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Abstract
Statistical fairness stipulates equivalent out-001
comes for every protected group, whereas002
causal fairness prescribes that a model makes003
the same prediction for an individual regardless004
of their protected characteristics. Counterfac-005
tual data augmentation (CDA) is effective for006
reducing bias in NLP models, models trained007
with CDA are often evaluated only on met-008
rics that are closely tied to the causal fairness009
notion; similarly, sampling-based methods de-010
signed to promote statistical fairness are rarely011
evaluated for causal fairness. In this work, we012
evaluate both statistical and causal debiasing013
methods for gender bias in NLP models, and014
find that while such methods are effective at015
reducing bias as measured by the targeted met-016
ric, they do not necessarily improve results on017
other bias metrics. We demonstrate that combi-018
nations of statistical and causal debiasing tech-019
niques are able to reduce bias measured through020
both types of metrics.021

1 Introduction022

Auditing NLP models is crucial to measure poten-023

tial biases that can lead to unfair or discrimina-024

tory outcomes when models are deployed. Several025

methods have been proposed to quantify social bi-026

ases in NLP models including intrinsic metrics that027

probe bias in the internal representations of the028

model (Caliskan et al., 2017; May et al., 2019; Guo029

and Caliskan, 2021) and extrinsic metrics that mea-030

sure model behavioral differences across protected031

groups (e.g., gender and race). In this paper, we fo-032

cus on extrinsic metrics as they align directly with033

how models are used in downstream tasks (Orgad034

and Belinkov, 2022).035

Proposed extrinsic bias metrics can be catego-036

rized based on whether they correspond to a sta-037

tistical or causal notion of fairness. A bias metric038

quantifies model bias based on a fairness criterion.039

Two common kinds of fairness criteria are statisti-040

cal and causal fairness. Statistical fairness calls for041

statistically equivalent outcomes for all protected 042

groups. Statistical bias metrics estimate the dif- 043

ference in prediction outcomes between protected 044

groups based on observational data (Barocas et al., 045

2019; Hardt et al., 2016). Causal fairness shifts the 046

focus from statistical association to identifying root 047

causes of unfairness through causal reasoning (Lof- 048

tus et al., 2018). Causal bias metrics measure the 049

effect of the protected attribute on the model’s pre- 050

dictions via interventions that change the value of 051

the protected attribute. A model satisfies counter- 052

factual fairness, as defined by Kusner et al. (2017), 053

if the same prediction is made for an individual 054

in both the actual world and in the counterfactual 055

world in which the protected attribute is changed. 056

While there is no consensus on which metric is 057

the right one to use (Czarnowska et al., 2021), most 058

work on bias mitigation only uses a single type 059

of metric in their evaluation. This is typically a 060

metric that is closely connected to the proposed de- 061

biasing method. For example, counterfactual data 062

augmentation (CDA) (Lu et al., 2019), has been 063

shown to reduce bias in NLP models. However, 064

prior works that adopt this method often evaluate 065

only on causal bias metrics and do not include 066

any tests using statistical bias metrics (Park et al., 067

2018; Lu et al., 2019; Zayed et al., 2022; Lohia, 068

2022; Wadhwa et al., 2022). We find only one 069

exception—Garg et al. (2019) found causal debias- 070

ing exhibits some tradeoffs between statistical and 071

causal metrics (Section 2.3). This raises concerns 072

about the effectiveness and reliability of these debi- 073

asing methods in settings where multiple fairness 074

criteria may be desired. 075

In this work, we first show that methods designed 076

to reduce bias according to one fairness criteria 077

often do not reduce bias as measured by other bias 078

metrics. Then, we propose training methods to 079

achieve statistical and causal fairness for gender in 080

NLP models. We focus on gender bias as it is a 081

well-studied problem in the literature. 082
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Figure 1: Statistical and causal debiasing methods perform best on the bias metric aligned with their targeted
fairness notion. However, CDA is not effective at reducing statistical TPR gap. Our proposed combination approach
achieves the best overall results. Results are based on BiasBios dataset with BERT-Base-Uncased model. Section 4
provides details on the experiments.

