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Abstract
Condition-based monitoring (CBM) is essential
for maintaining high machine uptime in industrial
settings. While existing CBM solutions effec-
tively use time-series data (e.g., thermal, vibra-
tion, amperage, etc.), these can be enhanced with
LLMs to integrate domain knowledge and gen-
erate interpretable summaries. However, LLMs
often incur higher latency and cost than traditional
methods. We thus propose LEAD (LLM Enabled
Anomaly Detection), a two-stage framework. The
first stage acts as a screening step, detecting soft
anomalies using lightweight statistical methods.
The second stage leverages LLMs and batches
multiple time series in the same prompt to gen-
erate final anomalies. We show that the combi-
nation of statistical filtering and batching leads
to a more efficient and accurate anomaly detec-
tion pipeline. Applying LEAD to industrial mo-
tor amperage data at Amazon improves precision
from 27% (unsupervised deep learning) and 39%
(LLM-only) to 72%, while reducing latency 14
fold and token usage by 12 fold compared to an
LLM-only baseline. Lastly, we demonstrate that
LEAD’s accuracy gains from statistical filtering
and batching hold even on public datasets.

1 Introduction

Amazon Fulfillment Centers leverage condition-based mon-
itoring (CBM) technologies (like amperage, vibration, and
temperature sensors) to detect potential failures on machin-
ery. Anomaly detection algorithms are key to these CBM
technologies as they can flag unusual patterns. Current mod-
els within Amazon use statistical, machine learning, or deep
learning methods. However, these models don’t easily in-
corporate expert knowledge and their output requires extra
processing to be understandable for non-technical users.

Recent advances in Large Language Models (LLMs) have
shown promising results in time-series forecasting (Gruver
et al., 2024; Su et al., 2024; Ansari et al., 2024) and anomaly
detection (Alnegheimish et al., 2024; Dong et al., 2024; Liu

et al., 2024; Zhou & Yu, 2024; Zhuang et al., 2024) tasks.
Particularly, they have been shown to improve the quality
of detected anomalies by incorporating domain knowledge
and enhancing interpretability (Liu et al., 2024). While
these findings are impressive, the high costs and latency
associated with LLMs pose challenges for their adoption
on large-scale datasets (Su et al., 2024; Alnegheimish et al.,
2024; Xu & Ding, 2024). Given the scale of streaming
datasets at Amazon, a better framework is needed to lever-
age the potential of LLMs while balancing cost and latency.

We present a framework that combines lightweight anomaly
detection algorithms with LLMs for thorough analysis. This
two-stage approach balances efficiency with sophistication,
enabling faster model development without additional post-
processing. Our main contributions in the paper are - 1)
develop a two-stage framework for univariate time-series
anomaly detection by leveraging simple statistical tech-
niques and zero-shot prompting, 2) extend zero-shot prompt-
ing with a batching strategy that reduces the latency of the
LLM inference and improves accuracy, 3) perform ablation
studies and comparison with other baseline models, and 4)
show that key benefits from our framework generalize to a
public benchmark dataset.

2 Background and Problem definition

Background: Variable Frequency Drives (VFDs) are a key
component of equipment at Amazon Fulfillment Centers
(FCs). VFDs regulate the amperage drawn by motors and
provide important signatures related to the health of the
overall asset. While amperage can fluctuate a lot due to
variance in throughput of packages and the start-up inertia
of motors, underlying non-transient changes in amperage
signal potential defects with the asset (see Appendix A.1 for
examples).

Problem Statement: Our primary objective is to detect
anomalies in streaming amperage data, so that issues can
be flagged for technician review daily. To achieve this, we
evaluate each time series using a rolling window approach.
Each window is divided into two segments: a historical
segment and a latest segment. This segmentation allows
for a statistical comparison between the most recent data
and the corresponding historical baseline. Based on this
comparison, the latest segment can be flagged for potential
anomalies, which is further evaluated using LLM.
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Formally, given a univariate time-series, Xk =
{xk,1, xk,2, xk,3, xk,t, .., xk,T } of data points, we want to
determine if the latest P data points, collectively can be
considered as an anomaly or not. Here k represents the
kth VFD and xt represents an hourly aggregated value of
amperage at hour t. We split the time-series into historical
data and the latest data (that needs to be evaluated). We
denote this split of Xk into Xk,historical and Xk,latest such
that Xk,historical = {xk,1, xk,2, xk,3, .., xk,W }, where W
is the window size for historical data, and Xk,latest =
{xk,W+1, xk,W+2, xk,W+3, .., xk,W+P } represents the pe-
riod of interest. The anomaly detection task is now to de-
termine if Xk,latest is anomalous given Xk,historical. For
our use-case, as this is streaming data, the anomaly eval-
uation needs to happen daily for every time-stream Xk

with a rolling window of eight days with the latest one
day (P = 24) to be tested against rest of the historical seven
days (W = 7× 24).

3 LLM Enabled Anomaly Detection (LEAD)
Framework

Unlike time-series forecasting where every point requires
prediction, anomaly detection focuses on irregularities, with
most data being normal which does not need a thorough
analysis using an LLM. We thus develop a two-stage frame-
work (Figure 1) where the first stage filters the data using
standard anomaly detection methods that are computation-
ally efficient and a second stage that leverages output from
first stage and passes to an LLM for anomaly detection. The
final output are anomalies detected via the LLM along with
explanations for anomalies in an easily readable free-text
format.

Stage 1: Statistical Filtering: The purpose of this stage
is as a screening step to reduce the data load that passes to
LLMs for processing, while retaining most potential anoma-
lies. To keep the first stage as simple as possible, we only
leverage statistical approaches in this framework.

