Under review as a conference paper at ICLR 2026

LEARNING ON THE JOB: TEST-TIME CURRICULA FOR
TARGETED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans are good at learning on the job: We learn how to solve the tasks we face
as we go along. Can a model do the same? We propose an agent that assembles a
task-specific curriculum, called fesz-time curriculum (TTC-RL), and applies rein-
forcement learning to continue training the model for its target task. The test-time
curriculum avoids time-consuming human curation of datasets by automatically
selecting the most task-relevant data from a large pool of available training data.
Our experiments demonstrate that reinforcement learning on a test-time curricu-
lum consistently improves the model on its target tasks, across a variety of evalua-
tions and models. Notably, on challenging math and coding benchmarks, TTC-RL
improves the pass@1 of Qwen3-8B by approximately 1.8x on AIME25 and 2.4x
on Codeforces. Moreover, we find that TTC-RL significantly raises the perfor-
mance ceiling compared to the initial model, increasing pass@8 on AIME25 from
40% to 62% and pass@64 on Codeforces from 45% to 72%. Our findings show
the potential of test-time curricula in extending the test-time scaling paradigm to
continual training on thousands of task-relevant experiences during test-time.

We commit to openly releasing our data, code, model checkpoints, and run logs.

Math: AIME 24 & 25 Code: CodeElo & Codeforces

. 0.8 Final pass@8 ¥ | (0.8 - Final pass@64 ¥
g
§ 0.6
<
2 0.4
&= -

- - = —

0.2 I I
0 100
Training Step Training Step
Test-Time Curriculum ==+ RL Post-Training Initial pass@k

Figure 1: Test-time curricula (TTC’s) lead to remarkable improvements in math and coding
by practicing on self-curated task-related problems at test-time. Remarkably, given the target
tasks at test-time, TTC-RL consistently improves pass @k, with the final pass@]1 often significantly
outperforming the initial pass @k ceiling of the model. Moreover, our proposed test-time curriculum
agent, which self-curates its TTC, learns faster and reaches a higher pass@]1 than regular RL post-
training on standard RL datasets, while avoiding human-driven data curation. We show here the
avg@4 of Qwen3-8B with TTC-RL, as well as pass@8 for math and pass @64 for code.

1 INTRODUCTION

When humans begin a new job, they often train for weeks or months before being able to solve all
required tasks. During this time, they collect experience on dozens of tasks that are similar, becom-
ing more efficient at solving their jobs’ target tasks. We study how large language models (LLMs)

Under review as a conference paper at ICLR 2026

can continually improve at reasoning on their target tasks at test-time. Increasing test-time compute,
for example, by extended use of context as scratch space, has recently emerged as a key direction for
improving LLMs on challenging tasks such as math and coding (Jaech et al., 2024; Guo et al., 2025;
Kimi et al., 2025). This test-time scaling has been driven primarily by extensive general-purpose
reinforcement learning (RL) (Guo et al., 2025), where the LLM learns how to effectively use its
context for reasoning. However, since the context of LLMs is bounded and becomes exceedingly
expensive to expand, an LLM cannot learn in-context from experience over long timeframes.

One promising technique for overcoming this challenge is test-time training (TTT; Sun et al.,
2020; Hardt & Sun, 2024), which continues training the model at test-time after being given a task.
Previous work has studied TTT via supervised fine-tuning on expert data, either retrieved (Hardt
& Sun, 2024; Hiibotter et al., 2025) or provided as few-shot examples (Akyiirek et al., 2025;
Zweiger et al., 2025). Other work has instead focused on TTT in the context of recurrent neural
networks (Sun et al., 2024; von Oswald et al., 2025), aiming to replace the costly attention-based
context in Transformers with a fixed-size state (i.e., the model itself), but losing some of the
advantages of reasoning over an uncompressed scratchpad. We explore a complementary approach
to test-time scaling, where an LLM is continually frained on self-curated training tasks related
to its target task, while practicing on each individual training task in-context. This leverages the
Transformer’s attention as an uncompressed scratchpad for short-term ideation, while meta-learning
strategies for leveraging that context across long-term, task-specific experience.

We propose a test-time curriculum (TTC) agent that automatically designs its own curriculum of
training tasks by selecting the relevant tasks for the job from a large corpus of existing tasks. The
agent then attempts tasks in its curriculum, and compresses the gathered experience into its weights
via RL. The automatic self-guided curriculum design avoids laborious human curation of datasets,
and enables training on purpose-built curricula at test-time. We find that this reinforcement learn-
ing on test-time curricula (TTC-RL) leads to remarkably improved reasoning on target tasks. In
particular, we find that TTC-RL improves the pass@1 of several strong LLMs across diverse rea-
soning tasks, covering competition math, coding, and scientific reasoning (cf. Figure 1). We further
identify that TTC-RL is complementary to other means of test-time scaling, effectively improving
pass@k and maj@Fk even at large k. Notably, we find that TTC-RL can overcome the limitation
of fixed context windows by observing that a non-thinking model (Qwen3-0. 6B) with TTC-RL
can substantially outperform the same model when allowed to think for 30k tokens in-context. This
demonstrates that during TTC-RL, the model continues learning how to think effectively for its tar-
get tasks. Our results suggest such targeted RL as a promising new direction for LLM agents that
continually improve at test-time through interactions with an environment over long timeframes.

We summarize our contributions as follows:

1. We propose a TTC agent for targeted RL (§3): We propose a test-time curriculum agent
which at test-time when given a target task, self-selects related training tasks from a diverse
corpus. The agent then learns from its own experience of attempting those tasks via RL.

2. TTC-RL improves reasoning on target tasks (§3): Across several models and tasks, TTC-
RL consistently improves pass@1 substantially faster than general-purpose RL post-training
on standard RL datasets, and saturates at a higher accuracy. Next, we identify that TTC-RL
substantially raises the performance ceiling of the model (pass@k) and demonstrate that it
is complementary to existing approaches to test-time scaling. Finally, we find that TTC-RL
yields strongly specialized models that perform remarkably well on their target tasks, even
when compared to models that are allowed to think for tens of thousands of tokens in context.

3. Measuring latent improvements in reasoning (§5): The evaluation of RL-trained mod-
els faces the challenge of estimating whether improved scores are due to better reasoning or
merely learning the expected output format. We introduce a new metric, latent improvement,
which computes a lower bound on the improvement in reasoning due to RL training, and find
that TTC-RL leads to substantial improvements in “latent” reasoning.

2 RELATED WORK

Test-time scaling and general-purpose RL training. A common strategy for improving LLM
performance in challenging domains is to allocate additional test-time compute, for instance,
through majority voting (Snell et al., 2025), search with a reward model (Lightman et al., 2023;

Under review as a conference paper at ICLR 2026

Wang et al., 2024a; Setlur et al., 2025a), or by identifying consistent patterns among parallel
rollouts (Wang et al., 2023; Huang et al., 2025a). The potential of such methods is often measured
by pass@F, which describes the performance ceiling with k£ generations (Chen et al., 2025b). More
recently, scaling test-time compute via in-context “reasoning” (Brown et al., 2020; Wei et al., 2022)
has significantly improved performance in domains like math and coding (Jaech et al., 2024). This
capability is commonly enabled by large-scale, general-purpose RL training on diverse tasks (Lam-
bert et al., 2024; Ma et al., 2025; Guo et al., 2025; Kimi et al., 2025), during which models learn
to reason within their bounded context (Setlur et al., 2025b), which connects to the broad topic of
meta-learning (Schmidhuber, 1987; Duan et al., 2017; Finn et al., 2017). This paradigm is related
to goal-conditioned RL (Schaul et al., 2015; Andrychowicz et al., 2017) where several works have
studied automatic curriculum learning (Warde-Farley et al., 2018; Pitis et al., 2020; Pong et al.,
2020), first proposed by Bengio et al. (2009). In contrast to improving general-purpose models, our
work employs RL to train specialized reasoners for a particular target task at test-time.

Self-play. A specialized form of curriculum learning has proven highly successful in domains
like games through the use of self-play (Schmidhuber, 1991; Silver et al., 2016), where an agent
is repeatedly challenged by playing against itself. Seminal works show that this approach can lead
to superhuman performance (e.g., Mnih et al., 2015; Silver et al., 2016; 2017; Berner et al., 2019).
Several recent works aim to generalize this paradigm to LLMs and more general domains such
as coding by self-generating a training curriculum (Zhao et al., 2025; Huang et al., 2025b; Chen
et al., 2025a; Fang et al., 2025). While recent work has studied test-time curricula as an extension
of self-play to goal-conditioned RL settings (Diaz-Bone et al., 2025), its evaluation has focused
on simple robotic navigation tasks. We extend this line of work to challenging reasoning tasks by
self-curating a training curriculum, enabling LLMs to continually learn from extensive experience
on a single task (Silver & Sutton, 2025; Shen et al., 2025).

Test-time training and test-time RL. Training a model at test-time for a given input has been
widely studied as TTT (Sun et al., 2020), using supervised (Hardt & Sun, 2024; Hiibotter et al.,
2025; Yu et al., 2025a; Bertolissi et al., 2025; Bagatella et al., 2025a) or self-supervised losses (Sun
et al., 2024; Dalal et al., 2025). Several methods perform TTT in a purely unsupervised manner,
i.e., without “real-world” data or feedback (Wang et al., 2021; Zhang et al., 2022). Most relevant
to our work, Zuo et al. (2025) recently extended unsupervised TTT to perform RL on the test
set, leveraging the model’s majority votes as pseudo-labels. This connects to a broader theme of
unsupervised RL (Zhang et al., 2025; Shao et al., 2025; Zhou et al., 2025; Prabhudesai et al., 2025)
and self-improvement in LLMs (Zelikman et al., 2022; Gulcehre et al., 2023; Lee et al., 2025).

3 TEST-TIME CURRICULA

We consider the set of target tasks D* = {x},...,z},} given at test-time, and our goal is to spe-
cialize an existing model through further training to those tasks. For training, as in general-purpose
RL, we rely on an existing large corpus of training tasks D = {(x;, vz)}l 1, for each of which

v;(+) € {0, 1} verifies whether an attempt was correct. To specialize, it is common practice to con-
struct a particular subset D* from D, and we call such a targeted subset a test-time curriculum for D*.
We seek to make test-time training on such a curriculum scalable. To this end, we propose to go
beyond human-curated test-time curricula and let the initial model craft its own test-time curriculum.

The previous works of Hardt & Sun (2024) and Hiibotter et al. (2025) have studied self-curated test-
time curricula with supervised fine-tuning (SFT), and have shown that this can improve language
modeling, i.e., lead to lower perplexity. However, this approach is limited since it requires the corpus
to specify how training tasks are to be solved—not only to verify whether a solution is correct. More-
over, mirroring recent observations on the robustness of on-policy RL (Shenfeld et al., 2025), we
observe that SFT on expert traces often leads to an initial drop in performance on downstream tasks,
suggesting that SFT is ill-suited for TTT with LLMs. We provide further details in Appendix A.

3.1 AUTOMATIC TTCS FOR TARGETED RL

We therefore focus on on-policy RL and extend the previous work on automatic data selection for
TTC-SFT (Hardt & Sun, 2024; Hiibotter et al., 2024; 2025) to automatic task selection in TTC-RL.
We adopt SIFT (Hiibotter et al., 2025), which is an extension of nearest neighbor retrieval that selects

Under review as a conference paper at ICLR 2026

a diverse set of examples from the corpus which are relevant to the target tasks. SIFT has a hyperpa-
rameter A, which explicitly trades between diversity and relevance. We find that our results are robust
to the choice of A and generally set A = 0.1 in our experiments. SIFT selects data based on an em-
bedding space ¢ of token sequences, for which we use the normalized last-token last-layer embed-
dings of the initial model. Appendix F gives an example of such a self-curated test-time curriculum.