Contributions. We empirically show the differ-083

ences between statistical and causal bias metrics084

and explain why optimizing one of them may not085

improve the other (Section 3). We find that they086

may even disagree on which gender the model is087

biased towards. We cross-evaluate statistical and088

causal-based debiasing methods on both types of089

bias metrics (Section 4), and find that debiasing090

methods targeted to one type of fairness may even091

make other bias metrics worse (Section 4.3). We092

propose debiasing methods that combine statistical093

and causal debiasing techniques (Section 5). Our094

results, summarized in Figure 1, show that a com-095

bined debiasing method achieves the best overall096

results when both statistical and causal bias metrics097

are considered.098

2 Background099

This section provides background on bias metrics100

based on statistical and causal notions of fairness101

and overviews bias mitigation techniques.102

2.1 Bias Metrics103

We consider a model fine-tuned for a classification104

task where the model f makes predictions Ŷ given105

inputs X and the ground truths are Y .106

Statistical bias metrics. Statistical bias metrics107

quantify bias based on statistical fairness (also108

known as group fairness), which compares predic-109

tion outcomes between groups. Common statisti-110

cal fairness definitions include demographic parity111

(DP), which requires equal positive prediction rates112

(PPR) for every group (Barocas et al., 2019). Dif-113

ferent from DP, equalized odds consider ground114

truths and demand equal true positive rates (TPR)115

and false positive rates (FPR) across groups (Hardt116

et al., 2016).117

Statistical PPR gap (SGPPR) between binary 118

genders g (female) and ¬g (male) can be defined 119

as (Zayed et al., 2022): 120

E[Ŷ = 1 | G = g]− E[Ŷ = 1 | G = ¬g] 121

where the model predictions Ŷ can be either 0 or 122

1. If SGPPR > 0, the model produces positive 123

predictions for females more often than for males. 124

Statistical TPR gap of binary genders for class y 125

can be formulated as (De-Arteaga et al., 2019): 126

SGTPR
y = TPRs(g, y)− TPRs(¬g, y) 127

TPRs(g, y) = E[Ŷ = y | G = g, Y = y] 128

A positive SGTPR would mean that the model 129

outputs the correct positive prediction for female 130

inputs more often than for male inputs. Statistical 131

FPR gap can be defined analogously as in Equa- 132

tion 1 (Appendix A). 133

Causal bias metrics. Causality-based bias metrics 134

for NLP models are usually based on counterfactual 135

fairness (Kusner et al., 2017), which requires the 136

model to make the same prediction for the text in- 137

put even when group identity terms in the input are 138

changed. The evaluation set is usually constructed 139

by perturbing the identity tokens in the inputs from 140

datasets (Prabhakaran et al., 2019; Garg et al., 2019; 141

Qian et al., 2022) or by creating synthetic sentences 142

from templates (Dixon et al., 2018; Lu et al., 2019; 143

Huang et al., 2020). 144

Following Garg et al. (2019), we can define 145

causal gender gap for an input x as: 146

|f(x | do(G = g))− f(x | do(G = ¬g))| 147

where the do-operator enforces an intervention on 148

gender. The term f(x | do(G = g)) indicates the 149

model’s prediction for x if the gender of x were set 150
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to female. To identify the bias direction, we will151

consider the causal gap without the absolute value.152

More information on how we perform gender inter-153

vention on texts is given in Appendix B.3.154

Causal PPR Gap (CGPPR) can be estimated by155

the average causal effect of the protected character-156

istic on the model’s prediction being positive. (Ru-157

bin, 1974; Pearl et al., 2016):158

E[Ŷ = 1 | do(G = g)]− E[Ŷ = 1 | do(G = ¬g)]159

If CGPPR is zero, it would mean that gender has no160

influence on model’s positive prediction outcome.161

To compare with statistical TPR gap, we formulate162

causal TPR gap by averaging the TPR difference163

for each individual:164

CGTPR
y = TPRc(g, y)− TPRc(¬g, y)165

TPRc(g, y) = E[Ŷ = y | do(G = g), Y = y]166

Similarly, we can define causal FPR gap as in Equa-167

tion 2 (Appendix A).168

Comparing statistical and causal bias metrics.169

The key difference between statistical and causal170

metrics is how the test examples are selected and171

generated for evaluation. Statistical metrics are172

based on the original unperturbed examples, while173

causal metrics consider an additional perturbation174

process to generate test examples besides the origi-175

nal examples. Proponents of causal metrics argue176

that statistical metrics are based on observational177

data, which may contain spurious correlations and178

therefore cannot determine whether the protected179

attribute is the reason for the observed statistical180

differences (Kilbertus et al., 2017; Nabi and Sh-181

pitser, 2018). On the other hand, statistical metrics182

are easy to assess, whereas causal metrics require183

a counterfactual version of each instance. Due to184

the discrete nature of texts, we can conveniently185

generate counterfactuals at the intervention level by186

perturbing the identity terms in the sentences (Garg187

et al., 2019). Yet, it is possible to produce ungram-188

matical or nonsensical sentences using such pertur-189

bations (Morris et al., 2020). In addition, changing190

the identity terms alone may not be enough to hide191

the identity signals as there could be other terms192

or linguistic tendencies that are correlated with the193

target identity. Czarnowska et al. (2021) provides194

a comprehensive comparison of existing extrinsic195

bias metrics in NLP.196

2.2 Bias Mitigation 197

Bias mitigation techniques for NLP models can be 198

categorized broadly based on whether the mitiga- 199

tion is done to the training data (pre-processing 200

methods), to the learning process (in-processing), 201

or to the model outputs (post-processing). 202

Pre-processing methods attempt to mitigate bias 203

by modifying the training data before training. Sta- 204

tistical methods adjust the distribution of the train- 205

ing data through resampling or reweighting. Re- 206

sampling can be done by either adding examples for 207

underrepresented groups (Dixon et al., 2018; Costa- 208

jussà and de Jorge, 2020) or removing examples 209

for overrepresented groups (Wang et al., 2019; Han 210

et al., 2022). Reweighting assigns a weight to each 211

training example according to the frequency of its 212

class label and protected attribute (Calders et al., 213

2009; Kamiran and Calders, 2012; Han et al., 2022). 214

Causal methods such as counterfactual data aug- 215

mentation (CDA) augment the training set with ex- 216

amples substituted with different identity terms (Lu 217

et al., 2019). This is the same as data augmenta- 218

tion based on gender swapping (Zhao et al., 2018; 219

Park et al., 2018). While both statistical and causal 220

methods seek to balance the group distribution, 221

CDA performs interventions on the protected at- 222

tribute whereas resampling and reweighing do not 223

modify the attribute in the examples. Previous 224

works have also considered removing protected at- 225

tributes (De-Arteaga et al., 2019). However, this 226

“fairness through blindness” approach is ineffective 227

as there may be other proxies correlate with the 228

protected attributes (Chen et al., 2019). 229

In-processing methods incorporate a fairness con- 230

straint in the training process. The constraint can 231

be either based on statistical fairness (Kamishima 232

et al., 2012; Zafar et al., 2017; Donini et al., 2018; 233

Subramanian et al., 2021; Shen et al., 2022b) or 234

causal fairness (Garg et al., 2019). Adversarial 235

debiasing methods train the model jointly with a 236

discriminator network from a typical GAN as an 237

adversary to remove features corresponding to the 238

protected attribute from the intermediate represen- 239

tations (Zhang et al., 2018; Elazar and Goldberg, 240

2018; Li et al., 2018; Han et al., 2021) 241

Post-processing methods adjust the outputs of the 242

model at test time to achieve desired outcomes for 243

different groups (Kamiran et al., 2010; Hardt et al., 244

2016; Woodworth et al., 2017). Zhao et al. (2017) 245

use a corpus-level constraint during inference. Rav- 246
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fogel et al. (2020) remove protected attribute infor-247

