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Abstract

Recent studies suggest that the generalization performance of neural net-
works is strongly linked to their ability to learn low-dimensional data repre-
sentations. However, limited attention has been given to the consistency of
compression across different types of input data. In this work, we compute
the intrinsic dimensions of raw data and their corresponding representa-
tions to quantify the extent of information compression in neural networks.
Our results indicate that the pre-trained model CLIP compresses complex
datasets significantly more than simpler ones and tends to represent di-
verse datasets with uniform low-dimensional manifolds. Similarly, we ob-
serve stable dimensionality in neural manifolds in the brain across various
tasks and cognitive processes, suggesting that biological systems also favor
consistent low-dimensional representations. Theoretically, we demonstrate
that lower-dimensional manifolds increase the probability of interpolation,
facilitating the representation of new samples as convex combinations of ex-
isting data. Additionally, we derive an upper bound on generalization error
within the interpolation regime, which tightens as the dimensionality of the
data decreases. These findings underscore the critical role of uniform low-
dimensional manifolds in supporting efficient and generalizable information
representation in both artificial and biological neural systems.

1 Introduction

In recent years, advancements in neural networks, particularly the development of large-
scale models, have enabled these systems to match or even surpass human performance
across various tasks (Devlin et al., 2018; Yang et al., 2019; Liu et al., 2019; Brown et al.,
2020; Raffel et al., 2020; He et al., 2022). However, the underlying mechanisms behind their
robust generalization abilities, and the exact impact of large-scale data and pretraining on
enhancing this capacity, remain open questions. This has led to increased interest in theo-
retical explanations of neural network generalization, with the concept of low-dimensional
representations emerging as a prominent direction of study (Yu et al., 2024; Dai et al., 2023;
Chen et al., 2022; Chan et al., 2022; Ansuini et al., 2019).
Recent research suggests that neural networks inherently compress data during process-
ing, with stronger compression often correlating with better generalization performance
(Shwartz-Ziv et al., 2018; Ansuini et al., 2019; Recanatesi et al., 2019). This phenomenon
has encouraged the design of neural architectures and tasks that enhance a model’s ability
to learn effective low-dimensional representations (Yu et al., 2024; Chan et al., 2022). While
much attention has been given to the benefits of compression, several critical questions re-
main unanswered: Do neural networks compress different types of data uniformly? If not,
how does dynamic compression influence information encoding and generalization across
tasks? Addressing these questions is key to understanding the relationship between data
complexity, compression and generalization performance in large-scale models.
In this study, we investigate whether neural networks exhibit consistent compression across
different data types and tasks. Through an analysis of large models across various datasets
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and an examination of neural manifold dimensionality across various tasks, we find that
these systems employ a dynamic compression encoding mechanism. Specifically, they ap-
ply greater compression to more complex information, ultimately forming uniform low-
dimensional representation manifolds.
Furthermore, we establish a theoretical link between low-dimensional representation mani-
folds and interpolation probability, demonstrating that as the manifold dimension decreases,
the probability of interpolation increases. This relationship enhances the system’s ability to
generalize by representing new data as convex combinations of existing samples. Addition-
ally, we present an upper bound on the generalization error within the interpolation regime,
where lower-dimensional representations yield smaller error bounds.
Our contributions can be summarized as follows:

• We analyze the embeddings generated by the pre-trained model CLIP across differ-
ent datasets, demonstrating that the model compresses complex data to a greater
extent than simple data. This supports the hypothesis that large models employ
dynamic compression to form uniform low-dimensional representations.

• We investigate the intrinsic dimensions of EEG signals across tasks, revealing that
no significant differences are found across tasks, providing evidence of dynamic
compression in neural systems.

• We theoretically demonstrate that uniform low-dimensional manifolds enhance in-
terpolation probability, leading to more efficient information encoding and a tighter
generalization error bound in low-dimensional spaces.