At this stage, we compare Xk,historical and Xk,latest using
non-parametric methods like Wasserstein Distance, suitable
for multimodal real-world data. These tests are sensitive
to the scale of the data, so appropriate scaling is crucial
to get normalized score for all k time-series. We have em-
ployed max normalization (x

′

k,i = xk,i/max(Xk)), which
preserves the relative gaps between data points across differ-
ent time-series. Most of the non-zero amperage data lacks
significant variations, making standard deviation-based nor-
malization inappropriate because it could exaggerate differ-
ences. Similarly, min-max normalization distorts the data
gaps by forcing it into the [0,1] range, potentially inflating
the gaps, which is not desirable for our use-case.

The output of Stage 1 is a simple binary classification based

on rules of the statistical criterion chosen (Wasserstein Dis-
tance in this case):

yk =

{
1 if W1(X

′

k,historical, X
′

k,latest) > ϵ

0 otherwise
(1)

for all k ∈ {1, . . . , N}
where N is the number of time-series that need to be pro-
cessed. In our context, this is number of VFDs on a site. As
data is normalized, a threshold ϵ can be set as a percentile (p)
of W1 across all VFDs for a given window if large number
of time-series are present (our case).

Only M time-series that have yk= 1 (considered as soft
anomalies) will be passed to the second stage for final
anomaly detection by the LLM. While we have chosen
Wasserstein Distance as the statistical filter, any suitable
choice of statistical measure that suits the data and anoma-
lies can be chosen.

Stage 2: LLM Anomaly Detection with Batching : This
stage uses LLMs for zero-shot prompting, following a struc-
ture similar to that described in (Alnegheimish et al., 2024;
Liu et al., 2024). We designed the prompt as shown in Fig-
ure 6 that has task, data description, judgment rules based
on domain knowledge and specific instruction for the LLM
to follow. All the time-series that have been classified as
soft anomalies from Stage 1 are passed to the LLM using
this prompt for further evaluation. We prompt using raw
time-series data without any normalization to preserve se-
mantic meaning and discuss this aspect in more detail in
Appendix A.2.

Batching Time-series while Prompting: To optimize the
latency of the pipeline, we batch B time-series for anomaly
detection in a single prompt. While naive batching degrades
performance on natural language tasks (Cheng et al., 2023),
our studies show that on time-series anomaly detection tasks,
even naive batching improves results across multiple LLM
providers. We explain this observation and provide a theo-
retical intuition through an illustrative study using synthetic
data across four LLMs (Appendix B).

4 Experiments on Amperage Data from VFD

4.1 Data Description and Evaluation Criteria

We selected two Amazon FC sites for backtesting, and ana-
lyzed hourly aggregated amperage data from 1,241 VFDs
containing 893K data points. As no labeled anomalies are
present for amperage data, we utilize historical work orders
that denote breakdowns and corrective actions taken by site
as a proxy for labels. We evaluate all models in their ability
to detect anomalies in amperage within seven days of the
work performed by technicians. We describe calculation
of Precision (Pdet) and Recall (Rdet) in more detail in Ap-
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X1

X2
...
Xk
...

XN


Statistical Filtering

Is W1(X
′

k,hist, X
′

k,latest) > ϵ

Non-anomalous Time-series


X1

X2
...

XM


Soft

anomalies Batching

X1, ... , XB

XB+1, ... , X2B

...

B is the batch size

LLM Prompting (Batch 2)

Task Description:
You are a technician that detects level shift
anomalies in time . . .
Data Description:
Each time-series consists of historical data and
latest data points for the analysis.
time_series_index: 25680
historical_data: [81, , ...]
latest_data: [112, ..., 129, 114]

time_series_index: 25677
historical_data: [170 170, ...]
latest_data: [76, ..., 117, 108]

...

LLM Prompting (Batch 1)

Task Description:
You are a technician that detects level shift
anomalies in time-series . . .
Data Description:
Each time-series consists of historical data and
latest data points for the analysis.
time_series_index: 25680
historical_data: [100, 123, ...]
latest_data: [112, ..., 129, 114]

time_series_index: 25677
historical_data: [170, 170, ...]
latest_data: [76, ..., 117]

...

True

False

Figure (1) Overall LEAD Framework

pendix A.3. Since we want to minimize nuisance alarms and
unnecessary maintenance actions due to false alarms, we
prioritize precision over recall and use F0.5 as our primary
metric (similar to (Luković et al., 2025; Hundman et al.,
2018)). Settings for individual hyper-parameters is detailed
in Appendix A.4.

4.2 Results

In Table 1, we benchmark our framework against common
anomaly detection models. LEAD model shows the best
performance on both sites when precision is concerned.
Advanced methods (Appendix A.5) do not provide out-of-
the-box high precision on VFD data as they require post-
processing and domain knowledge to filter trivial anoma-
lies which is already incorporated in LEAD framework’s
prompt 6. Secondly, we compare an LLM-only model
with batching (B = 15, p = 0) to our LEAD framework
(B = 15, p = 0.75). Note that an LLM-only model has
much lower precision (0.39 and 0.51 on Site 1 and Site 2
respectively) compared to both DBSCAN-OCSVM model
and LEAD. Our findings corroborate the high false positive
rates observed in LLM-only models in (Alnegheimish et al.,
2024). This shows that filtering trivial anomalies through
Stage 1 of LEAD helps improve the precision significantly
and provide better F0.5 score. Along with better accuracy,
LEAD also has 12 times lower token usage and is 14 times
faster compared to LLM-only models without batching as
shown in Appendix A.7 and has been piloted on above sites
(refer to Appendix D for preliminary results).
Ablation Studies: We conducted several ablation studies
on Site 1’s data as shown in Appendix A.8 and present key
highlights below.

