ek[ℓ1(rk(x))] where Sk = {xtr
k,1, · · · ,xtr

ntr
k ,1,x

te
1,1, · · · ,xte

K,nte}. Let S(i)
k be

obtained by replacing element i of set Sk by an independent data point taking values from the set
X tr. We now measure the absolute value of the difference caused by changing one data point in
|Φ̃(Sk)− Φ̃(S(i)

k )|. If the changed point is sampled from ptrk , the the absolute value of the difference
caused in the maximal deviation term is upper bounded by ∆ℓ

ntr
k

. If the changed point is sampled from
ptel , the the absolute value of the difference caused in the maximal deviation term is upper bounded
by ∆ℓCk

nte for l = 1, · · · ,K. Finally, McDiarmid’s inequality (McDiarmid et al., 1989) implies:

Pr
{ ˆ̃Ek[ℓ1(rk(x))] < E[ ˆ̃Ek[ℓ1(rk(x))]]− ηk

}
≤ exp

( −2η2k
∆2

ℓ/n
tr
k +KC2

k∆
2
ℓ/n

te

)
,

which completes the proof. ■

Substituting the upper bounds in (I.5) and (I.8) into (I.4), with probability at least 1− δ, we have

Ef (r̂k)− Ef (r∗k) ≤ 8L1R
ptr
k

ntr
k
(Hr) + Ψ(δ,∆ℓ, n

tr
k , n

te) + 8(CkL1 + L2)

K∑
l=1

R
pte
l

nte(Hr) (I.9)

where Ψ = ∆ℓ

√
8( 1

ntr
k
+ K(1+Ck)2

nte ) log 1
δ + 2(1 + KCk)∆ℓ exp

( −2η2
k

∆2
ℓ/n

tr
k +KC2

k∆
2
ℓ/n

te

)
for some

constant ηk > 0. This completes the proof.

J GENERALIZATION BOUND FOR MULTI-LAYER PERCEPTRON AND MULTIPLE
CLIENTS

Our generalization error bound for client k depends on the Rademacher complexity of the hypothesis
class for our density ratio model Hr ⊂ {r : X → Bf} w.r.t. client k train distribution ptrk and
all client’s test distributions ptel for l ∈ [K]. By restricting a function class for density ratios and
substituting an upper bounds on its Rademacher complexity, we can obtain explicit generalization
error bounds in terms of ntr

k , n
te in a special case. As an example, the following corollary establishes

a generalization bound for multi-layer perceptron density ratio models in terms of the Frobenius
norms of weight matrices.
Example J.1 (Complexity for multi-layer perceptron class (Golowich et al., 2018)). Assume that
distribution p has a bounded support Sp := supx∈supp(p) ∥x∥ < ∞. Let H be the class of real-valued
neural networks with depth L over the domain X tr, Wi be the network weight matrix i. Suppose that
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each weight matrix has a bounded Frobenius norm ∥Wi∥F ≤ ∆Wi
for i ∈ [L] and the activation ϕ is

1-Lipschitz, and positive-homogeneous function, i.e., ϕ(αz) = αϕ(z), which is applied element-wise.
Then we have

Rp
n(H) ≤

Sp(
√
2L log 2 + 1)

∏L
i=1 ∆Wi√

n
.

Remark 6. To control the upper bound ∆Wi
for i ∈ [L], it is natural to employ the sparsity of the

weights, e.g., (Golowich et al., 2018, Section 4) and (Hanin & Rolnick, 2019). We consider a special
network architecture where diag(Wi)’s are close to 1-sparse unit vectors for i ∈ [L], which implies
that the matrices Wi’s will be almost rank-1. Then ∥Wi∥F is upper bounded by 1 for i ∈ [L].
Corollary 1 (Generalization error bound under Example J.1). For Example J.1 and loss functions
described in Theorem 1, with probability at least 1− δ, we have

Ef (r̂k)− Ef (r∗k) ≤
Ktr

k√
ntr
k

+

K∑
l=1

Kte
l√
nte

+Ψ(δ,∆ℓ, n
tr
k , n

te)

where Ktr
k = O(L1Sptr

k

√
L
∏L

i=1 ∆Wi
), Kte

l = O(max{L1, L2}Spte
l

√
L
∏L

i=1 ∆Wi
), and Ψ =

∆ℓ

√
8( 1

ntr
k
+ K(1+Ck)2

nte ) log 1
δ+2(1+KCk)∆ℓ exp

( −2η2
k

∆2
ℓ/n

tr
k +KC2

k∆
2
ℓ/n

te

)
for some constant ηk > 0.

