
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LEARNING ON THE JOB: TEST-TIME CURRICULA FOR
TARGETED REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Humans are good at learning on the job: We learn how to solve the tasks we face
as we go along. Can a model do the same? We propose an agent that assembles a
task-specific curriculum, called test-time curriculum (TTC-RL), and applies rein-
forcement learning to continue training the model for its target task. The test-time
curriculum avoids time-consuming human curation of datasets by automatically
selecting the most task-relevant data from a large pool of available training data.
Our experiments demonstrate that reinforcement learning on a test-time curricu-
lum consistently improves the model on its target tasks, across a variety of evalua-
tions and models. Notably, on challenging math and coding benchmarks, TTC-RL
improves the pass@1 of Qwen3-8B by approximately 1.8x on AIME25 and 2.1x
on CodeElo. Moreover, we find that TTC-RL significantly raises the performance
ceiling compared to the initial model, increasing pass@8 on AIME25 from 40%
to 62% and on CodeElo from 28% to 43%. Our findings show the potential of test-
time curricula in extending the test-time scaling paradigm to continual training on
thousands of task-relevant experiences during test-time.

0 100 200

Training Step

0.2

0.4

0.6

Te
st

A
cc

ur
ac

y Final pass@8

Math: AIME 24 & 25

0 100 200

Training Step

0.2

0.3

0.4 Final pass@8

Code: CodeElo & Codeforces

Test-Time Curriculum RL Post-Training Initial pass@8

Figure 1: Test-time curricula (TTCs) lead to remarkable improvements in math and coding by
practicing on self-curated task-related problems at test-time. The plots show the pass@1 test
accuracy of Qwen3-8B throughout its test-time training. Our method, TTC-RL (solid red line), con-
sistently improves performance, learning faster and achieving a higher final accuracy than standard
RL post-training (dashed gray line). Notably, the final pass@1 accuracy of TTC-RL approaches the
model’s initial pass@8 performance (dotted gray line), which represents a proxy for the performance
ceiling of the initial model. The stars indicate the final pass@8 values after TTC-RL, demonstrating
a significant improvement over the initial pass@8, which indicates that the model learns new solu-
tion strategies at test-time.

1 INTRODUCTION

We study how large language models (LLMs) can continually improve at reasoning on their target
tasks at test-time. Increasing test-time compute, for example, by extended use of context as scratch
space, has recently emerged as a key direction for improving LLMs on challenging tasks such as
math and coding (Jaech et al., 2024; Guo et al., 2025; Kimi et al., 2025). Test-time scaling has been

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

driven primarily by extensive general-purpose reinforcement learning (RL; Guo et al., 2025), where
the LLM learns how to effectively use its context for reasoning. However, since the context of
LLMs is bounded and becomes exceedingly expensive to expand, an LLM cannot learn in-context
from experience over long timeframes.

One promising technique for overcoming this challenge is test-time training (TTT; Sun et al.,
2020; Hardt & Sun, 2024), which continues training the model at test-time after being given a task.
Previous work has studied TTT via supervised fine-tuning on human-created or expert data, either
retrieved (Hardt & Sun, 2024; Hübotter et al., 2025) or provided as few-shot examples (Akyürek
et al., 2025). Other work has instead focused on TTT in the context of recurrent neural net-
works (Sun et al., 2025; von Oswald et al., 2025; Zhang et al., 2025b), aiming to replace the costly
attention-based context in Transformers (Vaswani et al., 2017) with a fixed-size state (i.e., the model
itself), but losing some of the advantages of reasoning over an uncompressed scratchpad. We explore
a complementary approach to test-time scaling, where an LLM is continually trained on self-curated
training tasks related to its target task, while practicing on each individual training task in-context.
This leverages the Transformer’s attention as an uncompressed scratchpad for short-term ideation,
while meta-learning strategies for leveraging that context across long-term, task-specific experience.

We propose a test-time curriculum (TTC) agent that automatically designs its own curriculum of
training tasks by selecting the relevant tasks for the job from a large corpus of existing tasks. The
agent then attempts tasks in its curriculum, and compresses the gathered experience into its weights
via RL. The automatic self-guided curriculum design avoids laborious human curation of datasets,
and enables training on purpose-built curricula at test-time. We find that this reinforcement learn-
ing on test-time curricula (TTC-RL) leads to remarkably improved reasoning on target tasks. In
particular, we find that TTC-RL improves the pass@1 of several strong LLMs across diverse rea-
soning tasks, covering competition math, coding, and scientific reasoning (cf. Figure 1). We further
identify that TTC-RL is complementary to other means of test-time scaling, effectively improving
pass@k and maj@k even at large k. Notably, we find that TTC-RL can overcome the limitation of
fixed context windows by observing that a non-thinking model (limited to 8k context tokens) with
TTC-RL can perform similarly to the same model thinking for 30k tokens in-context. This demon-
strates that during TTC-RL, the model continues learning how to think effectively for its target tasks.
Our results suggest such targeted RL as a promising new direction for LLM agents that continually
improve at test-time through many interactions with an environment.

We summarize our contributions as follows:

1. We propose a TTC agent for targeted RL (§3): We propose a test-time curriculum agent
which at test-time when given a target task, self-selects related training tasks from a diverse
corpus. The agent then learns from its own experience of attempting those tasks via RL.

2. TTC-RL improves reasoning on target tasks (§4): Across several models and tasks, TTC-
RL consistently improves pass@1 substantially faster than general-purpose RL post-training
on standard RL datasets, and saturates at a higher accuracy. Next, we identify that TTC-RL
substantially raises the performance ceiling of the model (pass@k) and demonstrate that it
is complementary to existing approaches to test-time scaling. Finally, we find that TTC-RL
yields strongly specialized models that perform remarkably well on their target tasks, even
when compared to models that are allowed to think for tens of thousands of tokens in context.

3. Measuring latent improvements in reasoning (§5): The evaluation of RL-trained mod-
els faces the challenge of estimating whether improved scores are due to better reasoning or
merely learning the expected output format. We introduce a new metric, latent improvement,
which computes a lower bound on the improvement in reasoning due to RL training, and find
that TTC-RL leads to substantial improvements in “latent” reasoning.

2 RELATED WORK

Test-time scaling and general-purpose RL training. A common strategy for improving LLM
performance in challenging domains is to allocate additional test-time compute, for instance,
through majority voting (Snell et al., 2025), search with a reward model (Lightman et al., 2023;
Wang et al., 2024a; Setlur et al., 2025a), or by identifying consistent patterns among parallel
rollouts (Wang et al., 2023; Huang et al., 2025a). The potential of such methods is often measured
by pass@k, which describes the performance ceiling with k generations (Chen et al., 2025b).