4.2.1 IMPACT OF BATCHING ON F0.5 AND LATENCY

As shown in Figure 2, an increase in the batch size improves
the performance of LLMs. Further, as LLM processes mul-

Table (1) Performance of various baseline models

Model / Framework Site 1 Site 2

Pdet Rdet F0.5 Pdet Rdet F0.5

LEAD 0.72 0.14 0.39 0.75 0.25 0.54
LLM-only 0.39 0.25 0.35 0.51 0.45 0.49
DBSCAN-OCSVM1 0.67 0.02 0.09 0.63 0.06 0.37
TranAD 0.20 0.17 0.19 0.39 0.24 0.34
TadGAN 0.18 0.26 0.19 0.40 0.35 0.39
LSTM AE 0.27 0.09 0.19 0.34 0.13 0.25
Conv AE 0.24 0.09 0.18 0.29 0.21 0.27
Feedforward AE 0.23 0.10 0.18 0.36 0.23 0.32
VRNN 0.27 0.10 0.20 0.33 0.22 0.33
Supervised NN 0.27 0.10 0.20 0.39 0.23 0.34

1 Custom model optimized for Precision on Amperage Data.

tiple time-series in the same prompt, latency is significantly
reduced (6x). Batching thus has dual positive effects: reduc-
ing latency and improving accuracy. We believe that having
multiple time-series in its context helps the LLM distinguish
anomalous patterns better than providing a stand-alone time-
series.
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Figure (2) Impact of Batch Size on F0.5 score and LLM Infer-
ence Time per window. p = 0.85

4.2.2 IMPACT OF SHUFFLING AND VOTING

We have observed that LLM can reveal slightly different
anomalies with each run even with same prompt. This can
signal which data points the LLM is confident in recog-
nizing as anomalies. We use a strategy of prompting in
multiple rounds (r) with shuffled time-series inputs, classi-
fying time-series as anomalous only if it meets a minimum

3
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vote threshold (v). Table 2 shows that Precision improves
with increasing v for r = 6, while F0.5 scores remain mostly
consistent (except when r = v). This allows for setting pre-
cision thresholds and choosing r and v based on business
needs while maintaining F0.5 score. The full table with 1-6
shuffling rounds is in Appendix A.8.4.

Table (2) Impact of v with r = 6 (B = 10, p = 0.85)

Minimum Votes (v)

Metric 1 2 3 4 5 6

Precision 0.52 0.64 0.69 0.75 0.77 0.78
Recall 0.11 0.10 0.09 0.09 0.08 0.06
F0.5 0.30 0.31 0.30 0.30 0.28 0.23

5 Case Study on Public Data

The LEAD Framework was designed for anomaly detec-
tion on streaming sensor data from Amazon’s FCs. To
understand applicability of our framework more broadly, we
tested the LEAD framework on two public datasets from
NASA with known ground truth anomaly ranges (Hundman
et al., 2018). The data includes two sub-datasets: SMAP
and MSL. It contains 82 time-series and have 105 anoma-
lies including contextual or point anomalies. Experimental
settings for this study are detailed in Appendix C.1.

5.1 Results

As shown in Figure 3, having statistical filtering through
Stage 1 of LEAD (ϵ = 15), improves performance com-
pared to an LLM-only model (ϵ = 0). Similarly, batching
through Stage 2 improves performance, further highlighting
that LEAD works as expected even on public dataset.

Comparison with State-of-the-art models : Multiple
benchmarks exists for time-series anomaly detection task
on NASA’s SMAP and MSL data. We reproduce the bench-
mark study done in (Alnegheimish et al., 2024) and compare
it with our results in Appendix 13. Note that to align with
benchmark study we use the same methodology of F1 score
calculation. LEAD performs reasonably well given minimal
parameter optimization and prompt engineering as it is able
to beat or come close to 8 and 6 baselines (out of 11) for
SMAP and MSL data respectively. This can be explained
by the higher gains achieved from batching in SMAP data
(0.46 → 0.62) (as SMAP has 55 time-series vs 27 for MSL)
compared to MSL data (0.4 → 0.47) as shown in Figure 3.

Success and Failure Cases on NASA Data: In Figure 4,
we show that while LEAD was successful at detecting con-
textual anomalies, it missed point anomalies due to Stage
1’s Wasserstein Distance filtering, which is not very sensi-
tive to one-off outliers (hence used for our application on
VFD data). The framework could be enhanced by incorpo-

LLM-only model LEAD Framework
without batching

LEAD Framework
with batching

0

0.2

0.4

0.6

0.8

0.37 0.4
0.47

0.21

0.46

0.62

F
1

sc
or

e

MSL SMAP

Figure (3) Comparison of LLM-only model (ϵ = 0, B = 15),
LEAD Framework without batching (ϵ = 15, B = 1) and LEAD
Framework with batching (ϵ = 15, B = 10 )

rating additional statistical measures like Gaussian Mixture
Models or Control Charts to better detect such anomalies.

((a)) LEAD detects contextual anomaly

((b)) Point anomaly was undetected by LEAD

Figure (4) Sample success and failure on NASA Data

6 Conclusion and Future Work

In this paper, we propose LEAD, a framework for detecting
anomalies in univariate time-series using a hybrid approach
that combines statistical measures and LLMs. Through
ablation studies on proprietary Amazon and public datasets,
we show that LEAD improves both accuracy and efficiency
over LLM-only baselines. These improvements stem from
both statistical filtering in Stage 1 to identify soft anomalies
and batching multiple time-series in Stage 2. Future research
can explore more advanced batching strategies based on
Stage 1 anomaly scores (derived from statistical measures)
and extend the framework to multivariate time series, where
batching occurs naturally due to the data structure.
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A Supplementary material for Case Study on Amperage Data

A.1 Transient and non-transient anomalies

While VFDs are expected to draw a constant amperage if package throughput is the same, in practice regular fluctuations
(transient-anomalies) can be observed in VFD data which could be due to multiple reasons including changing throughput,
ramp up torque needed to start a motor, or overcoming friction that builds up during a jam when packages get stuck in
equipment – see Figure 5(a), 5(b) for examples. Non-transient anomalies on the other hand could be hidden under these
normal operating noise and need to be isolated through data processing and anomaly detection on specific patterns. (Figure
5(c), 5(d)).

