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ABSTRACT
Clustering over a graph seeks to partition the nodes therein into

disjoint groups such that nodes within the same cluster are tightly-

knit, while those across clusters are distant from each other. In

practice, graphs are often attended with rich attributes, which are

termed attributed graphs. By leveraging the complementary nature

of graph topology and node attributes in such graphs, graph neural
networks (GNNs) have obtained encouraging performance in graph

clustering. However, existing GNN-based approaches strongly rely

on the homophilic assumption of the input graph, and thus, largely

fail on heterophilic graphs and others embodying numerous missing

or noisy links, which are widely present in real life.

To bridge this gap, this paper presents DGAC, an effective graph-

agnostic solution for graph clustering. Particularly, DGAC over-

comes the limitations of prior works by exploiting the high-order

connectivity of nodes within not only the input graph G but also

the affinity graph H underlying the attribute data. To achieve this

goal, we first unify the embedding and clustering generations into a

coherent framework optimizing the Dirichlet Energy on both G and

H . Based thereon, theoretically-grounded solvers are developed for

efficient constructions of the embeddings and clusters, which cap-

ture high-order semantics from G orH via graph diffusion. On top

of that, DGAC includes three training loss functions that facilitate

effective feature extraction and clustering. Extensive experiments,

comparing DGAC against 12 baselines over 12 homophilic or het-

erophilic graph datasets, showcase that DGAC consistently and

considerably outperforms all competitors in terms of clustering

quality measured against ground truth labels.

CCS CONCEPTS
• Information systems→ Clustering.

KEYWORDS
Graph clustering, Dirichlet Energy, affinity graph, graph neural

network, heterophily graph clustering, contrastive learning
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1 INTRODUCTION
As a fundamental task in data mining, graph clustering has con-

sistently garnered significant attention from researchers due to

its broad applicability across various domains such as commu-

nity detection [38, 65], Bioinformatics [6, 11], anomaly identifi-

cation [39, 50], recommender systems [18, 37] and so on.

In recent years, graph neural networks (GNNs) [35] have emerged

as popular techniques for graph clustering by virtue of their power-

ful capabilities in fusing complex structural connectivity and nodal

attributes [43] that are widely present in real graphs. Specifically,

this methodology follows a two-step workflow, where the first step

seeks to generate informative feature vectors for nodes in the input

graph via GNNs, while the latter focuses on transforming node

features into clustering results using the 𝐾-Means, spectral cluster-

ing, or MLP. The design recipes for GNNs are built on the graph
diffusion [21, 36] operations, which aggregate features from direct

or indirect neighboring nodes based on their (high-order) structural

connectivity.

As pinpointed by our theoretical investigation, GNNs are essen-

tially minimize the Dirichlet Energy (DE) [26] of the node represen-

tations over the input graph topology, which enforces node features

align with the graph connectivity and comply with the homophily

assumption [52]. That is, nodes that are adjacent or strongly con-

nected should fall into the same classes or clusters. Intuitively, over

graphs with high homophily ratio (HR) [85], i.e., the fraction of

edges whose endpoints are in the same ground-truth class/cluster,

optimizing the DE-based objectives leads to desired node features

and clustering results. Nevertheless, this homophily assumption

is not necessarily valid in practice. Real-world graph datasets are

often heterophilic (i.e., the homophily ratio is low), noisy, or incom-

plete. As an aftermath, the majority of existing GNNs largely fail

on such datasets.

Despite a series of heterophilic GNNmodels [47, 48, 83] proposed

recently, they are primarily designed for node classification under

supervised settings, and thus, cannot be readily applied for graph

clustering due to the absence of node labels. To our knowledge, a

paucity of efforts [22, 56] has been invested towards addressing

heterophily issues for graph clustering. Similar in spirit to previous

heterophilic GNNs for node classification, these models focus on

increasing the homophily ratio of the input graph by rewiring its

topology with node attributes as ancillary information. To ascer-

tain the correlation between graph topology and node attributes,

Table 1 reports the accuracy obtained by clustering the adjacency

matrix A and attribute matrix X of real heterophilic graph datasets

(See Table 3) with 𝐾-Means severally, as well as the degree of over-

lap between these two independent clustering results. It can be

observed that the overlap degree is conspicuously lower than the

clustering accuracy on X, indicating that node attributes embody a

wealth of unique information that is crucial for accurate clustering.

However, existing works merely leverage it to refine the original

1
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Table 1: Overlap of clustering results on real graphs.

Dataset Acc. (X) Acc. (A) Overlap

Texas 0.49 0.54 0.40

Cornell 0.49 0.51 0.41

Flickr 0.34 0.20 0.23

graph, without considering the inherent structures underlying X,
and thus, compromise the result quality.

In response, this paper presents DGAC, a Diffusion-based Graph-
Agnostic Clustering method, which achieves high clustering effec-

tiveness over both homophilic and heterophilic graphs. At a high

level,DGAC overcomes the deficiencies of prior works by capturing

the high-order node connectivity over the input graph G and the

affinity graph H underlying the attribute data simultaneously.

More concretely, DGAC first integrates the classic GNNs and

spectral clustering into a unified framework that minimizes the DE

of embeddings and clustering results on the input graph through

rigorous theoretical analyses. Guided by this principle, we first

propose to jointly optimize the DE-based objectives over G and H
for representation learning, which leads to the design of our dual
graph diffusion networks (DGDNs). Distinct from GNNs, DGDNs

incorporate the high-order node connectivity on two graphs into

the node features through topology- and attribute-based graph

diffusion, followed by a feature fusion reconciling information from

two data modalities i.e., structures and attributes. On top of that,

we formulate another DE-based joint optimization problem upon

the learned node features and input graph topology and develop a

graph diffusion-based solver for efficient clustering. Furthermore,

a hierarchical contrastive loss for extracting features from two

data modalities, an infoNCE loss for clustering quality assessment,

and a reconstruction loss to ensure the preservation of the input

graph structures and attributes, are devised to facilitate the model

training in DGAC. Our extensive experimental studies, comparing

DGAC against 12 baselines over 12 homophilic or heterophilic

graph datasets, demonstrate that DGAC is consistently superior to

all baselines in terms of clustering accuracy evaluated against the

ground-truth cluster labels. In particular, on the largest homophilic

graph BlogCatalog, and heterophilic graph Flickr, DGAC is able

to obtain a substantial gain of 18.59% and 11.12% in clustering

accuracy, respectively.

2 RELATEDWORK

HeterophilicGraphClustering.Dealingwith heterophilic graphs
in unsupervised settings is particularly challenging due to the ab-

sence of node label guidance, as noted in previous work [9, 56,

84]. Existing heterophilic graph clustering methods often utilize

attribute information to refine the graph structure. Specifically,

DGCN [56] and PFGC [74] leverage the attribute (dis)similarity

between connected nodes to construct two graphs that are highly

homophilic and heterophilic, respectively. These graphs are then

processed using low-pass and high-pass filters to capture holistic

information. HoLe [22] aims to enhance the homophily degree

by refining the graph topology based on high-confidence cluster-

ing results. Additionally, HGRL [9] is a self-supervised learning

method that learns informative representations for heterophilic

graphs through two pretext tasks: original feature preserving and

generalized neighbor capturing. These existing methods empha-

size explicit discrimination between homophilic and heterophilic

structures, yet they overlook the inherent affinity relationships

underlying the attribute information that facilitates heterophilic

graph clustering.

A detailed introduction to existing attributed graph clustering
methods and heterophilic graph neural networks can be found in

Appendix B, most of which rely on homophily assumption or node

labels for supervision, limiting their applicability in heterophilic

graph clustering.

3 PRELIMINARIES
3.1 Notations and Terminology
Let G = (V, E,X) be an attributed graph, where V is a set of 𝑛

nodes and E is a set of 𝑚 edges. For each edge (𝑣𝑖 , 𝑣𝑖 ) ∈ E, we
say 𝑣𝑖 and 𝑣 𝑗 are neighbors to each other, and we use N(𝑣𝑖 ) to
denote the set of neighbors of 𝑣𝑖 , with the degree 𝑑 (𝑣𝑖 ) = |N (𝑣𝑖 ) |.
X ∈ R𝑛×𝑓 is the input attribute matrix of nodes, where each row

X𝑖 stands for the attributes associated with node 𝑣𝑖 and satisfies

∥X𝑖 ∥2 = 1. We useA to symbolize the adjacency matrix of G, where

A𝑖, 𝑗 = 1 if there is an edge (𝑣𝑖 , 𝑣 𝑗 ) ∈ E, and otherwise A𝑖, 𝑗 = 0,

and D to denote the degree matrix of G. Accordingly, L = D − A
represents the Laplacian matrix of G. Ã = D− 1

2AD− 1

2 and I− Ã are

the normalized adjacency and Laplacian matrices of G, respectively.

Graph Diffusion. Given a graph G and an initial mass 𝑥 at seed

node 𝑣𝑠 ∈ V , the graph diffusion [21, 36] is to spread the mass from

𝑣𝑠 to its direct or indirect neighboring nodes along the edges in G.

The resulting distribution of mass at nodes is referred to a graph

diffusion distribution, wherein the value at each node 𝑣𝑖 reflects the

strength of connections between 𝑣𝑠 and 𝑣𝑖 . In mathematical terms,

this process can be expressed by

p = x ·
∞∑︁
ℓ=0

𝑤ℓPℓ , where
∞∑︁
ℓ=0

𝑤ℓ = 1, (1)

x has a positive value at 𝑠-th entry and 0 everywhere else,𝑤ℓ sig-

nifies the fraction of mass disseminated to all the nodes at ℓ-hops

away from seed node 𝑣𝑠 . P stands for the diffusion matrix of G,
which can be the transition matrix D−1A or normalized adjacency

matrix Â. Particularly, when P = D−1A and x𝑠 = 1, the graph diffu-

sion distribution in Eq. (1) is essentially the prominent personalized
PageRank [29] if𝑤ℓ follows a geometric distribution and the heat
kernel PageRank [36] if𝑤ℓ is drawn from a Poisson distribution.