Finally, we apply union bound and obtain a global generalization error bound that holds for all clients:
Corollary 2 (Generalization error bound for multiple clients). Let 0 < δk < 1 for k ∈ [K]. Let
K

tr
= maxk∈[K] K

tr
k . For Example J.1 and loss functions described in Theorem 1, with probability

at least 1−
∑K

k=1 δk, we have

max
k∈[K]

{Ef (r̂k)− Ef (r∗k)} ≤ K
tr√
ntr

+

K∑
l=1

Kte
l√
nte

+Ψ(δ,∆ℓ, n
tr, nte)

where Ψ = ∆ℓ

√
8( 1

ntr +
K(1+C)2

nte ) log 1
δ + 2(1 + KC)∆ℓ exp

( −2η2

∆2
ℓ/n

tr+KC
2
∆2

ℓ/n
te

)
, C =

maxk∈[K] Ck, ntr = mink∈[K] n
tr
k , δ = mink∈[K] δk, and η = mink∈[K] ηk.

The rates match the optimal minimax rates for example for a density estimation problem when the
density belongs to the Hölder function class (Tsybakov, 2008)[Section 2] with a sufficiently large β
based on Definition 1.2 of Tsybakov (2008). The Ω(1/

√
n) lower bounds are obtained for important

problems including nonparametric regression, estimation of functionals, nonparametric testing, and
finding a linear combination of M functions to be as close as the target data generating function
(Nemirovski, 1998)[Section 5.3].

K ADDITIONAL ERROR DUE TO ESTIMATION OF rk

In this section, we consider a practical scenario where we have access to only in imperfect estimate
of rk = supx∈X tr r∗k(x) to find Ck in Eq. (3.2). In particular, we find additional error when using
C̃k = 1

r̃k
where r̃k is obtained by HDRM in Section 3. The nnBD DRM problem for client k using

C̃k is minrk∈Hr
Ê+
f (rk) where

Ê+
f (rk) = ReLU

(
(Êptr

k
− C̃k

K∑
l=1

Êpte
l
)[ℓ1(rk(x))]

)
+

K∑
l=1

Êpte
l
[ℓ2(rk(x))]. (K.1)

Along the lines of the proof of Lemma 3, we can show that the maximal deviation term using C̃k is
upper bounded with probability at least 1− δ:

sup
rk∈Hr

|Ê+
f (rk)− E[Ê+

f (rk)]| ≤ 4L1R
ptr
k

ntr
k
(Hr) + 4(C̃kL1 + L2)

K∑
l=1

R
pte
l

nte(Hr)

+ ∆ℓ

√
2
( 1

ntr
k

+
K(1 + C̃k)2

nte

)
log

1

δ
.

(K.2)
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Under perfect estimate of rk = supx∈X tr r∗k(x) with Ck = 1
rk

, the nnBD DRM problem for client k
is minrk∈Hr

Ê++
f (rk) where

Ê++
f (rk) = ReLU

(
(Êptr

k
− Ck

K∑
l=1

Êpte
l
)[ℓ1(rk(x))]

)
+

K∑
l=1

Êpte
l
[ℓ2(rk(x))]. (K.3)

Applying triangle inequality, we first decompose the bias term

sup
rk∈Hr

|E[Ê+
f (rk)]− Ef (rk)| ≤ sup

rk∈Hr

|E[Ê+
f (rk)− Ê++

f (rk)]|

+ sup
rk∈Hr

|E[Ê++
f (rk)]− Ef (rk)|.

(K.4)

An upper bound on suprk∈Hr
|E[Ê++

f (rk)]− Ef (rk)| is established similar to the proof of Lemma 4:

sup
rk∈Hr

|E[Ê++
f (rk)]− Ef (rk)| ≤ (1 +KCk)∆ℓ exp

( −2η2k
∆2

ℓ/n
tr
k +KC2

k∆
2
ℓ/n

te

)
.

