
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021 4997

Masked Autoencoder for Distribution Estimation
on Small Structured Data Sets

Ahmad Khajenezhad , Hatef Madani, and Hamid Beigy

Abstract— Autoregressive models are among the most success-
ful neural network methods for estimating a distribution from a
set of samples. However, these models, such as other neural meth-
ods, need large data sets to provide good estimations. We believe
that knowing structural information about the data can improve
their performance on small data sets. Masked autoencoder for
distribution estimation (MADE) is a well-structured density
estimator, which alters a simple autoencoder by setting a set of
masks on its connections to satisfy the autoregressive condition.
Nevertheless, this model does not benefit from extra information
that we might know about the structure of the data. This
information can especially be advantageous in case of training
on small data sets. In this article, we propose two autoencoders
for estimating the density of a small set of observations, where
the data have a known Markov random field (MRF) structure.
These methods modify the masking process of MADE, according
to conditional dependencies inferred from the MRF structure,
to reduce either the model complexity or the problem complexity.
We compare the proposed methods with some related binary,
discrete, and continuous density estimators on MNIST, binarized
MNIST, OCR-letters, and two synthetic data sets.

Index Terms— Deep learning, density estimation, Markov
random field (MRF), masked autoencoder.

I. INTRODUCTION

THE problem of distribution estimation is to infer the
density function P(X) of a d-dimensional random vari-

able X = �X1, X2, . . . , Xd � from a set of independent and
identically distributed observations x(1), x(2), . . . , x(n). It is a
basic block for probabilistic learning and has a wide range
of applications. Due to the intrinsic complexities of this
problem, different models have been proposed for this task.
Kernel density estimators (for continuous variables) [1] and
mixture models [2] are among the most common density
estimators. The problem becomes more challenging when
dealing with high-dimensional data. Traditionally, estimating
high-dimensional densities suffers from the necessity of having
an exponentially large number of samples. The curse of
dimensionality complicates the task by growing the space of
estimators (i.e., increasing the number of model parameters)
at an exponential rate.

Manuscript received February 13, 2019; revised October 24, 2019 and
June 23, 2020; accepted September 16, 2020. Date of publication October 13,
2020; date of current version October 28, 2021. (Corresponding author:
Hamid Beigy.)

The authors are with the Department of Computer Engineering,
Sharif University of Technology, Tehran 1458889694, Iran (e-mail:
khajenezhad@ce.sharif.edu; hmadani@ce.sharif.edu; beigy@sharif.edu).

Color versions of one or more of the figures in this article are available
online at https://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNNLS.2020.3026572

Graphical models [3] have been widely used as density
estimators for structured data. Such models reduce the volume
of the space of the estimators by assuming a structural model
for the underlying distribution, which can be expressed as
a set of conditional independencies among different dimen-
sions. Recent advances in generalizing restricted Boltzmann
machines (RBMs) [4], approximating the parameters of pair-
wise Markov random fields (MRFs) [5], and structure learning
in graphical models [6] are just a few examples of many
studies in this field.

Another approach to solving the problem of high-
dimensional density estimation is to use a representation of
the data (i.e., extra variables) in a hidden space. The use of
extra variables enriches the model’s capacity for estimating
complex densities. RBMs are well-known models of this
type of density estimation [7]. However, according to their
computational complexity for estimating the exact density
function, RBMs are not commonly used today, but they have
significant historical importance. By extending RBMs, some
other density estimators have been proposed based on deep
belief networks [8].

On the other hand, many successful neural density esti-
mators have been proposed in recent years. A common
approach among these methods is to use the chain rule
to factorize the joint probability function to the product of
conditional probabilities. Using this idea, several models have
been proposed that receive a d-dimensional sample as input
and estimate d conditional probabilities in the output layer.
Since the i th output dimension estimates the conditional
probability of the i th dimension given the preceding dimen-
sions, it must be computed only from the first i − 1 input
dimensions. This property is called the atoregressive condition.
Different neural autoregressive models have been proposed.
Bengio and Bengio [9] extended the autoregressive approach
of the fully visible sigmoid belief networks (FVSBNs) [10]
by using single-layer neural networks instead of simple
logistic regression models for estimating the conditionals.
The idea of hidden representations used in RBM’s was
combined with the autoregressive approach in [11] and
its extensions [12]–[14]. Among the autoregressive neural
density estimators, the masked autoencoder for distribu-
tion estimation (MADE) [15] is a well-structured density
estimator for binary variables, which alters a simple autoen-
coder by setting a set of masks on its connections to satisfy
the autoregressive property. MADE does not rely on a hidden
representation of the data, and its computation time on test
data is less than the previous autoregressive neural models.

2162-237X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8269-1404
https://orcid.org/0000-0003-1679-2092

4998 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

It is worth mentioning that there exist other neural net-
work approaches to the problem of density estimation than
autoregressive models, such as [16]–[19], which have used
manipulated functions (normalizing flows) to transform the
data into a desirable space, appropriate for density estimation,
or to map a simple initial density function to the distribution of
the observations. Moreover, variational autoencoders [20] can
also be considered as density estimators, whereas some other
generative models such as generative adversarial models [21]
cannot be used for density estimation.