Graph Clustering. Given an attributed graph G = (V, E,X) and
the number 𝐾 of clusters, the overreaching goal of graph clustering

is to partition the node setV into 𝐾 disjoint groups {C1, . . . , C𝐾 }
(i.e.,

⋃𝐾
𝑘=1

C𝑘 = V and C𝑖 ∩C𝑗 = ∅ for 𝑖 ≠ 𝑗 ), such that nodes with

strong connectivity and high attribute homogeneity are in the same

group, while distant and dissimilar ones fall into distinct clusters.

As in common practice, the clustering result can be represented by

a Normalized Cluster Indicator (NCI) Y ∈ R𝑛×𝐾 defined as follows:

C𝑖,𝑗 =


1√
|C𝑗 |

, if 𝑣𝑖 ∈ C𝑗 ,

0, otherwise.
(2)

In particular, the columns of C are orthonormal, i.e., C⊤C = I.
2
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3.2 Spectral Graph Clustering
Spectral clustering [70] is a canonical technique for graph clustering,
which seeks to partition nodes based on optimizing an objective

that minimizes their intra-cluster connectivity, regardless the node

attributes. One standard formulation of such objectives is the Rati-

oCut [23]:

min

{C1,...,C𝐾 }

𝐾∑︁
𝑘=1

1

𝐾

∑︁
𝑣𝑖 ∈C𝑘 ,𝑣𝑗 ∈V\C𝑘

Ã𝑖,𝑗
| C𝑘 |

,

which is to minimize the average weight of edges connecting

nodes in any two distinct clusters. As analysed in [70], the above

objective is equivalent to finding an NCI optimizing the following

trace minimization problem:

min

C
trace(C⊤ (I − Ã)C), (3)

which is an NP-hard problem given the constraint in Eq. (2) on C. A
commonway is to compute an approximate solution by relaxing the

discreteness condition on C and allowing it to take arbitrary values

in R such that the column-orthonormal property, i.e., C⊤C = I, still
holds. By Ky Fan’s trace maximization principle [19], it immediately

leads to that the optimal solution is the 𝑘-largest eigenvectors of Ã.
The 𝐾-Means or rounding algorithms [62, 78] are then applied to

convert the 𝑘-largest eigenvectors into an NCI.

3.3 Graph Neural Networks
As demystified in recent works [51, 77, 86], after removing the non-

linearity, a majority of existing popular GNNs [10, 20, 21, 35, 72, 75]

can be unified into the graph Laplacian smoothing [15] problem

formulated below:

min

H
(1 − 𝛼) · ∥H − X∥2𝐹 + 𝛼 · trace(H⊤ (I − Ã)H), (4)

where H denotes the target node features and 𝛼 stands for a co-

efficient striking a balance between two terms. The first term re-

duces the discrepancy between the initial node features X and

its smoothed version H, while the latter can be rewritten as 𝛼 ·∑
(𝑣𝑖 ,𝑣𝑖 ) ∈E ∥H𝑖/

√︁
𝑑 (𝑣𝑖 ) −H𝑗/

√︁
𝑑 (𝑣 𝑗 )∥2𝑧 , meaning that the node fea-

tures of adjacent nodes are enforced to be similar.

Lemma 1 ([27]). Let M be a matrix whose dominant eigenvalue 𝜆
satisfies |𝜆 | < 1. Then, I −M is invertible, and its inverse (I −M)−1
can be expanded as a Neumann series: (I −M)−1 = ∑∞

ℓ=0M
ℓ .

By setting the derivative of Eq. (4) w.r.t. H to zero, the optimal

H can be given by H = (1 − 𝛼) · (I − 𝛼Ã)−1X [77]. Given the fact

that the eigenvalues of Ã lie in [−1, 1] [13], Lemma 1 implies that

H =
∑∞
ℓ=0 (1 − 𝛼)𝛼ℓ Ãℓ · X. For each 𝑖-th column h of H, we can

rewrite it as follows with the 𝑖-th column x of X:

h⊤ = x⊤ ·
∞∑︁
ℓ=0

(1 − 𝛼 )𝛼ℓ Ãℓ .

This is essentially a graph diffusion distribution with the initial

mass for all nodes specified in z. In other words, the columns of H
correspond to the graph diffusion distributions of 𝑑 attributes of

nodes over G. Aside from the above graph diffusion that is adopted

in [20], other diffusion forms include (I + Ã)Z in GCN [35], ÃℓX
in [72],

∑∞
ℓ=0

𝑒−𝑡 ·𝑡𝑖
ℓ!

Ãℓ · Z in [21], etc. Note that in these models,

the node features H will further be transformed into the final node

representations through layer-wise feature transformations, e.g.,

Table 2: Homophily ratios of G andH .

Texas Wisconsin Cornell Flickr

HRG 0.108 0.196 0.305 0.239

HRH 0.422↑ 0.399↑ 0.422↑ 0.413↑

MLPs, linear layers. Most existing GNN-based graph clustering

approaches convert node representations H into the NCI C through

the 𝐾-Means [44] or MLP/linear layers [67].

4 SOLUTION OVERVIEW
This section first unifies spectral clustering and GNNs into a frame-

work minimizing the Dirichlet Energy (DE) through in-depth theo-

retical analyses, followed by delineating the basic idea of DGAC.

4.1 Dirichlet Energy Minimization Framework
Definition 1 (Dirichlet Energy [26]). Given G and a graph

signal x ∈ R𝑛 , the Dirichlet Energy of x over G is characterized by

D(x,A) = 1

2

∑︁
𝑣𝑖 ,𝑣𝑗 ∈V

A𝑖, 𝑗 · (x𝑖 − x𝑗 )2 = x⊤Lx.

Definition 1 presents the formal definition of the DE, which

intrinsically measures the locality-preserving power of a given

signal x, i.e., its consistency of the distribution of signal values at

nodes within the input graph structure [76].

Lemma 2. HRG = 1

2
− 1

| E |
∑𝐾
𝑘=1

D(Y·,𝑘 ,A).

Let Y ∈ R𝑛×𝐾 be the ground-truth node-cluster membership ma-

trix of G where Y𝑖,𝑘 = 1 if 𝑣𝑖 ∈ C𝑘 and 0 otherwise. Our analysis in

Lemma 2
1
establishes a theoretical relation between the homophily

ratio HRG of G and the overall DE of Y over G. Intuitively, the
larger the homophily ratio of G is, the smaller the DE of Y is.

Further, based on the definition of matrix trace, we can derive the

following equivalence between DE and the objectives of spectral

clustering and GNNs (i.e., Eq. (3) and Eq. (4)):

trace(C⊤ (I − Ã)C) =
𝐾∑︁
𝑘=1

D(C·,𝑘 , Ã),

trace(H⊤ (I − Ã)H) =
𝑑∑︁
𝑖=1

D(H·,𝑖 , Ã) .

(5)

This finding reveals that the fundamental principles of both spectral
clustering and GNNs are built on minimizing the overall DE of their
results over the input graph G. According to Lemma 2, when the

homophily ratio of G is high, doing so essentially renders the NCI

C and node representations H yield clustering results close to the

ground-truth Y. As pinpointed in Section 3.3, GNNs leverage the

graph diffusion to incorporate high-order connectivity between

nodes into the construction of H, thereby reinforcing the optimiza-

tion of its DE.

4.2 High-Level Idea
As reported in Table 2, the homophily ratios of practical graph

datasets are often low, due to their heterophilic nature or the pres-

ence of noisy and missing links. Naturally, on such graphs, opti-

mizing the above-said DE-based objectives leads to undermined

1
All proofs appear in Appendix A.

3
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Figure 1: Overview of DGAC.

embedding and clustering quality. By contrast, in Table 2, their

corresponding affinity graphsH , that are constructed from their

associated attribute matrices X with edge weights calculated via

S𝑖 𝑗 = X𝑖 · X⊤
𝑗 ∀𝑣𝑖 , 𝑣𝑗 ∈ V, (6)

exihibit much higher degrees of homophily.

This motivates our rudimentary idea of capitalizing on the inher-

ent structures of the attribute data, i.e., the affinity graph underlying

X, as complementary signals for the computations of H and C. That
is, we additionally minimize the overall DE of H over H :

𝑑∑︁
𝑖=1

D(H·,𝑖 , S̃), (7)

where S̃ stands for the symmetrically normalized version of S, i.e.,
diag(∑𝑗 S:, 𝑗 )−1/2 · S · diag(

∑
𝑗 S:, 𝑗 )−1/2. Ideally, H should capture

the high-order node connectivity on both G andH .

In the same vein, the NCI C can be derived from H and G based

on minimizing the overall DE as follows:

min

C⊤C

𝐾∑︁
𝑘=1

(1 − 𝛾 ) · D (C·,𝑘 ,𝚫) + 𝛾 · D (C·,𝑘 , Ã) . (8)

𝚫 corresponds to the affinity graph underlying the node features H
and 𝛾 is a weight balancing two terms. The second termD(C·,𝑘 , Ã)
is to explicitly injects the graph connectivity, as H tends to lose

such information as an aftermath of the inherent issues of GNNs,

i.e., over-smoothing and over-squashing .

In turn, there remain two crucial technical issues to be addressed:

• How to construct node representations H by optimizing its DE

over G andH simultaneously?

• How to derive the NCI C from H and G by solving Eq. (8)?

5 THE DGAC METHOD
In this section, we present our graph-agnostic clustering solution

DGAC for addressing the problems remarked in preceding section.

The pipeline of DGAC is illustrated in Figure 1, which involves

three major components. We begin with elucidating our dual graph
diffusion networks (DGDN) designed for constructing node repre-

sentations H in Sections 5.1. The succeeding section (Section 5.2)

describes the algorithmic details of our graph diffusion clustering
(GDC) for NCI computation. In Sections 5.3 and 5.4, we introduce

the training objectives for the model and provide related theoretical

analyses, respectively.

5.1 Dual Graph Diffusion Networks
Following our idea in Section 4.2, DGDN creates H by optimizing

the following DE-based objectives simultaneously:

min

H⊤H=I

𝑑∑︁
𝑖=1

D(H·,𝑖 , Ã) + D(H·,𝑖 , S̃) (9)

The orthogonality constraintH⊤H = I is introduced to avoid trivial
solution since it limits the feasible domain to a Stiefel manifold [41].
In doing so, we can additionally mitigate the feature correlation

issue [31, 40]. As per Eq. (5), the above optimization objective can

be rewritten as a joint trace minimization problem:

min

H⊤H=I
trace(H⊤ (I − Ã)H) + trace(H⊤ (I − S̃)H) .