Substituting Eq. (K.1) and Eq. (K.3) into |E[Ê+
f (rk)− Ê++

f (rk)]|, we have

|E[Ê+
f (rk)− Ê++

f (rk)]|

= |E[ReLU((Êptr
k
− C̃k

K∑
l=1

Êpte
l
)[ℓ1(rk(x))])− ReLU((Êptr

k
− Ck

K∑
l=1

Êpte
l
)[ℓ1(rk(x))])]| ,

which together with ReLU(a)− ReLU(b) ≤ |a− b| is used to establish the following upper bound:∣∣∣E[Ê+
f (rk)− Ê++

f (rk)
]∣∣∣ ≤ K∆ℓ|C̃k − Ck|. (K.5)

Let m∗ = argmaxm∈[M ] r̃k,m. We note that by the construction of HDRM, there is a constant

lower bound on the numerator of r̃k, i.e., 1
nte

∑nte

j=1

∑K
l=1 1(x

te
l,j ∈ Bm∗) ≥ c, that is achieved

when {xte
l,j}n

te

j=1 are distributed uniformly across M bins. Let x ∈ X and let p̂trk (x;M) denote a
histogram-based density estimate of ptrk (x) with M bins. The maximum value of C̃k is attained when
1

nte

∑nte

j=1

∑K
l=1 1(x

te
l,j ∈ Bm∗) meets its lower bound, which leads to the maximum deviation from

Ck ≤ C̃k. Assuming ptrk (x) is Lk-Lipschitz with supx∈X ptrk (x) < ∞, the mean squared error of a
histogram-based density estimate with M bins is upper bounded by (Wasserman, 2006)[Section 6]:
E|p̂trk (x;M)− ptrk (x)|2 = O(L2

k/M
2 +M/ntr

k ). Putting together with a constant lower bound on
the numerator of r̃k and applying Jensen’s inequality, we have:

E[|C̃k − Ck|] ≲
1

M
+

√
M

ntr
k

.

L PROOF OF LEMMA 1

We first note that

E[L(θ̂)]− L(θ∗) = E∥θ̂ − θ∗∥2Σte = Bias + Variance .

We first find the expression for θ̂ considering the ridge regression problem assuming pte(x)
ptr(x) is given.

FIDEM problem with Tikhonov regularization is given by

θ̂ = argmin
θ

n∑
i=1

wi(θ
⊤xi − yi)

2 + λ∥θ∥22
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where wi =
pte(xi)
ptr(xi)

and λ is the regularization parameter. This is a reweighted least squares problem.

The objective function above is strongly convex and differentiable. Applying the fist-order condition,
the unique minimum is as follows:

θ̂ =
(
X⊤WX+ λId

)−1
X⊤Wy (L.1)

where W = diag(w1, · · · , wn).

Substituting y = Xθ∗ + ϵ into (L.1), we note that

θ̂ =
(
X⊤WX+ λId

)−1
X⊤WXθ∗ +

(
X⊤WX+ λId

)−1
X⊤Wϵ

and

EX,ϵ[θ̂] = EX

[(
X⊤WX+ λId

)−1
X⊤WXθ∗

]
.

We now characterize the bias B(θ̂) and variance V(θ̂) terms when the model estimate is given by
(L.1).

Let ∥x∥2A := x⊤Ax. Substituting the expression for θ̂ into R(θ̂), the excess risk can be decomposed
into a bias and a variance term as follows:

R(θ̂) = EX,ϵ,x,ϵte [(y − θ̂⊤x)2 − (y − θ⊤
∗ x)

2]

= EX,ϵ,x,ϵte [
(
y − θ⊤

∗ x+ (θ∗ − θ̂)⊤x
)2 − (y − θ⊤

∗ x)
2]

= EX,ϵ,x

[(
(θ∗ − θ̂)⊤x

)2]
= EX,ϵ[∥θ∗ − θ̂∥2Σte ]

= B+ V

where the bias is given by

B = EX,ϵ

[∥∥∥ (X⊤WX+ λId
)−1

X⊤WXθ∗ − θ∗

∥∥∥2
Σte

]
= EX

[∥∥∥ (X⊤WX+ λId
)−1

λθ∗

∥∥∥2
Σte

]
.