mation from the learned representations.248

2.3 Related Work249

Garg et al. (2019) is the only work that evaluates250

NLP models with both statistical and causal bias251

metrics. They evaluate toxicity classifiers trained252

with CDA and counterfactual logit pairing and ob-253

serve a tradeoff between counterfactual token fair-254

ness and TPR gaps. Han et al. (2023) is the only255

work that attempts to achieve both statistical and256

causal fairness through fair representational learn-257

ing on tabular data.258

Previous work has studied the impossibility the-259

orem of statistical fairness, which states that, for260

binary classification, equalizing multiple common261

statistical bias metrics between protected attributes262

is impossible unless the distribution of outcome263

is equal for both groups (Kleinberg et al., 2016;264

Chouldechova, 2017; Bell et al., 2023). While265

these works focus on tabular data and statistical266

bias metrics, our work studies statistical and causal267

bias metrics used for NLP tasks.268

Comparison between various bias metrics for269

NLP models has also been explored. Intrinsic and270

extrinsic bias metrics have been shown to have271

no correlation with each other (Delobelle et al.,272

2022; Cabello et al., 2023). Delobelle et al. (2022)273

also shows that the measure of intrinsic bias varies274

depending on the choice of words and templates275

used for evaluation. Shen et al. (2022a) find no276

correlation between statistical bias metrics and an277

adversarial-based bias metric, which measures the278

leakage of protected attributes from the intermedi-279

ate representation of a model.280

Dwork et al. (2012) proposes individual fairness,281

which demands similar outcomes to similar indi-282

viduals. This is similar to counterfactual fairness in283

the sense that two similar individuals can be consid-284

ered as counterfactuals of each other (Loftus et al.,285

2018; Pfohl et al., 2019). The difference is that286

individual fairness considers similar individuals287

based on some distance metrics while counterfac-288

tual fairness considers a counterfactual example for289

each individual from a causal perspective. Zemel290

et al. (2013) proposes learning representations with291

group information sanitized and individual infor-292

mation preserved to achieve both individual and293

group (statistical) fairness.294

3 Bias Metrics Are Disparate 295

Disparities between different statistical fairness def- 296

initions and group and individual fairness have 297

been studied in the tabular data settings (Sec- 298

tion 2.3). We focus on the most common type 299

of bias metrics, statistical and causal, used for eval- 300

uating NLP tasks. We first explain why statistical 301

and causal bias metrics may produce inconsistent 302

results. We then report on the experiments to mea- 303

sure disparities between the metrics on evaluating 304

gender bias in an occupation classification task. 305

3.1 Statistical does not Imply Causal Fairness 306

While correlation and causation can happen si- 307

multaneously, correlation does not imply causa- 308

tion (Fisher, 1958). Correlation refers to the sta- 309

tistical dependence between two variables. Sta- 310

tistical correlation is not causation when there is 311

a confounding variable that influences both vari- 312

ables (Pearl, 2009), leading to spurious correla- 313

tions (Pearson, 1896). 314

To equate statistical estimates with causal es- 315

timates, the exchangeability assumption must be 316

satisfied (Neal, 2015). This means that the poten- 317

tial outcome of a protected group is independent 318

of the group assignment. The model’s prediction 319

outcome should be the same even when the groups 320

are swapped. One common way to achieve this 321

is through randomized control trials by randomly 322

assigning individuals to different groups (Fisher, 323

1935), making the groups more comparable. In the 324

case of bias evaluation, it is impossible to assign 325

gender or identity to a person randomly. Further- 326

more, most data are sampled from the Internet, 327

which does not guarantee diversity and may still 328

encode bias (Bender et al., 2021). Despite the dis- 329

parities between statistical and causal bias estima- 330

tion, it does not entail that achieving both statistical 331

and causal fairness is impossible. 332

3.2 Evaluation 333

Task. We use the BiasBios dataset (De-Arteaga 334

et al., 2019) comprising nearly 400,000 online bi- 335

ographies of 28 unique occupations scraped from 336

the CommonCrawl. The task is to predict the oc- 337

cupation given in the biography with the occupa- 338

tion title removed. Each biography includes the 339

name and the pronouns of the subject. The gender 340

of the subject is determined by a pre-defined list 341

of explicit gender indicators (Appendix B.3). We 342

use the train-dev-test split of the BiasBios dataset 343
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from Ravfogel et al. (2020). We perform a dif-344

ferent data pre-processing for the biographies (see345

Appendix B.2 for details).346

Setup. We fine-tune ALBERT-Large (Lan et al.,347

2020) and BERT-Base-Uncased (Devlin et al.,348

2019) on the BiasBios dataset with normal training.349

We then evaluate the models with statistical and350

causal TPR gap.351

Figure 2: Statistical and causal TPR gaps evaluated
on ALBERT-Large model with normal training. Red
dashed line indicates SG = CG. Shaded areas represent
SG and CG reporting opposite gender bias direction.

