
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

LEAD - Framework for efficient time-series anomaly detection on large scale
data using LLMs

Anonymous Authors1

Abstract
Condition-based monitoring (CBM) is essential
for maintaining high machine uptime in industrial
settings. While existing CBM solutions effec-
tively use time-series data (e.g., thermal, vibra-
tion, amperage, etc.), these can be enhanced with
LLMs to integrate domain knowledge and gen-
erate interpretable summaries. However, LLMs
often incur higher latency and cost than traditional
methods. We thus propose LEAD (LLM Enabled
Anomaly Detection), a two-stage framework. The
first stage acts as a screening step, detecting soft
anomalies using lightweight statistical methods.
The second stage leverages LLMs and batches
multiple time series in the same prompt to gen-
erate final anomalies. We show that the combi-
nation of statistical filtering and batching leads
to a more efficient and accurate anomaly detec-
tion pipeline. Applying LEAD to industrial mo-
tor amperage data at Amazon improves precision
from 27% (unsupervised deep learning) and 39%
(LLM-only) to 72%, while reducing latency 14
fold and token usage by 12 fold compared to an
LLM-only baseline. Lastly, we demonstrate that
LEAD’s accuracy gains from statistical filtering
and batching hold even on public datasets.

1 Introduction

Amazon Fulfillment Centers leverage condition-based mon-
itoring (CBM) technologies (like amperage, vibration, and
temperature sensors) to detect potential failures on machin-
ery. Anomaly detection algorithms are key to these CBM
technologies as they can flag unusual patterns. Current mod-
els within Amazon use statistical, machine learning, or deep
learning methods. However, these models don’t easily in-
corporate expert knowledge and their output requires extra
processing to be understandable for non-technical users.

Recent advances in Large Language Models (LLMs) have
shown promising results in time-series forecasting (Gruver
et al., 2024; Su et al., 2024; Ansari et al., 2024) and anomaly
detection (Alnegheimish et al., 2024; Dong et al., 2024; Liu

et al., 2024; Zhou & Yu, 2024; Zhuang et al., 2024) tasks.
Particularly, they have been shown to improve the quality
of detected anomalies by incorporating domain knowledge
and enhancing interpretability (Liu et al., 2024). While
these findings are impressive, the high costs and latency
associated with LLMs pose challenges for their adoption
on large-scale datasets (Su et al., 2024; Alnegheimish et al.,
2024; Xu & Ding, 2024). Given the scale of streaming
datasets at Amazon, a better framework is needed to lever-
age the potential of LLMs while balancing cost and latency.

We present a framework that combines lightweight anomaly
detection algorithms with LLMs for thorough analysis. This
two-stage approach balances efficiency with sophistication,
enabling faster model development without additional post-
processing. Our main contributions in the paper are - 1)
develop a two-stage framework for univariate time-series
anomaly detection by leveraging simple statistical tech-
niques and zero-shot prompting, 2) extend zero-shot prompt-
ing with a batching strategy that reduces the latency of the
LLM inference and improves accuracy, 3) perform ablation
studies and comparison with other baseline models, and 4)
show that key benefits from our framework generalize to a
public benchmark dataset.

2 Background and Problem definition

Background: Variable Frequency Drives (VFDs) are a key
component of equipment at Amazon Fulfillment Centers
(FCs). VFDs regulate the amperage drawn by motors and
provide important signatures related to the health of the
overall asset. While amperage can fluctuate a lot due to
variance in throughput of packages and the start-up inertia
of motors, underlying non-transient changes in amperage
signal potential defects with the asset (see Appendix A.1 for
examples).

Problem Statement: Our primary objective is to detect
anomalies in streaming amperage data, so that issues can
be flagged for technician review daily. To achieve this, we
evaluate each time series using a rolling window approach.
Each window is divided into two segments: a historical
segment and a latest segment. This segmentation allows
for a statistical comparison between the most recent data
and the corresponding historical baseline. Based on this
comparison, the latest segment can be flagged for potential
anomalies, which is further evaluated using LLM.

1



055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Formally, given a univariate time-series, Xk =
{xk,1, xk,2, xk,3, xk,t, .., xk,T } of data points, we want to
determine if the latest P data points, collectively can be
considered as an anomaly or not. Here k represents the
kth VFD and xt represents an hourly aggregated value of
amperage at hour t. We split the time-series into historical
data and the latest data (that needs to be evaluated). We
denote this split of Xk into Xk,historical and Xk,latest such
that Xk,historical = {xk,1, xk,2, xk,3, .., xk,W }, where W
is the window size for historical data, and Xk,latest =
{xk,W+1, xk,W+2, xk,W+3, .., xk,W+P } represents the pe-
riod of interest. The anomaly detection task is now to de-
termine if Xk,latest is anomalous given Xk,historical. For
our use-case, as this is streaming data, the anomaly eval-
uation needs to happen daily for every time-stream Xk

with a rolling window of eight days with the latest one
day (P = 24) to be tested against rest of the historical seven
days (W = 7× 24).

3 LLM Enabled Anomaly Detection (LEAD)
Framework

Unlike time-series forecasting where every point requires
prediction, anomaly detection focuses on irregularities, with
most data being normal which does not need a thorough
analysis using an LLM. We thus develop a two-stage frame-
work (Figure 1) where the first stage filters the data using
standard anomaly detection methods that are computation-
ally efficient and a second stage that leverages output from
first stage and passes to an LLM for anomaly detection. The
final output are anomalies detected via the LLM along with
explanations for anomalies in an easily readable free-text
format.

Stage 1: Statistical Filtering: The purpose of this stage
is as a screening step to reduce the data load that passes to
LLMs for processing, while retaining most potential anoma-
lies. To keep the first stage as simple as possible, we only
leverage statistical approaches in this framework.

At this stage, we compare Xk,historical and Xk,latest using
non-parametric methods like Wasserstein Distance, suitable
for multimodal real-world data. These tests are sensitive
to the scale of the data, so appropriate scaling is crucial
to get normalized score for all k time-series. We have em-
ployed max normalization (x

′

k,i = xk,i/max(Xk)), which
preserves the relative gaps between data points across differ-
ent time-series. Most of the non-zero amperage data lacks
significant variations, making standard deviation-based nor-
malization inappropriate because it could exaggerate differ-
ences. Similarly, min-max normalization distorts the data
gaps by forcing it into the [0,1] range, potentially inflating
the gaps, which is not desirable for our use-case.

The output of Stage 1 is a simple binary classification based

on rules of the statistical criterion chosen (Wasserstein Dis-
tance in this case):

yk =

{
1 if W1(X

′

k,historical, X
′

k,latest) > ϵ

0 otherwise
(1)

for all k ∈ {1, . . . , N}
where N is the number of time-series that need to be pro-
cessed. In our context, this is number of VFDs on a site. As
data is normalized, a threshold ϵ can be set as a percentile (p)
of W1 across all VFDs for a given window if large number
of time-series are present (our case).