This pipeline leverages the semantic

understanding of the initial model
to select a TTC for the target tasks.
We then train on this test-time
curriculum via GRPO (Shao et al.,

Algorithm 1 Test-Time Curriculum for Targeted RL

Require: Test tasks D*

1: {(a:t,vt)} “— SIFT,\,(b,T,D(D*)
2: fort=0,1,..., 7 —1do

> select curriculum

2024), as shown in Algorithm 1! 3: {Gt21.4} ~ me(- | Te41) > attempt
Note that test-time training does not 4: Tt} Vi1 (G, > verify
necessitate the model to stay close 5: 0141 < GRPO(O;, {Ut+1,:},{re+14:}) >RLstep
to its initialization since it needs to 6: end for

generalize only to its target tasks,
and hence, we omit the KL penalty of GRPO. We include background on SIFT and GRPO in Ap-
pendix B. In an extension, we evaluate a test-time curriculum that automatically selects tasks of the
right difficulty, which we show to further accelerate learning on weaker models (cf. Appendix C).

3.2 A DIVERSE CORPUS FOR GENERAL-PURPOSE RL POST-TRAINING

To study the effectiveness of our proposed adaptive test-time curriculum, we leverage a large corpus
of high-quality verifiable training data, suitable for post-training a model across diverse domains.
We assemble a new meta-dataset, which we call the verifiable-corpus and which combines
approximately 280k diverse training tasks, spanning three environments:

¢ Exact answer match / Math: For math problems with a numerical answer, we determine
answer equivalence using math-verify. Our corpus contains the training splits of GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b), and the DAPO math dataset (Yu
et al., 2025b), covering a wide range of difficulty levels of numerically verifiable math
problems.

* Judged answer match / General reasoning: Measuring the validity of complex reasoning
requires more robust verification than symbolic equivalence checks. Given a (potentially
long) golden answer, we use a 1.5B-parameter verifier model trained by Ma et al. (2025) to
determine whether attempted and golden answers are semantically equivalent. Our corpus
contains the Webinstruct-verified dataset (Ma et al., 2025), which covers a wide variety of
subjects ranging from natural sciences to history.

* Unit tests / Code: Finally, we combine several sources of coding tasks. Each coding task is
verified by a set of unit tests. Our corpus combines APPS (Hendrycks et al., 2021a), code con-
tests (Li et al., 2022), TACO (Li et al., 2023), Primelntellect (Mattern et al., 2025), Leetcode
(Xia et al., 2025), the Codeforces training split (Penedo et al., 2025) and all LiveCodeBench
tasks (Jain et al., 2024) prior to August 1, 2024.

We perform a filtering step where we remove training tasks with empty answers or less than 5 unit
tests, to ensure a reliable training signal. Finally, we deduplicate and decontaminate the corpus,
as detailed in Appendix E.1. We openly share the corpus and our environment implementations to
support future research. To our knowledge, the verifiable-corpus is one of the first public
corpora of high-quality verifiable tasks, spanning several domains and environments. We envision
that, building on this work, future work will ultimately enable TTC agents to utilize any relevant
training tasks they find on the web (similarly to retrieval-augmented generation; Lewis et al., 2019),
or to self-generate their own training tasks (see, e.g., Zhao et al., 2025).

4 RESULTS

We focus our evaluation on a diverse set of target tasks in math, coding, and scientific reasoning.
Specifically, we evaluate test-time curricula for high-school-level competition math questions

! Algorithm 1 abstracts that we perform each RL step over a batch of training tasks and that we perform RL
training for multiple episodes.

https://github.com/huggingface/Math-Verify

Under review as a conference paper at ICLR 2026

Model AIME24 AIME25 MATH500 Codeforces CodeElo LCBY® GPQA-D
Qwen3-8B-Instruct 21.67 23.33 69.55 21.12 14.97 19.27 49.11
+RL post-training ~ 41.67 38.33 82.50 31.27 25.52 27.48 56.47

+ TTC-RL 50.8377 41.67°"% 8510°°° 50197 5786777 2748’ 58.38°
Qwen3-4B-Instruct-2507 52.50 40.83 72.00 29.13 26.95 21.56 61.93
+RL post-training ~ 55.83 47.50 86.30 38.11 32.60 24.81 62.82

+ TTC-RL 60.00°° 45.837" 885070 50527 582577 269177 61.937°
Llama-3.1-8B-Instruct 3.33 0.00 4230 8.42 2.79 11.07 29.06
+RL post-training ~ 5.83 2.50 44.60 9.70 474 12.79 31.60

+ TTC-RL 6.67°7 2507 45157° 2596"7° 21.69°'°° 137477 327477
Qwen3-8B-Base 15.83 14.17 63.10 10.98 6.72 10.11 29.70
+RL post-training ~ 22.50 20.83 76.85 18.99 13.83 18.13 42.77

+ TTC-RL 30.00°7 21.677° 78.15"°" 34377 37.347°° 2042707 45.947'°°

Table 1: Performance of TTC-RL on reasoning benchmarks across several models. The per-
formance of several models is evaluated across diverse standard benchmarks for math (AIME24,
AIME25, MATHS500), coding (Codeforces, CodeElo, LCBY®), and scientific reasoning (GPQA-D).
Numbers in bold denotes the best performance for a given model backbone, and we use + to denote
the improvement over the initial model in percentage points.

in AIME 24 & 25 and MATHS500 (Hendrycks et al., 2021b). We evaluate coding ability on
Codeforces (Penedo et al., 2025), CodeElo (Quan et al., 2025), and on LiveCodeBench v6 (Jain
et al., 2024), i.e., tasks released after February 1, 2025. Finally, we evaluate scientific reasoning
with GPQA-Diamond (Rein et al., 2024) which covers questions in biology, physics, and chemistry.

TTC-RL can be applied to each task within a benchmark individually or to the entire benchmark on
aggregate, treating it as a set of target tasks. We primarily evaluate TTC-RL per-benchmark as this
yields greater statistical significance under a limited compute budget. We then perform an ablation,
indicating that per-task TTCs performs at least on-par with per-benchmark TTCs (cf. Section 4.2).

To ensure that our evaluation is accurate, we adopt evalchemy (Raoof et al., 2025) and synthesize
system prompts to be consistent across benchmarks (cf. Appendix E.2). We generally train for two
episodes with batch size 8 and 16 rollouts per train task? and measure avg@4 on the set of test tasks
once every ten steps. To further reduce noise, we compute a moving average across three validation
steps. Finally, in our summarized numeric results, we report the highest averaged avg@4, and
include detailed plots of avg@4 per step in Appendix D.3.

We perform our main evaluation on the non-

thinking models Qwen3-8B (Yang et al, 2025), 5 15— Quen38B
the more recent Qwen3-4B-Instruct-2507, and §& == Quen3-8B8-Base
. === Qwen3-4Bats

Llama-3.1-8B-Instruct (Grattafiori et al., 2024), g 10 4 v Llama.SB
whose responses we limit to 8192 tokens. We addition- E
ally evaluate on the Qwen3-8B base model. We opt for g

. . . . o
non-thinking models due to the high computational cost z 5
of running thinking models over long contexts, typically §
of up to 32k tokens. The goal of our TTC framework = | .
is to show that models can improve at test-time, even T T T
without further expanding their context. We hypothesize 0 100 200
that our results extend to thinking models, which simply Training Step

have a larger maximum response length.

Figure 2: Improvement of TTC-RL over
Main results. We summarize our main results in Flg- RL post_training across several models.
ure 1 and Table 1. We find that TTC-RL leads to signifi-

cantly improved accuracy across a wide range of models and all benchmarks. Notably, it also leads

>We summarize all training hyperparameters in Appendix E.3.

Under review as a conference paper at ICLR 2026

x 057 e .06+ __e—o—° Qwen3-0.6B - 0.18 0.05
® —° ® o—o—"
7] . = —
206 o H| 3 L
o _~ _— g 5 - + Thinking 0.09
2 ° a—" 7o a—u—=
& 0.4 = & -
./ 0.4 —n +TTC-RL — 0.
I I I I I I I I I I I I
1 2 4 8 16 64 1 2 4 8 16 64 & ¥
k k ¥ & &
—®— TTC-RL RL Post-Training —H- Qwen3-8B ©

Figure 3: TTC-RL scales test-time compute in way that is complementary to other means
of test-time scaling. Left: The pass@k of TTC-RL on Qwen3-8B, averaged over benchmarks,
increases substantially for small and large k, indicating that TTC-RL raises the model’s perfor-
mance ceiling. Middle: TTC-RL also improves the performance of majority voting (across math
and GPQA-D), with the initial pass@1 significantly outperforming maj@64 on the initial model.
Right: We evaluate Qwen3-0. 6B in non-thinking and thinking mode, as well as the non-thinking
model + TTC-RL. The color indicates the ranking. We find that the non-thinking model can outper-
form the thinking variant with TTC-RL, with a significant performance gap in coding.

to significant performance gains on top of Qwen3-8B-Base within only relatively few RL steps,
indicating that TTCs lead to sample-efficient training. Our main baseline is a model that is trained
on 1k uniformly chosen training tasks from the corpus, to which we refer to as standard “RL post-
training”, since this method yields a general-purpose model. We compare this to TTC-RL with a
curriculum of size 1k and find that training on a test-time curriculum accelerates learning signifi-
cantly and leads to saturation at substantially higher performance? In Figure 2 we show the marginal
improvement in percentage points throughout training when using TTC-RL over general-purpose
RL post-training, and find that this difference tends to increase throughout training for all models.

Takeaway 1

TTC-RL substantially improves accuracy on a wide variety of models and benchmarks, com-
pared to a model’s initial performance and after (continued) RL post-training on our corpus.

4.1 TTCS ARE COMPLEMENTARY TO EXISTING APPROACHES TO TEST-TIME SCALING

Next, we demonstrate that TTC-RL improves the LLM’s ability for test-time scaling.

TTCs raise the model’s performance ceiling. While the improvement in accuracy demonstrates
that during TTC-RL, the model learns to better reason within context, we ask whether the model
improves more broadly. A common metric to understand a model’s “performance ceiling” for test-
time scaling is the pass@k metric, which measures whether any one of k attempts is correct (Chen
et al., 2025b). Recent work has repeatedly shown that RL-training tends not to improve pass@Fk at
large £ (Yue et al., 2025), leading to the concern that RL-training is simply “distilling” pass@¥k into
pass@1. In Figure 3 (left), we instead observe that TTC-RL significantly improves pass@k across
a wide range of k. Similarly, TTC-RL also improves the realized performance gains of majority
voting, as can be seen in Figure 3 (middle). Our results indicate that two key factors lead to the
performance of TTC-RL: Improvements to the RL training algorithm that also apply to our general-
purpose RL-training baseline, as well as the specific data selected by the TTC agent, as indicated by
the strong improvement in majority voting. We provide a more detailed discussion in Appendix D.1.
Developing a better understanding of the circumstances under which RL-training can “discover
new behavior”, leading to improved pass @£, is an exciting direction for future research.

TTC-RL with a short-context LLM can improve over a general-purpose long-context LLM.
We also seek to better understand how TTC-RL relates to reasoning over long contexts. To this end,
we evaluate Qwen3-0. 6B (Yang et al., 2025), which has both non-thinking and thinking variants,
limited to 8k and 30k tokens per response, respectively. In Figure 3 (right), we find that TTC-RL on

3In Appendix D.4, we additionally compare to an “RL post-training” baseline that only samples training
tasks from the test environment and show that this yields comparable results.

Under review as a conference paper at ICLR 2026

0.6 1.0
e _ 04+ EZA Accuracy A AIME24 _
= P B Latent impr. AIME25 08 3
2 047 2 0317 MATHS500 06 2
> = "c
é E‘ 0.2 4 Codeforces o 'g
S 0.2+ g CodeElo . §
é 3 0.1+ LCB 0.2 2
GPQA-D
0.0 - 0.0 = 0.0
\| D AX & a0 X M D & a0 D
E IS GESESG
¢ FF PRy P REF S &

Figure 4: Left: Per-task TTC-RL outperforms a benchmark-level TTC in AIME25. We per-
form TTC-RL and maj-TTRL (cf. Section 5.2) on Qwen3-8B, and find that per-task TTC-RL even
outperforms the benchmark-level TTC. Middle: TTC-RL improves ‘“correctness” of reasoning,
not only learning the answer format. We evaluate the difference in accuracy between TTC-RL and
the initial Qwen3-8B, averaged over benchmarks. The latent improvement is lower bound to the
accuracy gain that is not due to merely learning the format (cf. Section 5.1). Right: TTC-RL yields
models that are specialized to their target tasks. We plot the accuracy of Qwen3-8B trained for
given target tasks (rows) when evaluated on other benchmarks (columns). We normalize accuracies
across all evaluations of a particular benchmark. Notably, the model trained via TTC-RL for the
“right” target tasks (i.e., the diagonal) always performs best.

the short-context model can significantly improve upon the same model with a long context. Also ob-
serve that the asymptotic cost of growing context in a Transformer is quadratic (Vaswani et al., 2017)
whereas the asymptotic cost of TTC-RL is linear (since experience is compressed into the model’s
weights). This suggests that there is a regime where given a fixed compute budget, TTC-RL outper-
forms further scaling of context size. We believe that studying this compute-optimal Pareto frontier
is an exciting topic for future research. Our results indicate that to further improve the performance
of LLMs, test-time curricula may eventually be advantageous over continued scaling of context size.