= λ2θ⊤
∗ EX[∆W,λΣ

te∆W,λ]θ∗
with

∆W,λ =
[(
X⊤WX+ λId

)−1
]
,

and the variance is given by

V = EX,ϵ

[∥∥∥ (X⊤WX+ λId
)−1

X⊤Wϵ
∥∥∥2
Σte

]
= σ2

ϵEX [tr (ΦV )] .

where ΦV =
(
X⊤WX+ λId

)−1
X⊤W2X

(
X⊤WX+ λId

)−1
Σte.

M PROOF OF THEOREM 2

In the one-hot case, it is clear that X⊤X =
∑n

i=1 xix
⊤
i and X⊤WX =

∑n
i=1 wixix

⊤
i are diagonal

matrices.

For bias in the one-hot setting, we have

B(θ̂) = λ2

[
θ⊤
∗

(
X⊤WX+ λI

)−1

Σte
(
X⊤WX+ λI

)−1

θ∗

]
= λ2

d∑
i=1

[(θ∗)i]
2λ′

i

(λi(X⊤WX) + λ)2

= λ2
d∑

i=1

[(θ∗)i]
2λ′

i

[µiwi + λ]2
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where the equation holds by the fact that, all matrices are diagonal including X⊤X, X⊤WX, and
Σte. Accordingly, we have λi(X

⊤WX) = λi(X
⊤X)λi(W) with i ∈ [d]. For the classical ERM,

the bias is

B(θv) = λ2
d∑

i=1

[(θ∗)i]
2λi

[µi + λ]
2

where λi is the eigenvalue of Σtr. To achieve B(θ̂) ⩽ B(θv), we have to make some assumptions on
the relationship between λi, λ′

i and wi. Our analysis of error bound requires

λ′
i

[µiwi + λ]
2 ⩽

λi

[µi + λ]
2 ⇔ µi + λ

µiwi + λ
⩽

√
λi

λ′
i

, (M.1)

which implies

wi ⩾

√
λ′
i

λi
− 1 , (M.2)

such that Eq. (M.1) holds where we use the inequality a+c
b+c ⩽ a

b + 1 for any a, b, c > 0.

For the vanilla ERM, the variance is

V(θv) = σ2
ϵ

d∑
i=1

λiµi

[µi + λ]
2 .

For FIDEM, the variance is

V(θ̂) = σ2
ϵ

[(
X⊤WX+ λI

)−1
X⊤W2X

(
X⊤WX+ λI

)−1
Σte
]

= σ2
ϵ

d∑
i=1

λ′
iλi(X

⊤W2X)

(λi(X⊤WX) + λ)
2

= σ2
ϵ

d∑
i=1

λ′
iµiw

2
i

[µiwi + λ]
2 .

We note that V(θ̂) ≤ V(θv) can be achieved by

λiµi

[µi + λ]
2 ≥ λ′

iµiw
2
i

[µiwi + λ]
2 .

This can be obtained by
µi +

λ
wi

µi + λ
≥

λ
wi

µi + λ
≥

√
λ′
i

λi
, (M.3)

which implies wi ⩽ ξi
√

λi

λ′
i
. Combining Eqs. (M.2) and (M.3), the proof is complete.

N WHEN FIDEM CANNOT OUTPERFORM ERM

In this section, we provide a counterexample to show that, under which certain case, FIDEM cannot
provably outperform ERM.
Proposition 3. Under the same setting of Theorem 2, i.e., the fixed-design setting and label noise
assumption, under the following condition√

λ′
i

λi
⩾ max{ξ, 1− ξ} .

If the ratio satisfies

wi ⩽ min
{ 1√

λ′
i/λi−1

ξ
+ 1

,

√
λ′
i

λi
+

λ

µi

√
λ′
i

λi
− λ

µi

}
, (N.1)

then we have
R(θv) ⩽ R(θ̂) .
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Proof. According to Eq. (M.1), B(θv) ⩽ B(θ̂) holds by

µi + λ

µiwi + λ
⩾

√
λi

λ′
i

,

which is equivalent to

wi ⩽

√
λ′
i

λi
+

λ

µi

√
λ′
i

λi
− λ

µi
. (N.2)

According to Eq. (M.3), V(θv) ⩽ V(θ̂) holds by

µi +
λ
wi

µi + λ
≤

√
λ′
i

λi
,

which is equivalent to

wi ⩽
1√

λ′
i

λi
−1

ξ + 1

. (N.3)

Combining Eqs. (N.2) and (N.3), the proof is complete. To validate the condition in Eq. (N.1), we
require each term in the RHS to be nonnegative. That implies√

λ′
i

λi
⩾ max{ξ, 1− ξ} ,

which is our condition in Proposition 3.