Only M time-series that have yk= 1 (considered as soft
anomalies) will be passed to the second stage for final
anomaly detection by the LLM. While we have chosen
Wasserstein Distance as the statistical filter, any suitable
choice of statistical measure that suits the data and anoma-
lies can be chosen.

Stage 2: LLM Anomaly Detection with Batching : This
stage uses LLMs for zero-shot prompting, following a struc-
ture similar to that described in (Alnegheimish et al., 2024;
Liu et al., 2024). We designed the prompt as shown in Fig-
ure 6 that has task, data description, judgment rules based
on domain knowledge and specific instruction for the LLM
to follow. All the time-series that have been classified as
soft anomalies from Stage 1 are passed to the LLM using
this prompt for further evaluation. We prompt using raw
time-series data without any normalization to preserve se-
mantic meaning and discuss this aspect in more detail in
Appendix A.2.

Batching Time-series while Prompting: To optimize the
latency of the pipeline, we batch B time-series for anomaly
detection in a single prompt. While naive batching degrades
performance on natural language tasks (Cheng et al., 2023),
our studies show that on time-series anomaly detection tasks,
even naive batching improves results across multiple LLM
providers. We explain this observation and provide a theo-
retical intuition through an illustrative study using synthetic
data across four LLMs (Appendix B).

4 Experiments on Amperage Data from VFD

4.1 Data Description and Evaluation Criteria

We selected two Amazon FC sites for backtesting, and ana-
lyzed hourly aggregated amperage data from 1,241 VFDs
containing 893K data points. As no labeled anomalies are
present for amperage data, we utilize historical work orders
that denote breakdowns and corrective actions taken by site
as a proxy for labels. We evaluate all models in their ability
to detect anomalies in amperage within seven days of the
work performed by technicians. We describe calculation
of Precision (Pdet) and Recall (Rdet) in more detail in Ap-

2



110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs


X1

X2
...
Xk
...

XN


Statistical Filtering

Is W1(X
′

k,hist, X
′

k,latest) > ϵ

Non-anomalous Time-series


X1

X2
...

XM


Soft

anomalies Batching

X1, ... , XB

XB+1, ... , X2B

...

B is the batch size

LLM Prompting (Batch 2)

Task Description:
You are a technician that detects level shift
anomalies in time . . .
Data Description:
Each time-series consists of historical data and
latest data points for the analysis.
time_series_index: 25680
historical_data: [81, , ...]
latest_data: [112, ..., 129, 114]

time_series_index: 25677
historical_data: [170 170, ...]
latest_data: [76, ..., 117, 108]

...

LLM Prompting (Batch 1)

Task Description:
You are a technician that detects level shift
anomalies in time-series . . .
Data Description:
Each time-series consists of historical data and
latest data points for the analysis.
time_series_index: 25680
historical_data: [100, 123, ...]
latest_data: [112, ..., 129, 114]

time_series_index: 25677
historical_data: [170, 170, ...]
latest_data: [76, ..., 117]

...

True

False

Figure (1) Overall LEAD Framework

pendix A.3. Since we want to minimize nuisance alarms and
unnecessary maintenance actions due to false alarms, we
prioritize precision over recall and use F0.5 as our primary
metric (similar to (Luković et al., 2025; Hundman et al.,
2018)). Settings for individual hyper-parameters is detailed
in Appendix A.4.

4.2 Results

In Table 1, we benchmark our framework against common
anomaly detection models. LEAD model shows the best
performance on both sites when precision is concerned.
Advanced methods (Appendix A.5) do not provide out-of-
the-box high precision on VFD data as they require post-
processing and domain knowledge to filter trivial anoma-
lies which is already incorporated in LEAD framework’s
prompt 6. Secondly, we compare an LLM-only model
with batching (B = 15, p = 0) to our LEAD framework
(B = 15, p = 0.75). Note that an LLM-only model has
much lower precision (0.39 and 0.51 on Site 1 and Site 2
respectively) compared to both DBSCAN-OCSVM model
and LEAD. Our findings corroborate the high false positive
rates observed in LLM-only models in (Alnegheimish et al.,
2024). This shows that filtering trivial anomalies through
Stage 1 of LEAD helps improve the precision significantly
and provide better F0.5 score. Along with better accuracy,
LEAD also has 12 times lower token usage and is 14 times
faster compared to LLM-only models without batching as
shown in Appendix A.7 and has been piloted on above sites
(refer to Appendix D for preliminary results).
Ablation Studies: We conducted several ablation studies
on Site 1’s data as shown in Appendix A.8 and present key
highlights below.

4.2.1 IMPACT OF BATCHING ON F0.5 AND LATENCY

As shown in Figure 2, an increase in the batch size improves
the performance of LLMs. Further, as LLM processes mul-

Table (1) Performance of various baseline models

Model / Framework Site 1 Site 2

Pdet Rdet F0.5 Pdet Rdet F0.5

LEAD 0.72 0.14 0.39 0.75 0.25 0.54
LLM-only 0.39 0.25 0.35 0.51 0.45 0.49
DBSCAN-OCSVM1 0.67 0.02 0.09 0.63 0.06 0.37
TranAD 0.20 0.17 0.19 0.39 0.24 0.34
TadGAN 0.18 0.26 0.19 0.40 0.35 0.39
LSTM AE 0.27 0.09 0.19 0.34 0.13 0.25
Conv AE 0.24 0.09 0.18 0.29 0.21 0.27
Feedforward AE 0.23 0.10 0.18 0.36 0.23 0.32
VRNN 0.27 0.10 0.20 0.33 0.22 0.33
Supervised NN 0.27 0.10 0.20 0.39 0.23 0.34

1 Custom model optimized for Precision on Amperage Data.

tiple time-series in the same prompt, latency is significantly
reduced (6x). Batching thus has dual positive effects: reduc-
ing latency and improving accuracy. We believe that having
multiple time-series in its context helps the LLM distinguish
anomalous patterns better than providing a stand-alone time-
series.

1 5 10 15 20
0.2

0.25

0.3

0.35

Batch Size

F
0
.5

sc
or

e

F0.5

100

200

300

400

500

Ti
m

e
(s

ec
)

LLM Run Time

Figure (2) Impact of Batch Size on F0.5 score and LLM Infer-
ence Time per window. p = 0.85

4.2.2 IMPACT OF SHUFFLING AND VOTING

We have observed that LLM can reveal slightly different
anomalies with each run even with same prompt. This can
signal which data points the LLM is confident in recog-
nizing as anomalies. We use a strategy of prompting in
multiple rounds (r) with shuffled time-series inputs, classi-
fying time-series as anomalous only if it meets a minimum

3



165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

vote threshold (v). Table 2 shows that Precision improves
with increasing v for r = 6, while F0.5 scores remain mostly
consistent (except when r = v). This allows for setting pre-
cision thresholds and choosing r and v based on business
needs while maintaining F0.5 score. The full table with 1-6
shuffling rounds is in Appendix A.8.4.