Test-time curricula substantially increase the pass@k performance ceiling of a model and can
also outperform models which are reasoning over a much larger context. This indicates the
potential of TTCs to complement existing approaches to test-time scaling.

4.2 TTCS EFFECTIVELY SPECIALIZE MODELS

To determine whether the test-time curriculum specializes the model to its target tasks, we conduct
a straightforward experiment: We evaluate each final checkpoint of TTC-RL on all benchmarks,
including those that were not part of the set of target tasks. We summarize the results in Figure 4
(right), with columns corresponding to evaluation and rows corresponding to training. We find
that after TTC-RL, models perform best on their target tasks, while severely underperforming on
tasks that are unrelated to the target tasks. Moreover, we identify a block-diagonal structure, where
models generalize better across mutually related groups of tasks, particularly among similar math
benchmarks. We also find that models appear to generalize better from coding to math than vice
versa and models generalizing better from code and math to GPQA than vice versa.

TTCs for individual tasks. Aspirationally, test-time curricula may even be used to continue
learning for a single test task over a long timeframe. While we focus our main evaluation on the
setting where test-time curricula are applied per benchmark, we run an ablation with 30 separate
TTCs—one per AIME 25 question. The results in Figure 4 (left) demonstrate that specializing to
an individual test task can outperform a broader specialization to a group of test tasks. This further
shows that TTC-RL does not depend on a larger set of test tasks to implicitly lead to diverse data and
robust training, but it seamlessly extends to a fully test-time setting with only a single task given.
We find, however, that more fine-grained specialization does not always lead to further performance
gains. We evaluate training separate TTCs for each of biology, physics, and chemistry in GPQA,

Under review as a conference paper at ICLR 2026

leading to approximately the same performance as a joint TTC. In our view, gaining a better
understanding for “how much” specialization is helpful is an exciting direction for further research.

Takeaway 3

Test-time curricula effectively specialize the model to their target tasks. When applied to an
individual target task, TTC-RL can be seen directly as a method for test-time scaling.

5 FURTHER ANALYSIS

5.1 ESTIMATING “REAL” IMPROVEMENT

When evaluating RL-trained models on verifiable tasks, a reasonable concern is whether the
model simply learns to adhere to the expected output format. Indeed, we find that if the initial
model is not able to consistently produce well-formed responses, RL-training tends to quickly
teach the model the expected output format. Therefore, disentangling shallow learning of format
from improvements in a model’s “latent” reasoning is critical for accurate evaluation. Ideally, we
would like to measure whether the model’s reasoning improves throughout training—regardless of
whether we can automatically parse and evaluate responses.

We propose to measure a model’s latent improvement (LI) during RL training as follows. Consider
the event of an answer being marked as “accurate” by the verifier, which occurs if it is “well-formed”
(i.e., it can be extracted and interpreted) and if the model’s latent reasoning is “correct”. Based on
this, a straightforward lower bound on correctness is simply P(correct) > P(accurate). To measure
the improvement in correctness throughout RL training, we make the following intuitive assumption:

Assumption 1. We assume that being well-formed does not reduce the chance of being correct.
Formally, we assume P(correct | well-formed) > P(correct), i.e., a non-negative association of
formatting and correctness.

Intuitively, this assumption states that an ill-formed response does not increase the likelihood of
correct latent reasoning. This yields a straightforward upper bound on the probability of correct
latent reasoning: P(correct) < P(accurate)/P(well-formed) if P(well-formed) > 0. Thus, the
improvement in correctness after 7' RL steps is lower bounded as

P(accurateg)

——. 1
P(well-formedy) M

Latent Improvement := P(correctr) — P(correcty) > P(accurater) —

Measuring latent improvement. We consider a response as ill-formed if we cannot extract an
answer, e.g., because the response was truncated at the max-token limit or because the completed
response did not contain an extractable answer. We note that to reliably measure LI, it is essential to
ensure that answer extraction is strict? In Figure 4 (middle), we measure the latent improvement of
Qwen3-8B, and find that under Assumption 1, TTC-RL leads to a substantial latent improvement.
We include our complete results in terms of LI in Table 7 of Appendix D.

5.2 TOWARDS CONTINUAL SELF-IMPROVEMENT AT TEST-TIME

We consider this work as a first step towards agents that continue learning at test-time and specialize
without requiring human supervision. The recent work of Zuo et al. (2025) can also be seen as a
step in this direction by proposing to train on the test set directly, using majority votes as surrogate
rewards (“maj-TTRL”). Since Maj-TTRL relies on majority votes as its training signal, it can be
applied only to environments with structured outputs such as our math environment with numerical
answers or the multiple choice GPQA. In contrast, our proposed TTCs can be applied in any
environment where a reward signal can be defined. We perform a comparison to Zuo et al. (2025) in
Table 2 and find that Maj-TTRL leads to significant gains in accuracy across math benchmarks, but
helping less in GPQA. We emphasize that Maj-TTRL and test-time curricula are complementary
approaches, e.g., one can perform Maj-TTRL directly after TTC-RL, which we find to outperform
Maj-TTRL alone (cf. Figure 13 in Appendix D.5).

*If answers are extracted, which are not intended as answers by the model, this artificially inflates LI and
violates Assumption 1. To ensure this, we only extract the contents of \boxed{} or the contents wrapped in ***
++, for math and code, respectively.

Under review as a conference paper at ICLR 2026

Notably, the performance gains of Maj-TTRL on
the strong Qwen3-4B-Instruct-2507 model in Model Math Code GPQA-D

AIME 24 & 25 suggest that the returns from our proposed Qwen3-8B-Instruct
implementation of TTC-RL are constrained by the scope Maj-TTRL 52.63

. - 51.14
of its fixed training corpus. This saturation does not

+ TTC-RL 59.2 45.18 58.38

imply a ceiling on the model’s capabilities; rather, it may
indicate a promising opportunity for self-improvement Qwen3-4B-Instruct-2507

methods such as Maj-TTRL or synthetic data genera- + Maj-TTRL 69.49 - 62.44
tion (e.g., Zhao et al., 2025; Zweiger et al., 2025), which 4 TTC-RL 64.78 45.23 61.93

may be combined with or extend TTCs.

Table 2: The competitive performance

5.3 ON DECONTAMINATION AND REWARD HACKING Of Maj-TTRL on our strongest model
suggests that TTC-RL’s effectiveness is
The performance gains from TTC-RL are remarkable, constrained by its fixed training cor-
particularly in coding. For example, in CodeElo, the pus. Combining our approach with self-
non-thinking Qwen3-0.6 achieves 75% pass@1 with improvement techniques is therefore an
TTC-RL? and a significant improvement over previous exciting direction for future work.
scores on this benchmark, while achieving essentially 0%
initially. This naturally raises the question of potential confounding factors. To mitigate this risk,
we took several steps: we extensively decontaminated our corpus by removing tasks that overlap
with the test set, implemented safeguards against reward hacking within our code environment, and
manually reviewed several model responses.

A remaining limitation is that we cannot guarantee the cleanliness of the model’s original pre-
training data. To account for this possibility, we evaluated both Qwen and Llama models and
observed similar gains (cf. Table 1), which makes pre-existing contamination a less likely explana-
tion for our results. Furthermore, we compare TTC-RL to an oracle that trains directly on the test
tasks, finding that our method learns slightly more slowly and levels off at a lower accuracy (cf. Fig-
ure 14 in Appendix D). We believe our findings on the importance of data selection (cf. Figure 1)
and improvements to the RL training algorithm to facilitate exploration (cf. Appendix D.1) offer
plausible explanations for these results. Nevertheless, we encourage future research to further
explore the effectiveness of test-time curricula for targeted RL.

6 CONCLUSION

We propose a test-time curriculum agent that self-curates a sequence of training tasks to specialize
towards a specific target task via reinforcement learning. We demonstrate that TTCs achieve remark-
able performance gains across diverse models and reasoning benchmarks, significantly raising the
performance ceiling of strong initial models by specializing to their target task. To better evaluate
these gains, we introduce the “latent improvement” metric, which measures genuine improvements
in reasoning correctness. Our experiments confirm that TTCs yield substantial gains in latent im-
provement. This highlights the potential of a currently underutilized compute regime: targeted test-
time training, which sits between large-scale general-purpose training and frozen test-time scaling.
While standard next-token prediction relies on a model’s intuition and reasoning allows it to lever-
age context for deliberation, our proposed test-time curriculum enables the model to meta-learn how
to reason for a particular target task at test-time. This opens up several exciting research directions.

A natural direction is to move beyond the bottleneck of a fixed task corpus through self-generated
TTCs, which may still use human-created tasks as inspiration. Further avenues include improving
the sample- and step-efficiency of TTC-RL through advancing methods for RL training. This
also raises questions about scaling laws for this new regime: for instance, at what context length
does it become more advantageous to scale TTC-RL rather than increasing the context window?
Looking beyond single-task specialization, TTCs might be extended to dynamic settings where an
agent must adapt to an evolving set of target tasks. Finally, TTC-RL could be used to unconfound
benchmark evaluations by providing a standardized method for specializing all models to a test
task (Dominguez-Olmedo et al., 2025), enabling a fairer comparison of their core capabilities.

>We include a summary of this particular run in Appendix F.

Under review as a conference paper at ICLR 2026

REFERENCES

Ekin Akytirek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning. In ICML,
2025.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NeurlPS, 2017.

Marco Bagatella, Mert Albaba, Jonas Hiibotter, Georg Martius, and Andreas Krause. Test-time of-
fline reinforcement learning on goal-related experience. arXiv preprint arXiv:2507.18809, 2025a.

Marco Bagatella, Jonas Hiibotter, Georg Martius, and Andreas Krause. Active fine-tuning of multi-
task policies. In ICML, 2025b.

Yoshua Bengio, Jérome Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, 2009.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemystaw Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Ryo Bertolissi, Jonas Hiibotter, Ido Hakimi, and Andreas Krause. Local mixtures of experts: Essen-
tially free test-time training via model merging. In COLM, 2025.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models. arXiv preprint arXiv:2508.03682, 2025a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass @k training for adaptively balancing exploration and exploitation of large reasoning models.
arXiv preprint arXiv:2508.10751, 2025b.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han,
Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with test-time
training. In CVPR, 2025.

Leander Diaz-Bone, Marco Bagatella, Jonas Hiibotter, and Andreas Krause. Discover: Automated
curricula for sparse-reward reinforcement learning. In NeurIPS, 2025.

Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task con-
founds evaluation and emergence. In /CLR, 2025.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. RI12: Fast
reinforcement learning via slow reinforcement learning. In /CLR, 2017.

Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Mingli
Song, and Dacheng Tao. Serl: Self-play reinforcement learning for large language models with
limited data. arXiv preprint arXiv:2505.20347, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

10

Under review as a conference paper at ICLR 2026

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. In
ICLR, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. In NeurIPS, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In NeurIPS, 2021b.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. In ICLR, 2025a.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv
preprint arXiv:2508.05004, 2025b.

Jonas Hiibotter, Bhavya Sukhija, Lenart Treven, Yarden As, and Andreas Krause. Transductive
active learning: Theory and applications. In NeurIPS, 2024.

Jonas Hiibotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of llms. In ICLR, 2025.

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai ol system card. arXiv
preprint arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. arXiv preprint arXiv:2403.07974, 2024.