As remarked earlier in Section 3.2, by Ky Fan’s trace maximiza-

tion principle [19], the optimal solutions to trace minimization

problemsminH⊤H=I trace(H⊤ (I−Ã)H) andminH⊤H=I trace(H⊤ (I−
S̃)H) are the 𝑑-largest eigenvectors B and U of Ã and S̃, respectively.
As such, we can transform Eq. (9) into two optimization problems:

min

H
𝛼 · trace(H⊤ (I − Ã)H) + ∥H − U∥2𝐹 , (10)

min

H
∥H − B∥2𝐹 + 𝛼 · trace(H⊤ (I − S̃)H), (11)

each of which partially optimizes Eq. (9). On this basis, our idea

is then seeking the solutions H(𝑡 )
and H(𝑎)

to these two problems

and coalesce them as the final node representations H. Specifically,
DGDN computes H(𝑡 )

and H(𝑎)
via topology-based and attribute-

based graph diffusion, respectively.

Topology-based Graph Diffusion. Firstly, we can see that the op-

timization problem in Eq. (10) is exactly a graph Laplacian smooth-

ing mentioned in Section 3.3. Using Lemma 1, its solution with 𝐿𝑡
iterations is a graph diffusion of U over G:

H(𝑡 ) =
𝐿𝑡∑︁
ℓ=0

𝛼ℓ ÃℓU, (12)

where the columns of U are the 𝑑-largest eigenvectors of S̃.

Lemma 3. The columns of U are the top-𝑑 left singular vectors of
X, where X = diag(d)−1/2X and d = X · (∑𝑣𝑖 ∈V X𝑖 )⊤.

Lemma 3 suggests that we can obtain U via a truncated singular
value decomposition (SVD) ofX, without direct eigen-decomposition

of S̃, and hence, eliminate the need of the explicit materialization

of affinity matrix S̃.
With the close connection of SVD to principal component anal-

ysis (PCA), U are actually the principal components, i.e., key fea-

tures, from the normalized attribute matrix X. That is to say, our

topology-based graph diffusion in Eq. (12) generates node features

that incorporate the high-order connectivity of nodes on G and

key features extracted from the attribute data X. Given this inter-

pretation, another practical way is to apply an MLP over X or XX⊤

to extract such key features as U.

Lemma 4. The dominant eigenvalue 𝜆 of S̃ satisfies |𝜆 | ≤ 1.

Attribute-based Graph Diffusion. Next, we solve another opti-
mization problem in Eq. (11) to getH(𝑎)

, which can also be cast into

a graph Laplacian smoothing problem in Eq. (4) with Lemma 1 and 4.

Let B be the 𝑑-largest eigenvectors of the normalized adjacency

matrix Ã, which commonly serves as the structural embeddings of

4
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nodes in the literature [17, 66, 79, 82]. The node features H(𝑎)
thus

can be calculated by graph diffusion of B over the affinity graphH :

H(𝑎) =
𝐿𝑎∑︁
ℓ=0

𝛼ℓ S̃ℓB. (13)

Note that since S̃ = XX
⊤
with X defined in Lemma 3, we can also

bypass the materialization of S̃ in the course of computing H(𝑎)
by

reordering the matrix multiplications in Eq. (13).

In analogy to our interpretation of H(𝑎)
, our attribute-based

graph diffusion is to integrate the high-order node connectivity in

H and structural features from G into node features H(𝑎)
.

Feature Fusion. As aforementioned, H(𝑡 )
and H(𝑎)

focus on en-

coding the node connectivity on G and H , respectively, both of

which partially optimize the overall objective in Eq. (9). In addi-

tion, since they are mainly constructed based on data from two

different modalities, i.e., graph and attributes, we first align their se-

mantics using layer-wise feature transformations parameterized by

learnable weightsW(𝑡 )
andW(𝑎)

, respectively, before the fusion.

Mathematically, DGDN combines H(𝑡 )
and H(𝑎)

as H by

Z(𝑡 ) = H(𝑡 )W(𝑡 ) ,Z(𝑎) = H(𝑎)W(𝑎) ,H = 𝛽 · Z(𝑡 ) + (1 − 𝛽 ) · Z(𝑎) , (14)

where 𝛽 ∈ (0, 1) is a trade-off parameter. An 𝐿2 normalization will

be applied to each row of Z afterward, to ensure each feature vector

has a unit length, i.e., ∥H𝑖 ∥2 = 1 ∀𝑣𝑖 ∈ V .

5.2 Graph Diffusion Clustering
Given node representations H, its underlying affinity graph can be

constructed by HH⊤
. Based thereon, the optimization objective for

NCI computation in Eq. (8) can be reformulated as

min

C⊤C
trace(C⊤ (I − 𝚫)C) + 𝛾 · trace(C⊤ (I − Ã)C) (15)

using the fact in Eq. (5). Again, by the Ky Fan’s trace maximization

principle [19], a simple and direct approach to solve this problem

is to conduct the eigen-decomposition of 𝚫 + 𝛾 · Ã. Unfortunately,
this way requires materializing 𝚫 + 𝛾 · Ã explicitly, leading to pro-

hibitively expensive computational and space costs of 𝑂 (𝑛2).

Lemma 5. Let H𝑘 = 1

| C𝑘 |
∑
𝑣𝑖 ∈C𝑘 H𝑖 be the centroid embedding of

cluster C𝑘 . Then,

min

C⊤C=I
trace(C⊤ (I − 𝚫)C) ⇐⇒ min

C⊤C=I

𝐾∑︁
𝑘

∑︁
𝑣𝑖 ∈C𝑘

∥H𝑖 − H𝑘 ∥22 .

Our theoretical outcome in Lemma 5 reveals that minimizing

the first term of our objective in Eq. (15) is equivalent to minimiz-

ing the within cluster sum of squares (WCSS) of the node feature

vectors in H, which is exactly the objective function of the pop-

ular 𝐾-Means algorithm. As such, a solution C(0)
that optimizes

minC⊤C=I trace(C⊤ (I − 𝚫)C) can be efficiently created by execut-

ing the 𝐾-Means with H. We can further transform the problem in

Eq. (15) into the following form:

min

C
∥C − C(0) ∥2𝐹 + 𝛾 · trace(C⊤ (I − Ã)C),

which is again a graph Laplacian smoothing as in Eq. (4). Accord-

ingly, the closed-form solution of the NCI C can be approximated

with 𝐿𝐶 iterations:

C =

𝐿𝐶∑︁
ℓ=0

𝛾 ℓ Ãℓ · C(0) , (16)

which is also a graph diffusion of C(0)
over graph G.

5.3 Training Objectives
To facilitate the model training and the learning of parametersW(𝑡 )

andW(𝑎)
in Eq. (14), we introduce three training loss functions

L𝑐𝑜𝑛𝑡 + L𝑐𝑙𝑢𝑠𝑡𝑒𝑟 + L𝑟𝑒𝑐𝑜𝑛𝑠 . (17)

Hierarchical Contrastive Loss. In Section 5.1, we obtain Z(𝑡 )
and

Z(𝑎)
, both of which are transformed from solutions to Eq. (9) from

different optimization views. We propose a hierarchical contrastive

loss to minimize the variance between the two views. Firstly, we

expect the topology and attribute representations of the same node

to be similar to capture the inherent invariance:

L𝑛𝑜𝑑 = ∥Z(𝑡 ) − Z(𝑎) ∥2𝐹 .
However, constructing positive pairs from the same node under

two optimization views neglects the local and intra-cluster invari-

ance [24]. In other words, nodes with strong affinity or topologi-

cal connections and nodes within the same cluster should also be

considered positive pairs. Thus, we additionally introduce the con-

trastive losses from neighbor and cluster levels. Specifically, we aim

to maximize the similarity between the anchor representation and

the semantic representation derived from the local neighborhood:

L𝑛𝑒𝑖 (Z(𝑡 ) ,Z(𝑎) ) =
∑︁
𝑣𝑖 ∈V

∥Z(𝑡 )
𝑖

− 1

𝑑 (𝑣𝑖 )
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
Z(𝑎)
𝑗

∥2
2
.

Furthermore, we introduce the cluster-level loss to preserve the

intra-cluster semantic similarity across different views:

L𝑐𝑙𝑢 (Z(𝑡 ) ,Z(𝑎) ) =
𝐾∑︁
𝑘=1

∑︁
𝑣𝑖 ∈C𝑘

∥Z(𝑡 )
𝑖

− Z
(𝑎)
𝑘 ∥2

2
,

where Z
(𝑎)
𝑘 is the centroid of cluster C𝑘 from the view of attribute-

aware embedding Z(𝑎)
, and can be computed by

Z
(𝑎)
𝑘 =

∑︁
𝑣𝑖 ∈C𝑘

C𝑖𝑘Z
(𝑎)
𝑖

/
∑︁
𝑣𝑖 ∈C𝑘

C𝑖𝑘 ,

with C obtained in Section 5.2. Finally, we include another term to

decorrelate dimensions of learned representations, avoiding learn-

ing degenerated embeddings [31, 40]:

L𝑑𝑒𝑐 = ∥Z(𝑡 )⊤Z(𝑡 ) − I∥2𝐹 + ∥Z(𝑎)⊤Z(𝑎) − I∥2𝐹 .

Putting these terms together, we can obtain our hierarchical con-

trastive loss, which reduces the variance between representations

under different optimization views from three levels:

L𝑐𝑜𝑛𝑡 = 𝑤𝑑𝑒𝑐 · L𝑑𝑒𝑐 + 𝑤𝑐𝑜𝑛𝑡 · (L𝑛𝑜𝑑
+ L𝑛𝑒𝑖 (Z(𝑡 ) ,Z(𝑎) ) + L𝑛𝑒𝑖 (Z(𝑎) ,Z(𝑡 ) )

+ L𝑐𝑙𝑢 (Z(𝑡 ) ,Z(𝑎) ) + L𝑐𝑙𝑢 (Z(𝑎) ,Z(𝑡 ) ) ) .
(18)

Clustering Loss. Additionally, we aim to pull each node toward

its respective cluster centroid while pushing it away from other

clusters in the latent representation space. Specifically, we incor-

porate an infoNCE loss [55] to enhance the discrimination among

clusters by improving the intra-cluster cohesion and reducing the

inter-cluster similarity:

L𝑐𝑙𝑢𝑠𝑡𝑒𝑟 = − 1

𝑛

𝐾∑︁
𝑘=1

∑︁
𝑣𝑖 ∈C𝑘

log

exp(cos(H𝑖 ,H𝑘 )/𝜏)∑
𝑗≠𝑘 exp(cos(H𝑖 ,H𝑗 )/𝜏)

, (19)
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Table 3: Dataset Statistics.