Results. Figure 2 shows the statistical and causal352

TPR gap for ALBERT model. Each data point rep-353

resents the TPR gap of an occupation evaluated354

over the test examples with the occupation label.355

The results reveal the disparity between statistical356

estimation and causal estimation. Most occupa-357

tions are off the red dashed line where SG = CG.358

For nearly all occupations, CG is closer to zero359

than SG for both ALBERT (Figure 2) and BERT360

(Figure 8 in the appendix) models. In addition, we361

find a few cases where SG and CG show bias in362

opposite directions such as dj and pastor in Figure 2.363

Similar results are found for statistical and causal364

FPR gap (see Appendix E).365

3.3 Bag-of-Words Analysis366

To test the extent to which statistical and causal bias367

metrics can capture gender bias we train a Bag-of-368

Words (BoW) model with logistic regression on369

the BiasBios dataset where we can intentionally370

control the model’s bias. We do this by identifying371

the model weights corresponding to gender signal372

tokens (Appendix ??) and multiplying the weights373

for these tokens by a weight w. This allows us to374

tune the bias of a simple model and see how the375

different bias metrics measure the resulting bias.376

Figure 3 shows SGTPR and CGTPR of the BoW 377

model when changing the weights for all gender- 378

associated tokens. The magnitude of both bias 379

scores increases as we increase the weighting of 380

the gender tokens. The model is biased in the oppo- 381

site gender direction when we reverse the weight 382

w by multiplying by a negative value. This demon- 383

strates that both metrics are indeed able to capture 384

bias in the model, and for the most part reflect the 385

amount of bias in the expected direction. Note that 386

CGTPR = 0 for all occupations when w = 0. This 387

is because CGTPR considers the average difference 388

between pairs of sentences that only differ in to- 389

kens representing the gender. When w = 0, the 390

model would exclude all gender tokens and each 391

sentence pair would render the same to the model. 392

On the other hand, SGTPR is nonzero for most oc- 393

cupations when w = 0, meaning that it captures 394

gender bias beyond explicit gender indicators. This 395

suggests models trained to achieve causal fairness 396

may still be biased toward other implicit gender fea- 397

tures that are not identified in our explicit gender 398

token list. 399

4 Cross-Evaluation 400

This section cross-evaluates the effectiveness of ex- 401

isting debiasing methods on gender bias in an occu- 402

pation classification and toxicity detection task. We 403

show using statistical and causal debiasing methods 404

alone may not achieve both types of fairness. 405

4.1 Setup 406

We focus on pre-processing methods since Shen 407

et al. (2022b) found that resampling and reweight- 408

ing achieve better statistical fairness than the in- 409

processing and post-processing methods. For the 410

statistical methods, we apply both resampling us- 411

ing oversampling (OS) and undersampling (US) 412

and reweighting (RW) using the weight calculation 413

from Kamiran and Calders (2012). For the causal 414

methods, we fine-tune the model with CDA. 415

We apply each debiasing method to the 416

ALBERT-Large (Lan et al., 2020) and BERT-Base- 417

Uncased (Devlin et al., 2019) models. We also in- 418

clude experiments with Zari (Webster et al., 2020), 419

which is an ALBERT-Large model pre-trained with 420

CDA. To consider the effect of CDA during pre- 421

training alone and during both pre-training and fine- 422

tuning, we fine-tune Zari with normal training and 423

CDA. Training details are provided in Appendix D. 424
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(b) Causal TPR Gap

Figure 3: Statistical and causal TPR gap of BoW model per occupation when adjusting both gender token weights.
w = 1 indicates the weight is unchanged. Occupations are sorted by gap with w = 1. Increasing the magnitude of
the gender token weights increases bias on both statistical and causal bias metrics. Yet, CGTPR = 0 when w = 0.