Kimi, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with Ilms.
arXiv preprint arXiv:2501.12599, 2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. arXiv preprint arXiv:2411.15124,2024.

Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
improving transformers overcome easy-to-hard and length generalization challenges. In ICML,
2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Kiittler, Mike Lewis, Wen-tau Yih, Tim Rocktédschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. In NeurIPS, 2019.

11

Under review as a conference paper at ICLR 2026

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2023.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, et al. Deepcoder: A fully open-source 14b coder
at o3-mini level. Together Al Blog, 2025. URL https://www.together.ai/blog/
deepcoder.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. arXiv preprint arXiv:2505.14652, 2025.

David JC MacKay. Information-based objective functions for active data selection. Neural compu-
tation, 4(4), 1992.

Justus Mattern, Manveer, Jannik, Matthew, Felix, Johannes, and Vincent. Synthetic-1: Scaling
distributed synthetic data generation for verified reasoning. Primelntellect Blog, 2025. URL
https://www.primeintellect.ai/blog/synthetic-1.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540), 2015.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlicek, Loubna Ben Allal, Edward Beeching,
Agustin Piqueres Lajarin, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
von Werra. Codeforces dataset, 2025. URL https://huggingface.co/datasets/
open-rl/codeforces.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In /CML, 2020.

Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. In ICML, 2020.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
generation of llms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257, 2025.

Qwen. Qwq-32b: Embracing the power of reinforcement learning. Qwen Blog, 2025. URL https:
//qwenlm.github.io/blog/qwg-32b.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

Negin Raoof, Etash Kumar Guha, Ryan Marten, Jean Mercat, Eric Frankel, Sedrick Keh, Hritik
Bansal, Georgios Smyrnis, Marianna Nezhurina, Trung Vu, et al. Evalchemy, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In COLM, 2024.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In ICML, 2015.

12

https://www.together.ai/blog/deepcoder
https://www.together.ai/blog/deepcoder
https://www.primeintellect.ai/blog/synthetic-1
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/datasets/open-r1/codeforces
https://qwenlm.github.io/blog/qwq-32b
https://qwenlm.github.io/blog/qwq-32b

Under review as a conference paper at ICLR 2026

Jirgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universitit Miinchen, 1987.

Jiirgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural
networks, 1991.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for 1lm reasoning. In /CLR, 2025a.

Amrith Setlur, Yuxiao Qu, Matthew Yang, Lunjun Zhang, Virginia Smith, and Avi-
ral Kumar. Optimizing 1lm test-time compute involves solving a meta-rl problem.
CMU MLD Blog, 2025b. URL https://blog.ml.cmu.edu/2025/01/08/
optimizing-llm-test-time-compute-involves—-solving—a-meta-rl-problem.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Junhong Shen, Hao Bai, Lunjun Zhang, Yifei Zhou, Amrith Setlur, Shengbang Tong, Diego Caples,
Nan Jiang, Tong Zhang, Ameet Talwalkar, et al. Thinking vs. doing: Agents that reason by scaling
test-time interaction. arXiv preprint arXiv:2506.07976, 2025.

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. RI’s razor: Why online reinforcement learning
forgets less. arXiv preprint arXiv:2509.04259, 2025.

David Silver and Richard S Sutton. Welcome to the era of experience. Google Al 2025.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587), 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, loannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Charlie Snell, Jaechoon Lee, Kelvin Xu, and Aviral Kumar. Scaling 1lm test-time compute optimally
can be more effective than scaling model parameters. In /ICLR, 2025.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. arXiv preprint arXiv:2407.04620, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maxi-
milian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans,
et al. Mesanet: Sequence modeling by locally optimal test-time training. arXiv preprint
arXiv:2506.05233, 2025.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. /CLR, 2021.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce 1lms step-by-step without human annotations. In ACL,
2024a.

13

https://blog.ml.cmu.edu/2025/01/08/optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem
https://blog.ml.cmu.edu/2025/01/08/optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem

Under review as a conference paper at ICLR 2026

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In ICLR, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In NeurIPS, 2024b.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurlPS,
2022.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code 1lms.
arXiv preprint arXiv:2504.14655, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Hongzhou Yu, Tianhao Cheng, Ying Cheng, and Rui Feng. Finemedlm-ol: Enhancing the medical
reasoning ability of IIm from supervised fine-tuning to test-time training. In COLM, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source 1lm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025b.

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does re-
inforcement learning really incentivize reasoning capacity in llms beyond the base model? arXiv
preprint arXiv:2504.13837, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurlIPS, 2022.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In NeurIPS, 2022.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question
is already half the answer: Fully unsupervised llm reasoning incentivization. arXiv preprint
arXiv:2504.05812, 2025.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. arXiv preprint arXiv:2505.03335, 2025.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biging Qi, Youbang Sun, Ganqu
Cui, Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. arXiv preprint
arXiv:2504.16084, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyiirek, Yoon Kim, and Pulkit Agrawal. Self-
adapting language models. arXiv preprint arXiv:2506.10943, 2025.

14

Under review as a conference paper at ICLR 2026

APPENDICES

CONTENTS

A Why Imitation Learning is ill-suited for TTC’s

B Background
B.1 SIFT . . . e
B2 GRPO

C Autobalancing Achievability with TTC’s

D Extended results
D.1 Important components of our RL training
D.2 What is the right size of curriculum? oL
D.3 Performance vs. Stepo e e
D.4 “RL post-training” baseline restricted to the test environment
D.5 Extended comparison and combination of TTC-RL with Maj-TTRL
D.6 Additional benchmarks L oo
D.7 Further results and ablations o oo L

D.8 Unsuccessful attempts

E Experiment details
E.1 Dataset e e e
E.2 Systemprompts e e e e e
E.3 Detailsofthe RL training

F Qualitative examples
F.1 TTC-RL’s remarkable performance on CodeElo
F2 AIME25,question26.
F3 TTCforCodeElo e

15

16

17
17
17

18

20
20
21
21
21
23
24
24
24

26
26
26
27

Under review as a conference paper at ICLR 2026

A WHY IMITATION LEARNING IS ILL-SUITED FOR TTC’S

While we focus on RL-training with a test-time cur-
riculum, the prior works of Hardt & Sun (2024) and
Hiibotter et al. (2025) have proposed to instead per-
form supervised fine-tuning on human-produced data
(TTC-SFT), retrieved from a large corpus. Next
to being impractical since requiring reasoning traces
for training tasks, we make the observation that the
distribution-shift of off-policy SFT appears to make it
fundamentally ill-suited for test-time training of LLM:s.
To test this, we train a Qwen2.5-7B-Instruct
model (Qwen et al.,, 2024) on the test sets of the
AMC23 and AIME25 math competitions, using expert
traces generated by QwQ-32B (Qwen, 2025) using the

— AMC23
— AIME25

<
=~
1

o
o
1

Test Accuracy

e
=}
1

T T T
400 600 800

Training Step

T
0 200

Figure 5: Training on the test set with
SFT leads to an initial accuracy drop,
indicating that SFT is ill-suited for TTT.

SFT pipeline from OpenThinker3 (Guha et al., 2025).

OpenThinker3-7B is simply the fine-tuned Qwen?2 . 5-7B-Instruct when trained fo conver-
gence on a curated training set of QwQ-32B (Yang et al., 2025) traces (Guha et al., 2025). Although
OpenThinker3 demonstrates that at convergence, an SFT-trained Qwen2.5-7B-Instruct can
achieve strong performance, Figure 5 shows that even when training directly on the test set, it takes
hundreds of gradient steps before the accuracy starts to increase, while initially dropping to close
to 0%. Intuitively, even though perplexity decreases smoothly throughout training, the model’s be-
havior undergoes phase transitions, and begins by only reproducing superficial reasoning patterns
such as repeatedly generating “Wait, ...””:

Excerpts from reasoning traces for AIME 25 after 200 SFT steps

...L be 2025. Wait, actually, actually, actually, actually, actually, actually, actually, actually,
actually, actually, act ...

...numerator.\n\nWait, numerator numerator is numerator denominator * denominator numer-
ator.\n\nWait, numerator numerator . . .

This phenomenon is closely related to recent observations
that off-policy SFT appears to induce a greater distribu-
tion shift of the policy than on-policy RL (Shenfeld et al.,
2025), indicating that TTC-SFT is less robust and may
even be less efficient than TTC-RL.

— GMS8K

o
oS
1

o
>
1

Test Accuracy

Validating this phenomenon with expert solutions in
GSMBSK. To validate that this behavior is because of T T
the behavior SFT rather than the specifics of QwQ-32B- 0 2 4 6
generated reasoning traces, we perform a similar experi- Training Epoch

ment on GSM8K (Cobbe et al., 2021). GSM8K’s test set
has not only verified numerical answers, but also human-
generated expert reasoning traces. In Figure 6, we train
Llama-3.2-1B-Instruct on these expert solutions
with SFT and observe that after the first full epoch, per-
formance on the GSMSK test set has dropped. At first this
may seem puzzling, but looking at a qualitative example
suggests that the model first learns superficial cues (the human-generated GSM8K solutions are very
succinct) before in this case overfitting to the SFT data:

Attempt of a GSMS8K question after 1 epoch of SFT on the test set

Problem

Figure 6: Training Llama-3.2-1B-
Instruct on the GSMS8K test set with
SFT. After the first full epoch, the
performance has dropped significantly
compared to the initial model, before
then overfitting to the SFT data.

There are three trees in Eddy’s backyard. The shortest tree has a height of 6 feet, and the

second tree has a height of 5 feet more than the shortest tree. The height of the tallest tree
is twice the height of the two trees combined. How tall is the tallest tree?

16

Under review as a conference paper at ICLR 2026

Ground Truth

Tallest Tree: 108 feet
Middle sized tree:(108/2)-6=48 feet Smallest tree:48/4=12 feet
N

Initial Answer

The tallest tree is 108 feet. The middle-sized tree is 6 feet less than half the height of the
tallest tree. Half of 108 is 54. So the middle-sized tree is 54 - 6 = 48 feet tall. The smallest
tree is 1/4 the height of the middle tree, which is 1/4 x 48 = 12 feet tall.

L The final answer is 12

The middle tree is 108/2 - 6 = 60 feet tall. The smallest tree is 60/4 = 15 feet tall.
L The final answer is 15

S

&

J
o)
Hyperparameter Value
Learning rate le-5
Batch size 32
Max. sequence length in tokens 16384
Packing No
Adam’s -values (0.9, 0.999)

Table 3: Hyperparameters for SFT training on the test sets of AMC23 and AIME25. This corre-
sponds to the “micro” configuration of OpenThinker (Guha et al., 2025).

B BACKGROUND

B.1 SIFT

Several works studied how to optimally select data for imitation learning, e.g., the early seminal
work of MacKay (1992) and recent extensions (Hiibotter et al., 2024; 2025; Bagatella et al., 2025b).
SIFT is an active learning selection method that accounts for information duplication and optimizes
overall information gain to produce diverse and informative examples (Hiibotter et al., 2025).

Given a feature map ¢, we define the inner-product kernel k(z, ') := ¢(z) T ¢(a’). SIFT greedily
selects data from a corpus D to minimize a measure of uncertainty about how to respond to a specific
prompt z*. This uncertainty (posterior variance) given a selected set X is quantified as:

0% (x*) = k(z*, 2%) — k() (Kx + M) Ykx (2¥),)

where K x is the kernel matrix of X, kx (z*) is the vector of kernel evaluations between the inputs
in X and z*, and A > 0 is a regularization coefficient.

SIFT iteratively selects the next point x,, 1 by greedily minimizing this posterior uncertainty:
. . 2 *
Tnt1 = AGMIN O (s) (x*). 3)
The regularization coefficient A modulates the trade-off between relevance (favored by large \) and

diversity (favored by small \). Full details, including theoretical guarantees and empirical results,
are presented in the SIFT paper (Hiibotter et al., 2025).