Although deep methods have caused significant progress in
density estimation in recent years, they all rely on a large set
of training observations. Therefore, they cannot be used in an
application for which data collection is an expensive process
(e.g., where data are collected through field observations).
On the other hand, knowing structural information about the
data can lead the estimators to provide better estimations. Our
idea is to use this information to compensate for data shortage.
In fact, we tackle the problem of estimating structured distribu-
tions by deep models using a small set of observations. We use
available structural information from the data to simplify the
estimation problem by either reducing the dimensionality of
the regression problems that should be solved or reducing the
complexity of the models we use. We use autoregressive neural
models, which are among the most successful neural network
methods for estimating a distribution from a set of samples
and pick MADE among them, as a neat and well-known
model. Although MADE is capable to estimate complicated
functions, its performance depends on the number of training
samples, such as other neural networks. In particular, it does
not use available information about structural independencies
of the data. However, structural information can resolve the
network’s need for a large set of training samples. In this
article, we extend MADE and propose the Masked Autoen-
coder for Structured Distribution Estimation (MASDE) model,
which imports structural information into the masking process
of the MADE algorithm to improve the estimation, especially
in the presence of a modest number of samples. MASDE
is designed based on the idea of simplifying the regression
problems that MADE solves by reducing the dimensionality
of the domain spaces of those regression problems. In fact,
in a sparse MRF, each conditional probability (appeared in the
chain-rule factorization) might depend only on a small subset
of the preceding dimensions. Considering this fact, MASDE
tries to refine the paths between the input layer and the output
layer in the autoencoder. Although MASDE is a general model
that can be used for all MRF structures, for some data sets,
it needs larger hidden layers than MADE to provide good
results. Furthermore, its masking process is computationally
more complex than MADE. However, for some specific sparse
structures, we can consider simpler methods than MASDE for
using the structural information in the masking process. One
group of such structures is those that are comprised of the
replication of a small structure, with local connections. We call
them grid-based structures. As an example, consider a set of
nodes located on a grid, in which each node is connected
to the nodes in its neighborhood with a small euclidean dis-
tance. We propose another method, Masked Autoencoder for

Grid Structured Distribution Estimation (MAGSDE), that suits
grid-based structures. Using a small modification, MAGSDE
alters the masking process of MADE to reduce the number
of connections in the autoencoder. Our experimental results
show the superiority of our proposed methods over MADE
and some other baseline binary density estimators, especially
in the case of learning with small training data.

The rest of this article is organized as follows. In Section II,
density estimation using masked autoencoders is reviewed.
In Section III, the proposed MASDE method for general sparse
MRFs is introduced. The proposed method for grid-based
structures, MAGSDE, is introduced in Section IV. Experi-
mental results are presented in Section V. Finally, Section VI
concludes this article.

II. DENSITY ESTIMATION USING

MASKED AUTOENCODERS

The chain rule in probability theory states that the joint
probability of random variables X1, . . . , Xd can be factorized
into a set of conditional probabilities

P(X1, . . . , Xd) = P(X1)P(X2|X1) . . . P(Xd |X1, . . . , Xd−1).

(1)

MADE [15] is a neural network with a d-dimensional input
and a d-dimensional output layer. When this model is fed by a
binary vector x = �x1, x2, . . . , xd �, it estimates the conditional
terms appeared in (1), in the output layer. In fact, it provides
conditions in which the i th output dimension, yi , can be con-
sidered as a valid estimation of P(Xi = 1|x1, x2, . . . , xi−1).
Therefore, the negative log-likelihood of the input x is equal to

− log P(x1, . . . , xd) = −
d∑

i=1

log P(Xi = xi |x1, . . . , xi−1)

= −
d∑

i=1

(log P(Xi = 1|x1, . . . , xi−1)
xi

+ log P(Xi = 0|x1, . . . , xi−1)
1−xi)

= −
d∑

i=1

(xi log yi+(1−xi) log(1− yi)).

(2)

Hence, the averaged log-likelihood over a set of n inputs
x(1), x(2), . . . , x(n) with outputs y(1), y(2), . . . , y(n) is equal to

1

n

n∑
k=1

log P(x(k))

= −1

n

n∑
k=1

d∑
i=1

(
x (k)

i log y(k)
i +

(
1− x (k)

i

)
log

(
1− y(k)

i

))
. (3)

MADE uses the loss function given in (3). Minimizing this
loss function is equivalent to maximizing the log-likelihood
function. On the other hand, this loss function is the
well-known cross-entropy loss function, which is commonly

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

KHAJENEZHAD et al.: MADE ON SMALL STRUCTURED DATA SETS 4999

used in autoencoders for binary data.1 Hence, MADE is a
simple autoencoder for binary data, except that its output
dimensions should satisfy the necessary constraints of the
conditional terms in (1). Since P(Xi |X1, X2, . . . , Xi−1) is a
function of X<i = �X1, X2, . . . , Xi−1�, a necessary constraint
for the i th output dimension of the autoencoder in order to
present the i th conditional probability is to be computed only
from the first i − 1 dimensions of the input. In other words,
there should be no path from the last d − i + 1 dimensions of
the input layer to the i th dimension of the output layer. This
property is called the autoregressive property. It can be easily
shown that the autoregressive property is also sufficient for
the outputs of the autoencoder to be a valid set of conditional
probabilities.2

MADE is constructed by masking (removing) some con-
nections of a simple autoencoder with fully connected feed-
forward layers, to satisfy the autoregressive property. The
masking method works based on random labels assigned to
the nodes of the neural network. First, a label from the set
{1, 2, . . . , d} is assigned to each node in the hidden layers.
The label of each node is selected uniformly at random,
independent of the label of the other nodes. The i th node in
the input layer is assigned label i (1 ≤ i ≤ d). The d nodes
in the output layer are also labeled in the same way as the
input layer. The label of a node determines the largest input
dimension that is allowed to have a path to that node. If a
node in a hidden layer is labeled by k, it means that only the
first k dimensions of the input are allowed to have paths to
this node. For the output layer, it is a bit different. If a node
in the output layer is labeled by k, it means that only the first
k − 1 dimensions of the input are allowed to have paths to
that node. Using these labels, the masking process is clear;
the connection between node u with label j in one layer and
node v with label i in the next layer will be masked if and
only if j > i . If v is in the output layer, this condition changes
to j ≥ i . This masking method guarantees the autoregressive
property.

Note that this method can simply handle the change of order
of the dimensions in the chain rule by running one permutation
on the labels of the nodes in both the input layer and the
output layer. Using different random labels or different orders
of dimensions results in different sets of masks on the network
connections. An on-the-fly ensemble of models is suggested
in [15] by making several sets of masks on the network
connections and using one of them in each training epoch. The
model parameters (i.e., network weights) are shared between
all the mask sets. The final likelihood estimation for a test
input will be the average of the estimations using all different
mask sets.