#Nodes #Edges #Attributes #Clusters HR

Texas 183 325 1,703 5 0.108

Wisconsin 251 515 1,703 5 0.196

Cornell 183 298 1,703 5 0.305

Squirrel 5,201 108,536 2,089 5 0.223

Chameleon 2,277 18,050 2,325 5 0.235

Flickr 7,575 239,738 12,047 9 0.239

Cora 2,708 5,429 1,433 7 0.810

Citeseer 3,327 4,732 3,703 6 0.739

Pubmed 19,717 44,324 500 3 0.771

BlogCatalog 5,196 171,743 8,189 6 0.401

BAT 131 1,038 81 4 0.450

UAT 1,190 13,599 239 4 0.698

where H𝑘 is the centroid of cluster C𝑘 based on the fused repre-

sentation H, cos(·, ·) calculates the cosine similarity, and 𝜏 is the

temperature parameter [73] controlling the sharpness of the loss.

Reconstruction loss. Finally, to stabilize the training process and

preserve input topology and attribute information, we minimize

the reconstruction error between the generated embedding H and

the smoothed features X =
∑𝐿𝑋
ℓ=0

𝜂ℓ Ãℓ · X. To align the dimension

between and H and X and reduce the noise in the input feature, we

first decompose X through SVD with rank 𝑑 , obtaining X = PQR⊤.
Then, we minimize the discrepancy between H and X̂ = PQ with

the Scaled Cosine Error objective [28]:

L𝑟𝑒𝑐𝑜𝑛𝑠 =
1

𝑛

∑︁
𝑣𝑖 ∈𝑉

(1 − cos(H𝑖 , X̂𝑖 ) )𝜖 , (20)

where 𝜖 ≥ 1 is the sharpening parameter controlling the weight

for hard samples.

5.4 Theoretical Analyses

Complexity analysis. As established in Lemma 3, we can obtain

the 𝑑-largest eigenvectors U of S̃ via the truncated SVD of X ∈
R𝑛×𝑓 , reducing the complexity to 𝑂 (𝑛𝑓 𝑑). Thus, the complexity

of deriving topology-based embedding H(𝑡 )
given in Eq. (12) is

𝑂 (𝑚𝑛 + 𝑛𝑓 𝑑). When deriving the attribute-based embedding H(𝑎)

in Eq. (13), the complexity of obtaining the 𝑑-largest eigenvectors

of sparse Ã is 𝑂 (𝑚𝑑). Utilizing S̃ = XX
⊤
and reordering S̃ℓU =

X(X⊤
X)ℓ−1 (X⊤

U), the complexity of generating H(𝑎)
is 𝑂 (𝑓 3 +

𝑛𝑓 2 + 𝑛𝑓 𝑑).
Note that the graph diffusion process in Eq. (12) and Eq. (13) need

no update during training and can be taken as a pre-processing step,

with a total complexity 𝑂 (𝑓 3 + 𝑛𝑓 2 +𝑚𝑛 + 𝑛𝑓 𝑑). The computation

complexity in each training epoch includes only the transformation

in Eq. (14), which is 𝑂 (𝑛𝑑2), and the graph diffusion clustering in

Eq. (16), which is 𝑂 (𝑇 · 𝑛𝑑𝐾 +𝑚𝑛) with 𝑇 denoting the maximum

iteration in 𝑘-Means.

Connection between GDC and Label Propagation. Lemma 5

establishes a connection between Dirichlet Energy of C over the

affinity graph HH⊤
and the objective of 𝑘-Means clustering. Build-

ing on this, we transform the minimization of Dirichlet Energy over

both input graph Ã and affinity graphHH⊤
into Eq. (16). In this pro-

cess, we diffuse the 𝑘-Means clustering result C(0)
along the input

graph Ã, which shares a formulation similar to that of label propa-

gation algorithm [59]. In the label propagation algorithm, the labels

are propagated through the graph, and the labels of unknown nodes

are determined by aggregating labels from their neighbors. To the

best of our knowledge, there are currently no existing methods that

combine clustering and clustering result propagation. Additionally,

Section 5.2 demonstrates that diffusing 𝑘-Means clustering results

over the graph G is equivalent to minimizing the Dirichlet Energy

over both the input graph and affinity graph, which builds a con-

nection between graph diffusion clustering and Dirichlet Energy

minimization over attribute graph.

Mutual information interpretation of hierarchical contrastive
loss. Z(𝑡 )

and Z(𝑎)
are representations of input attribute data un-

der different optimization views. Most existing contrastive graph

learning methods augment input data into different views through

topology or feature revision, while our method implicitly constructs

views of input data via different optimization processes, as pre-

sented in Section 5.1. We preserve information that remains in-

variant across different optimization views and minimize noisy

information that varies during augmentation, by minimizing the

hierarchical contrastive loss L𝑐𝑜𝑛𝑡 between Z(𝑡 )
and Z(𝑎)

, as pre-

sented in the following theorem:

Theorem 1. Let𝑋 and 𝑆 denote the random variable of input data
and the implicitly constructed views, respectively. Let Z𝑆 denote the
representation of data 𝑆 andMI(·, ·) represents mutual information.
Then we have

minL𝑐𝑜𝑛𝑡 ⇒ maxMI(Z𝑆 , 𝑋 )𝑎𝑛𝑑 minMI(Z𝑆 , 𝑆 |𝑋 ).

6 EXPERIMENTS
In this section, we evaluate the effectiveness of DGAC over 12

datasets with different degrees of homophily, against 12 baseline

methods. Additionally, we conduct the ablation study, parameter

analysis, and embedding visualization to provide deeper insight.

All experiments are conducted on a Linux machine equipped with

48GB NVIDIA RTX A6000. Code of DGAC can be found in the

anonymous repository
2
.

6.1 Experimental Setup

Datasets. We evaluate DGAC on a diverse set of 12 real attributed

graphs, comprising 6 heterophilic and 6 homophilic networks. The

heterophilic datasets include Texas [58],Wisconsin [58], and Cor-
nell [58], Squirrel and Chameleon [58, 61], as well as Flickr [42].

For homophilic graphs, we incorporate Cora [32],Citeseer [32],

Pubmed [32], BlogCatalog [42], and BAT and UAT [53, 60]. Detailed

descriptions of these datasets are provided in Appendix C.1. The

statistics of datasets are presented in Table 3, including the number

of nodes, edges, attributes, and the number of ground-truth clusters

of each dataset. Following the previous work [2, 9, 14, 22, 44, 56, 67],

we utilize the labels as the ground-truth clusters. Additionally, we

report the homophily ratio [85] of each graph, which is computed

as HR=
∑

(𝑣𝑖 ,𝑣𝑗 ) ∈E 1(𝑦𝑣𝑖 = 𝑦𝑣𝑗 )/|E |, where 𝑦𝑣𝑖 is the label of 𝑣𝑖 .

Baselines. We compare our method with representative and state-

of-the-art graph clustering methods and self-supervised learning

methods. Specifically, our competitors include (i) methods pro-

posed for heterophily graph clustering: DGCN [56], HoLe [22]; (ii)

2
https://anonymous.4open.science/r/clustering-03C4
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Table 4: Clustering results on heterophily graphs. The best and second-best results are indicated in bold and underlined. A
baseline is excluded if it cannot finish clustering within 7 days.

Methods
Texas Wisconsin Cornell Squirrel Chameleon Flickr

Ave. Rank
Acc. NMI Acc. NMI Acc. NMI Acc. NMI Acc. NMI Acc. NMI

AGE 53.55 12.81 47.25 10.00 40.77 5.88 28.95 4.61 35.68 11.25 46.14 31.22 6.8

MinCutPool 56.07 2.84 47.73 1.36 56.07 4.23 30.37 6.48 35.42 10.42 33.02 17.37 7.5

SCGC 45.46 13.46 43.67 8.25 36.94 5.30 27.24 5.24 28.61 4.74 19.17 8.41 10.1

DMoN 59.56 13.54 51.63 6.04 55.74 3.46 26.23 1.59 32.96 11.18 40.44 23.48 7.6

DGCluster 41.64 11.60 31.47 6.99 37.27 3.38 22.71 0.92 31.36 7.56 26.31 11.77 11.3

VGAE 53.55 12.24 47.17 9.51 47.43 4.68 23.72 0.99 33.29 10.39 34.00 19.20 8.7

DGI 48.31 15.94 45.58 15.26 42.51 6.01 27.50 4.40 29.51 4.97 18.88 5.29 8.8

CCA-SSG 55.85 6.81 52.03 14.54 57.92 11.84 24.55 2.68 26.48 3.32 27.46 15.52 8.3

DGCN 62.19 22.89 59.68 20.63 56.17 5.96 32.84 9.24 41.64 16.95 21.31 5.14 4.7

HoLe 46.78 12.54 37.69 15.18 40.87 11.59 30.33 4.49 34.32 7.17 63.00 47.10 7.1

HGRL 70.27 41.59 62.23 40.73 69.84 41.51 30.94 8.52 38.73 21.00 50.32 37.44 2.5

PolyGCL 56.50 8.63 62.31 26.15 46.56 5.89 28.16 5.96 36.44 17.59 - - 5.5

DGAC 75.08 46.19 80.88 57.58 73.33 43.24 34.43 12.24 42.02 21.99 81.59 66.36 1.0

Table 5: Clustering results on homophily graphs. The best and second-best results are indicated in bold and underlined.