4.2 Tasks425

We test all the models on two benchmark tasks426

for bias detection: occupation classification and427

toxicity detection.428

Occupation Classification. We use the BiasBios429

dataset introduced in Section 3.2. We evaluate430

gender bias with TPR and FPR gap based on both431

statistical and causal notions of fairness as defined432

in Section 2.1. Since the BiasBios dataset contains433

multiple classes, we follow Romanov et al. (2019)434

and compute a single score that quantifies overall435

gender bias. For each bias metric M (e.g., SGTPR
g,y ),436

we compute the root mean square of the bias score437

across all occupation classes Y :438

RMSM =

√
1

|Y |
∑
y∈Y

(My)439

where My is the bias score for occupation y com-440

puted with M .441

Toxicity Detection. We use the Jigsaw dataset442

consisting of approximately 1.8M comments taken443

from the Civil Comments platform. The task is to444

predict the toxicity score of each comment. For our445

experiments, we use binary toxicity labels, toxic446

and non-toxic. In addition to the toxicity score, a447

subset of examples are labeled with the identities448

mentioned in the comment. We only select the449

examples labeled with female and male identities450

and with high annotator agreement on the gender451

identity labels. Since some examples contain a mix452

of genders, we assign the gender to each exam-453

ple based on the gender labeled with the highest454

agreement. To perform gender intervention with 455

CDA, we use the gender-bender Python package 456

to generate counterfactual examples (Reynolds and 457

Wilk). Appendix C.1 provides details on how we 458

preprocess the data. Following Zayed et al. (2022), 459

we compute statistical and causal PPR gap. As 460

female and male groups do not have the same label 461

distribution, the PPR gap of a perfect predictor will 462

be non-zero. Therefore, we also compute statistical 463

and causal TPR gap for toxic and non-toxic classes. 464

4.3 Results 465

Occupation classification. Figure 4 and Figure 5 466

show statistical and causal TPR gap per occupa- 467

tion evaluated on BERT and ALBERT models with 468

each debiasing method. Causal debiasing methods 469

show greater effectiveness when evaluated with the 470

causal metric (we discuss the combination meth- 471

ods included in these figures in Section 5). Fine- 472

tuning with CDA reduces CGTPR to nearly zero for 473

all occupations, but does not produce any signifi- 474

cant reduction for SGTPR. On the other hand, Zari 475

exhibits higher statistical and causal gap than per- 476

forming CDA during fine-tuning (Figure 5). Thus, 477

using CDA during pre-training alone is insufficient 478

to reduce bias. Statistical debiasing methods such 479

as undersampling and reweighting reduce bias on 480

both statistical and causal metrics, though the bias 481

reduction on the causal metric is not as significant 482

as CDA. We find that oversampling is less effective 483

than other statistical debiasing methods on both 484

metrics. We found similar results with statistical 485

and causal FPR gaps (Appendix F.2). 486
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Figure 4: Statistical and causal TPR gap per occupation evaluated on BERT-Base-Uncased model, averaged over 3
different runs. Each data point is computed over test examples labeled with the same occupation. We show outliers
for normal training in red dots and how their values change with different debiasing methods. Statistical and causal
debiasing methods perform better on the metric they are targeting, but may not reduce bias on the other metric. Our
proposed methods, US-CDA and RW-CDA, achieve the best overall performance.

Toxicity detection. Table 1 shows the bias evalua-487

tion results for the BERT model trained with differ-488

ent debiasing methods on the Jigsaw dataset. We489

find that statistical and causal bias metrics some-490

times disagree on which gender the model is biased491

toward. Similar to the results for the BiasBios task,492

statistical and causal debiasing methods do particu-493

larly well on the bias metrics based on their targeted494

fairness definition. However, they increase bias on495

metrics that use the other type of fairness notion.496

Similar results are found for ALBERT model (Ap-497

pendix G.1).498

5 Achieving Both Statistical and Causal499

Fairness500

In the previous section, we saw that using either501

statistical or causal debiasing method alone may502

not achieve both statistical and causal fairness. To503

counter this problem, this section considers simple504

methods that combine both statistical and causal505

debiasing techniques.506

5.1 Composed Debiasing Methods507

We introduce three approaches that combine tech-508

niques from both statistical and causal debiasing:509

Resampling with CDA. OS-CDA and US-CDA com-510

bines resampling methods (oversampling and un-511

dersampling) with CDA. For Biasbios, we first per-512

form resampling on the training set, then augment513

the resampled set with CDA. For Jigsaw, we re- 514

sample the original examples based on the original 515

gender but resample the counterfactual examples 516

based on the counterfactual gender. 517

Reweighting with CDA. RW-CDA applies CDA 518

on the training set and fine-tunes the model with 519

reweighting. For BiasBios, we use the same weight 520

computed on the original training set for both the 521

original and its counterfactual pair. For Jigsaw, we 522

use weight of 1 for all counterfactual examples. 523

We use different combination strategies for the 524

two datasets as we noticed the methods used for 525

BiasBios do not work well on the Jigsaw dataset. 526

This may be due to the mix of genders in a subset of 527

examples in the Jigsaw dataset. The gender signals 528

in the examples may be flipped after performing 529

CDA. We provide performance comparisons be- 530

tween the different combination strategies we have 531

tried on the Jigsaw task in Appendix G.2. 532

5.2 Results 533

Figure 4 and Figure 5 show statistical and causal 534

TPR gap per occupation evaluated on the BiasBios 535

dataset for BERT and ALBERT models. The com- 536

bined methods US-CDA and RW-CDA are more effec- 537

tive at reducing bias on both metrics compared to 538

other methods. To compare overall performance, 539

we show the root mean square of each bias metric 540

in Table 3 and Table 4 (both in Appendix F.1). All 541

three combination approaches perform better on 542
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Figure 5: Statistical and causal TPR gap per occupation results for ALBERT-Large, averaged over 3 different runs.

Method SGPPR CGPPR SGTPR
y=1 CGTPR

y=1 SGTPR
y=0 CGTPR

y=0

Normal −2.79±0.28 0.89±0.10 −2.77±0.67 2.33±1.06 1.28±0.30 −0.73±0.11
CDA −3.02±0.23 0.25±0.08 −2.62±2.07 0.36±0.57 1.52±0.29 −0.24±0.06
OS −1.21±0.22 1.33±0.31 2.21±0.35 5.24±0.42 0.20±0.17 −0.88±0.30
US −1.54±0.26 1.67±0.29 1.61±1.11 4.56±0.63 0.37±0.24 −1.34±0.26
RW −1.44±0.31 1.44±0.24 2.09±0.85 4.92±0.53 0.39±0.26 −1.05±0.25

OS-CDA −2.09±0.30 0.18±0.16 −1.11±0.99 0.39±0.46 0.79±0.28 −0.15±0.15
US-CDA −1.90±0.19 0.11±0.11 −1.66±1.88 0.14±0.70 0.57±0.26 −0.11±0.06
RW-CDA −1.76±0.36 0.33±0.11 0.56±1.27 1.08±0.74 0.62±0.40 −0.24±0.10

Table 1: Bias evaluation results evaluated on the Jigsaw dataset with BERT-Base-Uncased model. The results shown
are averaged over 5 different runs. All values are on a log scale with base 10−2.