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

More recently, scaling test-time compute via in-context “reasoning” (Brown et al., 2020; Wei
et al., 2022) has significantly improved performance in domains like math and coding (Jaech et al.,
2024). This capability is commonly enabled by large-scale, general-purpose RL training on diverse
tasks (Lambert et al., 2025; Ma et al., 2025; Guo et al., 2025; Kimi et al., 2025), during which
models learn to reason within their bounded context (Setlur et al., 2025b), which connects to the
broad topic of meta-learning (Schmidhuber, 1987; Duan et al., 2017; Finn et al., 2017). Curriculum
learning, first proposed by Bengio et al. (2009), has been successfully applied to challenging
RL problems (Sinapov et al., 2015; Narvekar et al., 2020). This paradigm is closely related to
goal-conditioned RL (Schaul et al., 2015; Andrychowicz et al., 2017) where several works have
studied automatic curriculum generation (Florensa et al., 2018; Warde-Farley et al., 2018; Pitis
et al., 2020; Pong et al., 2020). In contrast to improving general-purpose models, our work employs
RL to train specialized reasoners for a particular target task at test-time.

Self-play. A specialized form of curriculum learning has proven highly successful in domains
like games through the use of self-play (Schmidhuber, 1991; Silver et al., 2016), where an agent
is repeatedly challenged by playing against itself. Seminal works show that this approach can lead
to superhuman performance (e.g., Mnih et al., 2015; Silver et al., 2016; 2017; Berner et al., 2019).
Several recent works aim to generalize this paradigm to LLMs and more general domains such
as coding by self-generating a training curriculum (Zhao et al., 2025; Huang et al., 2025b; Chen
et al., 2025a; Fang et al., 2025). While recent work has studied test-time curricula as an extension
of self-play to goal-conditioned RL settings (Diaz-Bone et al., 2025), its evaluation has focused
on simple robotic navigation tasks. We extend this line of work to challenging reasoning tasks by
self-curating a training curriculum, enabling LLMs to continually learn from extensive experience
on a single task (Silver & Sutton, 2025; Shen et al., 2025).

Test-time training and test-time RL. Training a model at test-time for a given input has been
widely studied as TTT (Sun et al., 2020), using supervised (Hardt & Sun, 2024; Hübotter et al.,
2025; Yu et al., 2025a; Bertolissi et al., 2025; Bagatella et al., 2025a) or self-supervised losses (Sun
et al., 2025; Dalal et al., 2025). Several methods perform TTT in a purely unsupervised manner,
i.e., without “real-world” data or feedback (Wang et al., 2021; Zhang et al., 2022). Most relevant
to our work, Zuo et al. (2025) recently extended unsupervised TTT to perform RL on the test
set, leveraging the model’s majority votes as pseudo-labels. This connects to a broader theme of
unsupervised RL (Zhang et al., 2025a; Shao et al., 2025; Zhou et al., 2025; Prabhudesai et al., 2025)
and self-improvement in LLMs (Zelikman et al., 2022; Gulcehre et al., 2023; Lee et al., 2025).

3 TEST-TIME CURRICULA

We consider the set of target tasks D⋆ = {x⋆1, . . . , x⋆M} given at test-time, and our goal is to spe-
cialize an existing model through further training to those tasks. For training, as in general-purpose
RL, we rely on an existing large corpus of training tasks D = {(xi, vi)}Ni=1, for each of which
vi(·) ∈ {0, 1} verifies whether an attempt was correct. To specialize, it is common practice to con-
struct a particular subset D̂⋆ fromD, and we call such a targeted subset a test-time curriculum forD⋆.
We seek to make test-time training on such a curriculum scalable. To this end, we propose to go
beyond human-curated test-time curricula and let the initial model craft its own test-time curriculum.

Algorithm 1 Test-Time Curriculum for Targeted RL

Require: Test tasks D⋆
1: for t = 1, 2, . . . , T do
2: (xt, vt)← TTCθt−1,D(D⋆) ▷ select next task
3: {ŷt,i} ∼ πt−1(· | xt) ▷ attempt
4: {rt,i} ← vt({ŷt,i}) ▷ verify
5: θt ← GRPO(θt−1, {ŷt,i}, {rt,i}) ▷ RL step
6: end for

We propose a test-time curriculum
agent, outlined in Algorithm 1. In
each training step, the agent selects
its next training task from the cor-
pus D based on its target tasks D⋆
and the current model θt−1. This step
leverages the semantic understanding
of the model to self-curate a test-time
curriculum for the target tasks. We
then train on this test-time curriculum
via GRPO (Shao et al., 2024).1 Note that test-time training does not necessitate the model to stay

1Algorithm 1 abstracts that we perform each RL step over a batch of training tasks and that we perform RL
training for multiple episodes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

close to its initialization since it needs to generalize only to its target tasks, and hence, we omit the
KL penalty of GRPO. We include background on GRPO in Appendix B.

While the previous works of Hardt & Sun (2024) and Hübotter et al. (2025) have studied self-curated
test-time curricula with supervised fine-tuning (SFT) and shown that this can improve language
modeling (i.e., lead to lower perplexity), we find that this approach does not improve accuracies
on reasoning tasks. Perhaps counterintuitively, we find that test-time training with SFT—even on
correct demonstrations of test tasks—can lead to an initial performance drop. Our findings mir-
ror recent observations on the robustness of on-policy RL compared to off-policy SFT (Shenfeld
et al., 2025). We provide further details in Appendix A. Moreover, while test-time training via SFT
requires the corpus to specify how training tasks are to be solved, test-time training via RL only
requires verification of solutions.

We next describe the corpus and TTC method used in our evaluation of the TTC-RL setting.

An automatic TTC for targeted RL. We adopt existing methods for TTC selection from previ-
ous work studying test-time curricula with SFT (Hardt & Sun, 2024; Hübotter et al., 2025). These
methods leverage a latent representation space ϕ over token sequences for which we use the nor-
malized last-token last-layer embeddings of the initial model. We then utilize SIFT (Hübotter et al.,
2025) which selects those examples from the corpus that the model deems most informative for the
target tasks. SIFT has a hyperparameter λ which explicitly trades between diversity of the selected
examples and their relevance to the target tasks. We find that our results are robust to the choice of
λ and generally set λ = 0.1 in our experiments. Appendix F gives examples for such self-curated
test-time curricula and we include background on SIFT in Appendix B.