2 Related Works

Low-dimensional Representation of Neural Network: Numerous studies have shown
that neural networks inherently compress data during processing, and this compression is
closely linked to their generalization performance (Yu et al., 2024; Dai et al., 2023; Chen
et al., 2022; Chan et al., 2022). The concept of intrinsic dimension has been introduced
as a measure of the complexity of the manifold on which data resides. By comparing
the intrinsic dimensions of raw data and their representations, the extent of compression
achieved by a neural network can be quantified. Research by Ansuini et al. demonstrated
that as data progresses through the layers of a neural network, the intrinsic dimensionality
of the representation consistently decreases, reflecting the network’s ability to compress
information (Ansuini et al., 2019). Besides, stronger compression usually correlates with
better generalization (Ansuini et al., 2019; Recanatesi et al., 2019). However, these studies
primarily focus on the compression of data within individual datasets. A crucial question
remains: Do neural networks compress different types of data uniformly, or does the level
of compression vary based on the complexity of the input data?
Low-dimensional Representation of Human Brain: Similarly, the brain employs com-
pressed representations to efficiently encode information. Studies in the dorsal cortex of
awake mice, for example, have shown that a small number of spatiotemporal patterns ac-
count for the majority of cortical variability, suggesting that neural representations are
inherently low-dimensional (MacDowell & Buschman, 2020). In another study, neurons in
the hippocampus were found to use low-dimensional representations to encode spatial and
auditory information, further underscoring the functional relevance of low-dimensionality
in biological systems (Nieh et al., 2021). Darshan et al. have shown that despite the low-
dimensional nature of these neural representations, the nervous system can flexibly adapt
to new tasks, adjusting its representations in response to environmental changes (Darshan
& Rivkind, 2022). This adaptive learning capability suggests that the brain not only com-
presses information but also dynamically modifies these compressed representations to sup-
port continuous learning. However, it is not yet clear whether the degree of compression in
neural systems varies based on the complexity of the tasks being performed. This question
is critical to understanding the neural basis of generalization.
Dimension, Interpolation and Generalization: Another critical aspect of generaliza-
tion is the relationship between data dimensionality and interpolation probability. Neural
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networks are known to generalize more effectively when performing interpolation, where test
samples fall within the convex hull of the training data (Barnard & Wessels, 1992; Haley
& Soloway, 1992). However, in high-dimensional spaces, the probability of interpolation de-
creases dramatically due to data sparsity (Balestriero et al., 2021). Recent studies suggest
that neural networks mitigate this issue by compressing data, effectively reducing the dimen-
sionality of their representations and increasing the probability of interpolation (Bárány &
Füredi, 1988; Balestriero et al., 2021). Our work extends these findings by demonstrating
that dynamic compression in both neural networks and the brain increases interpolation
probability, enhancing generalization in both systems.

3 Preliminaries and Technical Background

In this section, we provide the theoretical foundation for the analysis presented in the paper.
We introduce key concepts such as intrinsic dimension, convex hull, and interpolation prob-
ability, which are essential for understanding how low-dimensional representations influence
generalization performance in both neural networks and biological systems.

3.1 Intrinsic dimension and Ambient Dimension

Let P ⊂ RN represent a set of sample points. We assume that these points lie on a low-
dimensional manifold M ⊂ RN , where N is the ambient dimension of the space. The
ambient dimension dim(RN ) = N refers to the dimension of the surrounding space, while
the intrinsic dimension dim(M) = d ≪ N refers to the dimension of the manifold on which
the data lies. In essence, the intrinsic dimension quantifies the complexity of the underlying
structure of the data.
For example, while neural activity data may be recorded in a high-dimensional space (e.g.,
from hundreds of electrodes), the underlying complexity of the neural dynamics is often
much lower, as reflected by the intrinsic dimension.