Methods
Cora Citeseer Pubmed BlogCatalog BAT UAT

Ave. Rank
Acc. NMI Acc. NMI Acc. NMI Acc. NMI Acc. NMI Acc. NMI

AGE 73.64 57.47 66.66 41.00 71.04 31.41 60.53 39.99 68.55 49.15 54.81 25.70 2.8

MinCutPool 55.30 41.11 49.46 26.10 57.07 23.00 25.47 7.64 51.76 21.58 54.22 23.28 9.8

SCGC 70.07 52.57 66.05 39.68 38.95 0.47 34.38 18.23 74.35 51.14 54.17 27.21 6.0

DMoN 53.22 39.25 50.31 26.97 59.36 19.77 56.20 34.72 57.71 26.47 55.78 25.96 7.4

DGCluster 57.98 46.46 39.83 20.72 69.03 28.09 44.46 25.46 51.45 20.77 53.39 21.55 8.8

VGAE 71.65 52.52 55.76 29.22 70.28 32.32 25.09 6.96 65.04 38.89 52.64 23.87 6.9

DGI 71.44 53.15 68.79 43.17 65.09 27.25 49.19 27.04 50.38 24.45 54.32 23.65 5.8

CCA-SSG 67.98 53.35 64.30 38.62 63.78 28.19 30.91 15.64 62.29 41.11 49.70 24.45 6.6

DGCN 33.18 5.88 38.58 14.64 46.30 5.14 30.23 10.75 62.44 40.75 50.18 25.94 9.7

HoLe 67.51 53.49 60.55 34.69 42.87 0.33 64.09 45.59 56.18 41.16 52.12 23.57 7.0

HGRL 69.15 51.14 65.04 38.89 58.67 26.92 58.66 45.29 53.89 35.60 48.18 23.13 7.3

PolyGCL 28.99 9.68 30.85 8.24 62.99 24.47 26.62 7.14 48.85 21.07 45.66 14.70 11.7

DGAC 75.91 56.18 69.59 43.77 70.82 34.26 75.21 59.90 77.56 52.62 58.57 28.40 1.2

Table 6: Ablation study results.

Methods
Texas Cornell Flickr

Acc. NMI Acc. NMI Acc. NMI

DGAC 75.08 46.19 73.33 43.24 84.82 70.72

DGAC-DGDN 70.38 44.90 66.67 40.71 79.39 63.27

DGAC-GDC 73.50 46.08 72.02 42.46 81.49 66.17

DGAC-L𝑐𝑜𝑛𝑡 71.58 45.41 70.60 40.38 79.75 64.24

self-supervised learning methods for heterophily graphs: HGRL [9],

PolyGCL [8]; (iii)methods for homophily graph clustering: AGE [14],

MinCutPool [4], SCGC [44], DMoN [67], DGCluster [2]; and (iv)
self-supervised learning methods for homophily graphs: VGAE [34],

DGI [69], CCA-SSG [81]. Following the evaluation protocol in [9,

46], the𝑘-Means algorithm is utilized on the learned representations

to obtain the final clustering results for self-supervised learning

methods. The detailed descriptions of the baseline methods can

be found in Appendix C.2. Additionally, we present the detailed

experimental settings in Appendix C.3.

6.2 Graph Clustering Results
We evaluate the graph clustering performance with four metrics:

accuracy, normalized mutual information (NMI), adjusted rand index

(ARI), and 𝐹1 score, which are also adopted in [9, 44, 45, 56]. Table 4

and Table 5 report the clustering performance of DGAC against 12

competitors in terms of accuracy and NMI on 6 heterophilic graphs

and 6 homophilic graphs, respectively. Clustering performance in

terms of ARI and 𝐹1 score exhibits a similar distribution and can be

found in Appendix C.4. All results reported are the mean over five

repeated runs.

As we can see, DGAC exhibits superior clustering performance

on real-world graphs with different homophily degrees. On het-

erophilic graphs,DGAC consistently outperforms all other competi-

tors on all 6 graphs in terms of both accuracy and NMI. Specifically,

on the most heterophilic graph Texas with 𝐻𝑅 = 0.11, our DGAC
achieves 4.81% and 4.6% performance improvement regarding ac-

curacy and NMI, respectively. On the social network Flickr, our
DGAC outperforms the second-best competitor, HoLe, with a no-

table improvement of 19.26% regarding NMI. Additionally, it can

be observed that the average ranks of the 4 heterophily methods

are higher than other homophily methods, which demonstrates

the challenge of heterophilic graph clustering and the necessity of

designing heterophily-specific methods. On the homophily graphs,

DGAC outperforms other baselines on most homophily graphs

and achieves an average rank of 1.2 over 6 datasets. Specifically,
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Figure 2: Parameter analysis.

compared with the second-best baselines, DGAC takes a lead by

11.21% on BlogCatalog and 2.79% on BAT in terms of clustering

accuracy. Compared to other heterophily methods, our DGAC ex-

hibits stable and superior clustering performance on homophilic

graphs, demonstrating the effectiveness of the proposed DE-based

objective which takes into consideration both input graph G and

the underlying affinity graphH .

6.3 Ablation study
To analyze the effectiveness of the newly proposedmodules inDGAC,
we introduce three incomplete variants:

• DGAC-DGDN removes the dual graph diffusion networks pro-

posed in Section 5.1 and utilizes only the topology-smoothed

features, which are commonly utilized in GNN-based clustering;

• DGAC-GDC prohibits the graph diffusion clustering proposed

in Section 5.2 and employs only the 𝑘-Means algorithm;

• DGAC-L𝑐𝑜𝑛𝑡 removes the hierarchical contrastive loss L𝑐𝑜𝑛𝑡
as presented in Eq. (18).

Table 6 presents the performance of these variants on Texas, Cor-

nell, and Flickr datasets. As we can observe, removing any of these

modules leads to notable performance decreases in terms of both

accuracy and NMI, demonstrating the effectiveness of these newly

proposed modules. Among all variants, DGAC-DGDN brings the

most dramatic performance decrease of 4.7% on Texas, 6.66% on

Cornell, and 5.43% on Flickr in terms of accuracy, which reflects the

importance of minimizing the DE over both G andH during the

generation of embeddings. Additionally, removing the proposed

hierarchical contrastive loss L𝑐𝑜𝑛𝑡 decreases the clustering per-

formance by 5.07% and 6.48% on Flicker in terms of accuracy and

NMI, respectively, showing the effectiveness of L𝑐𝑜𝑛𝑡 in leaning

invariant information between different views.

6.4 Parameter Analysis
In this section, we analyze the impact of hyper-parameters on the

performance of DGAC. We present the clustering performance on

Texas and Wisconsin datasets with varying hyperparameters in

Figure 2.

Firstly, we vary the number of diffusion layers 𝐿𝑡 on Ã in Eq. (12),

and 𝐿𝑎 on S̃ in Eq. (13), while keeping other parameters fixed. The

results are shown in Figures 2(a) and 2(b). Setting 𝐿𝑡 or 𝐿𝑎 to zero

leads to performance decreases on both datasets, demonstrating

the importance of diffusing attribute and connection information

through G and H . Increasing 𝐿𝑡 and 𝐿𝑎 from 0 to 5 improves clus-

tering performance on Wisconsin, while performance on Texas

peaks at 𝐿𝑡 = 3 and 𝐿𝑎 = 2.

Next, we vary the number of diffusion layers of DGC in Eq. (16),

with results presented in Figure 2(c). A notable performance de-

crease is observed at 𝐿𝐶 = 0, particularly in accuracy, highlighting

the effectiveness of our proposed graph diffusion clustering mecha-

nism. Increasing 𝐿𝐶 from 1 to 6 leads to a performance decline on

Texas, indicating the importance of an appropriate diffusion depth

for clustering results. Then, we analyze the fusion parameter 𝛽 in

Eq. (14), as shown in Figure 2(d). With 𝛽 = 0, only Z(𝑎)
is used

for clustering, while 𝛽 = 1 utilizes only Z(𝑡 )
. The results demon-

strate that a proper 𝛽 value is crucial for clustering, reflecting the

importance of considering representations from both views.

Furthermore, we investigate the coefficients𝑤𝑐𝑜𝑛𝑡 and𝑤𝑑𝑒𝑐 in

L𝑐𝑜𝑛𝑡 (Eq. (18)). Figures 2(e) and 2(f) illustrate the performance

under varying coefficients. A notable increase in clustering perfor-

mance on both datasets is observed when the𝑤𝑐𝑜𝑛𝑡 increases from 0

to 0.006, demonstrating the effectiveness of the proposed three-level

contrastive loss. Additionally, regularizing the representations with

the decorrelation𝑤𝑑𝑒𝑐 is shown to benefit graph clustering. Addi-

tionally, we visualize the learned embedding of top-five methods

to provide more insight, as shown in Appendix C.5.

7 CONCLUSION
In this paper, we present DGAC, an effective graph clustering

method applicable to both homophilic and heterophilic graphs.

We first formulate the objectives of spectral clustering and existing

GNNs as a Dirichlet Energy minimization problem and elucidate

its connection with graph homophily degree. Building on this in-

sight, we propose a coherent framework with a unified objective

to capture the high-order connectivity in both the input graph G
and the affinity graph H underlying the attribute data, which is

formulated as Dirichlet Energy minimization on G and H . Guided

by this unified objective, we develop the dual graph diffusion net-

works and graph diffusion clustering mechanism, both of which

are derived from efficient and theoretically-grounded solutions to

the objective. Extensive experiments conducted on 12 real-world

graphs, compared against 12 baseline methods, demonstrate the

superior performance of DGAC in clustering both heterophilic and

homophilic graphs.
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A PROOFS
A.1 Proof of Lemma 2

Proof. Recall that the definition of homophily ratio over graph

G is the fraction of edges whose endpoints are in the same cluster.