The TTC selected by SIFT is static for given target tasks. Motivated by previous work on curricula
for RL (e.g., Florensa et al., 2018; Narvekar et al., 2020; Pitis et al., 2020; Zhao et al., 2025) we also
evaluate an adaptive curriculum that selects training tasks of appropriate difficulty for the current
model. We find that this leads to diminishing returns if the corpus difficulty is already appropriately
calibrated to the initial model, and therefore focus on the static curriculum in our main experiments.
In Appendix C, we demonstrate that using a TTC of appropriately challenging training tasks, can
significantly accelerate learning for a weaker initial model such as Qwen3-0.6B.

A diverse corpus for general-purpose RL post-training. To study the effectiveness of our pro-
posed adaptive test-time curriculum, we leverage a large corpus of high-quality verifiable training
data, suitable for post-training a model across diverse domains. We assemble a new meta-dataset,
which we call the verifiable-corpus and which combines approximately 265k diverse training
tasks, spanning three environments:

• Exact answer match / Math: For math problems with a numerical answer, we determine
answer equivalence using math-verify. Our corpus contains the training splits of GSM8K
(Cobbe et al., 2021) and MATH (Hendrycks et al., 2021b), and the DAPO math dataset (Yu
et al., 2025b), covering numerically verifiable math problems for a wide range of difficulties.

• Judged answer match / General reasoning: Measuring the validity of complex reasoning
requires more robust verification than symbolic equivalence checks. Given a (potentially
long) golden answer, we use a 1.5B-parameter verifier model trained by Ma et al. (2025) to
determine whether attempted and golden answers are semantically equivalent. Our corpus
contains the Webinstruct-verified dataset (Ma et al., 2025), which covers a wide variety of
subjects ranging from natural sciences to history.

• Unit tests / Code: Finally, we combine several sources of coding tasks. Each coding task
is verified by a set of unit tests. Our corpus combines tasks from APPS (Hendrycks et al.,
2021a), code contests (Li et al., 2022), TACO (Li et al., 2023), PrimeIntellect (Mattern et al.,
2025), Leetcode (Xia et al., 2025), the Codeforces training split (Penedo et al., 2025) and all
LiveCodeBench tasks (Jain et al., 2025) prior to February 1, 2025.

We perform a filtering step where we remove training tasks with empty answers or less than 5 unit
tests, to ensure a reliable training signal. Finally, we deduplicate and decontaminate the corpus,
as detailed in Appendix E.1. We openly share the corpus and our environment implementations
to support future research. To our knowledge, the verifiable-corpus is one of the first public
corpora of high-quality verifiable tasks, spanning several domains and environments. We envision
that, building on this work, future efforts will ultimately enable TTC agents to utilize any relevant

4

https://github.com/huggingface/Math-Verify

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Model AIME24 AIME25 MATH500 Codeforces CodeElo LCBv6 GPQA-D

Qwen3-8B 21.67 23.33 69.55 20.85 13.73 20.61 49.11
+ RL post-training 41.67 38.33 82.50 27.83 22.67 25.95 56.47
+ TTC-RL 50.83+29.2 41.67+18.3 85.10+15.6 33.35+12.5 29.34+15.6 27.29+6.7 58.38+9.3

Qwen3-4B-Instruct-2507 52.50 40.83 72.00 26.70 20.27 21.56 61.93
+ RL post-training 55.83 47.50 86.30 28.39 21.18 25.95 62.82
+ TTC-RL 60.00+7.5 45.83+5.0 88.50+16.5 34.99+8.3 27.20+6.9 26.91+5.4 61.93+0.0

Qwen3-8B-Base 15.83 14.17 63.10 9.92 6.67 11.26 29.70
+ RL post-training 22.50 20.83 76.85 17.46 9.97 18.51 42.77
+ TTC-RL 30.00+14.2 21.67+7.5 78.15+15.1 17.84+7.9 11.33+4.7 17.94+6.7 45.94+16.2

Table 1: Performance of TTC-RL on reasoning benchmarks. We evaluate TTC-RL across bench-
marks for math (AIME24, AIME25, MATH500), coding (Codeforces, CodeElo, LCBv6), and scien-
tific reasoning (GPQA-D). Numbers in bold denote the best performance for a given model back-
bone, and we use + to denote the improvement over the initial model in percentage points.

training tasks they find on the web (similarly to retrieval-augmented generation; Lewis et al., 2019),
or to self-generate their own training tasks (see, e.g., Zhao et al., 2025).

4 RESULTS

We focus our evaluation on a diverse set of target tasks in math, coding, and scientific reasoning.
Specifically, we evaluate test-time curricula for high-school-level competition math questions
in AIME 24 & 25 and MATH500 (Hendrycks et al., 2021b). We evaluate coding ability on
Codeforces (Penedo et al., 2025), CodeElo (Quan et al., 2025), and on LiveCodeBench v6 (Jain
et al., 2025), i.e., tasks released after February 1, 2025. Finally, we evaluate scientific reasoning
with GPQA-Diamond (Rein et al., 2024) which covers questions in biology, physics, and chemistry.

TTC-RL can be applied to each task within a benchmark individually or to the entire benchmark on
aggregate, treating it as a set of target tasks. We primarily evaluate TTC-RL per-benchmark as this
yields greater statistical significance under a limited compute budget. We then perform an ablation,
indicating that per-task TTCs performs at least on-par with per-benchmark TTCs (cf. Section 4.2).

To ensure that our evaluation is accurate, we adopt evalchemy (Raoof et al., 2025) and synthesize
system prompts to be consistent across benchmarks (cf. Appendix E.2). We generally train for two
episodes with batch size 8 and 16 rollouts per train task,2 and measure avg@4 on the set of test tasks
once every ten steps. To further reduce noise, we compute a moving average across three validation
steps. Finally, in our summarized numeric results, we report the highest averaged avg@4, and
include detailed plots of avg@4 per step in Appendix D.2.

We perform our main evaluation on the non-thinking models Qwen3-8B (Yang et al., 2025) and the
more recent Qwen3-4B-Instruct-2507, whose responses we limit to 8192 tokens. We additionally
evaluate on the Qwen3-8B base model. We opt for non-thinking models due to the high compu-
tational cost of running thinking models over long contexts, typically of up to 32k tokens. The
goal of our TTC framework is to show that models can improve at test-time, even without further
expanding their context. We hypothesize that our results extend to thinking models, which simply
have a larger maximum response length.