B.2 GRPO

For RL-training, we adopt GRPO (Shao et al., 2024) without a KL penalty. For a specific training

task x, the behavior policy my,, samples a group of G individual responses {0;}$;. Then, we

17

Under review as a conference paper at ICLR 2026

calculate the advantage of the i-th response by normalizing the group-level rewards {r; }& ;:

N r; —mean({R;}%)

A = (R) @
GRPO then maximizes a clipped objective:
Jareo(0) = EmNﬁ*v{oi}iGleWQ()]d('lm)
LG el o A 5)
el ; o1 tzzl (mm (wivt(H)Ai,t, clip(w; ¢(0),1 — €ow, 1 + Ehigh)Ai,t)) ,
with importance weights
wia(6) = mo(0it | @, 0i,<t) ©)

T o1 (Oi,t | Zz, Oi,<t) .

Maximizing Learning Signal in GRPO When training on a selected dataset we aim to provide
maximal learning signal to the algorithm. One simple way to determine whether a provided data
sample provides useful information is via the norm of the gradient used for training the model. The
gradient of the GRPO objective, in the on-policy setting (79 = mg,,), is given by:

[oi]

G
1 1 A
VoJorro(0) = e E E A; Vo log mg(0; ¢|x, 05 <t) @)
i=1 =1

~ loil &

This formulation reveals that the advantages fl“ are closely tied to the gradient norm
[|VoTorro(0)]]. Intuitively, by selecting data with high absolute advantage we maximize the gradi-
ent norm and provide a strong learning signal to the model.

In the sparse-reward setting for a fixed question x, the reward is distributed according to a Bernoulli
distribution R ~ Ber(p,). The expected absolute advantage for this question can be derived as
follows, where we assume G — oo for simplicity:

|R;££R]|} - xlazé))x %:2 pe(1—py) (8)

Therefore the absolute advantage is maximized for p, = % This simple result suggests that in order
to maximize the learning signal we should choose questions, which on which the current model has
success rate 50%.

IE[A|]:]E[+(1—ps)

C AUTOBALANCING ACHIEVABILITY WITH TTC’S

The goal of a targeted test-time curriculum is to teach the LLM skills that are directly useful for
solving the target tasks. Naively selecting the test-time curriculum, however, may result in training
tasks that are either too easy or too hard for the current model. Prior work on curricula for sparse-
reward reinforcement learning (e.g., Pitis et al., 2020; Zhao et al., 2025; Huang et al., 2025b; Diaz-
Bone et al., 2025) has shown that selecting tasks at an appropriate level of difficulty can dramatically
accelerate learning. In line with these findings, we demonstrate that balancing task relevance with
task difficulty can lead to a better-performing TTC if the model is initially significantly weaker than
required to solve most target tasks. Intuitively, a success rate of 50% provides the most detailed
differentiation as to which approaches work. Indeed, in expectation, a success rate of 50% leads to
the largest possible absolute advantage in GRPO (cf. Appendix B.2), which implies a large gradient
norm and a strong and informative learning signal for the model.

Estimating the success rate online. This raises the question of how to estimate the difficulty of
of a given training task x from the corpus at time {. We assume access to an initial estimate of
difficulty o € (0,1). We then update o recursively to “track” the approximate success rate of the
model for each question:

€))

® i B if = was within the last batch
QB = 1z -1 .
o(c™ (af) + 07 (Ayip|)) otherwise,

18

Under review as a conference paper at ICLR 2026

where A, |p) is the mean reward across the batch and o(2) = 1/(1 + e~#) the sigmoid function.

Intuitively, if A > 0.5, the achievability estimate of all unseen questions is increased, indicating
that tasks are becoming easier for the agent. Conversely, if A < 0.5, the achievability estimates are
decreased, reflecting that training tasks are currently too difficult.

Trading off achievability & relevance to the test task.

We can now leverage the achievability estimates to en- § 015

sure that the selected tasks are of an appropriate difficulty. 5 0.10 -

To this end, we propose Achievable Test-Time Curricula 2

(A-TTCs), which balance relevance to the target tasks, as Z 0.05 7

identified by SIFT, with achievability: & 0.00 T T T
A« {(z,v) | ot € [amin, Gmax]} 0 100 200

{(zB)t:v|B|(t+1)-1)} + argmin SIFT) 4 AIBIt(D*) B 0.50

where [amin, Gmax| determines the interval of task diffi- §

culty we consider for the task selection with SIFT. This g 0.25

selection strategy offers a simple way to select batches of E

problems online, which are of the right difficulty while 0.00 T
remaining relevant to the target tasks. In practice, we 0 100 200
cho0se [amin, Gmax] = [0.2, 0.6], with the goal of achiev- Training Step

ing approximately 50% of tasks over the batch, obtain
prior difficulty estimates by computing the success rates
of the Qwen3-8B model on all questions and enforce a Figure 7: Comparison of train and test
minimum subset size of 1000 to select from. accuracy of standard TTC-RL vs. A-

The results in Figure 7 show that on the weaker TTC-RL averaged across math bench-
Owen3-0. 6B model trading-off achievability with rel- marks (MATH500, AIME24, AIME25)
evance yields a higher training reward and furthermore ©n the Qwen3-0. 6B model.

improves test score across the three math benchmarks, AIME 24 & 25 and MATH500. We note that
this procedure appears useful primarily if the difficulty level in the dataset is wrongly calibrated with
respect to the model’s capabilities.

—— TTC-RL —— A-TTC-RL

Modelling Assumptions. To motivate our online achievability estimation, we consider the logits
% = o~ 1(af) € R of the achievability values and make the assumption that at each time step the
change in the logits d; is jointly gaussian across all tasks:

dif =&y — & (10)

di ~N(0,2) with ¥ = (v — ¢)I,, +cl1" (11)

That is, we consider a fixed variance v for all tasks and assume that the update has constant correla-
tion c among all tasks. After observing the achievabilities for a batch of problems at time ¢, we can

compute the update in the logits for the observed tasks and are able to estimate the update for the
unobserved problems.

Consider a batch of problems B = {yi, ..., ¥ } and an unobserved problem z ¢ B, then:

Eldy | df,y € B =cl"((v—c)ljp +cll")'d} (12)
c | B|c?) Z
— — dy (13)
(vc (v—c)(v+(|B|—1)c) by
C
= dJ (14)
v+ (|B] — 1)c =
W
Step =+ Y df (15)
yeB
——
A¢y B

Under the assumed covariance structure our update becomes:

- ry if = was within the last batch
S '—{ g (16)

o(o " (af) + 07 (Aryp))) otherwise.

19

Under review as a conference paper at ICLR 2026

= L

> 0.4 2L T |z 075)/‘4
S o e —
5 = /:
3 m 0.50 4 =
PEEE B oy
& / £ 0.25 -

T T T 0.00 T T

0 100 200 0 100 200

Training Step Training Step
— 0.2 — 0.28 — 0.32 0.4 0.5

Figure 9: Increasing the enen to 0.28 prevents the collapse of policy entropy and leads to strong
performance on the test set. We plot the test accuracy and the policy entropy over the course of
the training for various values of epigp, on the Qwen3-8B model trained on the Codeforces dataset.
GRPO’s default value is epigp.

D EXTENDED RESULTS

In this section, we present additional experiments and ablations.

D.1 IMPORTANT COMPONENTS OF OUR RL TRAINING

We identify two key hyperparameter that influence the performance of TTC-RL.

How does the SIFT)\ parameter influence perfor-
mance? In the SIFT retrieval method, the hyperpa-
rameter \ trades off between the relevance towards the
target task and diversity in the selection. Specifically,
for large A, relevance is emphasized and the most
relevant tasks are oversampled. For very small values
of A a high level of diversity is favored. We evaluate
the effect of the A hyperparameter on the TTC-RL T T |
algorihtm by measuring the test accuracy averaged over 107° 107% 107" 10" 10°
all benchmarks for the Qwen3-8B model. Figure 8 A

shows that performance is relatively stable for a broad Fjgure 8: A wide range of SIFT X pa-
range of values, A € [107?, 10]. Outside this range (.2, rameters lead to stable performance on
A = 1075 or A > 10), performance drops substantially. (egt accuracy. We show the average per-
This underscores the importance of balancing both formance across all main benchmarks
relevance and diversity in task selection. for the Qwen3-8B model.

=]
t
|

Test Accuracy
o
o
]

e
o

How can we encourage exploration in GRPO? Maintaining a sufficient level of entropy in the
policy is key for any on-policy exploration method. When training with GRPO with symmetrical
clipping on verifiable rewards it has been observed (Yu et al., 2025b; Luo et al., 2025), that the pol-
icy’s entropy quickly goes to 0, preventing effective exploration. It has been found that an increase
of the clip-high (enign) parameter in GRPO can lead to a stabilization of the entropy and improved
performance during training (Luo et al., 2025). Intuitively, if correct answers are rewarded more
strongly than incorrect answers are penalized, the agent is incentivized to maintain higher entropy
in its action distribution, promoting exploration. In Figure 9 we evaluate the effect of the clip-high
parameter on the policy entropy and test accuracy during training. We find that a symmetric clipping
(€nigh = 0.2) leads to constant decrease in policy entropy and poor performance on the test tasks.
When increasing the clip-high parameter the policy entropy start increasing and the test accuracy is
dramatically improved. We observe that the optimal performance can be achieved with a clipping
values close to 0.28, which stabilized the policy entropy.

20

Under review as a conference paper at ICLR 2026

D.2 WHAT IS THE RIGHT SIZE OF CURRICULUM?

A practical question is how large to choose the curriculum, which we ablate in the following.

To this end, we conduct a small scaling study and sum-

marize our results in Figure 10. The largest gains occur Curriculum size scaling
already at a small curriculum size, however, performance
continues to improve until 1k training tasks. In contrast,
general-purpose RL plateaus relatively early. We hypoth-
esize that a substantial driver of the performance gains at
small dataset sizes is driven by learning the format, and

we expand on this in Section 5.1. Interestingly, at dataset | 10 100 1000
size 1—albeit performing poorly—the general-purpose RL Curriculum Size
post-training outperforms TTC-RL. We suspect that this
may result from TTC-RL picking a data point that is very
similar to the test tasks, in which case overfitting could

harm more than when overfitting to a less related task. Figure 10: TTC-RL achieves most of
the performance gains with a few data

samples. We compare the TTC-RL per-
formance with RL Post-Training given a
fixed number of training steps and vary-
ing data size averaged across all main
benchmarks.

bt
1
1

Test Accuracy

N
e~
1

—+— RL Post-Training —+— TTC-RL

D.3 PERFORMANCE VS. STEP

In Figure 11, we provide further detail on the performance
of all models across the main benchmarks. The plots re-
veal substantial variation in test accuracy development in response to training with the same Test-
Time Curriculum, indicating that models have varying initial capabilities and potential of training
via RL. This is the case, as each model has been subject to different post-training techniques and
therefore responds differently to the RL training on the Test-Time Curriculum. To address these
differences, we propose an algorithm in section C, which aims to calibrate the difficulty of the cur-
riculum to the capabilities of the model.

D.4 “RL POST-TRAINING” BASELINE RESTRICTED TO THE TEST ENVIRONMENT

A simple heuristic to improve a model’s domain-specific capabilities is to restrict training to tasks
from the target domain. This can be seen as a primitive version of a TTC that conditions on the
environment type but ignores instance-level task characteristics. Accordingly, we include a baseline
that samples a random subset of the training set—analogous to RL post-training—but restricted to
the target domain. Figure 12 demonstrates that filtering the training questions to the code domain is
insufficient to achieve comparable performance to TTC-RL on Codeforces and CodeElo.

Codeforces CodeElo
0.5
> >
g g
§ 0.4 - 5 0.4
< <
7 0.3 % e ———-
= S - 0.2 1
™ T T T T T
0 100 200 0 100 200
Training Step Training Step
=== RL Post-training —— RL Post-training Code —— TTC-RL

Figure 12: Restricting RL post-training to include only problems in a code environment explains
only a fraction of the improvement on challenging coding tasks (Codeforces, CodeElo) seen by
TTC-RL.