1MADE can be used for multivariate discrete data or continuous data as
well. In those cases, we should consider a parametric form for the conditional
probabilities in (1). For example, for continuous data, a Gaussian function or a
mixture of Gaussians can be used. A different loss function than cross-entropy
should be used in these cases.

2In fact, the other constraints ∀i : yi ∈ [0, 1] need also to be satisfied.
It will be easily handled by using sigmoid activation functions in the output
layer of the neural network.

III. DENSITY ESTIMATION USING MASKED

AUTOENCODERS FOR STRUCTURED DATA

In structured distributions, the graph structure of the vari-
ables declares their conditional independencies. Therefore,
having a graph structure, each of the chain rule conditional
terms in (1) might be presentable by a conditional probability
on a smaller set of variables. In other words, for each i (1 ≤
i ≤ d), we can assume that there is a subset Bi ⊆ {1, . . . , i−1}
such that

P(Xi |X<i) = P(Xi |X Bi). (4)

From now on, we call Bi as the looking-back Markov
blanket of dimension i , because given Bi , Xi is independent
of the other preceding dimensions. Note that Bi is different
from the Markov blanket of dimension i , since, by definition,
the Markov blanket of Xi is a subset of X−i that shields Xi

from all other dimensions, but Bi is a subset of X<i that
shields Xi from other dimensions of X<i (X−i stands for
all dimensions except for the i th one.). Using looking-back
Markov blankets, we can rewrite (1) as

P(X1, . . . , Xd) = P(X1)p(X2|X B2) . . . P(Xd |X Bd). (5)

Using (5) instead of Equation (1), makes the domain spaces
smaller when solving the regression problems to estimate the
parameters of the conditional probabilities. This simplification
becomes more helpful when we have a few training data.
However, to use (5) in a density estimation autoencoder,
we need a stronger property than the autoregressive property.
The autoregressive property obligates the i th dimension of
the output layer to be computed only from the first i − 1
dimensions of the input layer. For a d-tuple of looking-back
Markov blankets B = �B1, B2, B3, . . . , Bd�, we define
B-restricted autoregressive property as an obligation that for
each i ∈ {1, . . . , d}, the i th dimension of the output layer of
the autoencoder should be computed only from the dimensions
of the input layer belonging to Bi . In other words, there
should be no path from the dimensions outside Bi of the
input layer to the i th dimension of the output layer in the
neural network. Note that assuming B1 = {} and Bi =
{1, . . . , i−1} for all i ∈ {2, . . . , d} results in the equivalence of
the B-restricted autoregressive property and the autoregressive
property. However, we prefer smaller looking-back Markov
blankets to obtain simpler models.

As described in Section II, to satisfy the autoregressive
constraint in MADE, a label was assigned to each node in the
network. This label determined the largest dimension in the
input layer that was allowed to have paths to that node. Then,
all the connections from a node with some label to a node
with a larger label (or to a node in the output layer with equal
label) were masked to guarantee the autoregressive constraint.
The straightforward extension of this method to satisfy the
B-restricted autoregressive property can be achieved by letting
the label of each node be a subset of {1, . . . , d} instead of
a singleton member of that. This label indicates the set of
input dimensions that are allowed to have paths to this node.
Therefore, the nodes in the input layer should be labeled
by {1}, {2}, . . . , {d}, and the nodes in the output layer should

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

5000 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

be labeled by B1, B2, . . . , Bd . Nodes in the hidden layers
would take random members of P(B1)∪P(B2)∪ . . .∪P(Bd)
as labels, where P(Bi) stands for the set of all subsets of Bi .
Using these labels, the connection from a node u in a layer to
node v in the next layer is held (i.e., will remain established) if
the label of u is a subset of the label of v and should be masked
otherwise. Since we have assigned labels B1, B2, . . . , Bd to
the output layer nodes, this method of masking restricts the
i th dimension of the output layer to be computed only from
dimensions Bi of the input layer. Therefore, it is clear that
B-restricted autoregressive constraint is satisfied by this
method.

Although this labeling method is general and can be used
for every set B that satisfies the conditions given in (4),
the number of possible labels for a node in the hidden layer is
an exponential function of max

i
|Bi |. Therefore, if we select

the labels of the nodes in the hidden layers uniformly at
random from the set of all possible labels, we might need very
large hidden layers. Otherwise, the connections between some
related dimensions of the input layer and the output layer may
be blocked. In what follows, we propose Masked Autoencoder
for Structured Distribution Estimation (MASDE). This method
still assigns subsets of {1, . . . , d} as labels to the nodes and
uses the same way for masking connections as explained above
but assigns labels to the nodes in a smarter manner than
uniformly at the random selection. The labeling procedure of
MASDE is as follows.

1) Assign label {i} to the i th dimension of the input layer
for 1 ≤ i ≤ d .

2) Assign label Bi to the i th dimension of the output layer
for 1 ≤ i ≤ d .

3) Assign a random number from {2, . . . , d} to each node
in the hidden layers. We call it the attachment number
of that node. Do the assignment in a way that ensures
each number in {2, . . . , d} is selected as the attachment
number of at least one node in each layer.

 If the attachment number of a node is k, then the

label assigned to that node will be a subset of Bk .
In addition, the label assigned to that node at the
end of the labeling algorithm will be an extension
of (or equal to) the label assigned to some node in
the preceding layer whose label is a subset of Bk .

4) Assign labels to the nodes in the hidden layers, from the
first hidden layer to the last one. For each node with an
attachment number of k, run the following procedure.

a) Select a node in the preceding layer whose label
is a subset of Bk . There exists at least one such
node in the preceding layer because there is at least
one node with an attachment number of k in the
preceding layer.

b) Copy the label of the selected node from the
preceding layer to the current node and add extra
random members selected from Bk to its label.