CGTPR compared to using a statistical or causal de-543

biasing method alone. OS-CDA and US-CDA also544

reduce bias on SGTPR (11–16% decrease) and545

SGFPR (1–8% decrease), comparing to their sta-546

tistical debiasing counterparts. RW-CDA achieves547

comparable performance on SG to reweighting.548

Undersampling and US-CDA sacrifice the general549

performance with a decrease of around 0.7% in ac-550

curacy compared to other methods, which preserve551

the baseline accuracy within 0.3%.552

Table 1 and Table 5 (Appendix G.1) report the553

results of BERT and ALBERT models for the Jig-554

saw dataset. While statistical and causal debiasing555

methods only improve one type of bias metric and556

worsen the other, our proposed combination ap-557

proaches are able to reduce bias on both types of558

bias metrics. The combined methods OS-CDA and559

US-CDA perform better than CDA on all causal bias 560

metrics. RW-CDA performs better on SG but is less 561

effective at reducing bias on CG compared to the 562

other combination approaches. 563

6 Conclusion 564

We demonstrate the disparities between statistical 565

and causal bias metrics and provide insight into 566

how and why optimizing based on one type of met- 567

ric does not necessarily improve the other. We 568

show this by cross-evaluating existing statistical 569

and causal debiasing methods on both metrics and 570

find that they sometimes may even worsen the other 571

type of bias metrics. To obtain models that perform 572

well on both types of bias metrics, we introduce 573

simple debiasing strategies that combine both sta- 574

tistical and causal debiasing techniques. 575
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Limitations576

We only conduct experiments on two gender bias577

tasks due to the limited benchmark datasets com-578

patible with extrinsic metrics (Orgad and Belinkov,579

2022). Further testing is needed to determine if580

the bias metric disparities are also present in other581

tasks and whether our proposed debiasing meth-582

ods can still be effective for reducing other types583

of social bias. The gender intervention method584

used for counterfactual data augmentation is based585

on a predefined list of gender tokens, which may586

not cover all possible tokens representing gender.587

In addition, our experiments exclusively focus on588

binary-protected attributes. Future work should ex-589

plore how to generalize our results to tasks with590

non-binary protected attributes. While our pro-591

posed debiasing methods are able to reduce bias592

on both statistical and causal bias metrics, there is593

room for improvements in the statistical bias met-594

rics when compared to statistical debiasing meth-595

ods. Future work may explore incorporating in-596

processing methods that directly enforce fairness597

constraints during training.598
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A False Positive Rate Gap 957

Statistical FPR gap between binary gender g (female) and ¬g (male) for class y is defined as: 958

SGFPR
y = FPRs(g, y)− FPRs(¬g, y) (1) 959

FPRs(g, y) = E[Ŷ = y | G = g, Y ̸= y] 960

Causal FPR gap is computed by averaging the FPR difference for each individual: 961

CGFPR
y = FPRc(g, y)− FPRc(¬g, y) (2) 962

TPRc(g, y) = E[Ŷ = y | do(G = g), Y ̸= y] 963

B BiasBios Dataset Details 964

B.1 Dataset Statistics 965

The dataset contains 255,707 training examples, 39,369 validation examples, and 98,339 testing examples. 966

Figure 6 shows the full list of occupations and their gender frequency in the BiasBios training set. The 967

gender and occupation distribution for validation and testing sets are similar to the training set. 968
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Figure 6: Gender frequency for each occupation in the training set.

B.2 Dataset Construction 969

The original BiasBios dataset consists of extracted biographies with the first sentences removed from each 970

biography as they include the occupation titles corresponding to the ground truth labels. We notice a lot 971

of the important information is in the first sentences and it is hard to correctly identify the occupation of 972

some examples without the first sentences even for humans. Thus, we keep the first sentence but replace 973

any occupation tokens that appear in the biography with an underscore (e.g., "Alice is a nurse working at 974

a hospital" to "Alice is a _ working at a hospital"). We notice that our model performance is higher than 975

the same model trained on the original dataset (Webster et al., 2020). This can be attributed to having 976

longer sequences and more context information in the inputs. 977

B.3 Gender Intervention 978

To perform gender intervention, we first identify words with explicit gender indicators in the input. If 979

the assigned gender value is different from the original input, we swap the identified words with the 980

corresponding words in the mapping with an opposite gender. We use the same list of explicit gender 981

indicators used in BiasBios dataset and perform gender mapping as follows: 982
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• Bidirectional: he ↔ she, himself ↔ herself, mr ↔ ms983

• Unidirectional: hers → his, his → her, him → her, her → his or him, mrs → mr984

Words in blue are associated with male gender and words in red are associated with female gender.985

Since "her" can be mapped to either "his" or "him" depending on the context, we use Part-of-Speech986

tagging to determine which one to map to.987

C Jigsaw Dataset Details988

C.1 Dataset Construction989

Each comment is associated with a toxicity label and several identity labels. The label values range990

from 0.0 to 1.0 representing the percentage of annotators who agreed that the label fit the comment. We991

binarized the toxicity values and considered comments as toxic if their toxicity values exceeded 0.5. We992

assigned female gender to an example if its female identity label value is higher than the male one and993

assigned male gender vice versa. To make better differentiation between the two genders, we filtered994

out examples if the difference between male and female label values is smaller or equal to 0.5. We995

use train.csv from the Kaggle competition for training and validation with an 80/20 split. We use996

test_public_expanded.csv and test_private_expanded.csv for testing.997

Label Gender Count Percentage (%)

Toxic F 2504 5.89
Toxic M 2123 4.99

Non-Toxic F 22,465 52.83
Non-Toxic M 15,431 26.29

Table 2: Gender and label distribution of Jigsaw training set.