21

Under review as a conference paper at ICLR 2026

Qwen3-8B-Base

Qwen3-8B

Llama-3.1-8B-Instr

Qwen3-4B-Instr

5 0.20 0.40 -
g 0.02 0.45 I A
= g) . "~ - r
Z 018 0.35 L WA N
=
£ 016 0.30 0.01 0.40
3
< 0144 0.25
& 0.00 -/ 0.35
& 0.06
Ja]
=
< 0.04
=
g
3 0.02
<
S 0.00
f=3
2 0.85
=
£ 0.75 0.4 0.85
= 0.80
= -
£ 0.70 0.80
g 0.75 1 03 075
% 0.65
&
§ 0.3 024
=}
@]
g
£ 0.2 0.1
2 —_——
] A
& T T T T T T T T
0 100 200 0 100 200 0 100 200
0.200
g 0.26
2 - = 207
2 0.175 0.250 0124, A
‘E v \q\’
3 0.150 1 0.225 0.10 1 AN 0.24 4
2 \
Z 01251 0.200 0.08 4 S| 0224
T T T T T T T T T
0 100 200 0 100 200 0 100 200
=}
o
5
S 0.5
> 0.4+
g
5 0.4
3 Y
< 024 -7 0.3
0
= T T
0 100 200
a
S 0.5 1 0.60 -
-9
© 0.40 0.30
=
8
E 0.50
3 0.35 0.28 0.55
ﬁ T T T T T T T T T T T T
0 100 200 0 100 200 0 100 200 0 100 200
Training Step Training Step Training Step Training Step
Figure 11: TTC-RL shows strong improvements over standard RL Post-Training across most con-

sidered models on the math and coding benchmarks. We plot the individual performance of all
considered models on the main benchmarks.

22

Under review as a conference paper at ICLR 2026

Model AIME24 AIME25 MATHS500 Codeforces CodeElo LCB GPQA-D
Qwen3-8B-Instruct 21.67 23.33 69.55 21.12 1497 19.27 49.11
+ RL post-training 41.67 38.33 82.50 31.27 25.52 2748 56.47
+ Maj-TTRL (Zuo et al., 2025) 42.50 30.00 85.40 - - - 51.14
+ TTC-RL 50.83 41.67 85.10 50.19 57.86 27.48 58.38
Qwen3-4B-Instruct-2507 52.50 40.83 72.00 29.13 26.95 21.56 61.93
+ RL post-training 55.83 47.50 86.30 38.11 32.60 24.81 62.82
+ Maj-TTRL (Zuo et al., 2025) 65.83 55.83 86.80 - - - 62.44
+ TTC-RL 60.00 45.83 88.50 50.52 58.25 2691 61.93
Llama-3.1-8B-Instruct 3.33 0.00 42.30 8.42 2.79 11.07 29.06
+ RL post-training 5.83 2.50 44.60 9.70 474 12.79 31.60
+ Maj-TTRL (Zuo et al., 2025) 8.33 0.00 45.60 - - - 29.06
+ TTC-RL 6.67 2.50 45.15 25.96 21.69 13.74 32.74
Qwen3-8B-Base 15.83 14.17 63.10 10.98 6.72 10.11 29.70
+ RL post-training 22.50 20.83 76.85 18.99 13.83 18.13 42.77
+ Maj-TTRL (Zuo et al., 2025) 20.83 20.00 74.55 - - - 29.70
+ TTC-RL 30.00 21.67 78.15 34.37 37.34 2042 45.94

Table 4: Extended comparison of TTC-RL with Maj-TTRL across models and benchmarks.

D.5 EXTENDED COMPARISON AND COMBINATION OF TTC-RL wITH MAJ-TTRL

Majority voting Test-Time Reinforcement Learning (Maj-TTRL), recently introduced by Zuo et al.
(2025), provides an alternative way to train the model at test time using majority labels as rewards
on the target tasks. This approach applies only to domains with structured labels, such as math
or multiple-choice and is therefore not applicable to our coding benchmarks. In Table 4, we com-
pare the performance of Maj-TTRL with TTC-RL across our main benchmarks and all consid-
ered models. TTC-RL outperforms Maj-TTRL on most benchmarks for Qwen3-8B-Instruct,
Qwen3-4B-Instruct-2507 and Llama—-3.1-8B-Instruct. The only model, where Maj-
TTRL achieves higher performance than TTC-RL is the Qwen3-4B-Instruct-2507 model,
which is the strongest among all considered models. This reveals the dataset as the main bottle-
neck for improving performance and suggests to move beyond the bottleneck of a fixed task corpus
through self-generated TTCs.

Combining Maj-TTRL with TTC-RL As already highlighted, Maj-TTRL and TTC-RL are two
complementary approaches with different strengths. Intuitively, TTC-RL aims to learns from the
most relevant tasks in the given corpus to improve on the target tasks, while Maj-TTRL is able to
improve the performance on the target tasks directly by continuously aiming to match the majority
prediction of the model. Beyond comparing them in isolation, Figure 13 shows that initializing Maj-
TTRL from the final TTC-RL checkpoint and training on the target benchmark yields the strongest
results on all math benchmarks.

GSMSK MATHS500 AMC23 AIME24 AIME25
0.9 o
0.9 0.8 08 0.4 0
0.7
0.8 06 0.2 0.2
0.6
I Qwen3-8B [+RL post-training I +Maj-TTRL HEl +TTC-RL I +TTC-RL and Maj-TTRL

Figure 13: Combining TTC-RL and Maj-TTRL combines the strengths of both methods and yields
the strongest results on all math benchmarks. We show the results on the Qwen3-8B for math.

23

Under review as a conference paper at ICLR 2026

Validation Accuracy
o
S
1

0.3 4
0.2 T T
0 100 200
Training Step
=== Test Train AIME25 === TTC-RL AIME25
Test Train Codeforces —— TTC-RL Codeforces

Figure 14: Training on the test set vs TTC-RL (Codeforces & AIME25).

D.6 ADDITIONAL BENCHMARKS

While our main evaluation focuses on the most challenging benchmarks in math, code and general
reasoning, aiming to push the capabilities of frontier models, we additionally provide implementa-
tion and results for a set of simpler benchmarks. These include in the math domain, GMS8K (Cobbe
etal.,2021) and AMC23. For coding we add the HumanEval+ (Chen et al., 2021) and MBPP+ (Chen
et al., 2021). Finally, for a wide range of general reasoning task we include the MMLU-Pro (Wang
et al., 2024b) benchmark. The results in Table 5 show that TTC-RL yields substantial gains on math
and coding, especially for the weaker Qwen3-8B-Base model. For Qwen3-8B, the improve-
ments are less pronounced, suggesting that the verifiable-corpus may contain fewer useful
tasks at the level of complexity required by these benchmarks.

Model GSM8K AMC23 HumanEval+ MBPP+ MMLU
Qwen3-8B 83.19 63.12 79.88 44.88 66.00

+ RL post-training 93.06 86.25 82.77 63.23 69.30

+ TTC-RL 94.01°'"% 88.75° 80.64""" 61.6479% 68.71°%¢
Qwen3-8B-Base 73.09 46.25 35.82 38.83 45.46

+ RL post-training 92.80 63.12 81.10 60.44 62.21

+ TTC-RL 93.25°0% 72,507 81.25"% 63.56'° 61.86"'

Table 5: TTC-RL improves the performance on weaker models more dramatically than

D.7 FURTHER RESULTS AND ABLATIONS

* In Figure 14, we perform an ablation, comparing to oracle training on the test set.
* In Table 6, we provide a detailed breakdown of values for pass@k.
* In Table 7, we report additional results on latent improvement.

D.8 UNSUCCESSFUL ATTEMPTS

The strong improvements when increasing the clip-high parameter epign, suggest that the exploration
phase requires stabilizing the policy entropy. It is however unclear if this is desirable for the final
model used for evaluation. We therefore evaluate in Figure 15 if the performance improves if we
continue training with a decreased ep;gn (0.2). We find that even though the entropy does decrease as
expected, performance does not improve.

24

Under review as a conference paper at ICLR 2026

Qwen3-8B AIME24 AIME25 MATHS500 Codeforces CodeElo LCB GPQA-D

Pass@2 31.87/52.10 28.31/48.37 77.57/86.91 25.51/53.22 19.65/62.12 23.37/28.13 60.94/64.45
Pass@4 39.11/60.45 34.11/56.01 82.63/88.34 30.44/59.95 25.57/71.61 26.83/29.91 72.04/73.49
Pass@8 46.47/67.43 40.13/62.10 85.68/89.37 34.74/64.94 31.12/78.32 29.70/31.20 80.60/80.67
Pass@16 53.21/73.19 45.91/68.27 87.65/90.22 38.47/68.25 35.95/82.65 31.68/32.15 86.49/85.94
Pass@32 58.98/77.06 51.52/73.78 89.09/90.91 41.90/70.32 40.14/85.28 32.90/32.78 90.09/89.33
Pass@64 63.23/79.03 56.67/78.51 90.10/91.43 44.91/71.75 43.72/87.00 33.59/33.20 92.37/91.43

Table 6: TTC-RL consistently improves the pass @k across math and code for large k. We show the
pass@k for Qwen3-38B before and after the TTC-RL training on our main benchmarks.

Model AIME24 AIME25 MATHS00 Codeforces CodeElo LCB GPQA-D
Qwen3-8B-Instruct 21.67 23.33 69.55 21.12 1497 19.27 49.11
+TTC-RL 50.83 41.67 85.10 50.19 57.86 27.48 58.38
Latent Improvement 20.95 15.25 6.02 28.68 42.62 795 9.26
Qwen3-8B-Base 15.83 14.17 63.10 10.98 6.72 10.11 29.70
+TTC-RL 30.00 21.67 78.15 34.37 37.34 20.42 45.94
Latent Improvement 9.79 3.96 10.30 20.86 29.11 7.83 14.49
Qwen3-4B-Instruct-2507 52.50 40.83 72.00 29.13 26.95 21.56 61.93
+TTC-RL 60.00 45.83 88.50 50.52 5825 2691 61.93
Latent Improvement -26.30 -18.64 3.69 15.36 22.35 1.57 0.00
Llama-3.1-8B-Instruct 3.33 0.00 42.30 8.42 2.79 11.07 29.06
+TTC-RL 6.67 2.50 45.15 25.96 21.69 13.74 32.74
Latent Improvement 1.47 2.50 -5.27 17.54 18.89 2.67 3.57

Table 7: On most benchmarks and models TTC-RL yields strong Latent Improvement, which nor-
malized for learning the correct output format. We show the Latent Improvement across all models
and main benchmarks.

064 __——mm——-+— S

?? L § 0.759 ™

= e — E=] ~

= . “__

505 ===== |8 0501

< > A3

é 0.4 _— E; 0.25 _—__

T T T T T T T
250 300 350 275 300 325 350

Training Step Training Step
—— Math —— Code === General

Figure 15: Continued training with a decreased clip-high parameter (epign = 0.2) does not yield
improved performance. We plot the average performance averaged over the main math, code and
general reasoning benchmarks on the Qwen3-8B model.

25

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

E.1 DATASET

We curate a multi-domain training corpus from math (DAPO-Math-17k, Hendrycks MATH,
GSMSK), code (LiveCodeBench up until August 1, 2024, TACO, Primelntellect, Codeforces train,
CodeContests, LeetCode), and Weblnstruct-verified. All samples are cast into a unified schema with
fields kind, dataset,description, problem, answer, and tests, with light task-specific
preprocessing (e.g., GSM8K answer extraction).

Decontamination. We decontaminate our entire corpus except for Webinstruct-verified against
our held-out evaluation benchmarks using a single, conservative procedure:

1. Text normalization: Lowercase, whitespace collapse, and answer normalization by removing
TeX wrappers such as \boxed{}.

2. Candidate pruning via small n-grams: We tokenize benchmark texts and index 12-gram
shingles® to retrieve a small candidate set for each training item.

3. Contamination tests: An item is marked contaminated if it either (i) shares any exact 32-
gram shingle with a benchmark item or (ii) achieves a sequence-similarity ratio of at least
0.75 (difflib-style) with any candidate.

4. Conservative removal: For math, we additionally require the normalized training answer to
match the benchmark answer before removal. For code, if a training item matches multiple
distinct benchmark tasks from a single benchmark, we keep it to avoid removing generic
boilerplate or templates.

Deduplication. Within-domain duplicates are removed via fast token-coverage deduplication: we
keep the first occurrence and drop a later item when at least a threshold fraction of its normalized
token set is covered by another item’s tokens (or vice versa), requiring identical normalized answers
when answers are present. We use threshold 0.80 for math and 0.95 for code; Weblnstruct-verified
is deduplicated within itself at 1.00.