Therefore, the connection from a node u in a layer to node v
in the next layer is held (i.e., will remain established) if the
label of u is a subset of the label of v and should be masked
otherwise.

The abovementioned procedure ensures that each node in
the neural network will have at least one incoming connection
from the preceding layer, but there might be nodes with no
connections to any nodes in the next layer. To address this
issue for hidden layers, we can run an extra step (a backward
pass over the hidden layers) as follows.

5) Investigate the hidden layers from the last layer to the
first one.

a) In each layer, for each node v that has no connec-
tion to the next layer, select a random node u, with
label Lu , from the next layer.

b) Since each node has at least one incoming connec-
tion, there exist some nodes in the preceding layer
of v that their labels are subsets of Lu . Select one
of them, say w, at random.

c) Copy the label of w for v and add extra random
members of Lu to its label.

d) Update the masks on the connections between v
and the nodes in its preceding and next layers.

The detailed labeling algorithm of MASDE is given in
Algorithm 1.

It just remains to explain how we find the looking-back
Markov blankets. The set of looking-back Markov blankets,
B, depends on the order of the dimensions. We prefer orders
that result in small-sized looking-back Markov blankets. Hav-
ing an order for the dimensions (i.e., having numbers 1 to
d assigned to the dimensions), it is easy to find the
looking-back Markov blankets in an MRF. For each node
with number v, it suffices to run a depth-first search that does
not progress when visiting nodes with numbers less than v.
All the nodes with numbers less than v visited in this search
should be included in Bv . Algorithm 2 shows the details of
this procedure. Now, we are ready to state Theorem 1, which
shows that Algorithm 2 returns the best looking-back Markov
blanket for the node v. To increase readability, all proofs are
given in the Appendix.

Theorem 1: The set of nodes returned by Algorithm 2 is a
minimal looking-back Markov blanket of the node v, and any
other valid looking-back Markov blanket of the node v should
contain all the members of this set.

Similar to MADE, we run the random process of labeling
multiple times to generate multiple sets of masks. We then
use an on-the-fly ensemble model by using one set of masks
in each training epoch. Note that all weight updates in the
training process are performed on a common set of network
parameters but using different masks in different epochs. The
final estimate for a test input will be the average of the
estimates using all different masks.

IV. DENSITY ESTIMATION USING MASKED

AUTOENCODERS FOR GRID-
BASED STRUCTURES

Although MASDE is a general model that can be used
for all MRF structures, given some data sets, large hidden
layers are required to make enough paths from nodes in Bi

from the input layer to node i in the output layer for all
1 ≤ i ≤ d (as we will show in the experimental results

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

KHAJENEZHAD et al.: MADE ON SMALL STRUCTURED DATA SETS 5001

Algorithm 1 MASDE Labeling
procedure MASDE-LABELING(�B2, . . . , Bd�)

for i : 1→ d do
label[0][i] ← {i}
 assigning label to node i in the input layer

end for
assigning attachments to the nodes in the hidden layers
for l : 1→ number of hidden layers do

ind ← a random subset of size d − 1 from {1, 2, . . . , size of the l-th layer }
for i : 1→ d − 1 do

attachment[l][ind[i]]← i
end for
for i /∈ ind do

attachment[i]← random from {2, 3, . . . , d}
end for

end for
assigning labels to the nodes in the hidden layers
for l : 1→ number of hidden layers do

for i : 1→ size of the l-th hidden layer do
a ← attachment[l][i]
j ← random from {1, 2, . . . , size of the l − 1-th hidden layer } s.t. label[l − 1][j] ∈ Ba

label[l][i] ← label[l − 1][j]
for k ∈ (Ba − label[l − 1][j]) do

add k to label[l][i] with probability μl
 μl = l/(number of hidden layers +1)
end for

end for
end for
for i = 1:d do

label[last][i] ← Bi
 assigning label to node i in the output layer
end for
backward pass
for l : number of hidden layers→ 1 do

for i : 1→ size of the l-th hidden layer do
if label[l][i] ⊂ label[l + 1][z] ∀z ∈ {1, 2, . . . , size of the l + 1-th layer } then

t ← random from {1, 2, . . . , size of the l + 1-th layer }
j ← random from {1, 2, . . . , size of the l − 1-th layer } such that label[l − 1][j] ⊂ label[l + 1][t]
label[l][i] ← label[l − 1][j]
for k ∈ (label[l + 1][t] − label[l − 1][j]) do

add k to label[l][i] with probability μl
 μl = l/(number of hidden layers +1)
end for

end if
end for

end for
end procedure

on the OCR-letters data set). Moreover, the masking process
of MASDE is computationally more complex than MADE.
On the other hand, a common category of MRFs in real
applications are grid-based MRFs. By “grid-based,” we mean a
simple grid or a set of replicated small patterns connected with
local connections as a grid structure. This kind of structure
appears in many spatial or temporal applications, especially in
geoinformatics, image processing, and computer vision tasks.
For these structures, we propose another masking method
that works based on the autoregressive property and does not
satisfy the B-restricted autoregressive constraint but uses a
special form of the looking-back Markov blankets in these

structures to reduce the number of network connections in
comparison with MADE. The desirable property of these
structures is that considering an appropriate order for their
dimensions, we can select relatively small-sized looking-back
Markov blankets of the form of

Bi = {bi , bi + 1, bi + 2, . . . , i − 1}
s.t. bi ≥ bi−1 ∀i ∈ {1 . . . d}. (6)

We will use the special form of the looking-back Markov
blankets explained in (6) to propose the method. Note that a
simple choice for bi ’s is to set bi = 1 for all i , but we prefer

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

5002 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

Fig. 1. Three appropriate dimension orders for a n × n grid. In each figure, the node with the dashed boundary is the intended node and the set of shaded
nodes is the looking-back Markov blanket in the form of (6) for that node. (a) Horizontal order. (b) Vertical order. (c) Diagonal order.