3.2 Estimation of the intrinsic dimension

To estimate the intrinsic dimension of a manifold, we employ the Maximum Likelihood Es-
timation (MLE) method proposed by Levina et al. (Levina & Bickel, 2004). This technique
relies on the distances between neighboring points in the dataset to compute the manifold’s
intrinsic dimension.
The intrinsic dimension m̂k(x) at a point x can be estimated as follows:

m̂k(x) = [
1

k − 1

k−1∑
j=1

log
Tk(x)

Tj(x)
]−1, (1)

where Tj(x) denotes the Euclidean distance from point x to its jth nearest neighbor. By av-
eraging these local estimates across all samples, we obtain a global estimate for the intrinsic
dimension:

m̄k =
1

n

n∑
i=1

m̂k(xi), (2)

The parameter k controls the number of neighbors considered when estimating the dimension.
A smaller k focuses on a more local perspective, while a larger k captures a more global
view of the manifold. By varying k , we can derive a more comprehensive understanding of
the manifold’s intrinsic dimension.

3.3 Convex hull

The convex hull of a set of points is the smallest convex set that contains all the points.
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Definition 1. Convex Hull: Given a set of points X = {x1, x2, . . . , xn} ⊂ Rd, the convex
hull of X is defined as:

Conv(X) =

{
n∑

i=1

λixi

∣∣∣∣∣λi ≥ 0,
n∑

i=1

λi = 1

}
. (3)

3.4 Interpolation

Interpolation occurs when a new sample lies within the convex hull of the training data,
while extrapolation occurs when the new sample lies outside the convex hull. Formally, we
define interpolation probability as follows:
Definition 2. Interpolation Probability: Let X be a d-dimensional random vector and
X1, X2, ... be independent copies of X. For each θ ∈ Rd and positive integer n, define

pn,X(θ) := R(θ ∈ conv{X1, ..., Xn}), (4)
where conv A := {

∑m
i=1 λixi|m ≥ 1, xi ∈ A, λi ≥ 0,

∑m
i=1 λi = 1} denotes the convex hull of

a set A ⊂ Rd.

4 Experiments and Results

To investigate how neural networks and the brain compress different types of information,
we conducted two sets of experiments: (1) analyzing the intrinsic dimensions of the pre-
trained embedding across various datasets and (2) examining the intrinsic dimensions of
EEG signals across different tasks.

4.1 Uniform low-dimensional representation in Neural Network

Figure 1: Intrinsic dimension of raw data and embedding calculated by CLIP.
For complex datasets, the intrinsic dimension of the embeddings significantly decreases
compared to the original data. However, for simple datasets, the intrinsic dimension of the
embeddings is close to that of the original data.

Previous studies have shown that neural networks compress data into lower-dimensional
representations during processing. However, it remains unclear whether this compression is
uniform across different types of data or varies dynamically with data complexity. To address
this, we used the pre-trained CLIP model (Radford et al., 2021) to analyze seven datasets:
QMNIST (Yadav & Bottou), MNIST (LeCun et al., 2010), FashionMNIST (Xiao et al.,
2017), KMNIST(Clanuwat et al., 2018), STL10 (Coates et al., 2011), CIFAR10 (Krizhevsky,
2009), and CIFAR100 (Krizhevsky, 2009). The datasets vary in complexity, providing an
ideal testbed to examine how neural networks apply dynamic compression.
For each dataset, we computed the intrinsic dimensions of both the original data and the
corresponding embeddings generated by the CLIP model. To ensure fair comparisons, all
images were resized to 16x32 pixels, matching the embedding space dimensions.
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As shown in Figure 1, the intrinsic dimensions of the original data varied considerably
across datasets. More complex datasets, such as STL10, CIFAR10, and CIFAR100, exhib-
ited higher intrinsic dimensions, while simpler datasets, like QMNIST, MNIST, and Fash-
ionMNIST, showed lower intrinsic dimensions. The CLIP model applied more aggressive
compression to the complex datasets, resulting in significantly lower-dimensional embed-
dings, whereas for the simpler datasets, the compression was less pronounced, with the
embeddings’ intrinsic dimensions remaining closer to those of the original data.
These findings suggest that neural networks dynamically adjust their compression strategies
based on the complexity of the input data, applying stronger compression to more complex
datasets. This adaptive compression facilitates the formation of uniform low-dimensional
representation manifolds.