Table (2) Impact of v with r = 6 (B = 10, p = 0.85)

Minimum Votes (v)

Metric 1 2 3 4 5 6

Precision 0.52 0.64 0.69 0.75 0.77 0.78
Recall 0.11 0.10 0.09 0.09 0.08 0.06
F0.5 0.30 0.31 0.30 0.30 0.28 0.23

5 Case Study on Public Data

The LEAD Framework was designed for anomaly detec-
tion on streaming sensor data from Amazon’s FCs. To
understand applicability of our framework more broadly, we
tested the LEAD framework on two public datasets from
NASA with known ground truth anomaly ranges (Hundman
et al., 2018). The data includes two sub-datasets: SMAP
and MSL. It contains 82 time-series and have 105 anoma-
lies including contextual or point anomalies. Experimental
settings for this study are detailed in Appendix C.1.

5.1 Results

As shown in Figure 3, having statistical filtering through
Stage 1 of LEAD (ϵ = 15), improves performance com-
pared to an LLM-only model (ϵ = 0). Similarly, batching
through Stage 2 improves performance, further highlighting
that LEAD works as expected even on public dataset.

Comparison with State-of-the-art models : Multiple
benchmarks exists for time-series anomaly detection task
on NASA’s SMAP and MSL data. We reproduce the bench-
mark study done in (Alnegheimish et al., 2024) and compare
it with our results in Appendix 13. Note that to align with
benchmark study we use the same methodology of F1 score
calculation. LEAD performs reasonably well given minimal
parameter optimization and prompt engineering as it is able
to beat or come close to 8 and 6 baselines (out of 11) for
SMAP and MSL data respectively. This can be explained
by the higher gains achieved from batching in SMAP data
(0.46 → 0.62) (as SMAP has 55 time-series vs 27 for MSL)
compared to MSL data (0.4 → 0.47) as shown in Figure 3.

Success and Failure Cases on NASA Data: In Figure 4,
we show that while LEAD was successful at detecting con-
textual anomalies, it missed point anomalies due to Stage
1’s Wasserstein Distance filtering, which is not very sensi-
tive to one-off outliers (hence used for our application on
VFD data). The framework could be enhanced by incorpo-

LLM-only model LEAD Framework
without batching

LEAD Framework
with batching

0

0.2

0.4

0.6

0.8

0.37 0.4
0.47

0.21

0.46

0.62

F
1

sc
or

e

MSL SMAP

Figure (3) Comparison of LLM-only model (ϵ = 0, B = 15),
LEAD Framework without batching (ϵ = 15, B = 1) and LEAD
Framework with batching (ϵ = 15, B = 10 )

rating additional statistical measures like Gaussian Mixture
Models or Control Charts to better detect such anomalies.

((a)) LEAD detects contextual anomaly

((b)) Point anomaly was undetected by LEAD

Figure (4) Sample success and failure on NASA Data

6 Conclusion and Future Work

In this paper, we propose LEAD, a framework for detecting
anomalies in univariate time-series using a hybrid approach
that combines statistical measures and LLMs. Through
ablation studies on proprietary Amazon and public datasets,
we show that LEAD improves both accuracy and efficiency
over LLM-only baselines. These improvements stem from
both statistical filtering in Stage 1 to identify soft anomalies
and batching multiple time-series in Stage 2. Future research
can explore more advanced batching strategies based on
Stage 1 anomaly scores (derived from statistical measures)
and extend the framework to multivariate time series, where
batching occurs naturally due to the data structure.

4



220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

References

Alnegheimish, S., Nguyen, L., Berti-Equille, L., and Veera-
machaneni, K. Large language models can be zero-
shot anomaly detectors for time series?, 2024. URL
https://arxiv.org/abs/2405.14755.

Ansari, A. F., Stella, L., Turkmen, C., Zhang, X., Mercado,
P., Shen, H., Shchur, O., Rangapuram, S. S., Arango,
S. P., Kapoor, S., Zschiegner, J., Maddix, D. C., Wang, H.,
Mahoney, M. W., Torkkola, K., Wilson, A. G., Bohlke-
Schneider, M., and Wang, Y. Chronos: Learning the
language of time series, 2024. URL https://arxiv.
org/abs/2403.07815.

Cheng, Z., Kasai, J., and Yu, T. Batch prompting: Efficient
inference with large language model apis, 2023. URL
https://arxiv.org/abs/2301.08721.

Dong, M., Huang, H., and Cao, L. Can LLMs serve as
time series anomaly detectors?, 2024. URL https:
//arxiv.org/abs/2408.03475.

Geiger, A., Liu, D., Alnegheimish, S., Cuesta-Infante, A.,
and Veeramachaneni, K. Tadgan: Time series anomaly de-
tection using generative adversarial networks. 2020 IEEE
International Conference on Big Data (Big Data), pp. 33–
43, 2020. doi: 10.1109/BigData50022.2020.9378139.

Gruver, N., Finzi, M., Qiu, S., and Wilson, A. G. Large lan-
guage models are zero-shot time series forecasters, 2024.
URL https://arxiv.org/abs/2310.07820.

Hong, G. and Suh, D. Supervised-learning-based intelligent
fault diagnosis for mechanical equipment. IEEE Access,
9:116147–116162, 2021. doi: 10.1109/ACCESS.2021.
3104189.

Howard, J. and Gugger, S. Fastai: A layered api for deep
learning. Information, 11(2):108, February 2020. ISSN
2078-2489. doi: 10.3390/info11020108. URL http:
//dx.doi.org/10.3390/info11020108.

Hundman, K., Constantinou, V., Laporte, C., Colwell, I.,
and Soderstrom, T. Detecting spacecraft anomalies us-
ing lstms and nonparametric dynamic thresholding. In
Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery amp; Data Min-
ing, KDD ’18, pp. 387–395. ACM, July 2018. doi:
10.1145/3219819.3219845. URL http://dx.doi.
org/10.1145/3219819.3219845.

Liu, J., Zhang, C., Qian, J., Ma, M., Qin, S., Bansal, C., Lin,
Q., Rajmohan, S., and Zhang, D. Large language models
can deliver accurate and interpretable time series anomaly
detection, 2024. URL https://arxiv.org/abs/
2405.15370.

Luković, V., Jovanović, , Ðurašević Pešović, S., Pešović,
U., and Ðord̄ević, B. Solid-State Drive Failure Pre-
diction Using Anomaly Detection. Electronics, 14(7):
1433, April 2025. ISSN 2079-9292. doi: 10.3390/
electronics14071433. URL https://www.mdpi.
com/2079-9292/14/7/1433.

Ren, H., Xu, B., Wang, Y., Yi, C., Huang, C., Kou, X.,
Xing, T., Yang, M., Tong, J., and Zhang, Q. Time-
series anomaly detection service at microsoft. In Pro-
ceedings of the 25th ACM SIGKDD International Con-
ference on Knowledge Discovery ; Data Mining, KDD
’19, pp. 3009–3017. ACM, July 2019. doi: 10.1145/
3292500.3330680. URL http://dx.doi.org/10.
1145/3292500.3330680.