Thus,

𝐻𝑅G =

∑
(𝑣𝑖 ,𝑣𝑗 ) ∈E

∑𝐾
𝑘=1

Y𝑖,𝑘 · Y𝑗,𝑘
|E |

= −
∑

(𝑣𝑖 ,𝑣𝑗 ) ∈E
∑𝐾
𝑘=1

Y2
𝑖,𝑘

− Y2
𝑖,𝑘

+ Y2
𝑗,𝑘

− Y2
𝑗,𝑘

− 2Y𝑖,𝑘 · Y𝑗,𝑘
2|E |

=

∑
(𝑣𝑖 ,𝑣𝑗 ) ∈E

∑𝐾
𝑘=1

Y2
𝑖,𝑘

+ Y2
𝑗,𝑘

2|E |

−
∑

(𝑣𝑖 ,𝑣𝑗 ) ∈E
∑𝐾
𝑘=1

Y2
𝑖,𝑘

+ Y2
𝑗,𝑘

− 2Y𝑖,𝑘 · Y𝑗,𝑘
2|E |

=
1

2

−
∑

(𝑣𝑖 ,𝑣𝑗 ) ∈E
∑𝐾
𝑘=1

(Y𝑖,𝑘 − Y𝑗,𝑘 )2

2|E |

=
1

2

−
∑𝐾
𝑘=1

∑
𝑣𝑖 ,𝑣𝑗 ∈V A𝑖, 𝑗 · (Y𝑖,𝑘 − Y𝑗,𝑘 )2

2|E |

=
1

2

−
∑𝐾
𝑘=1

2 · D(Y·,𝑘 ,A)
2|E | =

1

2

− 1

|E |

𝐾∑︁
𝑘=1

D(Y·,𝑘 ,A),

which seals the proof. □

A.2 Proof of Lemma 3
Proof. By the definitions of d and S in Eq. (6), d𝑖 =

∑
𝑣𝑗 ∈V S𝑖, 𝑗 .

Since S̃ = diag(∑𝑗 S:, 𝑗 )−1/2 ·S ·diag(
∑
𝑗 S:, 𝑗 )−1/2, it is easy to verify

S̃ = XX
⊤
, which is a symmetric matrix. According to [64], the top-𝑑

left singular vectors of X are exactly the 𝑑-largest eigenvectors of

S̃. The lemma is proved. □

A.3 Proof of Lemma 4
Proof. Let L𝑆 = I − S̃ be the Laplacian matrix associated with

𝑆 . In this proof, we will first prove the dominant eigenvalue of L𝑆 ,
denoted as 𝜆(L𝑆 ), falls in the range [0, 2], which directly leads to

that the eigenvalue of S̃ lie in [−1, 1] and derives the results in

Lemma 4.

Based on the min-max Theorem [27], the following Rayleigh

quotient gives the minimal and maximal eigenvalue of L𝑆 :

g⊤L𝑆g
g⊤g

=
f⊤ (diag(∑𝑗 S:, 𝑗 ) − S)f

f⊤diag(∑𝑗 S:, 𝑗 )f

=

∑
𝑢≠𝑣 S𝑖, 𝑗 (f𝑢 − f𝑣)2

2

∑
𝑢 f2𝑢𝑑 (𝑢)

, (21)

where f = diag(∑𝑗 S:, 𝑗 )1/2g. Then the minimal eigenvalue of L𝑆 is:

𝜆(L𝑆 )𝑚𝑖𝑛 = min

f

∑
𝑢≠𝑣 S𝑖, 𝑗 (f𝑢 − f𝑣)2

2

∑
𝑢 f2𝑢𝑑 (𝑢)

= 0.

And the maximal eigenvalue of L𝑆 can be obtained by:

𝜆(L𝑆 )𝑚𝑎𝑥 = max

f

∑
𝑢≠𝑣 S𝑖, 𝑗 (f𝑢 − f𝑣)2

2

∑
𝑢 f2𝑢𝑑 (𝑢)

≤ 2,

since (f𝑢 − f𝑣)2 ≤ 2(f2𝑢 − f2𝑣 ). Thus, the range of eigenvalues of L𝑆
is [0, 2] and the lemma is proved. □

A.4 Proof of Lemma 5
Proof. We prove this result in the reverse direction:

min

C⊤C=I

𝐾∑︁
𝑘=1

∑︁
𝑣𝑖 ∈C𝑘

∥H𝑖 − H𝑘 ∥22 ⇐⇒ min

C⊤C=I
trace(C⊤ (I − 𝚫)C).

Minimizing the embedding distance between a node and its cluster

centroid is equivalent to minimizing the pairwise squared devia-

tions of nodes in the cluster:

min

C⊤C=I

𝐾∑︁
𝑘=1

1

|C𝑘 |
∑︁

𝑣𝑖 ,𝑣𝑗 ∈C𝑘
∥H𝑖 − H𝑗 ∥22

=
1

2

∑︁
𝑣𝑖 ,𝑣𝑗

(CC⊤)𝑖 𝑗 · ∥H𝑖 − H𝑗 ∥22

= trace(H⊤ (I − CC⊤)H)
= trace(H⊤H) − trace(H⊤CC⊤H). (22)

The first equal sign is based on the definition of C given in Eq. (2).

Specifically, (CC⊤)𝑖 𝑗 = 1/|C𝑘 | if 𝑣𝑖 , 𝑣 𝑗 ∈ C𝑘 and otherwise, (CC⊤)𝑖 𝑗 =
0. Since the variable to be optimized is C and trace(H⊤H) is fixed
in the optimization process, minimizing Eq. (22) is equivalent to

⇐⇒ min

C⊤C=I
− trace(H⊤CC⊤H) = − trace(C⊤HH⊤C)

⇐⇒ min

C⊤C=I
trace(C⊤ (I − HH⊤)C) .

This finishes the proof. □

A.5 Proof of Theorem 1
To prove Theorem 1, we first give the following propositions.

Let 𝑋 and 𝑆 denote the random variable of the input data and

the data augmented under the view of the optimization, respec-

tively. Assume the input data comes from a distribution 𝑥 ∼ 𝑝 (𝑥).
Conditioned on the given input data, the augmented view follows

the augmentation distribution, i.e., 𝑠 ∼ 𝑝𝑎𝑢𝑔 (𝑠 |𝑥). Then, Z(𝑡 )
and

Z(𝑎)
is derived based on augmented view 𝑠𝑡 , 𝑠𝑎 , respectively. Let

𝐻 (·) be the entropy in the information theory. Let L′
𝑐𝑜𝑛𝑡 be the

three-level hierarchical contrastive loss in Eq. (18), i.e., L′
𝑐𝑜𝑛𝑡 =

L𝑛𝑜𝑑 + L𝑛𝑒𝑖 (Z(𝑡 ) ,Z(𝑎) ) + L𝑛𝑒𝑖 (Z(𝑎) ,Z(𝑡 ) ) + L𝑐𝑙𝑢 (Z(𝑡 ) ,Z(𝑎) ) +
L𝑐𝑙𝑢 (Z(𝑎) ,Z(𝑡 ) ).

Proposition 1. In expectation, minimizing the L′
𝑐𝑜𝑛𝑡 is equiva-

lent to minimizing an upper bound of the entropy of Z𝑆 on input 𝑋 ,
and the gap is determined by the distance between nodes and their
neighbors, as well as the distance between nodes and their clustering
centroids:

minL′
𝑐𝑜𝑛𝑡 ∝ min𝐻 (Z𝑆 |𝑋 ) + E𝑖∼𝑝 (𝑥 )E𝑠∼𝑝 (𝑠 |𝑖 )Δ,

Δ = (Z𝑆𝑖 − E𝑗∼𝑝N ( · |𝑖 )Z
𝑆
𝑗 )

2 + (Z𝑆𝑖 − E𝑗∼𝑝𝐶 ( · |𝑖 )Z
𝑆
𝑗 )

2 .

Proof of Proposition 1. Loss L′
𝑐𝑜𝑛𝑡 is the summation across

all feature dimensions, i.e., L′
𝑐𝑜𝑛𝑡 =

∑𝑑
𝑘=1

L (𝑘 )
𝑐𝑜𝑛𝑡 , where 𝑑 is the
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Table 7: Hyper-parameter setting on each dataset.

Dataset 𝐿 𝛼 𝐿C 𝛾 𝑤𝑑𝑒𝑐 𝑤𝑐𝑜𝑛𝑡 𝛽

Texas 5 0.2 1 1 0.0001 0.006 0.5

Wisconsin 5 0.2 6 0.2 0.001 0.006 0.3

Cornell 4 0.2 2 0.2 0.001 0.006 0.5

Squirrel 1 0.2 1 0.1 0.0001 0.0001 0.9

Chameleon 1 0.2 1 0.2 0.0001 0.0001 0.8

Flickr 1 0.8 1 0.1 0.0001 0.0001 0.1

Cora 8 1 8 1 0.001 0.00001 0.9

Citeseer 5 0.8 5 0.8 0.001 0.00001 0.5

Pubmed 1 0.8 1 0.8 0 0.0001 0.5

BlogCatalog 3 0.8 3 0.1 0.0001 0.0001 0.1

BAT 3 1 3 1 0 0.001 1

UAT 3 1 3 1 0 0.0001 1

total number of feature dimensions. For the sake of simplicity, we

first focus on a single feature dimension 𝑘 in the following analysis:

L (𝑘 )
𝑛𝑜𝑑

=
∑︁
𝑣𝑖 ∈V

(Z(𝑡 )
𝑖𝑘

− Z(𝑎)
𝑖𝑘

)2,

L (𝑘 )
𝑛𝑒𝑖

(Z(𝑡 ) ,Z(𝑎) ) =
∑︁
𝑣𝑖 ∈V

(Z(𝑡 )
𝑖𝑘

− 1

𝑑 (𝑣𝑖 )
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
Z(𝑎)
𝑗𝑘

)2,

L (𝑘 )
𝑐𝑙𝑢

(Z(𝑡 ) ,Z(𝑎) ) =
𝐾∑︁
𝑗=1

∑︁
𝑢𝑖 ∈𝐶̃ 𝑗

(Z(𝑡 )
𝑖𝑘

− Z
(𝑎)
𝑗𝑘 )2 .