((a)) Ramp up current during start of the motor leads to
spikes that are normal

((b)) Transient rise in amperage observed during debris
build up

((c)) Anomaly not visible due to intra-day noise ((d)) Anomalous amperage visible after data aggregation

Figure (5) Intra-day transient fluctuations compared to non-transient issues

A.2 Prompt and time-series representation used for case study on Amperage Data

Prompt template used for zero-shot LLM anomaly detection used in Stage 2 for the LEAD framework is shown in Figure 6.
In Table 3 we show impact of removing Level of change and Steps components of the prompt. The analysis shows that these
components provide necessary domain knowledge and LLM based model would lose significantly on precision without such
information in the prompt.

Time-Series Representation in the Prompt: Although normalization was necessary in Stage 1, we do not pass normalized
data to the prompt, as it would strip semantic meaning and limit the LLM’s ability to leverage domain knowledge or generate
technician-friendly anomaly explanations. Instead, we use indices from Stage 1 and format raw data as arrays for LLM
input. In our case study, raw amperage data from VFDs—already in integers and scaled by 100 (i.e., 100 = 1 amp)—requires
no further quantization. For time-series with fractional values, however, quantization is needed. In such cases, scaling and
truncating decimals, as proposed in (Gruver et al., 2024), is preferred. We include the scaling factor in the prompt to retain
semantic meaning for interpretability.
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Prompt for VFD Amperage Data

Task Description: You are a technician that detects level shift anomalies in time-series data from sensors in industrial setting.
You can analyze multiple independent time-series in batch.
Data Description: Each time-series is a sensor reading sequence coming from motor’s amperage captured from the VFDs. Each
value is for one hour of data. The data is expected to have fluctuations and lots of noise. The values are in amperage but
multiplied by 100. So, 104 mean 1.04 Amps.
Judgment Rules:
1) A data point is anomaly if it deviates by at least 10 points or 0.1 amps compared to historical range(s). Note that historical data
may be multimodal.
2) Majority of data must be anomalous for the whole day to be classified as anomaly. Point anomalies do not make whole of the
latest data anomaly.
3) Whole day anomalies are extremely rare and only happen when there is a significant change and should be identified with
absolute certainty.
Level of change: 1) 0-0.1 amps (Not an Anomaly) 2) 0.1-0.5 amps 3) 0.5-1.0 amps 4) >1.0 amps
Strict steps to follow:
1) Analyze each time-series independently for anomalies in the latest_data array relative to the historical_data
array.
2) Count the number of anomaly data points in latest_data array
3) Classify latest_data as anomalous only when anomaly data points are significantly different from historical pattern and
show a clear shift in level on a persistent basis
4) Re-assess the classification of latest_data as anomaly. Ensure that you are not calling out the latest_data as
anomaly because of few point anomalies. There must be a persistent level shift.
5) Provide explanation only when anomaly is detected.
6) In LLM explanation, remember to convert values from raw data to amps by dividing by 100. So, for example, 204 becomes
2.04 amps
7) For each time-series, provide the output in strict JSON format with the following structure:

"[
{
"time_series_index": <index>,
"anomaly": "Yes/No",
"anomaly_type": "Level Shift Up or Level Shift Down",
"anomaly_explanation": "<provide quantitative explanation>",
"level of change": <Based on buckets above>
}

]"

Strictly return a valid JSON list of objects and no additional content or explanation outside JSON.

Figure (6) Prompt for zero-shot anomaly detection on VFD Data

Table (3) Performance Comparison of Different Prompt Versions (Site 1, p = 0.85, B = 15)

Prompt Precisiondetection Recalldetection F0.5

Full Prompt 0.70 0.095 0.308

Prompt with No Level Change Information 0.61 0.081 0.265

Prompt with No Level Change and Step wise process 0.47 0.089 0.253

A.3 Precision and Recall on work order Data

We lack labeled anomalies and use work orders, which are primarily of three types: breakdown (BRKD), corrective
maintenance (CM), and follow-up preventive maintenance (FPM) as proxy labels. Our model aims to detect anomalies
before breakdowns, but CM and FPM can alter the asset’s properties, affecting amperage. For example, a belt change during
FPM may cause slight (but permanent) variation in amperage. These events thus become potential detection candidates for
model evaluation as they represent non-transient anomalies. In practice, however, we suppress detections during CM or
FPM, recognizing them as proactive actions taken by technicians.
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Evaluation Criteria: Defining precision and recall for anomaly detection in time-series is complex due to differing
interpretations of successful detection. Point-based precision is less relevant, as we expect lead time before breakdowns,
favoring range-based metrics. Studies (Sørbø & Ruocco, 2023; Tatbul et al., 2019) address these challenges, but we lack
methods to categorize predicted anomalies into ranges or predefined real anomaly ranges. We therefore adapt range-based
precision and recall by using work order data.

Precision is defined as the ratio of successfully detected anomalies within h days before a work order to the total number of
anomalies generated by the model. We introduce two settings: Predictive, rewarding only pre-work order detections, and
Detection, rewarding any detection within h days around the work order. Due to the higher frequency of CM/FPM compared
to BRKD work orders, Precision/Recall is naturally higher in the Detection setting.

Mathematically, given Np as total anomalies flagged by the model, we define Nh,p,before as the number of anomalies
flagged in h-days window before a work order. We can then define precision as:

Precisionpredictive =
Nh−before,p

Np
, P recisiondetection =

Nh−any,p

Np

Recall is defined as the ratio of successful work order events identified within h-days window of the work order to total
work order events (Nwo). Here as well we define two variants as below:

Recallpredictive =
Nh−before,wo

Nwo
, Recalldetection =

Nh−any,wo

Nwo

We set h = 7 days across evaluations on VFD Data.

A.4 Hyper-parameters for the framework

Below we list the key hyper-parameters for the LEAD Framework. The ranges mentioned below were used for the case
study on VFD Data.