4.2 Uniform low-dimensional representation in Human Brain

We extended our analysis to biological neural systems to determine whether the brain ex-
hibits similar compression behavior. Specifically, we analyzed the intrinsic dimensions of
neural signals (iEEG (Sakakura et al., 2023) and EEG (Wang et al., 2022)) and compared
them to environmental sounds (rain, car horns, airplane noises (Piczak, 2015)) and synthetic
data (Gaussian noise, uniform noise, sinusoidal waves). Each dataset consisted of 1,000 sam-
ples, and all signals were standardized to a consistent ambient dimension (Other technical
details are provided in the appendix A).
As summarized in Table 1, the intrinsic dimensions of environmental sounds were signif-
icantly higher than those of neural signals. This indicates that the brain compresses ex-
ternal information much more efficiently than other types of signals, reflecting the efficient
low-dimensional encoding inherent to neural systems.

Table 1: Intrinsic dimension of different data modalities

Type Data modality k=10 k=20 k=30 k=40 k=50

Neural Signal
iEEG signals 8.973 7.828 7.283 6.904 6.655

EEG signals 11.157 9.646 8.931 8.465 8.166

Ambient Sounds

Rain 63.712 56.880 53.863 51.770 50.230

Car horn 25.985 23.735 23.224 22.783 22.387

Airplane 49.041 45.547 44.712 44.121 43.504

Church bells 44.832 43.617 43.490 43.351 43.131

Synthetic Data
Gaussian noise 75.635 67.507 63.963 61.497 59.492

Uniform noise 77.388 67.649 63.649 61.317 59.518

Sinusoidal waves 4.041 6.485 8.723 10.887 12.991

Next, we explored the variability of EEG intrinsic dimensions across different tasks, including
both resting-state and task-specific conditions, with a particular focus on eyes-open (EO)
and eyes-closed (EC) states. The results are illustrated in Figure 2.
In the EO state, the intrinsic dimension of EEG was significantly higher compared to the
EC state, indicating that the brain’s encoding complexity increases when processing visual
information. However, within the same state (either EO or EC), there were no significant
differences in intrinsic dimension between resting and task-specific conditions (Results of
statistical analysis and intrinsic dimension analysis with other algorithms are provided in
the appendix B). This suggests that while the brain adjusts its compression based on sensory
input, the overall complexity of neural representations remains stable across tasks.
These findings demonstrate that the brain, like neural networks, employs dynamic compres-
sion to create uniform low-dimensional manifolds for efficient encoding of information.
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Figure 2: Intrinsic dimension analysis of EEG under different tasks. (A) Schematic
illustration of intrinsic dimension computation for multi-channel EEG. Each time point’s
multi-channel EEG data is treated as a high-dimensional vector, and different time points
form discrete samples in this high-dimensional space. These samples are used to compute
the intrinsic dimension of the neural manifold. (B) Intrinsic dimension comparison between
eyes-closed (EC) and eyes-open (EO) resting states and task states. The intrinsic dimen-
sion of EO resting state is significantly higher than that of EC resting state and EC task
states. However, there is no significant difference between EC resting state and EC task
states. (C-E) Intrinsic dimension analysis of EO resting state and various task states. No
significant differences were observed between the EO resting state and task states in any of
the comparisons.