Extraction of problem descriptions. For each training task, we extract a description as its
main identifier. For tasks unlike coding, the description coincides with the problem field, without
any system prompts. For coding tasks, we extract the description from problem to avoid
any superfluous selection of tasks based on the formatting of input-output examples or other format-
ting. TTCs are self-curated via SIFT based on the model’s last-token last-layer representation of the
description field.

Filtering. We remove low-signal or malformed items with the following rules:

» Code training tasks require at least 5 executable tests, non-empty descriptions. We also drop
cases where the description trivially duplicates the problem text, indicating that the problem
was wrongly parsed or is missing input-output examples.

* We drop items with missing or empty answers, except for code tasks with unit tests.

¢ We enforce a minimum description length for code of at least 100 characters to prevent under-
specified tasks.

E.2 SYSTEM PROMPTS

We use the following system prompts, which we adapted from evalchemy (Raoof et al., 2025)
and simplified slightly. We did not tune system prompts for better performance.

General system prompt

{problem} Please reason step by step, and put your final answer within \boxed{}.

SThat is, any consecutive sequence of 12 tokens.

26

https://huggingface.co/datasets/open-r1/DAPO-Math-17k-Processed
https://huggingface.co/datasets/nlile/hendrycks-MATH-benchmark
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/livecodebench/code_generation_lite
https://huggingface.co/datasets/likaixin/TACO-verified
https://huggingface.co/datasets/PrimeIntellect/verifiable-coding-problems
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/datasets/deepmind/code_contests
https://huggingface.co/datasets/newfacade/LeetCodeDataset
https://huggingface.co/datasets/TIGER-Lab/WebInstruct-verified

Under review as a conference paper at ICLR 2026

Code system prompt

You are a coding expert. You will be given a coding problem, and you need to write a correct
Python program that matches the specification and passes all tests. The time limit is 1 second.
You may start by outlining your thought process. In the end, please provide the complete code
in a code block enclosed with “* ““.\n\n{problem}

-~
-

GPQA system prompt

Return your final response within \boxed{} and only include the letter choice (A, B, C, or D)
as your final response.

Problem: {problem}

Options: {options}

Answer:

MMLUPro system prompt

|
-

The following are multiple choice questions (with answers) about {subject}. Think step by step
and then finish your answer with the answer is (X)where X is the correct letter choice.
Question:

{question}

Options:

A. {option A}

B. {option B}

Answer: Let’s think step by step.

Ve
-

E.3 DETAILS OF THE RL TRAINING

We summarize our hyperparameters for RL training in Table 8. We keep these hyperparameters
fixed across all models, benchmarks, and baselines.

Hyperparameter Value
Episodes 2
Dataset size 1000
Max. response length in tokens 8192
Max. prompt length in tokens 2048
SIFT A 0.1
Advantage estimator GRPO
GRPO clip-low 0.2
GRPO clip-high 0.28
Adam’s 3-values (0.9, 0.999)
Batch Size 8
rollouts (training) 16
Rollout temperature (training) 1.0
rollouts (validation) 4
Rollout temperature (validation) 0.6
Top-p (validation) 0.95
Learning Rate le-6
Gradient clip 1.0
KL coefficient 0.0

Table 8: Hyperparameters for TTC-RL training.

In our code environment, we keep only the first 20 test cases for training tasks to improve efficiency.

Training reward. We include a format penalty in the train reward if our answer extraction fails
(i.e., we extract an empty string) to encourage well-formed responses. Notably, we found it impor-

27

Under review as a conference paper at ICLR 2026

tant not to penalize ill-formed answers that were truncated due to exceeding the maximum response
length, since this disincentivizes the model from leveraging all of its accessible context.

For training tasks from Webinstruct-verified, we additionally include a length penalty as proposed
by Ma et al. (2025). Denoting the number of tokens in the extracted answer of an attempt by [and
the number of tokens of the golden answer by [*, the length penalty is defined as

£:=0.05 - min{|l — I*|, 10}. 17
We set £ = 0 for math and code environments.
Our training reward for a given attempt is

1 — ¢ if the attempt is correct
= —% if the attempt is ill-formed and was not truncated (18)
0 otherwise.

28

Under review as a conference paper at ICLR 2026

F QUALITATIVE EXAMPLES

In this section we provide qualitative examples of single runs, which showed interesting behavior
and provide examples of parts of the curricula used for training for various code and math problems.

F.1 TTC-RL’S REMARKABLE PERFORMANCE ON CODEELO

As highlighted in the main text the performance gains from TTC-RL are remarkable, particularly in
coding. We therefore provide further detail on an especially surprising experiment, which showed
that the non-thinking Qwen3-0 . 6 model can achieve 75% pass@ 1 with TTC-RL after starting with
essentially 0% initial performance. In Figure 16 we visualize the test accuracy, train rewards and the
mean response length over the course of the training for this run. The results show that performance
increases sharply at approximately training step 50 and training step 200, which indicates that the
model changes a reasoning pattern, which results in an improvement of performance. Note that
these results show that data contamination is unlikely, as the model learns to solve more questions
than it trains on in a short period of time. The last increase of performance also coincides with an
increase in mean response length, showing that the model learns to better utilize its context.

o
=
1
S
=S
1

Test Accuracy
¢ S S
=S
1
Train Reward
o
v}
1

o
)
1

Mean Response Length
—_
o
(=1
(=}
1

e
o

T T T T T T
0 100 200 0 100 200 0 100 200
Training Step Training Step Training Step

Figure 16: We plot the test accuracy, train entropy and train reward over the course of TTC-RL
training for the CodeElo benchmark on the Qwen3-0. 6B model.

F.2 AIME 25, QUESTION 26

The following problem is the 26’th task from the AIME25 competition. Additionally, we provide the
initial answer of Qwen3—8B for this problem, as well as the answer of the model after 250 training
steps on the TTC curated specifically for this specific question. Finally, we list the first 10 selected
training problems for this task.

Problem

Let A1 A5 ... Aj; be a non-convex 11-gon such that The area of A; A1 A;41 is 1 for each 2 <
1 <10, cos(LA; A1 A1) = % for each 2 < 4 < 10, The perimeter of A; As ... Ayq is 20. If
A1 As + Ay Aqq can be expressed as @ for positive integers m, n, p, ¢ with n squarefree

and ged(m, p, ¢) = 1, find m +n + p+ q. Please reason step by step, and put your final answer
within boxed.

Ground Truth

|
—

19

Initial Answer

... tates that the perimeter is 20, and the sum x2 + x11 is what we need, and the answer is in
the form @, perhaps we can proceed with the assumption that the perimeter is related to
the sum of the side lengths, which can be expressed in terms of a, and then solve for a.
However, without going through the full calculation, which would be very lengthy, perhaps we
can consider that the perimeter includes the sum of the side lengths, which can be expressed as
a function of a, and then solve for a.

~
-

Under review as a conference paper at ICLR 2026

Alternatively, since the problem gives the answer in the form involving square roots, it suggests
that the expression for a + 2@—6 involves a square root. But since we have xo + 211 = a + %,
and the perimeter is 20, which includes other terms, but since the problem gives the answer in
terms of radicals, we can assume that the perimeter is expressed in terms of a and the square
root, and solving gives us the required expression.

However, since this is too vague, and given that the problem is from a competition, let’s assume
that the perimeter can be expressed in terms of a, and the sum a + 27? can be found.

But since this is too open-ended, and given the time constraints, I’ll proceed to assume that the
perimeter is related to the sum of the x;’s, and the sum of the side lengths, and that after solving,

the value of a + 2 is expressed as my/nop
However, without going through the full derivation, which is quite involved, I’ll conclude that

the answer is likely @, and from the given information, the answer is likely:
52v/13 — 10
3

But since the problem states that n is square-free, and the answer is in the form @

the given answer format matches this, the final answer would be:

, and

m=952,n=13,p=10,g =5

Thus, m+n+p+q¢=52+13+ 10+ 5 = 80.

But to check, let’s verify:

If the sum is a + 2(1—6, and the perimeter is 20, then solving for a would lead to a quadratic, and
the expression would involve square roots.

Assuming that the final expression is %53’10, then the sum is M#, and the answer is:

m=>52,n=13,p=10,¢q=5

So the final answer is 52 + 13 + 10 + 5 = 80.
Thus, the final answer is:

& J

.. 1620=4%x405=4%x5%x81=4x%x5x%92So:
V1620 = V4 - 405 = 2/405 = 2v/81 -5 =2-9v5 = 18V5

Thus:

—2+18V5

2025 — 09 — 1618 : 51 : 53t = 2025 — 09 — 1618 : 51 : 53

We are looking for a positive value of ¢, since it’s a sum of positive lengths. So take the positive
root:

,_—2+18V5 1852 9V5-1

8 8 4
9@’1, which is the value of a + 22, which is the expression we need for

Therefore, ¢t =
A Ay + A1 A,
So the answer is:

95— 1
4

Which matches the form W%, withm =9, n=5,p =1, g = 4. Check ged(9,1,4) =1, and
n is square-free.
Thus, m+n+p+q=9+5+1+4=19.

30

Under review as a conference paper at ICLR 2026

Training problem 1

Let BCB'C’ be a rectangle, let M be the midpoint of B’C’, and let A be a point on the

circumcircle of the rectangle. Let triangle ABC have orthocenter H, and let T be the foot of

the perpendicular from H to line AM. Suppose that AM = 2, [ABC] = 2020, and BC' = 10.

Then AT = ™, where m and n are positive integers with gcd(m, n) = 1. Compute 100m + n.
L The solution will be evaluated in a math environment.

&

Training problem 2

Let ABC be a triangle with /B — ZC' = 30°. Let D be the point where the A-excircle touches
line BC, O the circumcenter of triangle ABC, and X, Y the intersections of the altitude from
A with the incircle with X in between A and Y. Suppose points A, O and D are collinear. If the
ratio % can be expressed in the form %ﬁ for positive integers a, b, ¢, d with gcd(a, b, d) = 1
and c not divisible by the square of any prime, find a + b+ ¢+ d. The solution will be evaluated
in a math environment.

|
.

Training problem 3

Robert is a robot who can move freely on the unit circle and its interior, but is attached to the
origin by a retractable cord such that at any moment the cord lies in a straight line on the ground
connecting Robert to the origin. Whenever his movement is counterclockwise (relative to the
origin), the cord leaves a coating of black paint on the ground, and whenever his movement
is clockwise, the cord leaves a coating of orange paint on the ground. The paint is dispensed
regardless of whether there is already paint on the ground. The paints covers 1 gallon/unit 2, and
Robert starts at (1,0). Each second, he moves in a straight line from the point (cos(6), sin(6))
to the point (cos(f + a), sin(+ a)), where a changes after each movement. a starts out as 253°
and decreases by 2° each step. If he takes 89 steps, then the difference, in gallons, between
the amount of black paint used and orange paint used can be written as (line truncated to 1000
characters)

|
—

Training problem 4

There are n players in a round-robin ping-pong tournament (i.e. every two persons will play
exactly one game). After some matches have been played, it is known that the total number
of matches that have been played among any n — 2 people is equal to 3* (where k is a fixed
integer). Find the sum of all possible values of n. The solution will be evaluated in a math
environment.

—

|

Training problem 5

Let A ABC be a triangle with AB = 4 and AC = % . Let w denote the A-excircle of A ABC.
Let w touch lines AB, AC at the points D, F, respectively. Let € denote the circumcircle of
A ADE. Consider the line ¢ parallel to BC' such that £ is tangent to w at a point F' and such
that ¢ does not intersect €2. Let ¢ intersect lines AB, AC' at the points X, Y , respectively,
with XY = 18 and AX = 16. Let the perpendicular bisector of XY meet the circumcircle
of A AXY at P, Q, where the distance from P to F' is smaller than the distance from @ toF'.