By checking Eqs. (N.2) and (N.3), in both cases
√

λ′
i

λi
≥ 1 and

√
λ′
i

λi
≤ 1, we have

wi ⩽ 1 .

■

O EXPERIMENTAL DETAILS AND ADDITIONAL EXPERIMENTS

Datasets: We make use of three datasets in the experiments: MNIST (LeCun et al., 1998), Fashion
MNIST7 (Xiao et al., 2017), and CIFAR10 (Krizhevsky et al., 2009). MNIST consists of images
depicting handwritten digits from 0 to 9. The resolution of each image is 28 × 28. The dataset
includes 60, 000 images for training. Similarly Fashion MNIST includes grayscale images of clothing
of resolution 28 × 28. The training set consists of 60, 000 examples, and the test set of 10, 000
examples. CIFAR10 consists of colored images with a resolution of 32× 32. The training set contains
50, 000 examples while the test set contains 10, 000 examples.

Experimental setup: For all experiments we use the cross entropy loss. The stochastic gradient for
each of the clients are computed with a batch size of 64 and aggregated on the server, which uses the
Adam optimizer. Experiments on MNIST and Fashion MNIST uses a LeNet (LeCun et al., 1998), a
learning rate of 0.001, no weight decay, and runs for 5, 000 iterations. For CIFAR10 experiments we
use the larger ResNet-18 (He et al., 2016). Batch normalization in ResNet-18 is treated by averaging
the statistics on the server and subsequently broadcasting to the workers. A learning rate of 0.0001
and weight decay of 0.0001 are used. We report the best iterate in terms of average test accuracy after
20, 000 iterations. All reported mean and standard deviations are computed over 5 independent runs
except for CIFAR10 which uses 3 independent runs. For target shift the randomisation is also over
the realization of the class distributions to ensure that the conclusions are not due to the particularities
of the sub-sampled images. All experiments are carried out on an internal cluster using one GPU.

7Fashion MNIST is provided under the MIT license.
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Table 5: CIFAR10 target shift distribution across 100 clients where groups of 10 clients shares the same
distribution.

Class
0 1 2 3 4 5 6 7 8 9

Client 1-10 Train 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100

Client 11-20 Train 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9

Client 21-30 Train 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9

Client 31-40 Train 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9

Client 41-50 Train 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9

Client 51-60 Train 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9
Test 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9

Client 61-70 Train 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9 5/9
Test 5/9 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9

Client 71-80 Train 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9 5/9
Test 5/9 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9

Client 81-90 Train 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100 5/9
Test 5/9 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9

Client 91-100 Train 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 95/100
Test 95/100 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9 5/9

Table 6: Average, worst-case, and best-case client accuracies of CIFAR10 target shift experiment across 100
clients where 5 randomly sampled clients participate in every round of training.

FIDEM FedAvg
Average client accuracy 0.7658 0.7237
Worst client accuracy 0.6163 0.5403
Best client accuracy 0.9016 0.8904

O.1 TARGET SHIFT

For the target shift experiments on Fashion MNIST in Table 1, we summarize the different number
of data points for each dataset split in Table 9. A similar distribution across clients is used for the
additional experiments for FIDEM and FedAvg on CIFAR10 (Table 8). CIFAR10 differs from Fashion
MNIST in the number of examples due to the training set being smaller. The results for CIFAR10 in
Table 7 shows that FIDEM uniformly improves the accuracy over FedAvg on this difficult target shift
instance. We additionally include a two-client setting in Table 10 with the associated distribution
described in Table 11.

To model a scenario closer to real-world FL, we consider a setting with 100 clients on CIFAR10 under
challenging distribution shifts and partial participation of clients, which is a requirement for cross-
device FL (Kairouz et al., 2021; Wang et al., 2021). We sub-sample 5 clients uniformly at random at
every round for 200, 000 iterations. The target distribution is described in Table 5 and experimental
results can be found in Table 6. We observe that FIDEM uniformly improves the test accuracy when
compared with FedAvg and that the gap is especially large between the worst-performing clients.