Su, J., Jiang, C., Jin, X., Qiao, Y., Xiao, T., Ma, H., Wei, R.,
Jing, Z., Xu, J., and Lin, J. Large language models for
forecasting and anomaly detection: A systematic litera-
ture review, 2024. URL https://arxiv.org/abs/
2402.10350.

Sørbø, S. and Ruocco, M. Navigating the metric maze: A
taxonomy of evaluation metrics for anomaly detection in
time series, 2023.

Tatbul, N., Lee, T. J., Zdonik, S., Alam, M., and Gottschlich,
J. Precision and recall for time series, 2019.

Tuli, S., Casale, G., and Jennings, N. Tranad: Deep trans-
former networks for anomaly detection in multivariate
time series data. Proc. VLDB Endow., 15:1201–1214,
2022. doi: 10.14778/3514061.3514067.

Xu, R. and Ding, K. Large language models for anomaly
and out-of-distribution detection: A survey, 2024. URL
https://arxiv.org/abs/2409.01980.

Zamanzadeh Darban, Z., Webb, G. I., Pan, S., Aggarwal,
C., and Salehi, M. Deep learning for time series anomaly
detection: A survey. ACM Computing Surveys, 57(1):
1–42, October 2024. ISSN 1557-7341. doi: 10.1145/
3691338. URL http://dx.doi.org/10.1145/
3691338.

Zhang, Y., Chen, Y., Wang, J., and Pan, Z. Unsupervised
deep anomaly detection for multi-sensor time-series sig-
nals, 2021. URL https://arxiv.org/abs/2107.
12626.

Zhou, Z. and Yu, R. Can llms understand time se-
ries anomalies?, 2024. URL https://arxiv.org/
abs/2410.05440.

Zhuang, J., Yan, L., Zhang, Z., Wang, R., Zhang, J., and
Gu, Y. See it, think it, sorted: Large multimodal models
are few-shot time series anomaly analyzers, 2024. URL
https://arxiv.org/abs/2411.02465.

5

https://arxiv.org/abs/2405.14755
https://arxiv.org/abs/2403.07815
https://arxiv.org/abs/2403.07815
https://arxiv.org/abs/2301.08721
https://arxiv.org/abs/2408.03475
https://arxiv.org/abs/2408.03475
https://arxiv.org/abs/2310.07820
http://dx.doi.org/10.3390/info11020108
http://dx.doi.org/10.3390/info11020108
http://dx.doi.org/10.1145/3219819.3219845
http://dx.doi.org/10.1145/3219819.3219845
https://arxiv.org/abs/2405.15370
https://arxiv.org/abs/2405.15370
https://www.mdpi.com/2079-9292/14/7/1433
https://www.mdpi.com/2079-9292/14/7/1433
http://dx.doi.org/10.1145/3292500.3330680
http://dx.doi.org/10.1145/3292500.3330680
https://arxiv.org/abs/2402.10350
https://arxiv.org/abs/2402.10350
https://arxiv.org/abs/2409.01980
http://dx.doi.org/10.1145/3691338
http://dx.doi.org/10.1145/3691338
https://arxiv.org/abs/2107.12626
https://arxiv.org/abs/2107.12626
https://arxiv.org/abs/2410.05440
https://arxiv.org/abs/2410.05440
https://arxiv.org/abs/2411.02465


275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

A Supplementary material for Case Study on Amperage Data

A.1 Transient and non-transient anomalies

While VFDs are expected to draw a constant amperage if package throughput is the same, in practice regular fluctuations
(transient-anomalies) can be observed in VFD data which could be due to multiple reasons including changing throughput,
ramp up torque needed to start a motor, or overcoming friction that builds up during a jam when packages get stuck in
equipment – see Figure 5(a), 5(b) for examples. Non-transient anomalies on the other hand could be hidden under these
normal operating noise and need to be isolated through data processing and anomaly detection on specific patterns. (Figure
5(c), 5(d)).

((a)) Ramp up current during start of the motor leads to
spikes that are normal

((b)) Transient rise in amperage observed during debris
build up

((c)) Anomaly not visible due to intra-day noise ((d)) Anomalous amperage visible after data aggregation

Figure (5) Intra-day transient fluctuations compared to non-transient issues

A.2 Prompt and time-series representation used for case study on Amperage Data

Prompt template used for zero-shot LLM anomaly detection used in Stage 2 for the LEAD framework is shown in Figure 6.
In Table 3 we show impact of removing Level of change and Steps components of the prompt. The analysis shows that these
components provide necessary domain knowledge and LLM based model would lose significantly on precision without such
information in the prompt.

Time-Series Representation in the Prompt: Although normalization was necessary in Stage 1, we do not pass normalized
data to the prompt, as it would strip semantic meaning and limit the LLM’s ability to leverage domain knowledge or generate
technician-friendly anomaly explanations. Instead, we use indices from Stage 1 and format raw data as arrays for LLM
input. In our case study, raw amperage data from VFDs—already in integers and scaled by 100 (i.e., 100 = 1 amp)—requires
no further quantization. For time-series with fractional values, however, quantization is needed. In such cases, scaling and
truncating decimals, as proposed in (Gruver et al., 2024), is preferred. We include the scaling factor in the prompt to retain
semantic meaning for interpretability.

6



330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Prompt for VFD Amperage Data

Task Description: You are a technician that detects level shift anomalies in time-series data from sensors in industrial setting.
You can analyze multiple independent time-series in batch.
Data Description: Each time-series is a sensor reading sequence coming from motor’s amperage captured from the VFDs. Each
value is for one hour of data. The data is expected to have fluctuations and lots of noise. The values are in amperage but
multiplied by 100. So, 104 mean 1.04 Amps.
Judgment Rules:
1) A data point is anomaly if it deviates by at least 10 points or 0.1 amps compared to historical range(s). Note that historical data
may be multimodal.
2) Majority of data must be anomalous for the whole day to be classified as anomaly. Point anomalies do not make whole of the
latest data anomaly.
3) Whole day anomalies are extremely rare and only happen when there is a significant change and should be identified with
absolute certainty.
Level of change: 1) 0-0.1 amps (Not an Anomaly) 2) 0.1-0.5 amps 3) 0.5-1.0 amps 4) >1.0 amps
Strict steps to follow:
1) Analyze each time-series independently for anomalies in the latest_data array relative to the historical_data
array.
2) Count the number of anomaly data points in latest_data array
3) Classify latest_data as anomalous only when anomaly data points are significantly different from historical pattern and
show a clear shift in level on a persistent basis
4) Re-assess the classification of latest_data as anomaly. Ensure that you are not calling out the latest_data as
anomaly because of few point anomalies. There must be a persistent level shift.
5) Provide explanation only when anomaly is detected.
6) In LLM explanation, remember to convert values from raw data to amps by dividing by 100. So, for example, 204 becomes
2.04 amps
7) For each time-series, provide the output in strict JSON format with the following structure:

"[
{
"time_series_index": <index>,
"anomaly": "Yes/No",
"anomaly_type": "Level Shift Up or Level Shift Down",
"anomaly_explanation": "<provide quantitative explanation>",
"level of change": <Based on buckets above>
}

]"

Strictly return a valid JSON list of objects and no additional content or explanation outside JSON.