C.2 Dataset Statistics998

The final dataset after pre-processing contains 42,523 training examples, 10,631 validation examples, and999

5,448 testing examples. Table 2 shows the gender and label distribution on the training set. All three data1000

splits have similar distributions. We also show the distribution of the gender label values in Figure 7. For1001

examples that contain a mix of both female and male genders, we show the gender label value of the final1002

gender we assigned (the gender with a higher label value).1003
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Figure 7: Distribution of annotation agreement on the gender labels. 1.0 indicates all annotators agree that the
gender is mentioned in the comment.
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D Training Details 1004

Computing Infrastructure. All the models were trained on 4 Nvidia RTX 2080Ti GPUs. 1005

BiasBios Dataset. We trained all the models with a learning rate of 2e-5 and batch size of 64. We 1006

fine-tuned the models for 5-8 epochs with early stopping and choose the model checkpoints with the 1007

best validation accuracy. Most models reach the best validation accuracy before epoch 5. We notice that 1008

ALBERT with subsampling requires training a few epochs longer than other models to reach comparable 1009

performance due to the downsized training data. 1010

Jigsaw Dataset. We trained all the models with a learning rate of 1e-5 and batch size of 128 for 4 epochs 1011

with early stopping. Most models converge after 2-3 epochs. 1012

E Disparities between Statistical and Causal Bias Metrics 1013

Figure 8: Statistical and causal TPR gaps on BERT-Base-Uncased model with normal training. Red dashed line
indicates SP = CP . Shaded areas represent SP and CP reporting opposite gender bias direction.

(a) ALBERT-Large (b) BERT-Base-Uncased

Figure 9: Statistical and causal FPR gaps on ALBERT-Large and BERT-Base-Uncased models with normal training.
Red dashed line indicates SP = CP . Shaded areas represent SP and CP reporting opposite gender bias direction.
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F BiasBios Results1014

F.1 Overall Bias Scores1015

SG CG
Method Acc (%) TPR FPR TPR FPR

Normal 95.49±0.13 7.853±0.761 0.127±0.009 2.569±0.509 0.051±0.005
OS 95.50±0.04 6.430±0.172 0.115±0.004 1.590±0.035 0.041±0.003
US 94.79±0.08 5.600±0.422 0.097±0.005 0.529±0.402 0.011±0.005
RW 95.26±0.06 4.269±0.427 0.085±0.011 0.391±0.094 0.010±0.001

CDA 95.47±0.09 7.266±0.870 0.113±0.007 0.207±0.043 0.003±0.000
Zari 95.23±0.09 8.353±0.550 0.132±0.006 2.849±0.341 0.067±0.005

Zari w/ CDA 95.20±0.01 7.559±0.787 0.119±0.008 0.216±0.048 0.004±0.001
OS-CDA 95.39±0.13 5.403±0.176 0.109±0.006 0.130±0.020 0.013±0.011
US-CDA 94.73±0.09 4.969±0.230 0.096±0.015 0.174±0.051 0.007±0.009
RW-CDA 95.43±0.11 4.300±0.424 0.095±0.011 0.137±0.020 0.008±0.004

Table 3: Root mean square of bias metrics for ALBERT-Large model fine-tuned with different debiasing methods.
The results shown are averaged over 3 different runs. SG and CG are on a log scale with base 10−2.

SG CG
Method Acc (%) TPR FPR TPR FPR

Baseline 95.64±0.02 7.472±0.898 0.129±0.004 1.456±0.271 0.033±0.005
OS 95.69±0.17 6.161±0.282 0.116±0.018 0.805±0.134 0.029±0.008
US 94.95±0.19 5.257±0.865 0.108±0.017 0.595±0.083 0.023±0.000
RW 95.51±0.06 4.630±0.288 0.096±0.008 0.377±0.074 0.014±0.004

CDA 95.65±0.08 6.490±1.159 0.109±0.011 0.138±0.046 0.002±0.001
OS-CDA 95.67±0.09 5.485±0.327 0.106±0.022 0.121±0.033 0.005±0.003
US-CDA 95.09±0.12 4.673±0.270 0.104±0.007 0.131±0.012 0.009±0.002
RW-CDA 95.78±0.07 4.601±0.190 0.102±0.002 0.148±0.021 0.004±0.003

Table 4: Root mean square of bias metrics for BERT-Base-Uncased model fine-tuned with different debiasing
methods. The values shown are averaged over 3 different runs on a log scale with base 10−2.
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F.2 Statistical vs Causal FPR Gap 1016
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Figure 10: Statistical and Causal FPR gap per occupation, averaged over 3 different runs. Each data point is
computed over test examples labeled with the same occupation. We show the outliers for normal training in red dots
and how their values change with different debiasing methods. Causal-based debiasing methods perform particularly
better on the causal FPR gap while statistical-based debiasing methods are able to reduce bias based on both metrics.
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F.3 Correlation to Gender Imbalances in Training Data1017

In Figure 11, we compare the statistical and causal TPR gap to the female ratio in the training data for1018

each occupation. Both bias metrics show a positive correlation with the gender distribution in the training1019

data. This observation is consistent with the results found in De-Arteaga et al. (2019), where they measure1020

the statistical TPR gap on non-transformer-based models such as BoW.1021
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Figure 11: Statistical and causal TPR gap versus the female ratio of each occupation in the training data.

G Jigsaw Results1022

G.1 Overall Bias Scores for ALBERT Model1023

Method SGPPR CGPPR SGTPR
y=1 CGTPR

y=1 SGTPR
y=0 CGTPR

y=0

Normal −2.73±0.42 0.42±0.21 −4.60±3.65 1.90±1.37 1.21±0.45 −0.25±0.08
CDA −3.14±0.59 0.20±0.08 −3.56±3.08 0.86±0.67 1.66±0.36 −0.13±0.07

Zari w/ CDA −2.89±0.98 −0.05±0.12 −5.68±2.10 −0.32±0.57 1.31±0.92 0.02±0.07
US −2.37±0.58 1.00±0.10 −2.57±2.75 4.20±0.82 1.03±0.45 −0.63±0.08
RW −1.70±0.21 0.95±0.25 −2.07±2.15 4.13±0.30 0.39±0.29 −0.58±0.28
OS −1.79±0.24 0.81±0.22 −3.18±2.75 3.99±0.80 0.48±0.22 −0.45±0.21

OS-CDA −2.29±0.42 0.01±0.11 −3.40±2.74 0.29±0.69 0.83±0.30 0.02±0.06
US-CDA −2.22±0.23 0.08±0.10 −2.57±2.60 0.36±0.25 0.88±0.30 −0.05±0.11
RW-CDA −1.96±0.25 0.24±0.09 −1.98±1.36 0.97±0.73 0.76±0.25 −0.16±0.07

Table 5: Bias evaluation results evaluated on the Jigsaw dataset with ALBERT-Large model. The results shown are
averaged over 5 different runs. All values are on a log scale with base 10−2.