To compute the exact ratio r(x) we will assume that the distributions are separable.

Definition 3 (Separability). A distribution over X ×Y is separable if there exists a partition (Xi)
m
i=1

of X such that p(yi|Xi) = 1 for some yi ∈ Y and all i ∈ [m]. We denote the associated deterministic
label assignment as g : X → Y .
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Table 7: Target shift on CIFAR10 with ResNet-18.

FIDEM FedAvg
Average accuracy 0.6004 ± 0.0076 0.4426 ± 0.0291
Client 1 accuracy 0.6714 ± 0.0153 0.3984 ± 0.1497
Client 2 accuracy 0.8196 ± 0.0962 0.7307 ± 0.1533
Client 3 accuracy 0.5412 ± 0.0776 0.3333 ± 0.2251
Client 4 accuracy 0.5087 ± 0.0827 0.3030 ± 0.1106
Client 5 accuracy 0.4610 ± 0.0508 0.4476 ± 0.3649

Table 8: CIFAR10 target shift distribution.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 28 28 28 28 28 4885 28 28 28 28
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 28 28 28 28 28 28 4885 28 28 28
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 28 28 28 28 28 28 28 4885 28 28
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 28 28 28 28 28 28 28 28 4885 28
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 28 28 28 28 28 28 28 28 28 4885
Test 5 5 5 5 977 5 5 5 5 5

Proposition 4. Assume that the distributions pte(x, y) and ptr(x, y) are both separable. Then the
ratio can be computed based on the associated label y := g(x) as follows,

r(x) =
pte(y)

ptr(y)
. (O.1)

Proof. Due to separability, pte(y|x) = ptr(y|x). So

r(x) :=
pte(x)

ptr(x)
=

pte(x)pte(y|x)
ptr(x)ptr(y|x)

=
pte(x, y)

ptr(x, y)
. (O.2)

It follows that,
pte(x, y)

ptr(x, y)
=

pte(x|y)pte(y)
ptr(x|y)ptr(y)

. (O.3)

Using the definition of the target shift assumption, pte(x|y) = ptr(x|y), the conditional distributions
cancel and we obtain the claim. ■

Proposition 4 provides a way to compute the ratio r(x) when the labels are available and the shift is
known.

O.2 COVARIATE SHIFT

The color flipping probability used to generate each of the colored MNIST datasets for the covariate
shift experiment can be found in Table 12. We consider an asymmetric client setup where client 1 in
addition has 40 times less training examples than client 2.

O.3 VERIFYING ASSUMPTIONS

Consider the two datasets used for the main experiments in Table 1 and Table 2. We verify in
Figure 2 that the eigenvalues of the training distribution and test distribution for each client satisfy√

λ′
i

λi
∈
(
0, 1+

√
1+4ξi
2

)
in Theorem 2.
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Table 9: Fashion MNIST target shift distribution.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 34 34 34 34 34 5862 34 34 34 34
Test 977 5 5 5 5 5 5 5 5 5

Client 2 Train 34 34 34 34 34 34 5862 34 34 34
Test 5 977 5 5 5 5 5 5 5 5

Client 3 Train 34 34 34 34 34 34 34 5862 34 34
Test 5 5 977 5 5 5 5 5 5 5

Client 4 Train 34 34 34 34 34 34 34 34 5862 34
Test 5 5 5 977 5 5 5 5 5 5

Client 5 Train 34 34 34 34 34 34 34 34 34 5862
Test 5 5 5 5 977 5 5 5 5 5

Table 10: Fashion MNIST with target shift across two clients.

FIDEM FIIDEM FedAvg
Average accuracy 0.82 ± 0.00 0.76 ± 0.01 0.76 ± 0.01
Client 1 accuracy 0.89 ± 0.01 0.80 ± 0.02 0.94 ± 0.00
Client 2 accuracy 0.74 ± 0.01 0.71 ± 0.02 0.58 ± 0.01

P COMPUTATIONAL COMPLEXITY OF ALGORITHM 1

We note that clients compute the ratios in parallel where each client needs to estimate one ratio.
To estimate density ratios for FIDEM, clients require to send a few unlabelled test samples only
once. The server shuffles those samples and broadcasts the shuffled version to clients only once.
Compared to FedAvg, the additional computational cost per client is O(TNk) where T is the number
of iterations for Algorithm 1 to converge and Nk is the number of batches for ratio estimation.
Compared to baseline FedAvg, the additional computation of FIDEM is negligible but leads to
substantial improvements of the overall generalization in settings under challenging distribution
shifts.