Figure (6) Prompt for zero-shot anomaly detection on VFD Data

Table (3) Performance Comparison of Different Prompt Versions (Site 1, p = 0.85, B = 15)

Prompt Precisiondetection Recalldetection F0.5

Full Prompt 0.70 0.095 0.308

Prompt with No Level Change Information 0.61 0.081 0.265

Prompt with No Level Change and Step wise process 0.47 0.089 0.253

A.3 Precision and Recall on work order Data

We lack labeled anomalies and use work orders, which are primarily of three types: breakdown (BRKD), corrective
maintenance (CM), and follow-up preventive maintenance (FPM) as proxy labels. Our model aims to detect anomalies
before breakdowns, but CM and FPM can alter the asset’s properties, affecting amperage. For example, a belt change during
FPM may cause slight (but permanent) variation in amperage. These events thus become potential detection candidates for
model evaluation as they represent non-transient anomalies. In practice, however, we suppress detections during CM or
FPM, recognizing them as proactive actions taken by technicians.

7



385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Evaluation Criteria: Defining precision and recall for anomaly detection in time-series is complex due to differing
interpretations of successful detection. Point-based precision is less relevant, as we expect lead time before breakdowns,
favoring range-based metrics. Studies (Sørbø & Ruocco, 2023; Tatbul et al., 2019) address these challenges, but we lack
methods to categorize predicted anomalies into ranges or predefined real anomaly ranges. We therefore adapt range-based
precision and recall by using work order data.

Precision is defined as the ratio of successfully detected anomalies within h days before a work order to the total number of
anomalies generated by the model. We introduce two settings: Predictive, rewarding only pre-work order detections, and
Detection, rewarding any detection within h days around the work order. Due to the higher frequency of CM/FPM compared
to BRKD work orders, Precision/Recall is naturally higher in the Detection setting.

Mathematically, given Np as total anomalies flagged by the model, we define Nh,p,before as the number of anomalies
flagged in h-days window before a work order. We can then define precision as:

Precisionpredictive =
Nh−before,p

Np
, P recisiondetection =

Nh−any,p

Np

Recall is defined as the ratio of successful work order events identified within h-days window of the work order to total
work order events (Nwo). Here as well we define two variants as below:

Recallpredictive =
Nh−before,wo

Nwo
, Recalldetection =

Nh−any,wo

Nwo

We set h = 7 days across evaluations on VFD Data.

A.4 Hyper-parameters for the framework

Below we list the key hyper-parameters for the LEAD Framework. The ranges mentioned below were used for the case
study on VFD Data.

• ϵ - We set this parameter based on pth percentile of Wasserstein Distance (W1) for the data for each rolling window.
This ensures that top-p fraction of data as judged by the Stage 1 statistical criteria is passed to the LLM. We vary p in
our experiments from 0.65 to 0.95

• Window, W - We set window, W = 7× 24 as look back period for historical data.

• Period, P - We set window, P = 24 for the latest period of interest.

• Batch Size, B - Number of inference time-series chained in one prompt. We vary this between 1, 5, 10, 15 and 20.

• LLM Settings - To minimize the variability in output we set temperature = 0, topk = 1, topp = 1 across all LLMs

Table (4) Performance metrics for work order types across sites

Site Work order type Prediction Detection
Precision Recall F0.5 Precision Recall F0.5

Site 1 Breakdown 0.08 0.08 0.08 0.12 0.11 0.12
Total 0.29 0.06 0.16 0.72 0.14 0.39

Site 2 Breakdown 0.03 0.17 0.07 0.12 0.17 0.13
Total 0.36 0.12 0.26 0.75 0.25 0.54

A.5 Baseline Models

Unsupervised Models: We tested multiple deep learning based methods - LSTM, Convolutional, and Feedforward
autoencoders as well as Variational Recurrent Neural Networks (VRNNs) (Zhang et al., 2021; Zamanzadeh Darban et al.,

8



440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

2024; Ren et al., 2019). These unsupervised models learn to reconstruct normal data patterns and identify anomalies through
high reconstruction errors. VRNNs combine the benefits of variational methods with recurrent architectures to model both
uncertainty and temporal dependencies. LSTM-based autoencoders capture long-term temporal patterns, while convolutional
architectures efficiently extract local features. We further expanded our investigation to include Transformers for Anomaly
Detection (TranAD) and Time Series Anomaly Detection using Generative Adversarial Networks (TadGAN). TranAD ((Tuli
et al., 2022)) leverages the self-attention mechanism of transformers to capture complex temporal dependencies and global
patterns in the data without the sequential constraints of recurrent architectures. TadGAN ((Geiger et al., 2020)) combines
the power of adversarial training with autoencoder architectures, where the discriminator learns to distinguish between
normal and anomalous patterns while the generator aims to reconstruct normal behavior. This adversarial approach provides
a more robust anomaly detection framework by learning both reconstruction and discrimination-based features.

Results show that all the unsupervised models do not provide a good out-of-the-box precision and potentially require
additional post-processing based on expert knowledge and to filter out false positives.

Semi-supervised: Our custom model (DBSCAN-OCSVM) used for amperage anomaly detection at Amazon is a semi-
supervised model and has been optimized for precision through additional post-processing. The model first utilizes DBSCAN
to reduce the noise in the data, followed by a one class SVM to construct the decision boundary for flagging anomalies.
Additional post-processing parameters were introduced in the pipeline that were derived from the OCSVM model output.
The hyper parameters of the SVM, DBSCAN and post-processing parameters were tuned based on historic anomalies to
optimize for precision.

Supervised Model: We also explored supervised deep learning ensemble models (Howard & Gugger, 2020), (Hong &
Suh, 2021) for anomaly detection, using known breakdown occurrences as labels. This approach aimed to directly learn
patterns associated with breakdowns. However, the highly imbalanced nature of the dataset, with rare breakdown events,
posed significant challenges. Moreover, the limited availability of accurate labels for anomalies restricted the model’s ability
to generalize to unseen failure modes.

A.6 True Positive, False Positive and False Negative Cases

In this section, we present four illustrative cases that highlight true positive, false positive and false negative classifications
of anomalies detected by the LLM model, along with the generated explanations.

Case 1: An anomaly was detected during follow-up preventive maintenance (FPM). Notably, no signal was present in the
data before the FPM, and the model accurately detected the change on the day the maintenance was performed.

Case 2: The model identified an anomaly five days before an actual breakdown, as indicated by a clear spike in amperage,
representing a true positive detection.