5 Impact of Manifold Dimension on Interpolation Probability

The above analysis emphasizes that both neural networks and the brain learn uniform low-
dimensional representation manifolds through dynamic compression encoding. Next, we
explore theoretically the role of low-dimensional manifolds in information representation.
Here, we analyze from the perspective of interpolation, noting that as data dimensionality
decreases, interpolation probability increases, which means new samples are more likely to
be represented as convex combinations of existing samples.
Theorem 5.1 ((Bárány & Füredi, 1988)). Given a d-dimensional dataset X ≜ x1, ..., xN

with i.i.d. samples uniformly drawn from a hyperball, the probability that a new sample x is
in the interpolation regime exhibits the following asymptotic behavior:

limd→∞p(x ∈ Conv(X)) =

{
1 ⇔ N > d−12d/2

0 ⇔ N < d−12d/2
(5)

Theorem 5.2 ((Kabluchko & Zaporozhets, 2020)). Let X consist of N i.i.d. d-dimensional
samples from N(0, Id) with N ≥ d+1, then for every σ ≥ 0 the probability that a new sample
x ∼ N(0, σ2Id) is in extrapolation regime is given by

p(x /∈ Conv(X)) = 2(bN,d−1(σ
2) + bN,d−3(σ

2) + …) (6)
with

bn,k(σ
2) = (

n
k
)gk(−

σ2

1 + kσ2
)gn−k(

σ2

1 + kσ2
), gn(r) =

1√
2π

∫ ∞

−∞
Φn(

√
rx)e−x2/2dx

where
√
r = i

√
−r if r < 0 and bN,k = 0 for k /∈ {0, 1,…, N}.

Theorem 5.1 indicates that as dimensionality increases, the convex hull struggles to cover the
entire data space, causing a significant drop in interpolation probability. In high-dimensional
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spaces, maintaining a high interpolation probability requires an exponential increase in data
size. In contrast, in low-dimensional spaces, data points are denser, making it easier for the
convex hull to cover new samples, resulting in a higher interpolation probability.
Theorem 5.2 quantitatively describes the probability of extrapolation in high-dimensional
spaces. As dimensionality increases, the likelihood of extrapolation rises, and interpolation
probability decreases.
Low-dimensional spaces offer higher interpolation probabilities, enabling effective generaliza-
tion with fewer data points. In contrast, high-dimensional spaces require significantly more
data to achieve similar results, highlighting the value of low-dimensional representations in
neural networks. This principle also applies to biological neural systems, where increased
interpolation probabilities improve information encoding efficiency. Our EEG analysis indi-
cates that neural representations adapt to task difficulty, allowing the brain to generalize
quickly from past experiences. This dynamic coding strategy supports cognitive flexibility
and decision-making while minimizing computational demands.
However, if the data distribution is non-uniform, the advantages of low-dimensional repre-
sentations may be diminished. Sparse regions in the data space can reduce interpolation
effectiveness, leading to increased extrapolation errors. Therefore, both low dimensionality
and uniformity of the representation manifold are essential. Uniform distribution enhances
interpolation probability, enabling better generalization and improving encoding efficiency.
For optimal performance, it is crucial to ensure that both neural networks and biological
systems maintain low-dimensional, uniformly distributed representations.

6 Existence of Generalization Error Bound in the
Interpolation Regime and the Impact of Dimension

Low-dimensional representations can increase interpolation probability, thereby enhancing
the efficiency of information encoding in systems. In this section, we further theoretically
demonstrate that, within the interpolation regime, neural networks have a generalization
error upper bound, which decreases as the dimensionality becomes smaller.

Theorem 6.1. Let ℓ(y, x, θ) be a loss function that is Lipschitz continuous with respect to
both x ∈ Rd and y ∈ Rk, with Lipschitz constant L. Assume that the input data x and output
data y are bounded such that ∥x − x′∥ ≤ Dx and ∥y − y′∥ ≤ Dy for all x, x′ and y, y′. Let
L̂(θ,D) be the empirical loss over a dataset D = {(xi, yi)}ni=1, and let L(θ) be the expected
loss over the data distribution v. Then, for any ϵ > 0, the following bound holds:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

L2(Dx +Dy)2

)
. (7)

Furthermore, if the Lipschitz constant L and the data diameters Dx and Dy scale with the
dimension d as L = CL

√
d and Dx = Cx

√
d, while Dy is constant, then the bound becomes:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

C2d2

)
, (8)

where C = CL(Cx+Cy/
√
d) and for large d, C ≈ CLCx. This shows that the generalization

error bound becomes tighter as the dimension d decrease.