Algorithm 2 Find Looking-Back Markov Blanket
procedure FIND-LOOKING-BACK-MARKOV-BLANKET(G, v)

n← size of G
for i : 1→ n do

vi si ted[i] ← False
end for
DFS(v,vi si ted ,v)
result ← {i |(i < v) & (vi si ted[i] = True})
return result

end procedure

procedure DFS(u, vi si ted , v)
vi si ted[u] ← True
if u < v then

return
end if
for w ∈ neighbours(v) do

if vi si ted[w] = False then
DFS(w,vi si ted ,v)

end if
end for

end procedure

the largest possible value for bi , because it returns a smaller Bi

and will mask more connections of the neural network in the
approach that we are going to propose.

Fig. 1 shows three different appropriate orders of dimen-
sions for a simple n × n grid that result in small-sized
looking-back Markov blankets. It is clear that using any
of these orders, the looking-back Markov blanket of each
dimension will be of the form of (6) with the size of at most
n. Furthermore, it is clear that using these orders, we have
bi ≥ bi−1 (∀i ∈ {2, . . . , n2}). For instance, in Fig. 1(a)
and (b), we have bi = max (i − n, 1). Similar orders can be
used for more complicated grid-based structures, with small
modifications. As an example, in an n × n grid in which
each pair of grid points are connected if their distance is
less than or equal to 2, when we use horizontal or vertical

orders [the same as the orders in Fig. 1(a) and (b)], we will
have bi = max (i − 2n, 1). We call these kinds of orders grid-
based orders. Starting from different corners and using vertical,
horizontal, or diagonal directions, we can consider 16 different
grid-based orders.

Considering any permutation of dimensions, it is easy to
find bi for each 1 ≤ i ≤ d . According to Theorem 1, the result
of Algorithm 2 on the i th dimension is a looking-back Markov
blanket of the i th dimension, and any other valid looking-back
Markov blanket of i should contain all members of this
looking-back Markov blanket. Therefore, it is clear that the
smallest member of the looking-back Markov blanket returned
by Algorithm 2 is the largest possible value for bi .

Now, we propose the Masked Autoencoder for Grid Struc-
tured Distribution Estimation (MAGSDE) method. We guar-
antee that the autoregressive property is satisfied. However,
we do not force the i th dimension of the output layer to
depend only on Bi dimensions of the input layer, as we did in
the MASDE method. Instead, according to the looking-back
Markov blankets, we try to eliminate links in the network that
just connect unrelated pairs of dimensions from the input layer
and the output layer. MAGSDE is as follows.

1) Assign labels 1 to d to the input nodes.
2) Assign labels 1 to d to the output nodes.
3) Assign a random number from the set {1, 2, . . . , d} to

each node in the hidden layers as its label.
4) Mask the connection from a node u with label j to

node v with label i in the next layer, if j > i or j < bi .
If v is in the output layer, the condition changes to j ≥ i
or j < bi .

Note that the labeling method of MAGSDE is the same
as MADE. Also, the masking method is similar to MADE,
with an extra case for masking a connection (if j < bi).
Therefore, every connection masked by MADE is also masked
by MAGSDE. However, there are some extra connections
masked by MAGSDE that MADE does not mask them. Here,
using Theorem 2, we show that these extra connections just
connect undesirable pairs of input and output dimensions. The
proof is given in the Appendix.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

KHAJENEZHAD et al.: MADE ON SMALL STRUCTURED DATA SETS 5003

Theorem 2: Consider a connection from node u to node v
in the network. Assume that MAGSDE masks this connection,
but MADE does not. If there exists a path from the kth input
dimension to the t th output dimension in the network resulted
by MADE (which are labeled as k and t , respectively) that
passes through the connection from u to v then k /∈ Bt .

Theorem 2 shows that unmasking the extra connections that
are masked by MAGSDE versus MADE causes no new paths
to any output dimension from its looking-back Markov blan-
ket. Therefore, MAGSDE masks them to reduce the number
of parameters of the model.

It is worth noting that MAGSDE tries to address the
problem of small training size in a different way than MASDE.
MAGSDE works based on reducing the complexity of the
model, whereas MASDE works based on simplifying the
regression problems that should be solved.

V. EXPERIMENTAL RESULTS

We used two synthetic and two real data sets to evaluate
the proposed methods and compared them with MADE and
some other baseline methods. The synthetic data sets included
two Ising models; a 4 × 4 grid-shaped model and a sparse
20-D MRF with less than 60 edges. We also compared
different methods on the OCR-letters data set3 (used in [7],
[11], and [15] for the problem of density estimation) and the
binarized MNIST (used in [15]), as two real data sets. We also
compared our method with some state-of-the-art image density
estimators on the (not binarized) MNIST data set.

We implemented MADE and our proposed methods in
Python using Keras [22] library with Tensorflow [23] back-
end. All our source codes are available at http://github.com/
ahmadkhajehnejad/structuredMADE.

Similar to [15], we executed an on-the-fly ensemble learning
by making ten different sets of masks and using one set in each
training epoch to update the parameters of the model. Also,
we put direct connections from the input layer to the output
layer (without violating the autoregressive property) in all the
three models, as suggested in [15].

All the parameters of the synthetic data sets were sam-
pled uniformly and independently of interval (0, 1). For the
synthetic data sets, since the true density function could
be computed, we used the approximation of the Kullback–
Leibler (KL) divergence between the estimated density for the
test data and their true density as follows:

K L(Pt � Pm) = EX∼Pt

[
log

Pt (X)

Pm(X)

]

≈ 1

M

M∑
i=1

log
Pm(x(i))

Pt (x(i))
(7)

where Pt is the true distribution, Pm is the estimated distrib-
ution by the model, and x(1), . . . , x(M) are the test data that
are independent identically distributed (i.i.d) samples from Pt .
We used M = 5000 in our experiments. Since the true
distribution is unknown for real data sets, we cannot compute
the KL-divergence criterion for evaluation on real data sets.