Case 3: A level shift in amperage data was detected, but no corresponding work order was available. This scenario might
indicate that either the work was performed but not logged, or the machine’s increased throughput led to higher amperage.
These cases are classified as false positives since the reason for the change cannot be verified in back-testing and requires
live monitoring.

Case 4: A false negative example occurred where a Photo-eye issue caused a breakdown, yet no signal was present in the
amperage data.

All LLM-generated explanations provide concise, human-readable summaries, and these will integrate into work orders
when the model is deployed. The LLM effectively converted raw data (multiplied by 100 and in integer format) into real
amperage values, eliminating the need for further post-processing.

9



495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Case 1 - VFD 26388

LLM Anomaly Explanation

The data has shifted from a historical range of 1.58–1.65 amps to a
persistent lower level of 1.50–1.54 amps. This represents a clear and
maintained downward level shift of approximately 0.1 amps.

Classification: True Positive

Case 2 - VFD 25680

LLM Anomaly Explanation

The latest data shows a persistent upward shift to around 1.15–1.25 amps
compared to historical levels which were typically between 0.85–1.10
amps.

Classification: True Positive

Case 3 - VFD 25682

LLM Anomaly Explanation

The latest data shows a sustained shift up to around 1.65–1.70 amps
compared to historical range of 1.35–1.60 amps.

Classification: False Positive

Case 4 - VFD 86610

Classification: False Negative

A.7 Detailed Cost and Latency Analysis

In Table 5, we show a comparison of total token usage count and latency of our proposed framework and compare it with
the zero-shot LLM-only models, both with and without batching. All estimates for the analysis are based on token usage
and latency for Claude 3.5 Sonnet v2 used via Bedrock. The analysis shows that our proposed framework is 14 times
faster compared to the LLM-only model (without batching) and achieves a runtime that is comparable to current models
in production. Similarly, the LLM token usage in LEAD Framework is 12 times lower compared to the LLM-only model
without batching and 7 times lower compared to the LLM-only model with batching. While the numbers can vary based on
the choice of parameters B and p, the reduction in token usage and latency would still be significant for any reasonable
choice of these parameters that is best for accuracy.

10



550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Table (5) Comparison of LLM-only Models and the LEAD Framework

Metric LLM-only Model LLM-only Model LEAD Framework

without Batching (p = 0, B = 1) with Batching, (p = 0, B = 15) (p = 0.85, B = 15)

Input tokens per inference 1200 9644 9644

Output tokens per inference 63 836 836

No of inferences per day 1241 82.7 12.4

Total token usage 1,567,383 867,045 130,057

LLM Latency per site/day 21 min 11 min 1 min 26 sec

A.8 Ablation Studies on Amperage Data for Site 1

All ablation studies have been performed on Claude 3.5 Sonnet v2 for its consistent results (details on comparison with other
LLM models is presented in Appendix A.8.3).

A.8.1 IMPACT OF STAGE 1 PARAMETER

In Table 6, we show how the results would have been under different choices of threshold ϵ for Stage 1. We set this parameter
by varying the percentile p of the data that is passed to LLM. We notice that as p increases to the 90th percentile, we see a
drop in both precision and recall. Furthermore, note that setting p = 0 is equivalent to an LLM-only model.

Table (6) Performance metrics for different values of p for same Batch Size (B = 15)

p Precisiondetection Recalldetection F0.5

0.65 0.606 0.133 0.355

0.70 0.609 0.151 0.379

0.75 0.715 0.141 0.394

0.80 0.725 0.100 0.322

0.85 0.700 0.095 0.308

0.90 0.588 0.077 0.252

0.95 0.529 0.036 0.141

A.8.2 DETAILED RESULTS FOR ABLATION STUDIES ON BATCHING

As shown in Table 7, an increase in the batch size improves the performance of LLMs by increasing the precision significantly.
As an LLM processes multiple independent time-series in the same prompt, latency is also significantly reduced (6x).
Batching thus has dual positive effects: reducing latency and improving accuracy.

Table (7) Performance metrics for different values of Batch Size (B), p = 0.85

B Precisiondetection Recalldetection F0.5 Latency (sec)

1 0.677 0.069 0.246 480

5 0.633 0.095 0.297 114

10 0.757 0.089 0.304 91

15 0.700 0.095 0.308 86

20 0.693 0.092 0.301 80

11



605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

A.8.3 PERFORMANCE UNDER DIFFERENT LLM MODELS

We tested several LLM models available in AWS Bedrock and found that Claude 3.5 Sonnet v2
(anthropic.claude-3-5-sonnet-20241022-v2:0) delivered the best performance. Unlike Cohere, Mistral,
and Llama models, which frequently encountered JSON decoding errors, the Claude models performed without such issues.
Moreover, the Claude models consistently adhered to the instructions provided in the prompt. Detailed results are shown in
Table 8.

Table (8) Performance Metrics of LLM Models

LLM Model Pdetection Rdetection F0.5Score Comments

Claude 3.5 Sonnet v2 0.72 0.14 0.39 Good performance overall. No JSON Decoding Error, model is able
to follow instructions and able to do appropriate scaling (by 100)
when providing explanations

Claude 3 Sonnet 0.25 0.15 0.22 No JSON decoding error; follows instructions on unit conversion
while providing anomaly explanation, however has high false posi-
tives.

Cohere Command R+ 0.19 0.03 0.09 Frequent JSON decoding error, Model does not follow instructions
well and still produces explanation for non-anomalous time-series;
provided explanations have incorrect units of numbers

Llama 3.2 11b Instruct - - - LLM unable to understand instruction. Provides output like - result
= detect_anomaly(26278, historical_data, latest_data)

Mistral 7b Instruct - - - Incorrect units and percentage in explanation. Example - The latest
data shows a persistent level shift of approximately 0.134 amps
(13.4%) compared to the historical data

A.8.4 IMPACT OF REPEATED PROMPTING BY USING SHUFFLING AND VOTING

Although the ablation studies above are based on single runs with the same parameters, we have observed that multiple
iterations with identical input to the LLM can yield slightly different outputs (Table 9). To leverage this non-homogeneity in
output to extract high confidence answers, we adopt a strategy of repeatedly prompting LLMs across multiple round (r) and
classify anomalies only when they have been voted as anomalies a minimum of v times. Results are shown in Table 10

Table (9) Performance Metrics for Different Runs, B = 20, p = 0.85

Run Precisiondetection Recalldetection F0.5

Run 1 0.693 0.092 0.301
Run 2 0.728 0.105 0.333
Run 3 0.704 0.092 0.303

Table (10) Effect of Shuffle Rounds and Minimum Votes on Precision, Recall, and F0.5 (B = 10, p = 0.85)

Shuffle Rounds
Precision Recall F0.5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 0.63 0.09 0.28

2 0.61 0.77 0.10 0.08 0.30 0.28

3 0.57 0.73 0.78 0.11 0.09 0.07 0.30 0.29 0.26

4 0.54 0.70 0.77 0.78 0.11 0.09 0.08 0.07 0.31 0.30 0.29 0.26

5 0.51 0.65 0.72 0.79 0.82 0.11 0.10 0.09 0.08 0.06 0.29 0.30 0.30 0.29 0.24

6 0.52 0.64 0.69 0.75 0.77 0.78 0.11 0.10 0.09 0.09 0.08 0.06 0.30 0.31 0.30 0.30 0.28 0.23

12



660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

B Performance of Batch Prompting across multiple LLM Providers on Synthetic Data

To assess whether batching-related gains are specific to Claude Models, we generated synthetic data and tested it across
different LLM providers. The dataset consisted of 500 normal data points followed by 50 points with a synthetically injected
anomaly. The first nine series (S1-S9) contained trivial anomalies (e.g., anomalies passing the Stage 1 statistical filter in the
LEAD Framework but considered minor), while only S10 featured a major anomaly with a level shift in the seasonal pattern.
Please refer to Figure 7 for visualization of the series.