• ϵ - We set this parameter based on pth percentile of Wasserstein Distance (W1) for the data for each rolling window.
This ensures that top-p fraction of data as judged by the Stage 1 statistical criteria is passed to the LLM. We vary p in
our experiments from 0.65 to 0.95

• Window, W - We set window, W = 7× 24 as look back period for historical data.

• Period, P - We set window, P = 24 for the latest period of interest.

• Batch Size, B - Number of inference time-series chained in one prompt. We vary this between 1, 5, 10, 15 and 20.

• LLM Settings - To minimize the variability in output we set temperature = 0, topk = 1, topp = 1 across all LLMs

Table (4) Performance metrics for work order types across sites

Site Work order type Prediction Detection
Precision Recall F0.5 Precision Recall F0.5

Site 1 Breakdown 0.08 0.08 0.08 0.12 0.11 0.12
Total 0.29 0.06 0.16 0.72 0.14 0.39

Site 2 Breakdown 0.03 0.17 0.07 0.12 0.17 0.13
Total 0.36 0.12 0.26 0.75 0.25 0.54

A.5 Baseline Models

Unsupervised Models: We tested multiple deep learning based methods - LSTM, Convolutional, and Feedforward
autoencoders as well as Variational Recurrent Neural Networks (VRNNs) (Zhang et al., 2021; Zamanzadeh Darban et al.,
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2024; Ren et al., 2019). These unsupervised models learn to reconstruct normal data patterns and identify anomalies through
high reconstruction errors. VRNNs combine the benefits of variational methods with recurrent architectures to model both
uncertainty and temporal dependencies. LSTM-based autoencoders capture long-term temporal patterns, while convolutional
architectures efficiently extract local features. We further expanded our investigation to include Transformers for Anomaly
Detection (TranAD) and Time Series Anomaly Detection using Generative Adversarial Networks (TadGAN). TranAD ((Tuli
et al., 2022)) leverages the self-attention mechanism of transformers to capture complex temporal dependencies and global
patterns in the data without the sequential constraints of recurrent architectures. TadGAN ((Geiger et al., 2020)) combines
the power of adversarial training with autoencoder architectures, where the discriminator learns to distinguish between
normal and anomalous patterns while the generator aims to reconstruct normal behavior. This adversarial approach provides
a more robust anomaly detection framework by learning both reconstruction and discrimination-based features.

Results show that all the unsupervised models do not provide a good out-of-the-box precision and potentially require
additional post-processing based on expert knowledge and to filter out false positives.

Semi-supervised: Our custom model (DBSCAN-OCSVM) used for amperage anomaly detection at Amazon is a semi-
supervised model and has been optimized for precision through additional post-processing. The model first utilizes DBSCAN
to reduce the noise in the data, followed by a one class SVM to construct the decision boundary for flagging anomalies.
Additional post-processing parameters were introduced in the pipeline that were derived from the OCSVM model output.
The hyper parameters of the SVM, DBSCAN and post-processing parameters were tuned based on historic anomalies to
optimize for precision.

Supervised Model: We also explored supervised deep learning ensemble models (Howard & Gugger, 2020), (Hong &
Suh, 2021) for anomaly detection, using known breakdown occurrences as labels. This approach aimed to directly learn
patterns associated with breakdowns. However, the highly imbalanced nature of the dataset, with rare breakdown events,
posed significant challenges. Moreover, the limited availability of accurate labels for anomalies restricted the model’s ability
to generalize to unseen failure modes.

A.6 True Positive, False Positive and False Negative Cases

In this section, we present four illustrative cases that highlight true positive, false positive and false negative classifications
of anomalies detected by the LLM model, along with the generated explanations.

Case 1: An anomaly was detected during follow-up preventive maintenance (FPM). Notably, no signal was present in the
data before the FPM, and the model accurately detected the change on the day the maintenance was performed.

Case 2: The model identified an anomaly five days before an actual breakdown, as indicated by a clear spike in amperage,
representing a true positive detection.

Case 3: A level shift in amperage data was detected, but no corresponding work order was available. This scenario might
indicate that either the work was performed but not logged, or the machine’s increased throughput led to higher amperage.
These cases are classified as false positives since the reason for the change cannot be verified in back-testing and requires
live monitoring.

Case 4: A false negative example occurred where a Photo-eye issue caused a breakdown, yet no signal was present in the
amperage data.

All LLM-generated explanations provide concise, human-readable summaries, and these will integrate into work orders
when the model is deployed. The LLM effectively converted raw data (multiplied by 100 and in integer format) into real
amperage values, eliminating the need for further post-processing.
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Case 1 - VFD 26388

LLM Anomaly Explanation

The data has shifted from a historical range of 1.58–1.65 amps to a
persistent lower level of 1.50–1.54 amps. This represents a clear and
maintained downward level shift of approximately 0.1 amps.

Classification: True Positive

Case 2 - VFD 25680

LLM Anomaly Explanation

The latest data shows a persistent upward shift to around 1.15–1.25 amps
compared to historical levels which were typically between 0.85–1.10
amps.

Classification: True Positive

Case 3 - VFD 25682

LLM Anomaly Explanation

The latest data shows a sustained shift up to around 1.65–1.70 amps
compared to historical range of 1.35–1.60 amps.