Main results. We summarize our main results in Figure 1 and Table 1. We find that TTC-RL
significantly improves accuracy across a range of models and all benchmarks. Notably, it also leads
to significant performance gains on top of Qwen3-8B-Base within only relatively few RL steps, indi-
cating that TTCs lead to sample-efficient training. Our main baseline is a model that is trained on 1k
uniformly chosen training tasks from the corpus, to which we refer to as standard “RL post-training”,
since this method yields a general-purpose model. We compare this to TTC-RL with a curriculum of
size 1k and find that training on a test-time curriculum accelerates learning significantly and leads to

2We summarize all training hyperparameters in Appendix E.3.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

1 2 4 8 16 64
k

0.4

0.6

Te
st

pa
ss

@
k

1 2 4 8 16 64
k

0.4

0.5

0.6

Te
st

m
aj

@
k

M
ath

Cod
e

GPQA-D

Qwen3-8B

+ Thinking

+ TTC-RL

0.38 0.18 0.49

0.73 0.34 0.61

0.59 0.3 0.58

TTC-RL RL Post-Training Qwen3-8B

Figure 3: TTC-RL scales test-time compute in way that is complementary to other means of
test-time scaling. Left: The pass@k of TTC-RL on Qwen3-8B, averaged over benchmarks, increases
substantially for small and large k, indicating that TTC-RL raises the model’s performance ceiling.
Middle: TTC-RL also improves the performance of majority voting (across math and GPQA-D),
with the initial pass@1 significantly outperforming maj@64 on the initial model. Right: We evalu-
ate Qwen3-8B in non-thinking and thinking mode, as well as the non-thinking model + TTC-RL. The
color indicates the relative accuracy per column. We find that TTC-RL significantly improves the
non-thinking model, allowing it to perform close to the thinking variant in several domains, despite
reasoning over 8k rather than 30k context tokens.

saturation at substantially higher performance.3 Notably, Qwen3-8B with TTC-RL performs on-par
with strong closed-source non-thinking models; for example, it approximately matches GPT-4o-
2024-08-06 on LCBv6 and outperforms GPT 4.1 and Claude Opus 4.1 on AIME.

1 10 100 1000
Training Samples

0.40

0.45

0.50
Te

st
A

cc
ur

ac
y

RL Post-Training
Test-Time Curriculum

Figure 2: TTC-RL outperforms RL
post-training across data sizes. We eval-
uate Qwen3-8B on all seven benchmarks
and report the average test accuracy
when training for 250 steps.

In Figure 2, we further ablate the size of the curriculum
and find that TTC-RL consistently outperforms general-
purpose RL post-training across a wide range of curricu-
lum sizes. Interestingly, at dataset size 1—though per-
forming poorly—the general-purpose RL post-training
outperforms TTC-RL. We suspect that this may result
from TTC-RL picking a practice task that is very simi-
lar to the test tasks, in which case overfitting may harm
more than when overfitting to a less related task.

Takeaway 1

TTC-RL substantially improves accuracy on a wide
variety of models and benchmarks, compared to a
model’s initial performance and after (continued) RL
post-training on our corpus.

4.1 TTCS ARE COMPLEMENTARY TO EXISTING APPROACHES TO TEST-TIME SCALING

Next, we demonstrate that TTC-RL improves the LLM’s ability for test-time scaling.

TTCs raise the model’s performance ceiling. While the improvement in accuracy demonstrates
that during TTC-RL, the model learns to better reason within context, we ask whether the model
improves more broadly. A common metric to understand a model’s “performance ceiling” for test-
time scaling is the pass@k metric, which measures whether any one of k attempts is correct (Chen
et al., 2025b). Recent work has repeatedly shown that RL-training tends not to improve pass@k
at large k (Yue et al., 2025), leading to the concern that RL-training is simply “distilling” pass@k
into pass@1. In Figure 3 (left), we instead observe that TTC-RL significantly improves pass@k
across a wide range of k. Similarly, TTC-RL also improves the realized performance gains of
majority voting, as can be seen in Figure 3 (middle), and notably increases the pass@1 well beyond
the maj@64 after continued RL post-training. Since RL post-training and TTC-RL differ only
in their training tasks, our results demonstrate that targeted selection of training tasks can lead to

3In Appendix D.3, we additionally compare to an “RL post-training” baseline that only samples training
tasks from the test environment and show that this yields comparable results.

6

https://livecodebench.github.io/leaderboard.html
https://www.vals.ai/benchmarks/aime

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Qwen
3-8

B

maj@
12

8

maj-
TTRL

TTC-R
L

pe
r-t

ask
maj-

TTRL

pe
r-t

ask
TTC-R

L
0.0

0.2

0.4

0.6

Te
st

ac
cu

ra
cy

A
IM

E
25

0.23

0.31 0.30

0.42

0.35

0.50

GPQA-D

M
ATH50

0
LCB

Cod
efo

rce
s

AIM
E25

Cod
eE

lo

AIM
E24

0.0

0.1

0.2

L
at

en
ti

m
pr

ov
em

en
t Accuracy ∆

Latent impr.

AIM
E24

AIM
E25

M
ATH50

0

Cod
efo

rce
s

Cod
eE

lo
LCB

GPQA-D

AIME24

AIME25

MATH500

Codeforces

CodeElo

LCB

GPQA-D
0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

ac
cu

ra
cy

Figure 4: Left: Per-task TTC-RL outperforms a benchmark-level TTC in AIME25. We per-
form TTC-RL and maj-TTRL (cf. Section 5.2) on Qwen3-8B, and find that per-task TTC-RL even
outperforms the benchmark-level TTC. Middle: TTC-RL improves “correctness” of reasoning,
not only learning the answer format. We evaluate the difference in accuracy between TTC-RL and
the initial Qwen3-8B, averaged over benchmarks. The latent improvement is a lower bound on the
accuracy gain that is not due to merely learning the format (cf. Section 5.1). Right: TTC-RL yields
models that are specialized to their target tasks. We plot the accuracy of Qwen3-8B trained for
given target tasks (rows) when evaluated on other benchmarks (columns). We normalize accuracies
across all evaluations of a particular benchmark. Notably, the model trained via TTC-RL for the
“right” target tasks (i.e., the diagonal) always performs best.

substantial performance gains. Furthermore, we find that increasing clip-high in GRPO as proposed
by Yu et al. (2025b) improves exploration and prevents entropy collapse in RL post-training as
well as TTC-RL (cf. Appendix D.1), which is crucial for improving upon the strong initial models.
Developing a better understanding of the circumstances under which RL-training can “discover
new behavior”, leading to improved pass@k, is an exciting direction for future research.

TTC-RL with a short-context LLM can perform close to a long-context LLM. We also seek
to better understand how TTC-RL relates to reasoning over long contexts. To this end, we evaluate
the non-thinking and thinking variants of Qwen3-8B, limited to 8k and 30k tokens per response,
respectively. In Figure 3 (right), we find that TTC-RL on the non-thinking model performs close
to the thinking model in several domains, particularly in coding and GPQA.4 Further, note that the
asymptotic cost of growing context in a Transformer is quadratic (Vaswani et al., 2017), whereas
the asymptotic cost of TTC-RL is linear (since experience is compressed into the model’s weights).
This suggests that there is a regime in which, given a fixed compute budget, TTC-RL outperforms
further scaling of context size. We believe that studying this compute-optimal Pareto frontier is an
exciting topic for future research. Our results indicate that to further improve the performance of
LLMs, test-time curricula may eventually be advantageous over continued scaling of context size.