3See http://ai.stanford.edu/~btaskar/ocr/

Instead, we approximated the expected negative log-likelihood
of the estimated distribution using an empirical average

EX∼Pt [− log Pm(X)] ≈ − 1

M

M∑
i=1

log Pm(x(i)) (8)

where x(1), . . . , x(M) are the set of test samples that are
supposed to be sampled from the true distribution.

In each experiment, we start with a small training size and
let it grow to investigate the performance of the methods in the
presence of different sample sizes. We also set the validation
size equal to one-fourth of the training size. The validation set
is used for the early stopping of the training process, with a
look-ahead of 20 epochs. We used Adam optimizer, proposed
in [24], with learning rate = 0.0003 for binary data sets and
0.0001 for other cases, β0 = 0.1, and a maximum of 2000
epochs.

For each experiment, we used a default of two hidden layers
with ReLU activation functions. However, we also had a test
on four and six hidden layers to investigate the impact of the
number of hidden layers. We also investigated the impact of
different hidden layer sizes. For the output nodes, the sigmoid
activation functions were used. Due to the randomness of the
methods, we report the average and standard deviation of the
performance criteria over five independent executions on each
training set.

Fig. 2 shows the results of MADE, MASDE, and MAGSDE
on the 4 × 4 grid data set. It clearly shows that using
different orders of dimensions for different ten masks (the
middle column and the right column) improves the results of
all the three methods versus using a fixed dimension order
for all masks. Moreover, it shows that the proposed methods
outperform MADE in all cases, especially for smaller training
sizes. MASDE and MAGSDE obtain their best results when
using grid-based dimension orders and wider hidden layers.
On the other hand, MADE makes worse performance with
wider hidden layers, especially for fixed dimension order and
grid-based dimension orders. It seems that the simplifications
that MASDE and MAGSDE imposed to the model have made
them more robust than MADE to the size of the hidden layers.

Fig. 3 shows the superiority of MASDE against MADE
on the sparse data set with 20 nodes. In order to show the
impact of selecting the true looking-back Markov blankets
in MASDE, we assumed an auxiliary method, the random
blanket MASDE method (RBMASDE). RBMASDE is similar
to MASDE, except that in this method for each dimension i ,
we substitute Bi (the looking-back Markov blanket of the i th
dimension) with a random set B �i ⊂ {1, 2, . . . , i − 1} with the
same size as Bi . The rest of the labeling and masking proce-
dures of RBMASDE are exactly the same as MASDE such
that the i th dimension of the output layer would be reachable
just from dimensions in B �i from the input layer. The results of
RBMASDE are shown in the right column of Fig. 3. As antici-
pated, RBMASDE obtains worse results than MASDE because
a random subset of {x1, x2, . . . , xi−1} does not necessarily
contain all the information of P(xi |x1, x2, . . . , xi−1).

We also investigated the impact of the number of hidden
layers on different methods when using grid-based dimension

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

5004 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

Fig. 2. Results of MADE, MASDE, and MAGSDE on the 4× 4 grid data set, using a fixed (grid-based) order of dimensions (left), ten uniformly random
permutations of dimensions (middle) and ten random selections among the 16 possible grid-based orders (right).

Fig. 3. Results of MADE, MASDE, and MASDE with random subsets
instead of the looking-back Markov blankets, on the sparse 20 dimensional
data set, using a fixed order of dimensions (left) and ten uniformly random
permutations of dimensions (right).

orders on the 4 × 4 grid data set. As shown in Fig. 4, the
performance of MASDE and MAGSDE does not have a con-
siderable change by increasing the number of hidden layers,

Fig. 4. Results of MADE, MASDE, and MAGSDE with ten random
selections among the 16 possible grid-based dimension orders, on the 4× 4
grid data set with four (left) and six (right) hidden layers.

but MADE has improved and also has become more robust
to the changes in the size of the hidden layers, despite that
the number of its parameters has been increased (comparing
the right column of Fig. 2 with Fig. 4). It shows that the

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

KHAJENEZHAD et al.: MADE ON SMALL STRUCTURED DATA SETS 5005

Fig. 5. Results of MADE, MASDE, and MAGSDE on binarized MNIST,
using ten uniformly random permutations of dimensions (left) and ten random
selections from the 16 possible grid-based orders (right).

Fig. 6. Results of MADE, MASDE, and MAGSDE on OCR-letters, using ten
uniformly random permutations of dimensions (left) and ten random selections
from the 16 possible grid-based orders (right).

number of network parameters is not an accurate measure of
the complexity of MADE.

Figs. 5 and 6 show the results of different methods on
binarized MNIST and OCR-letters data sets, respectively.
MNIST images are 28 × 28 pixels and OCR images are
16 × 8 pixels. Since our proposed methods need to know
the structure, in MNIST, we considered that each pixel is
connected to all the pixels of a 9 × 9 square surrounding
that pixel. In OCR, we considered a square of size 3 × 3
as the neighbors of each pixel. We observe from Figs. 5 and 6
that on both data sets, when we run MADE, uniform random
dimension orders are more proper than grid-based orders.
Although MAGSDE cannot make any improvement against
MADE when using uniformly random dimension orders, when
we use grid-based orders, MAGSDE can drastically improve
MADE. This improvement on the OCR data set is large
enough to outperform MADE with uniformly random orders,
but on MNIST, it is not. As can be seen from Figs. 5 and 6,
MASDE outperforms MADE if the size of the hidden layers
is large enough. For MNIST, with 784 dimensions, a size of
1200 ≈ 784 × 1.5 for hidden layers is sufficient enough to
let the MASDE method outperform MADE, but for OCR data
set, with 128 dimensions, MASDE needs hidden layers larger
than 200 ≈ 128× 1.5 to beat MADE.