Each model provider was tested in two modes using the prompt in Figure 8 : 1) ’Batch’ where all ten time-series data was
passed in the same prompt and LLM outputs a JSON with all time-series in one invoke. 2) ’Single’ where each time-series
was passed one by one to the prompt. All LLMs were set to minimum temperature, top_p, and top_k settings to
minimize variations in output.

Results in Table 11 show that all the LLMs perform better at detecting major anomaly (and ignoring trivial noise) when data
is passed in ’Batch’ mode compared to prompting in ’Single’ mode. Both, Claude 3.5 Sonnet and Cohere Command R+
perform much better in batch mode at ignoring ’trivial’ anomalies. This illustrative experiment shows that batching related
accuracy improvements are not particular to any LLM providers but is a better strategy to prompt for anomaly detection
tasks across LLMs as they seem to benefit from other time-series in the context. A more detailed discussion is provided in
the next section B.1.

B.1 Intuition behind improvement in Precision from Batching

The observation that batching multiple time-series improves precision in LLM-based anomaly detection, as opposed to
single time-series prompting, can be supported by considering how LLMs process information and leverage context. The
core idea is that a batch provides a richer context that allows the LLM to make more informed and robust judgments, leading
to less false positives.

• Let Xk denote the k-th time-series from the M time-series flagged as ‘soft anomalies’ by Stage 1.

• Let R represent the set of rules and instructions provided in the prompt.

• Let Ak be the event that Xk contains a true anomaly.

LLMs, especially in a zero-shot setting, establish a baseline of ’normal’ behavior based on the input data and the provided
rules R. When processing a single time-series Xk, the LLM’s understanding of normalcy is limited to the characteristics of
Xk itself (and its historical data included in the prompt segment for Xk) and its pre-trained knowledge, as guided by R.

Single Series Prompting A variation within Xk might be statistically rare for that specific series but could be a common
type of fluctuation or operational mode when considering a broader set of similar entities. If this variation is unusual for Xk

in isolation, the LLM might incorrectly flag it as an anomaly, leading to a False Positive (FP).

The probability might be relatively high if Xk exhibits even trivial anomaly compared to historical data:

P (LLM flags Xk as anomalous | Xk, R,¬Ak)

Batched Series Prompting When a batch of B time-series X1, . . . , XB is provided, the LLM gains access to a richer,
contemporaneous sample of behaviors. It can implicitly learn or infer a more robust and representative ’normality distribution’
from the batch itself. If several series in the batch exhibit similar types of trivial anomalies (as they have passed Stage 1
statistical filter), the LLM can better calibrate its threshold for what constitutes a deviation significant enough to be an
anomaly according to R. A pattern in Xk that might have seemed anomalous in isolation could be contextualized as part of
the normal operational variance observed across the batch. Thus, each batch could provide the LLM with multiple examples
of both trivial and major anomaly patterns, creating an implicit few-shot learning setup.

The probability, therefore, is likely to be lower than with single prompting for such trivial anomaly cases:

P (LLM flags Xk as anomalous | Xk, {Xj}j ̸=k,j∈B , R,¬Ak)

13



715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Figure (7) Synthetic data with Normal (blue) range and Anomaly Range (Red). Series S1-S9 have trivial anomalies and
Series S10 has a major anomaly.

Table (11) Comparison of Anomaly Detection across Model Providers in ’Batch’ and ’Single’ mode on Synthetic Data.
’Yes’ implies model detected time-series as anomaly and ’No’ implies model detected no anomalies. Only S10 has non-trivial
anomaly that needs to be detected

Time Series Anomaly Maverick 17B Mistral 7B Cohere Command R+ Claude 3.5

Batch Single Batch Single Batch Single Batch Single

S1 No Yes No Yes Yes No Yes No No
S2 No Yes Yes Yes Yes No Yes No Yes
S3 No Yes Yes No Yes No Yes No No
S4 No No Yes No Yes No Yes No No
S5 No No Yes No Yes No Yes No No
S6 No Yes Yes No Yes No Yes No Yes
S7 No Yes Yes Yes Yes No Yes No No
S8 No Yes Yes No Yes No Yes No No
S9 No No No No Yes No Yes No Yes
S10 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Anomaly Count 1 7 8 4 10 1 10 1 4

14



770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Prompt for Synthetic Data

Task Description: Task Description: You are an expert at anomaly detection in patterns of time-series data from sensors. You
can analyse multiple time-series in batch.
Data Description: Each time-series is a sensor reading that has both historical_data and latest_data.
Judgment Rules:
1) 1. A data point is anomaly if it deviates compared to historical pattern. Note that historical data may have seasonal pattern or
trends.
2) Anomalies are when the latest data has a different pattern than historical values.
3) Do not call data points as anomalies if they follow the pattern but have slightly different peaks or troughs
4) Do not call indices as anomalies unless there is a clear and significant deviation. Ignore smaller deviations as
anomalies are EXTREMELY rare
4) Always give range of anomalies, if there is a single anomaly point, add padding of 5 indices
Strict steps to follow:
1) Analyze each time series independently for anomalies in the latest_data array relative to the
historical_data array.
2) Identify indices in the latest_data that might be anomalous (look for both distribution changes and pattern
changes)
3) Provide explanation only when anomaly is detected.
4) For each time series, provide the output in strict JSON format with the following structure:

"[
{

"time_series_index": <index>,
"anomaly_explanation": "<provide quantitative explanation>",
"anomaly_indices": [<indices>],
"anomaly": "Yes/No"

}
]"

Strictly return a valid JSON list of objects and no additional content or explanation outside JSON.