Takeaway 2

Test-time curricula substantially increase the pass@k performance ceiling of a model and can
perform similarly to models which are reasoning over a much larger context. This indicates the
potential of TTCs to complement existing approaches to test-time scaling.

4.2 TTCS EFFECTIVELY SPECIALIZE MODELS

To determine whether the test-time curriculum specializes the model to its target tasks, we conduct
a straightforward experiment: We evaluate each final checkpoint of TTC-RL on all benchmarks,
including those that were not part of the set of target tasks. We summarize the results in Figure 4
(right), with columns corresponding to evaluation and rows corresponding to training. We find
that after TTC-RL, models perform best on their target tasks, while severely underperforming on
tasks that are unrelated to the target tasks. Moreover, we identify a block-diagonal structure, where
models generalize better across mutually related groups of tasks, particularly among similar math

4In MATH500, non-thinking Qwen3-8B + TTC-RL (85%) even outperformed the thinking variant (77%).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

benchmarks. We also find that models appear to generalize better from coding to math than vice
versa, and models generalize better from code and math to GPQA than vice versa.

TTCs for individual tasks. Aspirationally, we anticipate test-time curricula to enable continual
learning for a single test task over a long timeframe. While we focus our main evaluation on the
setting where test-time curricula are applied per benchmark, we run an ablation with 30 separate
TTCs—one per AIME 25 question. The results in Figure 4 (left) demonstrate that specializing to an
individual test task can outperform a broader specialization to a group of test tasks. This shows that
TTC-RL does not depend on a larger set of test tasks to implicitly lead to diverse data and robust
training, and instead seamlessly extends to a fully test-time setting with only a single task given.
We find, however, that more fine-grained specialization does not always lead to further performance
gains. We evaluate training separate TTCs for each of biology, physics, and chemistry in GPQA,
leading to approximately the same performance as a joint TTC. In our view, gaining a better
understanding for “how much” specialization is helpful is an exciting direction for further research.

Takeaway 3

Test-time curricula effectively specialize the model to their target tasks. When applied to an
individual target task, TTC-RL can be seen directly as a method for test-time scaling.

5 FURTHER ANALYSIS

5.1 ESTIMATING “REAL” IMPROVEMENT

When evaluating RL-trained models on verifiable tasks, a reasonable concern is whether the
model simply learns to adhere to the expected output format. Indeed, we find that if the initial
model is not able to consistently produce well-formed responses, RL-training tends to quickly
teach the model the expected output format. Therefore, disentangling shallow learning of format
from improvements in a model’s “latent” reasoning is critical for accurate evaluation. Ideally, we
would like to measure whether the model’s reasoning improves throughout training—regardless of
whether we can automatically parse and evaluate responses.

We propose to measure a model’s latent improvement (LI) during RL training as follows. Consider
the event of an answer being marked as “accurate” by the verifier, which occurs if it is “well-formed”
(i.e., it can be extracted and interpreted) and if the model’s latent reasoning is “correct”. Based on
this, a straightforward lower bound on correctness is simply P(correct) ≥ P(accurate). To measure
the improvement in correctness throughout RL training, we make the following intuitive assumption:

Assumption 1. We assume that being well-formed does not reduce the chance of being correct.
Formally, we assume P(correct | well-formed) ≥ P(correct), i.e., a non-negative association of
formedness and correctness.

Intuitively, this assumption states that an ill-formed response does not increase the likelihood of
correct latent reasoning. This yields a straightforward upper bound on the probability of correct
latent reasoning: P(correct) ≤ P(accurate)/P(well-formed) if P(well-formed) > 0. Thus, the
improvement in correctness after T RL steps is lower bounded as

Latent Improvement := P(correctT)− P(correct0) ≥ P(accurateT)−
P(accurate0)

P(well-formed0)
. (1)

Measuring latent improvement. We consider a response as ill-formed if we cannot extract an
answer, e.g., because the response was truncated at the max-token limit or because the completed
response did not contain an extractable answer. We note that to reliably measure LI, it is essential
to ensure that answer extraction is strict.5 In Figure 4 (middle), we measure the latent improvement
of Qwen3-8B, and find that under Assumption 1, TTC-RL leads to a substantial latent improvement.
We include our complete results in terms of LI in Table 7 of Appendix D.

5If answers are extracted, which are not intended as answers by the model, this artificially inflates LI and
violates Assumption 1. To ensure this, we only extract the contents of \boxed{} or the contents wrapped in “‘ “‘,
for math and code, respectively.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5.2 TOWARDS CONTINUAL SELF-IMPROVEMENT AT TEST-TIME

We consider this work as a first step towards agents that continue learning at test-time and specialize
without requiring human supervision. The recent work of Zuo et al. (2025) can also be seen as a
step in this direction by proposing to train on the test set directly, using majority votes as surrogate
rewards (“maj-TTRL”). Since Maj-TTRL relies on majority votes as its training signal, it can be
applied only to environments with structured outputs such as our math environment with numerical
answers or the multiple choice GPQA. In contrast, our proposed TTCs can be applied in any
environment where a reward signal can be defined. We perform a comparison to Zuo et al. (2025) in
Table 2 and find that Maj-TTRL leads to significant gains in accuracy across math benchmarks, but
helping less in GPQA. We emphasize that Maj-TTRL and test-time curricula are complementary
approaches, e.g., one can perform Maj-TTRL directly after TTC-RL, which we find to outperform
Maj-TTRL alone (cf. Figure 11 in Appendix D.4).

Model Math Code GPQA-D

Qwen3-8B-Instruct
+ Maj-TTRL 52.63 – 51.14
+ TTC-RL 59.2 29.99 58.38

Qwen3-4B-Instruct-2507
+ Maj-TTRL 69.49 – 62.44
+ TTC-RL 64.78 29.70 61.93

Table 2: The competitive performance
of Maj-TTRL on our strongest model
suggests that TTC-RL’s effectiveness is
constrained by its fixed training cor-
pus. Combining our approach with self-
improvement techniques is therefore an
exciting direction for future work.

Notably, the performance gains of Maj-TTRL on the
strong Qwen3-4B-Instruct-2507 model in AIME 24 &
25 suggest that the returns from our proposed imple-
mentation of TTC-RL are constrained by the scope of its
fixed training corpus. This saturation does not imply a
ceiling on the model’s capabilities; rather, it may indicate
a promising opportunity for self-improvement methods
such as Maj-TTRL or synthetic data generation (e.g.,
Zhao et al., 2025; Zweiger et al., 2025), which may be
combined with or extend TTCs.