This theorem highlights the critical role of dimension in generalization performance. While
the dimension of raw data remains fixed, we can shift the focus from the dimension of raw
data to the dimension of the learned representations. In this context, lower representation
dimension leads to better generalization performance.
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7 Discussion and Conclusion

In this study, we demonstrated that dynamic compression mechanisms in both neural net-
works and the brain lead to the formation of uniform low-dimensional representation man-
ifold. This manifolds plays a pivotal role in enhancing interpolation probability, which,
in turn, contributes to improved generalization capabilities. This resemblance in informa-
tion processing strategies between artificial neural networks and biological neural systems
underscores the universality of efficient low-dimensional encoding across intelligent systems.
While our research provides valuable insights into the interplay between data complexity,
compression and generalization, it also has several limitations that warrant further explo-
ration:

• Expansion to Other Neural Signal: Although this work focuses on EEG and
iEEG data, future studies should investigate whether similar compression patterns
are observed in other neural modalities. We focused on EEG and iEEG due to their
sufficient temporal resolution, which allows each moment’s multi-channel informa-
tion to be treated as a vector, with different moments serving as different samples.
Current dimensionality estimation algorithms produce reliable results only when
the number of samples exceeds the dimensionality (Levina & Bickel, 2004). For sig-
nals like fMRI, which have high spatial but low temporal resolution (Goense et al.,
2016), the algorithm either becomes inaccurate or can only be applied to local brain
regions. Therefore, to extend this analysis to other neural modalities like fMRI or
MEG, improvements in dimensionality estimation algorithms are necessary.

• Task Complexity and Dimensionality: Our results indicate that the intrinsic
dimension of neural manifold remains stable across tasks of varying complexity, such
as resting states and task-specific conditions. However, further research is needed
to assess whether more cognitively demanding tasks, which involve higher-order
reasoning or abstract thought, could alter the brain’s compression dynamics (Kool
et al., 2010; Botvinick & Rosen, 2009; Kraus et al., 2023). Investigating how the
brain adapts its encoding strategies based on task complexity would deepen our
understanding of cognitive flexibility.

• Optimization of Compression Mechanisms in Neural Networks: While we
have shown that neural networks employ dynamic compression to adapt to varying
data complexity, more work is required to optimize these mechanisms. Specifically,
future research could explore how incorporating architectural modifications such
as attention mechanisms or sparsity constraints could further enhance a model’s
ability to generalize across different domains. This could lead to more robust AI
systems that better mimic the flexibility of biological systems.

• Impact of Non-Uniform Manifolds: Our analysis focused on uniform low-
dimensional manifolds, yet real-world data often exhibit non-uniform distributions
(Crovella et al., 1998). Exploring the impact of non-uniform manifolds on interpo-
lation probability and generalization would provide a more realistic understanding
of how both biological and artificial systems handle complex, unevenly distributed
data.

• Handling of Out-of-Distribution Data: Our analysis focused on interpolation
within the convex hull of training data. However, a key limitation is the treatment
of out-of-distribution (OOD) data, which may lies outside the convex hull (Liu
et al., 2021). Neural networks may struggle to generalize when confronted with
OOD data, leading to higher error rates and reduced performance. Future stud-
ies should investigate how neural networks can be enhanced to handle such data
more effectively, either through architectural innovations or training strategies that
improve extrapolation capabilities. Understanding how biological systems manage
OOD information could also provide valuable insights.