For the node-level loss L (𝑘 )
𝑛𝑜𝑑

, according to [81], we have the

following result:

L (𝑘 )
𝑛𝑜𝑑
� 2 ∗ E𝑖∼𝑝 (𝑥 ) (V𝑠∼𝑝𝑎𝑢𝑔 (𝑠 |𝑖 )Z

𝑠
𝑖𝑘
) . (23)

For the neighborhood-level lossL (𝑘 )
𝑛𝑒𝑖

(Z(𝑡 ) ,Z(𝑎) ), we first define
𝛿𝑠
𝑖𝑘

= Z𝑠
𝑖𝑘
−E𝑗∼𝑝N ( · |𝑖 )Z𝑠𝑗𝑘 , where 𝑝N (·|𝑖) depicts the distribution of

neighbors around node 𝑣𝑖 . Then, we can rearrange L (𝑘 )
𝑛𝑒𝑖

as follows:

L (𝑘 )
𝑛𝑒𝑖

(Z(𝑡 ) ,Z(𝑎) ) =
∑︁
𝑣𝑖 ∈V

(Z(𝑡 )
𝑖𝑘

− 1

𝑑 (𝑣𝑖 )
∑︁

𝑣𝑗 ∈N(𝑣𝑖 )
Z(𝑎)
𝑗𝑘

)2

= E𝑖∼𝑝 (𝑥 )E𝑠𝑡 ,𝑠𝑎∼𝑝𝑎𝑢𝑔 ( · |𝑖 ) (Z
(𝑡 )
𝑖𝑘

− E𝑗∼𝑝N ( · |𝑖 )Z
(𝑎)
𝑗𝑘

)2

= E𝑖∼𝑝 (𝑥 )E𝑠𝑡 ,𝑠𝑎∼𝑝𝑎𝑢𝑔 ( · |𝑖 ) (Z
(𝑡 )
𝑖𝑘

− Z(𝑎)
𝑖𝑘

+ 𝛿 (𝑎)
𝑖𝑘

)2

= E𝑖E𝑠𝑡 ,𝑠𝑎 [(Z
(𝑡 )
𝑖𝑘

− Z(𝑎)
𝑖𝑘

)2︸            ︷︷            ︸
term 1

+ (𝛿 (𝑎)
𝑖𝑘

)2︸  ︷︷  ︸
term 2

+ 2𝛿 (𝑎)
𝑖𝑘

(Z(𝑡 )
𝑖𝑘

− Z(𝑎)
𝑖𝑘

)︸                  ︷︷                  ︸
term 3

] .

The first term shares the same formulation with L (𝑘 )
𝑛𝑜𝑑

. Hence, we

can derive the same result as in (23). For the third term, we have:

term 3 = 2E𝑖E𝑠𝑡 ,𝑠𝑎 [(Z
(𝑎)
𝑖𝑘

− E𝑗Z
(𝑎)
𝑗𝑘

) (Z(𝑡 )
𝑖𝑘

− Z(𝑎)
𝑖𝑘

)]

= 2E𝑖E𝑠𝑡 ,𝑠𝑎 [Z
(𝑡 )
𝑖𝑘

Z(𝑎)
𝑖𝑘

− (Z(𝑎)
𝑖𝑘

)2 − Z(𝑡 )
𝑖𝑘

E𝑗Z
(𝑎)
𝑗𝑘

+ Z(𝑎)
𝑖𝑘

E𝑗Z
(𝑎)
𝑗𝑘

]

= 2E𝑖 [(E𝑠Z𝑠𝑖𝑘 )
2 − E𝑠 (Z𝑠𝑖𝑘 )

2 − E𝑠Z𝑠𝑖𝑘E𝑗Z𝑠𝑗𝑘 + E𝑠Z𝑠𝑖𝑘E𝑗Z𝑠𝑗𝑘 ]
= −2E𝑖 [V𝑠Z𝑠𝑖𝑘 ] .

Therefore, we have the following results for L (𝑘 )
𝑛𝑒𝑖

(Z(𝑡 ) ,Z(𝑎) ):

L (𝑘 )
𝑛𝑒𝑖

(Z(𝑡 ) ,Z(𝑎) ) � 2 ∗ E𝑖 (V𝑠Z𝑠𝑖𝑘 ) + E𝑖E𝑠 (𝛿𝑠𝑖𝑘 )
2 − 2 ∗ E𝑖 (V𝑠Z𝑠𝑖𝑘 )

� E𝑖∼𝑝 (𝑥 )E𝑠∼𝑝𝑎𝑢𝑔 ( · |𝑖 ) (Z
𝑠
𝑖𝑘

− E𝑗∼𝑝N ( · |𝑖 )Z
𝑠
𝑗𝑘
)2 . (24)

For L (𝑘 )
𝑐𝑙𝑢

(Z(𝑡 ) ,Z(𝑎) ), we can derive a similar results:

L (𝑘 )
𝑐𝑙𝑢

(Z(𝑡 ) ,Z(𝑎) ) � E𝑖∼𝑝 (𝑥 )E𝑠∼𝑝𝑎𝑢𝑔 ( · |𝑖 ) (Z
𝑠
𝑖𝑘

− E𝑗∼𝑝C ( · |𝑖 )Z
𝑠
𝑗𝑘
)2,
(25)

where 𝑝C (·|𝑖) denotes the distribution of nodes in the same cluster

as node 𝑣𝑖 . Finally, by putting results in (23), (24) and (25) together,

we can obtain the following result for 𝑙𝑘 :

L (𝑘 )
𝑐𝑜𝑛𝑡 � E𝑖∼𝑝 (𝑥 ) (V𝑠∼𝑝𝑎𝑢𝑔 ( · |𝑖 )Z

𝑠
𝑖𝑘
) + E𝑖∼𝑝 (𝑥 )E𝑠∼𝑝𝑎𝑢𝑔 ( · |𝑖 )Δ𝑘 ,

Δ𝑘 = (Z𝑠
𝑖𝑘

− E𝑗∼𝑝N ( · |𝑖 )Z
𝑠
𝑗𝑘
)2 + (Z𝑠

𝑖𝑘
− E𝑗∼𝑝C ( · |𝑖 )Z

𝑠
𝑗𝑘
)2 .

We follow the assumption in [81] that both the distribution of Z𝑆

and the conditional distribution of Z𝑆 |𝑋 obey the Gaussian distribu-

tion. This assumption connects the variance of Z𝑆 and its entropy.

Specifically, for 𝑘-th feature dimension, we have the following re-

sult:𝐻 (Z𝑆·,𝑘 |𝑋 ) =
1

2
log 2𝜋𝑒𝜎𝑠

𝑘
2
. This means that when weminimize

loss L (𝑘 )
𝑐𝑜𝑛𝑡 , the upper bound of the variance of representation at 𝑘-

th dimension is minimized and hence its entropy is also minimized.

In combination with the decorrelation term L𝑑𝑒𝑐 , Proposition 1 is

proved. □

Proposition 2 ([81]). For the decorrelation term, we have

minL𝑑𝑒𝑐 � max𝐻 (Z𝑆 ) .

Proof of Theorem 1. According to the definition of mutual in-

formation, we haveMI(Z𝑆 , 𝑋 ) = 𝐻 (Z𝑆 ) −𝐻 (Z𝑆 |𝑋 ). Combining the

results in Proposition 1 and Proposition 2, we have minL𝑐𝑜𝑛𝑡 ∝
maxMI(Z𝑆 |𝑋 ). Based on the definition of the conditional mutual

information, we have MI(Z𝑆 , 𝑆 |𝑋 ) = 𝐻 (Z𝑆 |𝑋 ) + 𝐻 (Z𝑆 |𝑆), which
equals to 𝐻 (Z𝑆 |𝑋 ) since 𝐻 (Z𝑆 |𝑆) = 0. Using the results in Propos-

tion 1, we directly have minL𝑐𝑜𝑛𝑡 ∝ MI(Z𝑆 , 𝑆 |𝑋 ). The theorem is

proved. □

B RELATEDWORK

Attributed Graph Clustering. GNNs achieve notable success on

graph-related tasks. VGAE [34] employs GCN [35] as the encoder

and an inner product decoder to generate interpretable graph repre-

sentations. Subsequently, MGAE [71] utilizes a graph auto-encoder

to obtain graph embeddings, followed by spectral clustering on

the learned embeddings for final clustering results. Following this,

AGE [14] proposes using the disentangled GNN with the optimal

low-pass filter to encode the input graph. Additionally, DiffPool [80]

generates soft clustering assignments by applying the softmax func-

tion to the output of the GNN. MinCutPool [4] adopts a similar

formulation and optimizes the model towards minimizing the nor-

malized cut objective [63] and the orthogonality objective. Subse-

quently, DMoN [67] and JBGNN [3] are proposed to enhance the

clustering-based and orthogonality-based objectives inMinCutPool,

respectively. Contrastive learning has also been extensively studied

in GNN-based graph clustering. SCGC [44] constructs different

views with parameter un-shared siamese encoders and embedding

perturbation, while HSAN [45] focuses on hard positive and nega-

tive samples during contrastive learning. However, these methods

primarily rely on typical GNNs, which operate under the homophily
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Table 8: Links to code of baseline methods.

Method Link

AGE https://github.com/thunlp/AGE

MinCutPool https://github.com/FilippoMB/ Spectral-Clustering-

with-Graph-Neural-Networks-for-Graph-Pooling

SCGC https://github.com/yueliu1999/SCGC

DMoN https://github.com/google-research/

google-research/tree/master/graph_embedding/dmon

DGCluster https://github.com/pyrobits/DGCluster

VGAE https://github.com/DaehanKim/vgae_pytorch

DGI https://github.com/PetarV-/DGI

CCA-SSG https://github.com/hengruizhang98/CCA-SSG

DGCN https://github.com/Panern/DGCN

HoLe https://github.com/galogm/HoLe

HGRL https://github.com/yifanQi98/HGRL

PolyGCL https://github.com/ChenJY-Count/PolyGCL

assumption, leading to an unsatisfied performance on heterophilic

graph clustering as shown in our experiments.

Heterophilic Graph Neural Networks. Nt and Maehara [54]

identify that most GNNs act as low-pass filters, smoothing rep-

resentations of connected nodes. This approach struggles with

heterophilic graphs, prompting subsequent research to address this

limitation. Specifically, GPR-GNN [12] and ASGC [7] employ gen-

eralized polynomial graph filtering with learnable filter weights

to adapt to varying degrees of homophily. BernNet [25] utilizes

Bernstein polynomials to approximate complex filters. Meanwhile,

FB-GNN [49] and ACM-GNN [48] integrate multiple graph filters

with learnable inter-filter weights to capture a broader frequency

spectrum. Other methods mitigate the impact of heterophilic neigh-

bors by leveraging higher-order relationships within the graph

structure. Mixhop [1] and H2GCN [85] utilize multi-hop message

passing from a broader view. SimP-GCN [30] and Geom-GCN [58]

extend local neighborhoods based on feature or structural simi-

larity. Additionally, discriminative message-passing mechanisms

have been proposed to avoid noisy heterophilic edges, including

signed message passing in FAGCN [5] and gating strategy in GBK-

GNN [16]. Most of the existing heterophily GNNs rely on node

labels for supervision, limiting their applicability in unsupervised

tasks, such as graph clustering.