TABLE I

KL ON GRID 4× 4 DATA SET

TABLE II

KL ON THE SPARSE 20-D DATA SET

We also compared the proposed methods with some other
binary density estimators in two cases of using small and
large training data. We selected the baseline models accord-
ing to the experiments reported in [15]. We used a mix-
ture of multivariate Bernollis, a centered RBM model [25],
an autoregressive model with sigmoid conditional probabilities
which was inspired by an FVSBN used in [10], the orderless
neural autoencoder density estimator (NADE) [14], and the
original MADE [15]. We used the validation data in all
methods (except for centered RBM) to retain them from
overfitting. We again state that we claim the superiority of
our proposed methods just for small training sets, because
in the presence of large training sets, deep models can
estimate the density accurately without knowing any extra
structural information. Tables I–IV shows the results of these
comparisons. We observe that except for MAGSDE with
grid-based dimension orders on MNIST, the proposed methods
outperform all the other methods when trained on the small
data sets. Furthermore, their performance is approximately
equal to MADE on the large data sets. This confirms that the
simplifications that we apply on the proposed methods make
them proper for learning with small data, without restricting
their capacity to estimate complex functions in the presence of
large data sets. It is worth noting that since MASDE performs
better with large hidden layers, we used two hidden layers
of 1200 units with ten different masks when testing on the
binarized MNIST data set. We also used the same settings
for MADE and MAGSDE for the sake of fairness. These
settings were different from the settings used in [15, Sec. 6.2]
(two hidden layers of size 800 and 32 masks). We also tested
our implementation of MADE with the same settings as in [15]

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

5006 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 32, NO. 11, NOVEMBER 2021

TABLE III

NLL ON THE BINARIZED MNIST DATA SET

TABLE IV

KL ON THE OCR DATA SET

TABLE V

NLL ON THE (NOT BINARIZED) MNIST DATA SET

on 50 000 samples from binarized MNIST and obtained a
better negative loglikelihood (75.48) than [15] (86.64).

In order to compare the proposed models with recent deep
models such as RealNVP [18] and PixelCNN++ [26], we used
the (not binarized) MNIST data set. Similar to PixelCNN++,
we used a logistic mixture model in the last layer of MADE,
MAGSDE, and MASDE to precisely estimate the discrete
distribution of each pixel. Table V shows the results. Since
RealNVP is proposed for continuous distributions, we approx-
imated its negative loglikelihood for discrete values of pixels
using a uniform noisy sampling (see [27, Sec. 3.1]), which
gives an upper bound of the true negative log-likelihood
of the discrete data. Both RealNVP and Pixelcnn++ use
convolutional layers, which is a way of using structural
information. However, these models are adapted to images
and grid-based structures and cannot be applied to other
structures. On the other hand, MADE is a simpler model,
and according to Table V, it cannot compete RealNVP and
PixelCNN++ on image data sets. However, this experiment

confirms that MASDE and MAGSDE partly compensate for
MADE’s weakness on small-sized image data sets.

VI. CONCLUSION

In this article, we proposed two autoregressive autoencoders
for estimating structured distributions from a small set of
observations. Similar to the MADE, the proposed methods
mask some connections of the fully connected layers of a
simple autoencoder to satisfy the autoregressive property of
the network. The proposed methods also block the paths
between independent dimensions from the input layer to
the output layer. The independencies are induced by the
known MRF structure of the distribution. The first method,
Masked Autoencoder for Structured Distribution Estimation
(MASDE), outperforms MADE in all the experiments; how-
ever, in some cases, it needs larger hidden layers than MADE.
The second proposed method, Masked Autoencoder for Grid
Structured Distribution Estimation (MAGSDE), is dedicated to
the grid-based MRFs. The improvement caused by MAGSDE
over MADE depends on the order of the dimensions that we
use. The experimental results showed that in some data sets,
MAGSDE did not improve the best results obtained by MADE.
Our experiments also showed that our proposed methods can
partly compensate for the shortcomings of MADE against
state-of-the-art deep image density estimators when trained on
small training sets.

APPENDIX

A. Proof of Theorem 1

In a Markov random field, node v is independent of node u
given the subset W of nodes, if and only if each path between
v and u contains at least one node in W (or is blocked by
W) [3]. Algorithm 2 traverses the graph through a depth first
search, starting from node v, and traces back each time it
visits a node in {1, 2, . . . , v − 1}. Let us decompose the set
{1, 2, . . . , v − 1} into the visited nodes by Algorithm 2 (A)
and unreached nodes (B). Notice that A is the output of the
Algorithm 2. Regarding to the fact that each node in A is
reachable from v using a path that passes through the nodes
in {v + 1, v + 2, . . . , d}, it is clear that these paths could not
be blocked by any subset of {1, 2, . . . , v − 1}. Hence, any
looking-back Markov blanket of v must contain all members
of A. On the other hand, it is clear that each path between v
and a node in B is blocked by A, otherwise, that node would
be visited in the depth first search by Algorithm 2. So A is a
looking-back Markov blanket for v.

B. Proof of Theorem 2

Assume that node u is labeled as l and node v is labeled
as r . Since MAGSDE masks the connection, but MADE does
not, we have

l < br . (9)

From the masking condition of MADE, we know that the
labels on each path in the network are non-descending. There-
fore we have

k ≤ l ≤ r ≤ t . (10)

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

KHAJENEZHAD et al.: MADE ON SMALL STRUCTURED DATA SETS 5007

From Equations (9) and (10) it is clear that

k < br . (11)

Also, according to the condition bi ≥ bi−1 in Equation (6)
and from Equation (10) we can infer that

br ≤ bt . (12)

Therefore, using Equations (11) and (12) we have

k < bt (13)

According to Equation (13) and the definition of Bi in
Equation (6) it is clear that k /∈ Bt .

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their valuable comments and suggestions which signifi-
cantly improved this article. They also thank Dr. Mohammad
Hossein Rohban for useful discussions. Some experiments
of this research have been run using the computing service
provided by the High-Performance Computing Center of IPM
Institute for Research in Fundamental Sciences.

REFERENCES

[1] A. C. Davison, Statistical Models, vol. 11. Cambridge, U.K.: Cambridge
Univ. Press, 2003, ch. 7.1.2.