In conclusion, dynamic compression strategies contribute significantly to the formation of
uniform low-dimensional representation manifolds, a key factor in both neural and artificial
systems’ ability to generalize effectively. This work highlights the parallels between biological
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information processing and AI, offering new avenues for the development of more efficient
models. Our findings lay a foundation for future research aimed at optimizing compres-
sion mechanisms and exploring the broader implications of low-dimensional representations
across various domains.
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A Technical Details Summary

To ensure robust intrinsic dimension analysis, we primarily utilized the skdim toolkit from
scikit-learn (Bac et al., 2021). For our calculations, we applied the Maximum Likelihood
Estimation (skdim.id.MLE()), Method Of Moments (skdim.id.MOM()), and Tight Local
intrinsic dimensionality Estimator (skdim.id.TLE()) algorithms. The key hyperparameter
for these functions is k, representing the number of nearest neighbors. We experimented
with 10 different hyperparameter settings, ranging from k = 10 to k = 100, to estimate the
intrinsic dimension across datasets. EEG data preprocessing was conducted using the MNE
toolkit, where all EEG signals were resampled to 250 Hz, band-pass filtered between 1-80
Hz, and normalized using z-score scaling.

B Statistical Analysis and Algorithm Validation of Section
4.2

To evaluate the statistical significance of intrinsic dimension differences across various sen-
sory and task conditions, we employed the Wilcoxon signed-rank test as in Figure 3. Our
analysis revealed significant differences between the eyes-open (EO) and eyes-closed (EC)
states, suggesting that sensory conditions notably impact the complexity of neural repre-
sentations, as measured by intrinsic dimension. However, within each sensory condition—
whether in the EO or EC state—no significant differences were found between resting-state
and task-specific conditions (e.g., resting vs. memory tasks, or resting vs. auditory tasks).

Figure 3: Results of Wilcoxon signed-rank test before and after Bonferroni cor-
rection. The first row presents the original results of the Wilcoxon signed-rank test, while
the second row shows the results after applying the Bonferroni correction.

This lack of differentiation indicates that, for both EO and EC states, the brain maintains
a consistent level of intrinsic dimension across a range of cognitive tasks. Whether at
rest or engaged in different tasks, the neural manifold exhibits stability in its dimensional
complexity, suggesting that task-related processing does not induce substantial changes in
the brain’s overall representational structure, at least at the level of intrinsic dimensionality.
To ensure the robustness of these findings, we applied Bonferroni correction for multiple
comparisons. The results remained consistent after correction, further reinforcing the con-
clusion that intrinsic dimensionality is preserved across tasks, regardless of whether the
brain is in an active cognitive state or a resting state.
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Figure 4: Intrinsic dimensionality across various states estimated with the MOM
and TLE algorithm. The intrinsic dimension estimates obtained using the MOM and
TLE algorithms were consistent with those from the MLE algorithm. The only significant
difference observed was between the EO and EC conditions. Regardless of whether the brain
was engaged in a resting state or a task, the intrinsic dimension of neural activity remained
stable as long as the sensory condition (EO or EC) was maintained.

To further validate the accuracy and stability of our dimensionality analysis, we recalculated
the intrinsic dimensions using two additional algorithms: MOM and TLE algorithms. The
results, shown in Figure 4, were consistent with those obtained from the MLE algorithm,
reinforcing the reliability and robustness of our methods across various computational ap-
proaches.

C Proof of Theorem 6.1

Definitions Empirical Loss:

L̂(θ,D) =
1

n

n∑
i=1

ℓ(yi, xi, θ),

where D = {(xi, yi)}ni=1 is the dataset.
Expected Loss:

L(θ) = E(x,y)∼v[ℓ(y, x, θ)],

where v is the data distribution.

Objective Our goal is to bound the probability:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
.

Step 1: McDiarmid’s Inequality McDiarmid’s inequality states that if X1, X2, . . . , Xn

are independent random variables taking values in a set A, and the function f : An → R
satisfies the bounded differences condition:

sup
x1,...,xn,x′

i

|f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)| ≤ ci,

then for all ϵ > 0:

P (f(X)− E[f(X)] ≥ ϵ) ≤ exp
(
− 2ϵ2∑n

i=1 c
2
i

)
.
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Step 2: Bounded Differences Condition We need to verify the bounded differences
condition for the empirical loss function L̂(θ,D) when one sample (xi, yi) is replaced by
another (x′

i, y
′
i).