G.2 Combination Strategies Comparison1024

Table 6 shows the performance of two different strategies of combining resampling and CDA. Resample1025

→ CDA performs resampling first, then applies CDA on the resampled set. CDA → Resample performs1026

CDA first, then resamples the original and the counterfactual sets separately. The original examples1027

are resampled based on the original gender distribution. The counterfactual examples are resampled1028

based on their counterfactual genders (not the gender of the original example they originated from). The1029

difference between the two methods is that Resample → CDA uses the original gender label for both1030

original and counterfactual examples while CDA → Resample considers the counterfactual gender for the1031

counterfactual examples during resampling. We find that the second method performs better on SGPPR1032

but increases CGPPR compared to the first method. The increase in the causal bias metric may be due to1033

separate resampling on original and counterfactual sets, meaning that some of them may not come in pairs.1034

Nonetheless, the performance still exceeds CDA.1035
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BERT-Base-Uncased ALBERT-Large
Strategy Method SGPPR CGPPR SGPPR CGPPR

Resample → CDA
OS-CDA −2.73±0.72 0.011±0.086 −2.51±0.49 0.004±0.082
US-CDA −2.12±0.51 0.117±0.114 −2.88±0.78 0.022±0.134

CDA → Resample
OS-CDA −2.09±0.30 0.176±0.160 −2.29±0.42 0.015±0.107
US-CDA −1.90±0.19 0.114±0.113 −2.22±0.23 0.084±0.096

Table 6: Debiasing performance between two different strategies of combining resampling and CDA. The results
shown are evaluated on the BERT model, averaged over 5 different runs. SGPPR and CGPPR are on a log scale with
base 10−2.

Table 7 shows the performance of using different reweighting strategies on counterfactual examples for 1036

RW-CDA. We tried RW-CDA method for training on BiasBios dataset, which uses the same weight for both 1037

the original and counterfactual examples (first row in Table 7). It is not effective at reducing SGPPR, but 1038

very effective on CGPPR. We think it may be due to the gender signals of some examples being flipped 1039

by CDA. We then tried using weights that correspond to the counterfactual gender for the counterfactual 1040

examples. This decreases bias on SGPPR, but increases bias on CGPPR. We found that setting the weight 1041

to 1 for all counterfactual examples gives the best overall balance between SGPPR and CGPPR. It also 1042

outperforms other strategies on SGPPR. 1043

BERT-Base-Uncased ALBERT-Large
Strategy SGPPR CGPPR SGPPR CGPPR

Same weight −2.30±0.35 0.162±0.109 −2.41±0.30 0.070±0.059
Counterfactual gender weight −1.82±0.36 0.653±0.242 −2.19±0.31 0.371±0.063

Weight=1 −1.76±0.36 0.327±0.110 −1.96±0.25 0.239±0.091

Table 7: Debiasing performance of different reweighting strategies on counterfactual examples for RW-CDA. The
results shown are evaluated on the BERT model, averaged over 5 different runs. SGPPR and CGPPR are on a log
scale with base 10−2.

G.3 General Performance 1044

Method AUC (ALBERT) AUC (BERT)

Normal 0.930±0.002 0.925±0.003
CDA 0.930±0.002 0.928±0.002

Zari w/ CDA 0.928±0.005 —
OS 0.931±0.001 0.932±0.002
US 0.929±0.003 0.924±0.004
RW 0.930±0.005 0.929±0.003

OS-CDA 0.930±0.003 0.931±0.002
US-CDA 0.929±0.003 0.931±0.002
RW-CDA 0.929±0.002 0.930±0.003

Table 8: AUC scores of different debiasing methods. The results shown are averaged over 5 different runs.
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H Analysis1045

H.1 BoW Analysis1046

Figure 12 shows the statistical and causal TPR gaps for each occupation when increasing only the female1047

or male gender token weights. Increasing the female token weights amplifies female bias for occupations1048

that are more often predicted correctly for males. Conversely, increasing the male gender token weights1049

increases male bias for occupations that are more often predicted correctly for females. We observe1050

similar patterns on both statistical and causal bias metrics.1051
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(a) Statistical TPR Gap w/ female weight increased
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(b) Statistical TPR Gap w/ male weight increased
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(c) Causal TPR Gap w/ female weight increased
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(d) Causal TPR Gap w/ male weight increased

Figure 12: Statistical and causal TPR gaps of BoW model for each occupation when increasing female or male
token weight. Occupations are sorted by gap with w = 1.
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H.2 Gender Label Annotation Agreement 1052

We test if gender label annotation agreement in the Jigsaw dataset has an effect on the bias scores. 1053

In Figure 13, we show statistical and causal PPR gap of examples with different range of annotation 1054

agreement for each debiasing methods. All methods have the highest score of statistical PPR gap at [0.85, 1055

0.96) including the normal training method and have the lowest score when annotation agreement >=0.95. 1056

On the other hand, causal PPR gap of each debiasing method remain similar at different range of gender 1057

annotation agreement. 1058
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Figure 13: Statistical and Causal PPR Gap of examples with different range of gender label annotation agreement.
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