Classification: False Positive

Case 4 - VFD 86610

Classification: False Negative

A.7 Detailed Cost and Latency Analysis

In Table 5, we show a comparison of total token usage count and latency of our proposed framework and compare it with
the zero-shot LLM-only models, both with and without batching. All estimates for the analysis are based on token usage
and latency for Claude 3.5 Sonnet v2 used via Bedrock. The analysis shows that our proposed framework is 14 times
faster compared to the LLM-only model (without batching) and achieves a runtime that is comparable to current models
in production. Similarly, the LLM token usage in LEAD Framework is 12 times lower compared to the LLM-only model
without batching and 7 times lower compared to the LLM-only model with batching. While the numbers can vary based on
the choice of parameters B and p, the reduction in token usage and latency would still be significant for any reasonable
choice of these parameters that is best for accuracy.
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Table (5) Comparison of LLM-only Models and the LEAD Framework

Metric LLM-only Model LLM-only Model LEAD Framework

without Batching (p = 0, B = 1) with Batching, (p = 0, B = 15) (p = 0.85, B = 15)

Input tokens per inference 1200 9644 9644

Output tokens per inference 63 836 836

No of inferences per day 1241 82.7 12.4

Total token usage 1,567,383 867,045 130,057

LLM Latency per site/day 21 min 11 min 1 min 26 sec

A.8 Ablation Studies on Amperage Data for Site 1

All ablation studies have been performed on Claude 3.5 Sonnet v2 for its consistent results (details on comparison with other
LLM models is presented in Appendix A.8.3).

A.8.1 IMPACT OF STAGE 1 PARAMETER

In Table 6, we show how the results would have been under different choices of threshold ϵ for Stage 1. We set this parameter
by varying the percentile p of the data that is passed to LLM. We notice that as p increases to the 90th percentile, we see a
drop in both precision and recall. Furthermore, note that setting p = 0 is equivalent to an LLM-only model.

Table (6) Performance metrics for different values of p for same Batch Size (B = 15)

p Precisiondetection Recalldetection F0.5

0.65 0.606 0.133 0.355

0.70 0.609 0.151 0.379

0.75 0.715 0.141 0.394

0.80 0.725 0.100 0.322

0.85 0.700 0.095 0.308

0.90 0.588 0.077 0.252

0.95 0.529 0.036 0.141

A.8.2 DETAILED RESULTS FOR ABLATION STUDIES ON BATCHING

As shown in Table 7, an increase in the batch size improves the performance of LLMs by increasing the precision significantly.
As an LLM processes multiple independent time-series in the same prompt, latency is also significantly reduced (6x).
Batching thus has dual positive effects: reducing latency and improving accuracy.

Table (7) Performance metrics for different values of Batch Size (B), p = 0.85

B Precisiondetection Recalldetection F0.5 Latency (sec)

1 0.677 0.069 0.246 480

5 0.633 0.095 0.297 114

10 0.757 0.089 0.304 91

15 0.700 0.095 0.308 86

20 0.693 0.092 0.301 80
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A.8.3 PERFORMANCE UNDER DIFFERENT LLM MODELS

We tested several LLM models available in AWS Bedrock and found that Claude 3.5 Sonnet v2
(anthropic.claude-3-5-sonnet-20241022-v2:0) delivered the best performance. Unlike Cohere, Mistral,
and Llama models, which frequently encountered JSON decoding errors, the Claude models performed without such issues.
Moreover, the Claude models consistently adhered to the instructions provided in the prompt. Detailed results are shown in
Table 8.

Table (8) Performance Metrics of LLM Models

LLM Model Pdetection Rdetection F0.5Score Comments

Claude 3.5 Sonnet v2 0.72 0.14 0.39 Good performance overall. No JSON Decoding Error, model is able
to follow instructions and able to do appropriate scaling (by 100)
when providing explanations

Claude 3 Sonnet 0.25 0.15 0.22 No JSON decoding error; follows instructions on unit conversion
while providing anomaly explanation, however has high false posi-
tives.

Cohere Command R+ 0.19 0.03 0.09 Frequent JSON decoding error, Model does not follow instructions
well and still produces explanation for non-anomalous time-series;
provided explanations have incorrect units of numbers

Llama 3.2 11b Instruct - - - LLM unable to understand instruction. Provides output like - result
= detect_anomaly(26278, historical_data, latest_data)

Mistral 7b Instruct - - - Incorrect units and percentage in explanation. Example - The latest
data shows a persistent level shift of approximately 0.134 amps
(13.4%) compared to the historical data

A.8.4 IMPACT OF REPEATED PROMPTING BY USING SHUFFLING AND VOTING

Although the ablation studies above are based on single runs with the same parameters, we have observed that multiple
iterations with identical input to the LLM can yield slightly different outputs (Table 9). To leverage this non-homogeneity in
output to extract high confidence answers, we adopt a strategy of repeatedly prompting LLMs across multiple round (r) and
classify anomalies only when they have been voted as anomalies a minimum of v times. Results are shown in Table 10

Table (9) Performance Metrics for Different Runs, B = 20, p = 0.85

Run Precisiondetection Recalldetection F0.5

Run 1 0.693 0.092 0.301
Run 2 0.728 0.105 0.333
Run 3 0.704 0.092 0.303

Table (10) Effect of Shuffle Rounds and Minimum Votes on Precision, Recall, and F0.5 (B = 10, p = 0.85)

Shuffle Rounds
Precision Recall F0.5

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

1 0.63 0.09 0.28

2 0.61 0.77 0.10 0.08 0.30 0.28

3 0.57 0.73 0.78 0.11 0.09 0.07 0.30 0.29 0.26

4 0.54 0.70 0.77 0.78 0.11 0.09 0.08 0.07 0.31 0.30 0.29 0.26

5 0.51 0.65 0.72 0.79 0.82 0.11 0.10 0.09 0.08 0.06 0.29 0.30 0.30 0.29 0.24

6 0.52 0.64 0.69 0.75 0.77 0.78 0.11 0.10 0.09 0.09 0.08 0.06 0.30 0.31 0.30 0.30 0.28 0.23
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B Performance of Batch Prompting across multiple LLM Providers on Synthetic Data

To assess whether batching-related gains are specific to Claude Models, we generated synthetic data and tested it across
different LLM providers. The dataset consisted of 500 normal data points followed by 50 points with a synthetically injected
anomaly. The first nine series (S1-S9) contained trivial anomalies (e.g., anomalies passing the Stage 1 statistical filter in the
LEAD Framework but considered minor), while only S10 featured a major anomaly with a level shift in the seasonal pattern.
Please refer to Figure 7 for visualization of the series.