Figure (8) Prompt for zero-shot anomaly detection on Synthetic Dataset

C Supplementary Material for NASA Data

C.1 Experiment Setup

We utilize a very similar setup as used in Amazon’s VFD data. For the NASA data, we set the period, P , of analysis to be 70
(based on the downlink frequency) as mentioned in the original paper (Hundman et al., 2018). We set the window, W , to be
700 to maximize historical window context for LLM while minimizing anomalies to fall in the first window (only 1 anomaly
out of 105 anomaly ranges occur before index 700). For threshold on Wasserstein distance, we set the value of ϵ to be 15
(see Ablation study in Appendix C.2). All the data was scaled between 0 to 1 using min-max scaling and then quantized to
take integer values from 0 to 100. The LLM prompt used for the studies is shown in Figure 9 and time-series from both
SMAP and MSL data were combined in the same pool to maximize opportunities for batching. The LLM model used is
Claude 3.5 Sonnet v2. We use the same evaluation criteria of Precision and Recall as used in the original paper (Hundman
et al., 2018) and benchmark study (Alnegheimish et al., 2024), where range-based metrics are calculated based on overlap of
ground truth with detected anomalies.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Prompt for NASA Data

Task Description: You are an expert at anomaly detection in patterns of time series data from sensors. You can analyse multiple
independent time series in batch.
Data Description: Each time series is a sensor reading from NASA Space rovers on Mars
Judgment Rules:
1) A data point is anomaly if it deviates compared to historical pattern. Note that historical data may have seasonal trends.
2) Anomalies are when the latest data has a different pattern than historical values. 3) Do not call data points as anomalies if they
follow the pattern but have slightly different peaks or troughs
4) Do not call indices as anomalies unless there is a clear and significant deviation. Ignore smaller deviations as anomalies are
EXTREMELY rare
5) Always give range of anomalies, if there is a single anomaly point, add padding of 5 indices
Strict steps to follow:
1) Analyze each time series independently for anomalies in the latest_data array relative to the historical_data
array.
2) Identify indices in the latest_data that might be anomalous (look for both distribution changes and pattern changes)
3) Provide explanation only when anomaly is detected.
4) For each time series, provide the output in strict JSON format with the following structure:

"[
{"time_series_index":<index>,
"anomaly_explanation": <provide quantitative explanation>,
"anomaly_indices": [indices],
"anomaly": "Yes/No"}

]"

Strictly return a valid JSON list of objects and no additional content or explanation outside JSON.

Figure (9) Prompt for zero-shot anomaly detection on NASA Dataset

C.2 Ablation study for variations on ϵ on NASA data

In Table 12 we show the variation of F1 score across NASA datasets at different ϵ. Overall, ϵ = 15 shows the best
performance. Figure 10 shows how batching improves performance on SMAP data, particularly by improving the Precision,
reinforcing that having multiple time-series in the same prompt help LLMs to ignore trivial anomalies.

Table (12) F1 Scores for Different ε Values for B = 10

ε MSL SMAP Overall Data

5 0.423 0.303 0.341
10 0.426 0.473 0.455
15 0.472 0.618 0.509
20 0.450 0.500 0.478
25 0.377 0.387 0.383
30 0.387 0.326 0.351

16



880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

1 5 10 15 20 25 30 35 40
0.3

0.4

0.5

0.6

0.7

0.8

Batch Size

F
1

sc
or

e

Precision

F1

Figure (10) Batching improves F1 scores for SMAP data primarily through increased Precision

C.3 Comparison of LEAD results on NASA dataset with available baselines

In Table 13 a comparison of LEAD Framework’s results is shown with other baseline methods. The numbers for other
baseline methods have been reproduced from the study (Alnegheimish et al., 2024)

Table (13) Model Performance (F1) on NASA Datasets with Difference from LEAD

Model MSL SMAP Diff w/ LEAD (MSL) Diff w/ LEAD (SMAP)

AER 0.587 0.819 -19.6% -24.5%
LSTM DT 0.471 0.726 0.2% -14.9%
LEAD (ours) 0.472 0.618 0.0% 0.0%
ARIMA 0.525 0.411 -10.1% 50.4%
Matrix Profile 0.474 0.423 -0.4% 46.1%
TadGAN 0.560 0.605 -15.7% 2.1%
LSTM AE 0.545 0.662 -13.4% -6.6%
VAE 0.494 0.613 -4.5% 0.8%
AnomalyTransformer 0.400 0.266 18.0% 132.3%
Moving Average 0.171 0.092 176.0% 571.7%
MS Azure 0.051 0.019 825.5% 3152.6%

D Insights from Pilot

With the improvement in latency made by this framework and better recall than the current production model in back-testing,
we piloted LEAD in Week 16 and Week 18 on Site 1 and Site 2 respectively to gather feedback from technicians. While
anomaly instances are rare and we are early in our pilot to fully evaluate it, we have already detected six defects through
LEAD that were undetected by current production model (Sample detections shown in Figure 11). Preliminary results for
Precision are shown in Table 14 and are broadly inline with back-testing performance observed through case study.

Table (14) Performance of LEAD in Pilot

Site Work orders resolved True positive work orders Precision Period

Site 1 30 24 80.00% 14 Apr – 18 May
Site 2 13 9 69.23% 28 Apr – 18 May

17



935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

((a)) Amperage rise detection leading to removal of amnesty

((b)) LEAD detected unusual variance in amperage pointing to tracking issue in belt

Figure (11) Sample detection by LEAD in Pilot (that were undetected by current model), please refer to explanations generated by
LEAD in gray boxes in the images

E What are suitable use-cases for the LEAD Framework?

From the studies above we can observe that LEAD Framework works best for anomaly detection tasks that have following
properties 1) highly imbalanced data so that most trivial time-series can be discarded in Stage 1, 2) have opportunity of
parallel processing of large number of time-series (to exploit gains from batching in Stage 2), and 3) require domain level
knowledge and out-of-the-box explainability.

The simple design of the framework makes it easy to adapt to different use-cases with minimal changes and achieve
comparable results with state-of-the-art techniques. Further, the framework is particularly useful in cold-start problems
where not much historical data is present for training deep-learning models.

18


	Introduction
	Background and Problem definition
	LLM Enabled Anomaly Detection (LEAD) Framework
	Experiments on Amperage Data from VFD
	Data Description and Evaluation Criteria
	Results
	Impact of Batching on F0.5 and Latency
	Impact of Shuffling and Voting


	Case Study on Public Data
	Results

	Conclusion and Future Work
	Supplementary material for Case Study on Amperage Data
	Transient and non-transient anomalies
	Prompt and time-series representation used for case study on Amperage Data
	Precision and Recall on work order Data
	Hyper-parameters for the framework
	Baseline Models
	True Positive, False Positive and False Negative Cases
	Detailed Cost and Latency Analysis
	Ablation Studies on Amperage Data for Site 1
	Impact of Stage 1 parameter
	Detailed results for Ablation Studies on Batching
	Performance under different LLM models
	Impact of repeated prompting by using shuffling and voting


	Performance of Batch Prompting across multiple LLM Providers on Synthetic Data
	Intuition behind improvement in Precision from Batching

	Supplementary Material for NASA Data
	Experiment Setup
	Ablation study for variations on  on NASA data
	Comparison of LEAD results on NASA dataset with available baselines

	Insights from Pilot
	What are suitable use-cases for the LEAD Framework?