5.3 ON CONTAMINATION AND REWARD HACKING

The performance gains from TTC-RL are remarkable: for
example, in AIME24 and CodeElo, the pass@1 of the
strong Qwen3-8B more than doubles within only a few
hundred training steps. This naturally raises the question
of potential confounding factors. To mitigate this risk, we took several steps: we extensively de-
contaminated our corpus by removing tasks that overlap with the test sets, implemented safeguards
against reward hacking within our code environment, and manually reviewed several model re-
sponses. While we base our evaluation on the widely used evalchemy package (Raoof et al., 2025),
we found a significant flaw in the evaluation of Codeforces and CodeElo, where some (and fre-
quently all) private test cases were leaked into the prompt as “examples”. This enables a strong
model to “solve” a task simply by handling each test case individually. To mitigate this, we re-
moved all input/output examples from the prompts of Codeforces and CodeElo, and also ensured
that private test cases are not leaked in tasks from our training corpus.

A remaining limitation is that we cannot guarantee the cleanliness of the model’s original pre-
training data. To account for this possibility, we evaluate on LCBv6, which consists of coding
tasks that were released since February 2025. Hence, TTC-RLs performance gains on LCB makes
pre-existing contamination a less likely explanation for our results. Furthermore, we compare TTC-
RL to an oracle that trains directly on the test tasks, finding that our method learns slightly more
slowly and levels off at a lower accuracy (cf. Figure 13 in Appendix D). We believe our findings
on the importance of data selection (cf. Figure 1) and improvements to the RL training algorithm to
facilitate exploration (cf. Appendix D.1) offer plausible explanations for these results. We further
include qualitative examples demonstrating the improvements in reasoning in Appendix F.

6 DISCUSSION

We propose a test-time curriculum agent that self-curates a sequence of training tasks to specialize
towards a specific target task via reinforcement learning. We demonstrate that TTCs achieve
remarkable performance gains across multiple models and diverse reasoning benchmarks, sig-
nificantly raising the performance ceiling of strong initial models through specialization to their
target task. To better evaluate these gains, we introduce the “latent improvement” metric, which

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

measures genuine improvements in reasoning correctness. Our experiments confirm that TTCs
yield substantial gains in latent improvement.

This highlights the potential of a currently underutilized compute regime: targeted test-time training,
which sits between large-scale general-purpose training and frozen test-time scaling. While standard
next-token prediction relies on a model’s intuition and reasoning allows it to leverage context for
deliberation, our proposed test-time curriculum enables the model to meta-learn how to reason for a
particular target task at test-time. Similarly, when humans begin a new job, they often train for weeks
or months before being able to solve all required tasks. During this time, they collect experience on
dozens of tasks that are similar, becoming more efficient at solving their jobs’ target tasks.

In demonstrating the potential of such targeted test-time training, our work opens up several excit-
ing research directions. A natural direction is to move beyond the bottleneck of a fixed task corpus
through self-generated TTCs, which may still use human-created tasks as inspiration. Further av-
enues include improving the sample- and step-efficiency of TTC-RL through advancing methods for
RL training. This also raises questions about scaling laws for this new regime: for instance, at what
context length does it become more advantageous to scale TTC-RL rather than increasing the context
window? Looking beyond single-task specialization, TTCs might be extended to dynamic settings
where an agent must adapt to an evolving set of target tasks. Finally, TTC-RL could be used to un-
confound benchmark evaluations by providing a standardized method for specializing all models to
a test task (Dominguez-Olmedo et al., 2025), enabling a fairer comparison of their core capabilities.

REFERENCES

Ekin Akyürek, Mehul Damani, Adam Zweiger, Linlu Qiu, Han Guo, Jyothish Pari, Yoon Kim, and
Jacob Andreas. The surprising effectiveness of test-time training for few-shot learning. In ICML,
2025.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay. In
NeurIPS, 2017.

Marco Bagatella, Mert Albaba, Jonas Hübotter, Georg Martius, and Andreas Krause. Test-time of-
fline reinforcement learning on goal-related experience. arXiv preprint arXiv:2507.18809, 2025a.

Marco Bagatella, Jonas Hübotter, Georg Martius, and Andreas Krause. Active fine-tuning of multi-
task policies. In ICML, 2025b.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, 2009.

Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Debiak, Christy
Dennison, David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, et al. Dota 2 with large
scale deep reinforcement learning. arXiv preprint arXiv:1912.06680, 2019.

Ryo Bertolissi, Jonas Hübotter, Ido Hakimi, and Andreas Krause. Local mixtures of experts: Essen-
tially free test-time training via model merging. In COLM, 2025.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. arXiv preprint ArXiv:2005.14165, 2020.

Lili Chen, Mihir Prabhudesai, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak. Self-questioning
language models. arXiv preprint arXiv:2508.03682, 2025a.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Zhipeng Chen, Xiaobo Qin, Youbin Wu, Yue Ling, Qinghao Ye, Wayne Xin Zhao, and Guang Shi.
Pass@k training for adaptively balancing exploration and exploitation of large reasoning models.
arXiv preprint arXiv:2508.10751, 2025b.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Karan Dalal, Daniel Koceja, Gashon Hussein, Jiarui Xu, Yue Zhao, Youjin Song, Shihao Han,
Ka Chun Cheung, Jan Kautz, Carlos Guestrin, et al. One-minute video generation with test-time
training. In CVPR, 2025.

Leander Diaz-Bone, Marco Bagatella, Jonas Hübotter, and Andreas Krause. Discover: Automated
curricula for sparse-reward reinforcement learning. In NeurIPS, 2025.

Ricardo Dominguez-Olmedo, Florian E Dorner, and Moritz Hardt. Training on the test task con-
founds evaluation and emergence. In ICLR, 2025.

Yan Duan, John Schulman, Xi Chen, Peter L Bartlett, Ilya Sutskever, and Pieter Abbeel. Rl2: Fast
reinforcement learning via slow reinforcement learning. In ICLR, 2017.

Wenkai Fang, Shunyu Liu, Yang Zhou, Kongcheng Zhang, Tongya Zheng, Kaixuan Chen, Mingli
Song, and Dacheng Tao. Serl: Self-play reinforcement learning for large language models with
limited data. In NeurIPS, 2025.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation
of deep networks. In ICML, 2017.

Carlos Florensa, David Held, Xinyang Geng, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. In ICML, 2018.