Each model provider was tested in two modes using the prompt in Figure 8 : 1) ’Batch’ where all ten time-series data was
passed in the same prompt and LLM outputs a JSON with all time-series in one invoke. 2) ’Single’ where each time-series
was passed one by one to the prompt. All LLMs were set to minimum temperature, top_p, and top_k settings to
minimize variations in output.

Results in Table 11 show that all the LLMs perform better at detecting major anomaly (and ignoring trivial noise) when data
is passed in ’Batch’ mode compared to prompting in ’Single’ mode. Both, Claude 3.5 Sonnet and Cohere Command R+
perform much better in batch mode at ignoring ’trivial’ anomalies. This illustrative experiment shows that batching related
accuracy improvements are not particular to any LLM providers but is a better strategy to prompt for anomaly detection
tasks across LLMs as they seem to benefit from other time-series in the context. A more detailed discussion is provided in
the next section B.1.

B.1 Intuition behind improvement in Precision from Batching

The observation that batching multiple time-series improves precision in LLM-based anomaly detection, as opposed to
single time-series prompting, can be supported by considering how LLMs process information and leverage context. The
core idea is that a batch provides a richer context that allows the LLM to make more informed and robust judgments, leading
to less false positives.

• Let Xk denote the k-th time-series from the M time-series flagged as ‘soft anomalies’ by Stage 1.

• Let R represent the set of rules and instructions provided in the prompt.

• Let Ak be the event that Xk contains a true anomaly.

LLMs, especially in a zero-shot setting, establish a baseline of ’normal’ behavior based on the input data and the provided
rules R. When processing a single time-series Xk, the LLM’s understanding of normalcy is limited to the characteristics of
Xk itself (and its historical data included in the prompt segment for Xk) and its pre-trained knowledge, as guided by R.

Single Series Prompting A variation within Xk might be statistically rare for that specific series but could be a common
type of fluctuation or operational mode when considering a broader set of similar entities. If this variation is unusual for Xk

in isolation, the LLM might incorrectly flag it as an anomaly, leading to a False Positive (FP).

The probability might be relatively high if Xk exhibits even trivial anomaly compared to historical data:

P (LLM flags Xk as anomalous | Xk, R,¬Ak)

Batched Series Prompting When a batch of B time-series X1, . . . , XB is provided, the LLM gains access to a richer,
contemporaneous sample of behaviors. It can implicitly learn or infer a more robust and representative ’normality distribution’
from the batch itself. If several series in the batch exhibit similar types of trivial anomalies (as they have passed Stage 1
statistical filter), the LLM can better calibrate its threshold for what constitutes a deviation significant enough to be an
anomaly according to R. A pattern in Xk that might have seemed anomalous in isolation could be contextualized as part of
the normal operational variance observed across the batch. Thus, each batch could provide the LLM with multiple examples
of both trivial and major anomaly patterns, creating an implicit few-shot learning setup.

The probability, therefore, is likely to be lower than with single prompting for such trivial anomaly cases:

P (LLM flags Xk as anomalous | Xk, {Xj}j ̸=k,j∈B , R,¬Ak)
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Figure (7) Synthetic data with Normal (blue) range and Anomaly Range (Red). Series S1-S9 have trivial anomalies and
Series S10 has a major anomaly.

Table (11) Comparison of Anomaly Detection across Model Providers in ’Batch’ and ’Single’ mode on Synthetic Data.
’Yes’ implies model detected time-series as anomaly and ’No’ implies model detected no anomalies. Only S10 has non-trivial
anomaly that needs to be detected

Time Series Anomaly Maverick 17B Mistral 7B Cohere Command R+ Claude 3.5

Batch Single Batch Single Batch Single Batch Single

S1 No Yes No Yes Yes No Yes No No
S2 No Yes Yes Yes Yes No Yes No Yes
S3 No Yes Yes No Yes No Yes No No
S4 No No Yes No Yes No Yes No No
S5 No No Yes No Yes No Yes No No
S6 No Yes Yes No Yes No Yes No Yes
S7 No Yes Yes Yes Yes No Yes No No
S8 No Yes Yes No Yes No Yes No No
S9 No No No No Yes No Yes No Yes
S10 Yes Yes Yes Yes Yes Yes Yes Yes Yes

Anomaly Count 1 7 8 4 10 1 10 1 4
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Prompt for Synthetic Data

Task Description: Task Description: You are an expert at anomaly detection in patterns of time-series data from sensors. You
can analyse multiple time-series in batch.
Data Description: Each time-series is a sensor reading that has both historical_data and latest_data.
Judgment Rules:
1) 1. A data point is anomaly if it deviates compared to historical pattern. Note that historical data may have seasonal pattern or
trends.
2) Anomalies are when the latest data has a different pattern than historical values.
3) Do not call data points as anomalies if they follow the pattern but have slightly different peaks or troughs
4) Do not call indices as anomalies unless there is a clear and significant deviation. Ignore smaller deviations as
anomalies are EXTREMELY rare
4) Always give range of anomalies, if there is a single anomaly point, add padding of 5 indices
Strict steps to follow:
1) Analyze each time series independently for anomalies in the latest_data array relative to the
historical_data array.
2) Identify indices in the latest_data that might be anomalous (look for both distribution changes and pattern
changes)
3) Provide explanation only when anomaly is detected.
4) For each time series, provide the output in strict JSON format with the following structure:

"[
{

"time_series_index": <index>,
"anomaly_explanation": "<provide quantitative explanation>",
"anomaly_indices": [<indices>],
"anomaly": "Yes/No"

}
]"

Strictly return a valid JSON list of objects and no additional content or explanation outside JSON.