Define:
∆i =

∣∣∣L̂(θ,D)− L̂(θ,D′
i)
∣∣∣ ,

where D′
i is the dataset D with the i-th sample replaced by (x′

i, y
′
i).

Compute ∆i:

∆i =

∣∣∣∣ 1n (ℓ(yi, xi, θ)− ℓ(y′i, x
′
i, θ))

∣∣∣∣ .
Step 3: Applying Lipschitz Continuity By the Lipschitz continuity of ℓ, we have:

|ℓ(yi, xi, θ)− ℓ(y′i, x
′
i, θ)| ≤ L (∥xi − x′

i∥+ ∥yi − y′i∥) .

Therefore,

∆i ≤
L

n
(∥xi − x′

i∥+ ∥yi − y′i∥) .

Using the boundedness of the data:

∥xi − x′
i∥ ≤ Dx, ∥yi − y′i∥ ≤ Dy,

so we have:
∆i ≤

L

n
(Dx +Dy) = ci.

Step 4: Calculating the Sum of c2i Since ci =
L
n (Dx +Dy) for all i, we have:

n∑
i=1

c2i = nc2i = n

(
L

n
(Dx +Dy)

)2

=
L2(Dx +Dy)

2

n
.

Step 5: Applying McDiarmid’s Inequality Applying McDiarmid’s inequality:

P
(
L̂(θ,D)− E[L̂(θ,D)] ≥ ϵ

)
≤ exp

(
− 2ϵ2∑n

i=1 c
2
i

)
= exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

Similarly, for the lower tail:

P
(
L̂(θ,D)− E[L̂(θ,D)] ≤ −ϵ

)
≤ exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

Combining both tails:

P
(∣∣∣L̂(θ,D)− E[L̂(θ,D)]

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

Step 6: Connecting to Expected Loss Since samples are independent and identically
distributed (i.i.d.) from distribution v, we have:

E[L̂(θ,D)] = L(θ).

Therefore:
P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

L2(Dx +Dy)2

)
.

This proves the first part of the theorem.
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Step 7: Dependence on Dimension d Assume the following scaling with dimension d:
1. Lipschitz Constant L:

L = CL

√
d,

where CL is a constant independent of d.
2. Data Diameter Dx:

Dx = Cx

√
d,

where Cx is a constant.
3. Data Diameter Dy: For simplicity, assume Dy is constant (i.e., the dimension of y does
not grow with d).

Step 8: Substituting into the Bound Compute the denominator in the exponent:

L2(Dx +Dy)
2 = (CL

√
d)2(Cx

√
d+Dy)

2 = C2
Ld(Cx

√
d+Dy)

2.

For large d, Cx

√
d dominates Dy, so:

Cx

√
d+Dy ≈ Cx

√
d.

Thus,
L2(Dx +Dy)

2 ≈ C2
Ld(Cx

√
d)2 = C2

Ld(C
2
xd) = C2

LC
2
xd

2.

Therefore, the bound becomes:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

C2
LC

2
xd

2

)
.

Let C = CLCx, so:

P
(∣∣∣L̂(θ,D)− L(θ)

∣∣∣ ≥ ϵ
)
≤ 2 exp

(
− 2nϵ2

C2d2

)
.

This proves the second part of the theorem.

Conclusion The bound on the generalization error becomes tighter as the dimension
d decreases, specifically due to the d2 term in the denominator of the exponent. This
indicates that in lower-dimensional spaces, fewer samples n are required to ensure that the
empirical loss L̂(θ,D) closely approximates the expected loss L(θ). Therefore, reducing the
dimensionality of the input data can significantly improve generalization performance and
reduce the risk of overfitting, highlighting the importance of low-dimensional representation
for generalization.
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