[2] X. Zhuang, Y. Huang, K. Palaniappan, and Y. Zhao, “Gaussian mixture
density modeling, decomposition, and applications,” IEEE Trans. Image
Process., vol. 5, no. 9, pp. 1293–1302, 1996.

[3] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles
and Techniques. Cambridge, MA, USA: MIT Press, 2009.

[4] Y. Liu, D. Xie, and X. Wang, “Generalized Boltzmann machine with
deep neural structure,” in Proc. 22nd Int. Conf. Artif. Intell. Statist.,
2019, pp. 926–934.

[5] E. Janofsky, “Exponential series approaches for nonparametric
graphical models,” 2015, arXiv:1506.03537. [Online]. Available:
http://arxiv.org/abs/1506.03537

[6] G. Lugosi, J. Truszkowski, V. Velona, and P. Zwiernik, “Structure learn-
ing in graphical models by covariance queries,” 2019, arXiv:1906.09501.
[Online]. Available: http://arxiv.org/abs/1906.09501

[7] H. Larochelle, Y. Bengio, and J. Turian, “Tractable multivariate binary
density estimation and the restricted Boltzmann forest,” Neural Comput.,
vol. 22, no. 9, pp. 2285–2307, Sep. 2010.

[8] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm
for deep belief nets,” Neural Comput., vol. 18, no. 7, pp. 1527–1554,
Jul. 2006.

[9] Y. Bengio and S. Bengio, “Modeling high-dimensional discrete data with
multi-layer neural networks,” in Proc. Adv. Neural Inf. Process. Syst.,
2000, pp. 400–406.

[10] B. J. Frey, G. E. Hinton, and P. Dayan, “Does the wake-sleep algorithm
produce good density estimators?” in Proc. Adv. Neural Inf. Process.
Syst., 1996, pp. 661–667.

[11] H. Larochelle and I. Murray, “The neural autoregressive distribution
estimator,” in Proc. 14th Int. Conf. Artif. Intell. Statist., 2011, pp. 29–37.

[12] B. Uria, I. Murray, and H. Larochelle, “RNADE: The real-valued neural
autoregressive density-estimator,” in Proc. Adv. Neural Inf. Process.
Syst., 2013, pp. 2175–2183.

[13] B. Uria, I. Murray, and H. Larochelle, “A deep and tractable density
estimator,” in Proc. Int. Conf. Mach. Learn., 2014, pp. 467–475.

[14] B. Uria, M.-A. Côté, K. Gregor, I. Murray, and H. Larochelle, “Neural
autoregressive distribution estimation,” J. Mach. Learn. Res., vol. 17,
no. 1, pp. 7184–7220, 2016.

[15] M. Germain, K. Gregor, I. Murray, and H. Larochelle, “Made: Masked
autoencoder for distribution estimation,” in Proc. Int. Conf. Mach.
Learn., 2015, pp. 881–889.

[16] L. Dinh, D. Krueger, and Y. Bengio, “NICE: Non-linear independent
components estimation,” 2015, arXiv:1410.8516. [Online]. Available:
http://arxiv.org/abs/1410.8516

[17] D. Rezende and S. Mohamed, “Variational inference with normalizing
flows,” in Proc. Int. Conf. Mach. Learn., 2015, pp. 1530–1538.

[18] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real NVP,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR), 2017.

[19] G. Papamakarios, I. Murray, and T. Pavlakou, “Masked autoregressive
flow for density estimation,” in Proc. Adv. Neural Inf. Process. Syst.,
2017, pp. 2335–2344.

[20] D. P Kingma and M. Welling, “Auto-encoding variational Bayes,” 2014,
arXiv:1312.6114. [Online]. Available: http://arxiv.org/abs/1312.6114

[21] I. Goodfellow et al., “Generative adversarial nets,” in Proc. Adv. Neural
Inf. Process. Syst., 2014, pp. 2672–2680.

[22] F. Chollet et al. (2015). Keras. [Online]. Available: https://keras.io
[23] M. Abadi et al. (2015). TensorFlow: Large-Scale Machine Learning on

Heterogeneous Systems. [Online]. Available: https://www.tensorflow.org/
[24] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-

mization,” 2014, arXiv:1412.6980. [Online]. Available: http://arxiv.org/
abs/1412.6980

[25] J. Melchior, A. Fischer, and L. Wiskott, “How to center deep Boltzmann
machines,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 3387–3447, 2016.

[26] T. Salimans, A. Karpathy, X. Chen, and D. P. Kingma, “PixelCNN++:
Improving the pixelcnn with discretized logistic mixture likelihood and
other modifications,” in Proc. 5th Int. Conf. Learn. Represent. (ICLR),
2017.

[27] L. Theis, A. van den Oord, and M. Bethge, “A note on the evaluation of
generative models,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016,
pp. 1–10.

Ahmad Khajenezhad received the B.Sc. and M.Sc.
degrees in computer engineering from the Sharif
University of Technology, Tehran, Iran, in 2010 and
2012, respectively, where he is currently pursuing
the Ph.D. degree.

His research interest includes learning probabilis-
tic models for structured/distributed data.

Hatef Madani received the B.Sc. degree in com-
puter engineering from the Kharazmi University of
Tehran, Tehran, Iran, in 2014, and the M.Sc. degree
in computer engineering from the Sharif University
of Technology, Tehran, in 2018.

He is interested in image processing and deep
approaches in machine learning.

Hamid Beigy received the B.Sc. and M.Sc. degrees
in computer engineering from the Shiraz University,
Shiraz, Iran, in 1992 and 1995, respectively, and
the Ph.D. degree in computer engineering from the
Amirkabir University of Technology, Iran, in 2004.

He is currently an Associate Professor with the
Department of Computer Engineering, Sharif Uni-
versity of Technology, Tehran, Iran. His research
interests include theoretical machine learning,
large-scale machine learning, and social networks.

Authorized licensed use limited to: The University of British Columbia Library. Downloaded on September 15,2024 at 05:44:04 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