Figure (8) Prompt for zero-shot anomaly detection on Synthetic Dataset

C Supplementary Material for NASA Data

C.1 Experiment Setup

We utilize a very similar setup as used in Amazon’s VFD data. For the NASA data, we set the period, P , of analysis to be 70
(based on the downlink frequency) as mentioned in the original paper (Hundman et al., 2018). We set the window, W , to be
700 to maximize historical window context for LLM while minimizing anomalies to fall in the first window (only 1 anomaly
out of 105 anomaly ranges occur before index 700). For threshold on Wasserstein distance, we set the value of ϵ to be 15
(see Ablation study in Appendix C.2). All the data was scaled between 0 to 1 using min-max scaling and then quantized to
take integer values from 0 to 100. The LLM prompt used for the studies is shown in Figure 9 and time-series from both
SMAP and MSL data were combined in the same pool to maximize opportunities for batching. The LLM model used is
Claude 3.5 Sonnet v2. We use the same evaluation criteria of Precision and Recall as used in the original paper (Hundman
et al., 2018) and benchmark study (Alnegheimish et al., 2024), where range-based metrics are calculated based on overlap of
ground truth with detected anomalies.

15



825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879

LEAD - Framework for efficient time-series anomaly detection on large scale data using LLMs

Prompt for NASA Data

Task Description: You are an expert at anomaly detection in patterns of time series data from sensors. You can analyse multiple
independent time series in batch.
Data Description: Each time series is a sensor reading from NASA Space rovers on Mars
Judgment Rules:
1) A data point is anomaly if it deviates compared to historical pattern. Note that historical data may have seasonal trends.
2) Anomalies are when the latest data has a different pattern than historical values. 3) Do not call data points as anomalies if they
follow the pattern but have slightly different peaks or troughs
4) Do not call indices as anomalies unless there is a clear and significant deviation. Ignore smaller deviations as anomalies are
EXTREMELY rare
5) Always give range of anomalies, if there is a single anomaly point, add padding of 5 indices
Strict steps to follow:
1) Analyze each time series independently for anomalies in the latest_data array relative to the historical_data
array.
2) Identify indices in the latest_data that might be anomalous (look for both distribution changes and pattern changes)
3) Provide explanation only when anomaly is detected.
4) For each time series, provide the output in strict JSON format with the following structure:

"[
{"time_series_index":<index>,
"anomaly_explanation": <provide quantitative explanation>,
"anomaly_indices": [indices],
"anomaly": "Yes/No"}

]"

Strictly return a valid JSON list of objects and no additional content or explanation outside JSON.

Figure (9) Prompt for zero-shot anomaly detection on NASA Dataset

C.2 Ablation study for variations on ϵ on NASA data

In Table 12 we show the variation of F1 score across NASA datasets at different ϵ. Overall, ϵ = 15 shows the best
performance. Figure 10 shows how batching improves performance on SMAP data, particularly by improving the Precision,
reinforcing that having multiple time-series in the same prompt help LLMs to ignore trivial anomalies.

Table (12) F1 Scores for Different ε Values for B = 10

ε MSL SMAP Overall Data

5 0.423 0.303 0.341
10 0.426 0.473 0.455
15 0.472 0.618 0.509
20 0.450 0.500 0.478
25 0.377 0.387 0.383
30 0.387 0.326 0.351
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Figure (10) Batching improves F1 scores for SMAP data primarily through increased Precision

C.3 Comparison of LEAD results on NASA dataset with available baselines

In Table 13 a comparison of LEAD Framework’s results is shown with other baseline methods. The numbers for other
baseline methods have been reproduced from the study (Alnegheimish et al., 2024)

Table (13) Model Performance (F1) on NASA Datasets with Difference from LEAD

Model MSL SMAP Diff w/ LEAD (MSL) Diff w/ LEAD (SMAP)

AER 0.587 0.819 -19.6% -24.5%
LSTM DT 0.471 0.726 0.2% -14.9%
LEAD (ours) 0.472 0.618 0.0% 0.0%
ARIMA 0.525 0.411 -10.1% 50.4%
Matrix Profile 0.474 0.423 -0.4% 46.1%
TadGAN 0.560 0.605 -15.7% 2.1%
LSTM AE 0.545 0.662 -13.4% -6.6%
VAE 0.494 0.613 -4.5% 0.8%
AnomalyTransformer 0.400 0.266 18.0% 132.3%
Moving Average 0.171 0.092 176.0% 571.7%
MS Azure 0.051 0.019 825.5% 3152.6%

D Insights from Pilot

With the improvement in latency made by this framework and better recall than the current production model in back-testing,
we piloted LEAD in Week 16 and Week 18 on Site 1 and Site 2 respectively to gather feedback from technicians. While
anomaly instances are rare and we are early in our pilot to fully evaluate it, we have already detected six defects through
LEAD that were undetected by current production model (Sample detections shown in Figure 11). Preliminary results for
Precision are shown in Table 14 and are broadly inline with back-testing performance observed through case study.

Table (14) Performance of LEAD in Pilot

Site Work orders resolved True positive work orders Precision Period

Site 1 30 24 80.00% 14 Apr – 18 May
Site 2 13 9 69.23% 28 Apr – 18 May
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((a)) Amperage rise detection leading to removal of amnesty

((b)) LEAD detected unusual variance in amperage pointing to tracking issue in belt

Figure (11) Sample detection by LEAD in Pilot (that were undetected by current model), please refer to explanations generated by
LEAD in gray boxes in the images

E What are suitable use-cases for the LEAD Framework?

From the studies above we can observe that LEAD Framework works best for anomaly detection tasks that have following
properties 1) highly imbalanced data so that most trivial time-series can be discarded in Stage 1, 2) have opportunity of
parallel processing of large number of time-series (to exploit gains from batching in Stage 2), and 3) require domain level
knowledge and out-of-the-box explainability.

The simple design of the framework makes it easy to adapt to different use-cases with minimal changes and achieve
comparable results with state-of-the-art techniques. Further, the framework is particularly useful in cold-start problems
where not much historical data is present for training deep-learning models.
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