Q LIMITATIONS

In this paper, we focus on settings where ratio estimation is required once prior to model training.
Handling distribution shifts in complex non-stationary settings where ratio estimation is an ongoing
process is an interesting problem for future work.

In addition, various personalization methods have been proposed to improve fairness in terms of
uniformity of model performance across clients (Li et al., 2021a;b). To meet specific requirements of
each client, our global model can be combined with a personalized model on each client. Developing
new variants of FIDEM with a focus on fairness is an interesting problem for future work.

Table 11: Two-client Fashion MNIST. The number of samples for each class across the different datasets.

Class
0 1 2 3 4 5 6 7 8 9

Client 1 Train 100 100 100 100 100 100 100 100 100 100
Test 9 9 9 9 9 990 990 990 990 990

Client 2 Train 39 39 39 39 39 3986 3986 3986 3986 3986
Test 990 990 990 990 990 9 9 9 9 9
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Table 12: For covariate shift the datasets for each of the client are constructed using different probabilities.

ptr1 (x) pte1 (x) ptr2 (x) pte2 (x)

Probability of flipping color 0.5 0.2 0.2 0.8

Figure 2: The squared ratio of eigenvalues ordered in descending order are all below 1 thus satisfying
√

λ′
i

λi
∈(

0,
1+

√
1+4ξi
2

)
in Theorem 2. The sudden increase in the ratio for the lowest eigenvalues are most likely due to

numerical error.

Table 13: Estimating ratio upper bound with k-means clustering. We consider the target shift setup, such that a
tight upper bound is known, and construct a single client variant for simplicity. We specifically consider MNIST
with a label distribution during training and testing to be qtr ∝ (1/20, 1/20, 1/20, 1/20, 1/20, 1, 1, 1, 1, 1)⊤ and
qte ∝ (1, 1, 1, 1, 1, 1/20, 1/20, 1/20, 1/20, 1/20)⊤ respectively. The table shows the estimated upper bound on the
ratio (r̃) for a range of clustering sizes. A reasonable estimate of the true maximal ratio of 20 is obtained for a
wide range of clustering sizes. Whereas naively binning the space can be problematic due to division by zero,
the clustering approach is less prone to this issue as long as #(clusters) ≪ #(datapoints).

#(clusters) 10 20 40 50 100 200 500

r̃ 10.31 15.48 19.08 27.41 31.47 32.84 206.76
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To estimate {rk(x)}Kk=1, clients need to send unlabelled samples xte
l,j for l ∈ [K] and j ∈ [nte]

from their test distributions. We note that instead of their true samples, clients can alternatively send
samples generated from a generative model (Goodfellow et al., 2020).

Note that training GANs may be computationally extensive due to required computational resources
and availability of representative samples. However, we propose to use GANs as an alternative
method with clear caveats, only when 1) clients have sufficient computational resources and 2) they
are unwilling to share unlabelled data with the server.

As a partial mitigation of privacy risks, we introduced FIIDEM. FIIDEM does not require any data
sharing among clients and does not require any GAN training. In this paper, we focus on FIDEM since
it outputs an unbiased estimate of a minimizer of the overall true risk, and enables us to theoretically
show the benefit of importance weighting in generalization.

One particular challenge in real-world cross-device FL is to estimate ratios on real-world datasets
such as WILDS (Koh et al., 2021) and LEAF (Caldas et al., 2019). WILDS has been mostly used
for domain generalization, where the setting is not similar to ours. We still have to decide on an
arbitrary test/train split. LEAF mainly captures inter-client distribution shifts and settings where
different clients have different numbers of examples over thousands of clients. This work is not about
scalability to thousands of clients experimentally using our single GPU simulated setup. While we
anticipate efficient ratio estimation will improve over time, our FIDEM and FIIDEM formulations
along with improved ratio estimates will provide reasonable solutions to learn an effective global
model in real-world cross-device FL under covariate shifts.
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