C ADDITIONAL EXPERIMENTAL DETAILS
C.1 Datasets
We conduct the graph clustering experiment on 6 heterophily

graphs. Specifically, Texas, Wisconsin, and Cornell [58] are WebKB

datasets, with nodes representing web pages collected from the

corresponding university and edges denoting hyperlinks between

web pages. Nodes are associated with the bag-of-words features

and are classified into five categories: student, project, course, staff,

and faculty. Squirrel and Chamaleon [58, 61] are Wikipedia page

datasets, where nodes denote articles on Wikipedia about a specific

topic and edges denote the mutual links between web pages. Node

features indicate the presence and absence of several particular

nouns in the articles and node labels are the monthly traffic level

of the pages. Flickr [42] is a social network graph dataset where

nodes represent users on the image share website Flickr, and edges

denote the following relationship between users. The texts users

post on the website are collected as node features and labels are

the user interest groups.

We also evaluate our method on 6 homophily datasets. Cora, Cite-
seer, and Pubmed [32] are citation networks with nodes denoting

papers and edges denoting the citation relationship between pa-

pers. Each node is associated with a bag-of-word vector as the node

feature and the labels are the topics of papers. BlogCatalog [42] is

another social network dataset. The nodes are website users, with

the contents of post blogs as node features, and edges represent the

relationship between users. The labels are the blog topics. BAT and

UAT [53, 60] are air-traffic networks with nodes denoting airports

and edges denoting commercial flights between airports. Labels are

level of airport activity measured in a specific period.

C.2 Baselines
We compare our DGAC against 12 baseline methods:

• DGCN [56] constructs two new graphs—one highly homophilic

and the other heterophilic—and applies a mixed filter to facilitate

clustering.

• HoLe [22] improves clustering by refining the graph topology

based on high-confidence clustering results.

• HGRL [9] learns representations by preserving original features

and extracting information from the generalized neighborhood.

• PolyGCL [8] employs polynomial filters to conduct contrastive

learning between low-pass and high-pass views.

• AGE [14] proposes the use of an optimal low-pass filter and

iteratively strengthens the filtered features.

• MinCutPool [4] optimizes the model to minimize the normal-

ized cut objective.

• SCGC [44] constructs different views using un-shared Siamese

encoders and embedding perturbation and then conducts con-

trastive learning between views.

• DMoN [67] aims to optimize a modularity-based objective with

an orthogonal regularization term.

• DGCluster [2] parameterizes the modularity with similarity

between nodes and optimizes the modularity-based clustering

objective.

• VGAE [34] is a graph auto-encoder that uses a GCN model as

the encoder and an inner product as the decoder.

• DGI [69] learns representations by maximizing the mutual in-

formation between patch representations and graph summaries.

• CCA-SSG [81] optimizes a feature-level objective inspired by

classical Canonical Correlation Analysis.

The code of baseline methods is obtained from the repository pro-

vided by the authors. Table 8 summarizes the links to the baseline

methods code.

C.3 Detailed Settings
For baselines, we employ the recommended hyper-parameter set-

tings provided by the authors. For the dataset without recom-

mended configuration, we set the values of hyper-parameters by

grid search following the search guidance given in the paper. To

ensure the fairness of comparison, we fix the embedding dimension

and maximum training epoch across all competitors. Following

previous work [43–45], we set the maximum training epoch to
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(a) HGRL. (b) AGE. (c) HoLe. (d) DGI. (e) DGAC.

Figure 3: Visualization on Cora in the first row, and Flickr in the second row.

Table 9: Results on heterophily graphs regarding ARI and 𝐹1. The best and second-best results are in bold and underlined.

Methods

Texas Wisconsin Cornell Squirrel Chameleon Flickr

Ave. Rank

ARI 𝐹1 ARI 𝐹1 ARI 𝐹1 ARI 𝐹1 ARI 𝐹1 ARI 𝐹1

AGE 16.75 26.62 9.36 31.33 2.05 21.92 3.78 17.89 6.83 34.09 21.21 43.43 6.8

MinCutPool 2.71 17.13 0.20 13.86 1.92 18.63 5.15 17.67 9.12 31.79 12.24 32.71 9.7

SCGC 11.01 31.52 4.44 27.63 2.92 32.37 2.68 23.49 1.72 24.88 3.33 18.77 8.6

DMoN 20.87 27.72 9.02 24.34 1.23 23.18 1.28 25.33 9.83 30.78 18.55 40.13 7.3

DGCluster 4.50 25.52 2.19 26.24 0.46 22.37 0.32 19.47 5.59 25.58 7.75 23.02 10.3

VGAE 19.03 31.66 8.81 30.92 2.07 23.25 0.37 18.99 8.35 21.89 12.90 31.44 8.1

DGI 16.52 33.58 9.77 32.46 4.87 28.87 2.82 23.45 2.21 25.51 2.73 16.54 7.5

CCA-SSG 5.96 21.86 9.24 30.21 15.79 28.50 0.98 17.71 1.32 20.32 6.83 23.81 9.4

DGCN 24.89 35.21 20.09 31.25 2.11 19.74 6.80 30.70 12.78 39.21 3.06 20.94 5.6

HoLe 6.45 25.95 5.42 34.77 4.94 29.76 4.47 23.43 4.99 30.08 42.97 62.30 6.2

HGRL 41.12 39.00 35.78 39.19 38.74 36.79 6.03 26.17 15.62 33.04 22.81 46.47 2.5

PolyGCL 9.17 23.67 31.07 40.27 4.32 25.22 3.18 17.61 13.09 28.60 - - 6.9

DGAC 53.24 48.42 59.48 51.87 48.20 43.32 9.32 29.46 15.57 40.54 64.25 81.66 1.2

Table 10: Results on homophily graphs regarding ARI and 𝐹1. The best and second-best results are in bold and underlined.

Methods

Cora Citeseer Pubmed BlogCatalog BAT UAT

Ave. Rank

ARI 𝐹1 ARI 𝐹1 ARI 𝐹1 ARI 𝐹1 ARI 𝐹1 ARI 𝐹1

AGE 52.26 70.72 41.31 62.11 33.22 70.09 32.63 56.28 44.60 65.00 23.28 52.93 2.9

MinCutPool 32.48 50.95 22.44 45.49 18.43 58.31 3.05 15.34 17.39 50.09 22.34 53.95 9.3

SCGC 46.56 65.17 40.03 61.13 0.23 31.90 7.70 31.43 46.03 74.29 19.61 55.23 6.3

DMoN 30.36 51.03 24.05 47.22 17.46 59.60 31.31 55.18 23.84 56.75 24.87 55.22 7.3

DGCluster 35.03 56.42 9.13 37.90 29.06 68.12 19.79 41.36 17.21 49.89 21.84 50.56 8.3

VGAE 48.27 69.64 26.69 51.29 32.77 69.49 4.24 22.51 35.95 63.62 17.50 51.09 6.3

DGI 47.68 68.55 44.35 64.33 25.22 65.66 21.21 48.66 19.33 48.67 21.94 53.74 5.6

CCA-SSG 45.04 60.54 35.39 58.47 25.77 63.00 6.24 30.09 33.26 59.26 16.92 48.00 7.6

DGCN 2.66 16.15 10.20 31.49 1.71 30.80 7.43 25.42 31.41 61.70 20.64 44.11 10.3

HoLe 44.81 66.15 33.97 54.25 0.42 31.85 43.03 59.17 32.87 49.50 21.16 49.57 7.3

HGRL 46.72 61.55 38.48 60.15 23.91 56.78 32.01 54.16 27.32 50.02 20.45 41.21 7.3

PolyGCL 5.68 25.18 5.76 28.67 23.09 63.30 3.68 21.11 12.31 45.52 11.10 43.07 11.6

DGAC 54.79 74.12 45.20 64.68 34.07 70.60 54.11 72.96 50.64 77.55 28.52 55.98 1.0
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500. For our method, we implement DGAC using PyTorch [57]. We

utilize the Adam optimizer [33] with a learning rate of 10
−3

and

a weight decay of 5 × 10
−4
. We set the weight of L𝑐𝑙𝑢𝑠𝑡𝑒𝑟 to 0.02

and the 𝜖 in L𝑟𝑒𝑐𝑜𝑛𝑠 to 1. We grid search𝑤𝑑𝑒𝑐 and𝑤𝑐𝑜𝑛𝑡 in Eq. (18)

from set {10−5, 10−4, 10−3, 6 × 10
−3}. In Eq. (12) and Eq. (13), we

set 𝐿𝑡 = 𝐿𝑎 = 𝐿, and search 𝐿 and 𝛼 from range [1, 10] and [0, 1], re-
spectively. In Eq. (16), we set the search range of 𝐿𝐶 and 𝛾 to [1, 10]
and [0, 1]. For the trade-off parameter 𝛽 in Eq. (14), we search from

[0, 1]. The values of hyper-parameters of each dataset are presented

in Table 7.

C.4 Additional Clustering Results
The clustering results in terms of ARI and 𝐹1 of our DGAC against

12 baseline methods are reported in Table 9 and Table 10. The

results exhibit a similar distribution to clustering results in terms of

accuracy and NMI. DGAC outperforms other competitors in almost

all cases and achieves the highest average rank on both heterophilic

and homophilic graphs, which demonstrates again the superiority

of DGAC aiming at the hybrid DE minimization objective.

C.5 Visualization
To deepen the understanding of the superior performance of DGAC,
we visualize the learned node embedding of the top-five methods,

ranked by the average performance across all datasets, which are:

1. DGAC; 2. HGRL [9]; 3. AGE [14]; 4. HoLe [22]; 5. DGI [69]. Fig-
ure 3 shows the t-SNE [68] visualization of the top-five methods

on Cora and Flickr datasets. Nodes are colored according to the

ground-truth clusters. As observed, the embedding generated by

DGAC demonstrates clear discrimination among different clusters,

indicating the potential for accurate clustering.
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