Etash Guha, Ryan Marten, Sedrick Keh, Negin Raoof, Georgios Smyrnis, Hritik Bansal, Marianna
Nezhurina, Jean Mercat, Trung Vu, Zayne Sprague, et al. Openthoughts: Data recipes for reason-
ing models. arXiv preprint arXiv:2506.04178, 2025.

Caglar Gulcehre, Tom Le Paine, Srivatsan Srinivasan, Ksenia Konyushkova, Lotte Weerts, Abhishek
Sharma, Aditya Siddhant, Alex Ahern, Miaosen Wang, Chenjie Gu, et al. Reinforced self-training
(rest) for language modeling. arXiv preprint arXiv:2308.08998, 2023.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Moritz Hardt and Yu Sun. Test-time training on nearest neighbors for large language models. In
ICLR, 2024.

Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin
Burns, Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge
competence with apps. In NeurIPS, 2021a.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset.
In NeurIPS, 2021b.

Audrey Huang, Adam Block, Dylan J Foster, Dhruv Rohatgi, Cyril Zhang, Max Simchowitz, Jor-
dan T Ash, and Akshay Krishnamurthy. Self-improvement in language models: The sharpening
mechanism. In ICLR, 2025a.

Chengsong Huang, Wenhao Yu, Xiaoyang Wang, Hongming Zhang, Zongxia Li, Ruosen Li, Jiaxin
Huang, Haitao Mi, and Dong Yu. R-zero: Self-evolving reasoning llm from zero data. arXiv
preprint arXiv:2508.05004, 2025b.

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, and Andreas Krause. Transductive
active learning: Theory and applications. In NeurIPS, 2024.

Jonas Hübotter, Sascha Bongni, Ido Hakimi, and Andreas Krause. Efficiently learning at test-time:
Active fine-tuning of llms. In ICLR, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Aaron Jaech, Adam Kalai, Adam Lerer, Adam Richardson, Ahmed El-Kishky, Aiden Low, Alec
Helyar, Aleksander Madry, Alex Beutel, Alex Carney, et al. Openai o1 system card. arXiv
preprint arXiv:2412.16720, 2024.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code. In ICLR, 2025.

Kimi, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li, Chenjun Xiao,
Chenzhuang Du, Chonghua Liao, et al. Kimi k1.5: Scaling reinforcement learning with llms.
arXiv preprint arXiv:2501.12599, 2025.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, et al. Tulu 3: Pushing frontiers
in open language model post-training. In COLM, 2025.

Nayoung Lee, Ziyang Cai, Avi Schwarzschild, Kangwook Lee, and Dimitris Papailiopoulos. Self-
improving transformers overcome easy-to-hard and length generalization challenges. In ICML,
2025.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal,
Heinrich Küttler, Mike Lewis, Wen-tau Yih, Tim Rocktäschel, et al. Retrieval-augmented gener-
ation for knowledge-intensive nlp tasks. In NeurIPS, 2019.

Rongao Li, Jie Fu, Bo-Wen Zhang, Tao Huang, Zhihong Sun, Chen Lyu, Guang Liu, Zhi Jin, and
Ge Li. Taco: Topics in algorithmic code generation dataset. arXiv preprint arXiv:2312.14852,
2023.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond, Tom
Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code generation
with alphacode. arXiv preprint arXiv:2203.07814, 2022.

Hunter Lightman, Vineet Kosaraju, Yuri Burda, Harrison Edwards, Bowen Baker, Teddy Lee, Jan
Leike, John Schulman, Ilya Sutskever, and Karl Cobbe. Let’s verify step by step. In ICLR, 2023.

Michael Luo, Sijun Tan, Roy Huang, Ameen Patel, Alpay Ariyak, Qingyang Wu, Xiaoxiang Shi,
Rachel Xin, Colin Cai, Maurice Weber, et al. Deepcoder: A fully open-source 14b coder at
o3-mini level. Together AI Blog, 2025. URL https://www.together.ai/blog/deepcoder.

Xueguang Ma, Qian Liu, Dongfu Jiang, Ge Zhang, Zejun Ma, and Wenhu Chen. General-reasoner:
Advancing llm reasoning across all domains. In NeurIPS, 2025.

David JC MacKay. Information-based objective functions for active data selection. Neural compu-
tation, 4(4), 1992.

Justus Mattern, Manveer, Jannik, Matthew, Felix, Johannes, and Vincent. Synthetic-1: Scaling
distributed synthetic data generation for verified reasoning. PrimeIntellect Blog, 2025. URL
https://www.primeintellect.ai/blog/synthetic-1.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. Nature, 518(7540), 2015.

Sanmit Narvekar, Bei Peng, Matteo Leonetti, Jivko Sinapov, Matthew E. Taylor, and Peter Stone.
Curriculum learning for reinforcement learning domains: A framework and survey. JMLR, 2020.

Guilherme Penedo, Anton Lozhkov, Hynek Kydlíček, Loubna Ben Allal, Edward Beeching,
Agustín Piqueres Lajarín, Quentin Gallouédec, Nathan Habib, Lewis Tunstall, and Leandro
von Werra. Codeforces dataset, 2025. URL https://huggingface.co/datasets/open-r1/
codeforces.

Silviu Pitis, Harris Chan, Stephen Zhao, Bradly Stadie, and Jimmy Ba. Maximum entropy gain
exploration for long horizon multi-goal reinforcement learning. In ICML, 2020.

12

https://www.together.ai/blog/deepcoder
https://www.primeintellect.ai/blog/synthetic-1
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/datasets/open-r1/codeforces

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Vitchyr H. Pong, Murtaza Dalal, Steven Lin, Ashvin Nair, Shikhar Bahl, and Sergey Levine. Skew-
fit: State-covering self-supervised reinforcement learning. In ICML, 2020.

Mihir Prabhudesai, Lili Chen, Alex Ippoliti, Katerina Fragkiadaki, Hao Liu, and Deepak Pathak.
Maximizing confidence alone improves reasoning. arXiv preprint arXiv:2505.22660, 2025.

Shanghaoran Quan, Jiaxi Yang, Bowen Yu, Bo Zheng, Dayiheng Liu, An Yang, Xuancheng Ren,
Bofei Gao, Yibo Miao, Yunlong Feng, et al. Codeelo: Benchmarking competition-level code
generation of llms with human-comparable elo ratings. arXiv preprint arXiv:2501.01257, 2025.

Qwen. Qwq-32b: Embracing the power of reinforcement learning. Qwen Blog, 2025. URL https:
//qwenlm.github.io/blog/qwq-32b.

Qwen, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, et al. Qwen2.5 technical report. arXiv preprint arXiv:2412.15115,
2024.