Let ray P.}% meet) for the first time at the point Z. If PZ2 = I for relatively prime positive
integers m, n, find m + n. The solution will be evaluated in a math environment.

|
-

Training problem 6

13 LHS Students attend the LHS Math Team tryouts. The students are numbered 1,2, ..., 13.
Their scores are s, Sa, . . . , S13, respectively. There are 5 problems on the tryout, each of which
is given a weight, labeled w;, ws, . . ., ws. Each score s; is equal to the sum of the weights of all

31

Under review as a conference paper at ICLR 2026

problems solved by student ¢. On the other hand, each weight w; is assigned to be ZL’ where

the sum is over all the scores of students who solved problem ;. (If nobody solved a lgroblem,

the score doesn’t matter). If the largest possible average score of the students can be expressed

in the form %, where a is square-free, find a 4+ b. The solution will be evaluated in a math

environment.

|
-

Training problem 7

Let ABCDE be a pentagon with area 2017 such that four of its sides AB, BC,CD, and EA
have integer length. Suppose that /A = /B = ZC = 90°, AB = BC,and CD = FA. The
maximum possible perimeter of ABCDE is a + by/c, where a, b, and c are integers and c is
not divisible by the square of any prime. Find a 4+ b + c. The solution will be evaluated in a
math environment.

—

|

Training problem 8

Let A ABC be atriangle with AB = 4 and AC' = % . Let w denote the A-excircle of A ABC.
Let w touch lines AB, AC at the points D, F, respectively. Let 2 denote the circumcircle of
N ADE. Consider the line ¢ parallel to BC' such that ¢ is tangent to w at a point /' and such
that ¢ does not intersect {2. Let ¢ intersect lines AB, AC at the points X, Y , respectively,
with XY = 18 and AX = 16. Let the perpendicular bisector of XY meet the circumcircle
of A AXY at P, Q, where the distance from P to F' is smaller than the distance from Q) toF'.

Let ray ﬁ meet (2 for the first time at the point Z. If PZ? = - for relatively prime positive
integers m, n, find m + n. The solution will be evaluated in a math environment.

|
—

Training problem 9

Point P is in the interior of AABC. The side lengths of ABC are AB =7, BC =8,CA =09.

The three feet of perpendicular lines from P to sides BC, C A, AB are D, E, F respectively.
Suppose the minimal value of % + % + g—g can be written as ¢+/c, where ged(a, b) = 1

and c is square-free, calculate abc. The solution will be evaluated in a math environment.

—

|

Training problem 10

Billy the baker makes a bunch of loaves of bread every day, and sells them in bundles of size
1,2, or 3. On one particular day, there are 375 orders, 125 for each bundle type. As such,
Billy goes ahead and makes just enough loaves of bread to meet all the orders. Whenever Billy
makes loaves, some get burned, and are not sellable. For nonnegative i less than or equal to the
total number of loaves, the probability that exactly i loaves are sellable to customers is inversely
proportional to 2¢ (otherwise, it’s 0). Once he makes the loaves, he distributes out all of the
sellable loaves of bread to some subset of these customers (each of whom will only accept their
desired bundle of bread), without worrying about the order in which he gives them out. If the

expected number of ways Billy can distribute the bread is of the form QS—EI, finda+ b+ c. The
L solution will be evaluated in a math environment.

-

F.3 TTC For CODEELO

In the following, we list the 10 most relevant problems selected by SIFT to improve performance on
the CodeElo benchmark.

Training problem 1

There are n monsters standing in a row. The i-th monster has a; health points.

Every second, you can choose one alive monster and launch a chain lightning at it. The lightning
deals k damage to it, and also spreads to the left (towards decreasing 7) and to the right (towards
increasing ¢) to alive monsters, dealing k£ damage to each. When the lightning reaches a dead

32

Under review as a conference paper at ICLR 2026

monster or the beginning/end of the row, it stops. A monster is considered alive if its health
points are strictly greater than 0.

For example, consider the following scenario: there are three monsters with health equal to
[5,2, 7], and k = 3. You can kill them all in 4 seconds:

- launch a chain lightning at the 3-rd monster, then their health values are [2, —1, 4];
- launch a chain lightning at the 1-st monster, then their health values are [—1, —1, 4];
- launch a chain lightning at the 3-rd monster, then the (line truncated to 1000 characters)

Training problem 2

|
-

Eshag has an array a consisting of n integers.

Eshag can perform the following operation any number of times: choose some subsequence
of a and delete every element from it which is strictly larger than AV G, where AV G is the
average of the numbers in the chosen subsequence.

For example, if a = [1,4,3,2,4] and Eshag applies the operation to the subsequence con-
taining a1, ag, as and as, then he will delete those of these 4 elements which are larger than
@itaztaitas — 1l g0 after the operation, the array a will become a = [1,3,2].

Your task is to find the maximum number of elements Eshag can delete from the array a by
applying the operation described above some number (maybe, zero) times.

A sequence b is a subsequence of an array c if b can be obtained from c by deletion of several
(possibly, zero or all) elements. The solution will be evaluated in a code environment.

|
—

Training problem 3

There are n squares drawn from left to right on the floor. The ¢-th square has three integers
Di, a;i, b;, written on it. The sequence p1, p2,
dots, p,, forms a permutation.

Each round you will start from the leftmost square 1 and jump to the right. If you are now on
the ¢-th square, you can do one of the following two operations:

1. Jump to the 7 + 1-th square and pay the cost a;. If ¢ = n, then you can end the round and pay
the cost a;.

2. Jump to the j-th square and pay the cost b;, where j is the leftmost square that satisfies
j > ¢,p; > p;. If there is no such j then you can end the round and pay the cost b;.

There are ¢ rounds in the game. To make the game more difficult, you need to maintain a square
set S (initially it is empty). You must pass through these squares during the round (other squares
can also be passed through). The square set S for (line truncated to 1000 characters)

Training problem 4

|
-

YouKnOwWho has an integer sequence ay, ag, . . . a,,. Now he will split the sequence a into one
or more consecutive subarrays so that each element of a belongs to exactly one subarray. Let k&
be the number of resulting subarrays, and hy, hs, . . ., hi be the lengths of the longest increasing
subsequences of corresponding subarrays.

For example, if we split [2,5,3,1,4,3,2,2,5,1] into [2,5,3,1,4], [3,2,2,5], [1], then h =
[3,2,1].

YouKnOwWho wonders if it is possible to split the sequence a in such a way that the bitwise
XOR of hy, hs, ..., hg is equal to 0. You have to tell whether it is possible.

Under review as a conference paper at ICLR 2026

The longest increasing subsequence (LIS) of a sequence by, b, . . ., b, is the longest sequence
of valid indices %1, @2, . . ., ¢x such that ¢1, 7, ..., 7% and b;, , bs,, . . ., b;, . For ex (line truncated

to 1000 characters)
L J

Training problem 5

Eve is a beginner stand-up comedian. Her first show gathered a grand total of two spectators:
Alice and Bob.

Eve prepared a; + a2 + as + a4 jokes to tell, grouped by their type:

type 1: both Alice and Bob like them;

type 2: Alice likes them, but Bob doesn’t;

type 3: Bob likes them, but Alice doesn’t;

type 4: neither Alice nor Bob likes them.

Initially, both spectators have their mood equal to 0. When a spectator hears a joke he/she likes,
his/her mood increases by 1. When a spectator hears a joke he/she doesn’t like, his/her mood

decreases by 1. If the mood of a spectator becomes negative (strictly below zero), he/she leaves.

When someone leaves, Eve gets sad and ends the show. If no one leaves, and Eve is out of
jokes, she also ends the show.

Thus, Eve wants to arrange her jokes in such a way that the show lasts as long as possible. Help
her to calculate the maximum number of jokes she can tell before the show ends. The solution
L will be evalu (line truncated to 1000 characters)

J

Training problem 6

Solve the following coding problem using the programming language python:

zscoder has a deck of n + m custom-made cards, which consists of n cards labelled from 1 to n
and m jokers. Since zscoder is lonely, he wants to play a game with himself using those cards.

Initially, the deck is shuffled uniformly randomly and placed on the table. zscoder has a set S
which is initially empty.

Every second, zscoder draws the top card from the deck. If the card has a number x written on
it, zscoder removes the card and adds z to the set S. If the card drawn is a joker, zscoder places
all the cards back into the deck and reshuffles (uniformly randomly) the n + m cards to form a
new deck (hence the new deck now contains all cards from 1 to n and the m jokers). Then, if .S
currently contains all the elements from 1 to n, the game ends. Shuffling the deck doesn’t take
time at all.

What is the expected number of seconds before the game ends? We can sho (line truncated to

1000 characters)
N J

Training problem 7

n pupils, who love to read books, study at school. It is known that each student has exactly one
best friend, and each pupil is the best friend of exactly one other pupil. Each of the pupils has
exactly one interesting book.

The pupils decided to share books with each other. Every day, all pupils give their own books
to their best friends. Thus, every day each of the pupils has exactly one book.

34

Under review as a conference paper at ICLR 2026

Your task is to use the list of the best friends and determine the exchange of books among pupils
after k days. For simplicity, all students are numbered from 1 to n in all tests. The solution will
L be evaluated in a code environment.

J
Training problem 8

You are given a rooted tree, consisting of n vertices. The vertices are numbered from 1 to n,
the root is the vertex 1.

You can perform the following operation at most & times:

choose an edge (v, u) of the tree such that v is a parent of u;

remove the edge (v, u);

add an edge (1, u) (i. e. make u with its subtree a child of the root).

The height of a tree is the maximum depth of its vertices, and the depth of a vertex is the number
of edges on the path from the root to it. For example, the depth of vertex 1 is 0, since it’s the

root, and the depth of all its children is 1.

What'’s the smallest height of the tree that can be achieved? The solution will be evaluated in a
L code environment.

J
Training problem 9

Back in time, the seven-year-old Nora used to play lots of games with her creation ROBO-
Head-02, both to have fun and enhance his abilities.

One day, Noras adoptive father, Phoenix Wyle, brought Nora n boxes of toys. Before unpacking,
Nora decided to make a fun game for ROBO.

She labelled all n boxes with n distinct integers ai, as,...,a, and asked ROBO to do the
following action several (possibly zero) times:

Pick three distinct indices i, j and k, such that a;|a; and a;|ag. In other words, a; divides both
a; and ay, that is a; mod a; = 0, a mod a; = 0.

After choosing, Nora will give the k-th box to ROBO, and he will place it on top of the box pile
at his side. Initially, the pile is empty.

After doing so, the box k becomes unavailable for any further actions. Being (line truncated to

1000 characters)
N J

Training problem 10

This is an interactive problem

You are given a grid nx n, where n is odd. Rows are enumerated from 1 to n from up to down,
columns are enumerated from 1 to n from left to right. Cell, standing on the intersection of row
x and column y, is denoted by (x, y).

Every cell contains O or 1. It is known that the top-left cell contains 1, and the bottom-right cell
contains 0.

We want to know numbers in all cells of the grid. To do so we can ask the following questions:
T1y122yoy Where 1 < 7 < a9 <n,1 <y <yo < n,and 1 +y1 + 2 < x5 + yo. In other

words, we output two different cells (x1, y1), (z2, y2) of the grid such that we can get from the
first to the second by moving only to the right and down, and they aren’t adjacent.

Under review as a conference paper at ICLR 2026

As a response to such question you will be told if there exists a path between (z1,y;) and
(z2, y2), going only to the right or down, numbers in cells of which form a palindrome.

For example, paths, shown in gr (line truncated to 1000 characters)

36

	Introduction
	Related Work
	Test-Time Curricula
	Automatic TTCs for targeted RL
	A diverse corpus for general-purpose RL post-training

	Results
	TTCs are complementary to existing approaches to test-time scaling
	TTCs effectively specialize models

	Further analysis
	Estimating ``real'' improvement
	Towards continual self-improvement at test-time
	On decontamination and reward hacking

	Conclusion
	Why Imitation Learning is ill-suited for TTC's
	Background
	SIFT
	GRPO

	Autobalancing Achievability with TTC's
	Extended results
	Important components of our RL training
	What is the right size of curriculum?
	Performance vs. step
	``RL post-training'' baseline restricted to the test environment
	Extended comparison and combination of TTC-RL with Maj-TTRL
	Additional benchmarks
	Further results and ablations
	Unsuccessful attempts

	Experiment details
	Dataset
	System prompts
	Details of the RL training

	Qualitative examples
	TTC-RL's remarkable performance on CodeElo
	AIME 25, question 26
	TTC for CodeElo