Negin Raoof, Etash Kumar Guha, Ryan Marten, Jean Mercat, Eric Frankel, Sedrick Keh, Hritik
Bansal, Georgios Smyrnis, Marianna Nezhurina, Trung Vu, et al. Evalchemy, 2025.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Di-
rani, Julian Michael, and Samuel R Bowman. Gpqa: A graduate-level google-proof q&a bench-
mark. In COLM, 2024.

Tom Schaul, Daniel Horgan, Karol Gregor, and David Silver. Universal value function approxima-
tors. In ICML, 2015.

Jürgen Schmidhuber. Evolutionary principles in self-referential learning, or on learning how to
learn: the meta-meta-... hook. PhD thesis, Technische Universität München, 1987.

Jürgen Schmidhuber. Learning to generate sub-goals for action sequences. In Artificial neural
networks, 1991.

Amrith Setlur, Chirag Nagpal, Adam Fisch, Xinyang Geng, Jacob Eisenstein, Rishabh Agarwal,
Alekh Agarwal, Jonathan Berant, and Aviral Kumar. Rewarding progress: Scaling automated
process verifiers for llm reasoning. In ICLR, 2025a.

Amrith Setlur, Yuxiao Qu, Matthew Yang, Lunjun Zhang, Virginia Smith, and Avi-
ral Kumar. Optimizing llm test-time compute involves solving a meta-rl prob-
lem. CMU MLD Blog, 2025b. URL https://blog.ml.cmu.edu/2025/01/08/
optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem.

Rulin Shao, Shuyue Stella Li, Rui Xin, Scott Geng, Yiping Wang, Sewoong Oh, Simon Shaolei
Du, Nathan Lambert, Sewon Min, Ranjay Krishna, et al. Spurious rewards: Rethinking training
signals in rlvr. arXiv preprint arXiv:2506.10947, 2025.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Junhong Shen, Hao Bai, Lunjun Zhang, Yifei Zhou, Amrith Setlur, Shengbang Tong, Diego Caples,
Nan Jiang, Tong Zhang, Ameet Talwalkar, et al. Thinking vs. doing: Agents that reason by scaling
test-time interaction. arXiv preprint arXiv:2506.07976, 2025.

Idan Shenfeld, Jyothish Pari, and Pulkit Agrawal. Rl’s razor: Why online reinforcement learning
forgets less. arXiv preprint arXiv:2509.04259, 2025.

David Silver and Richard S Sutton. Welcome to the era of experience. Google AI, 2025.

David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George van den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587), 2016.

13

https://qwenlm.github.io/blog/qwq-32b
https://qwenlm.github.io/blog/qwq-32b
https://blog.ml.cmu.edu/2025/01/08/optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem
https://blog.ml.cmu.edu/2025/01/08/optimizing-llm-test-time-compute-involves-solving-a-meta-rl-problem

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez,
Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. Mastering chess and shogi
by self-play with a general reinforcement learning algorithm. arXiv preprint arXiv:1712.01815,
2017.

Jivko Sinapov, Sanmit Narvekar, Matteo Leonetti, and Peter Stone. Learning inter-task transferabil-
ity in the absence of target task samples. In AAMAS, 2015.

Charlie Snell, Jaehoon Lee, Kelvin Xu, and Aviral Kumar. Scaling llm test-time compute optimally
can be more effective than scaling model parameters. In ICLR, 2025.

Yu Sun, Xiaolong Wang, Zhuang Liu, John Miller, Alexei Efros, and Moritz Hardt. Test-time
training with self-supervision for generalization under distribution shifts. In ICML, 2020.

Yu Sun, Xinhao Li, Karan Dalal, Jiarui Xu, Arjun Vikram, Genghan Zhang, Yann Dubois, Xinlei
Chen, Xiaolong Wang, Sanmi Koyejo, et al. Learning to (learn at test time): Rnns with expressive
hidden states. In ICML, 2025.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In NeurIPS, 2017.

Johannes von Oswald, Nino Scherrer, Seijin Kobayashi, Luca Versari, Songlin Yang, Maxi-
milian Schlegel, Kaitlin Maile, Yanick Schimpf, Oliver Sieberling, Alexander Meulemans,
et al. Mesanet: Sequence modeling by locally optimal test-time training. arXiv preprint
arXiv:2506.05233, 2025.

Dequan Wang, Evan Shelhamer, Shaoteng Liu, Bruno Olshausen, and Trevor Darrell. Tent: Fully
test-time adaptation by entropy minimization. ICLR, 2021.

Peiyi Wang, Lei Li, Zhihong Shao, RX Xu, Damai Dai, Yifei Li, Deli Chen, Yu Wu, and Zhifang
Sui. Math-shepherd: Verify and reinforce llms step-by-step without human annotations. In ACL,
2024a.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
In ICLR, 2023.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming
Ren, Aaran Arulraj, Xuan He, Ziyan Jiang, et al. Mmlu-pro: A more robust and challenging
multi-task language understanding benchmark. In NeurIPS, 2024b.

David Warde-Farley, Tom Van de Wiele, Tejas Kulkarni, Catalin Ionescu, Steven Hansen, and
Volodymyr Mnih. Unsupervised control through non-parametric discriminative rewards. arXiv
preprint arXiv:1811.11359, 2018.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In NeurIPS,
2022.

Yunhui Xia, Wei Shen, Yan Wang, Jason Klein Liu, Huifeng Sun, Siyue Wu, Jian Hu, and Xiaolong
Xu. Leetcodedataset: A temporal dataset for robust evaluation and efficient training of code llms.
arXiv preprint arXiv:2504.14655, 2025.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Hongzhou Yu, Tianhao Cheng, Ying Cheng, and Rui Feng. Finemedlm-o1: Enhancing the medical
reasoning ability of llm from supervised fine-tuning to test-time training. In COLM, 2025a.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. In NeurIPS, 2025b.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Yang Yue, Zhiqi Chen, Rui Lu, Andrew Zhao, Zhaokai Wang, Shiji Song, and Gao Huang. Does
reinforcement learning really incentivize reasoning capacity in llms beyond the base model? In
NeurIPS, 2025.

Eric Zelikman, Yuhuai Wu, Jesse Mu, and Noah Goodman. Star: Bootstrapping reasoning with
reasoning. In NeurIPS, 2022.

Marvin Zhang, Sergey Levine, and Chelsea Finn. Memo: Test time robustness via adaptation and
augmentation. In NeurIPS, 2022.

Qingyang Zhang, Haitao Wu, Changqing Zhang, Peilin Zhao, and Yatao Bian. Right question is
already half the answer: Fully unsupervised llm reasoning incentivization. In NeurIPS, 2025a.

Tianyuan Zhang, Sai Bi, Yicong Hong, Kai Zhang, Fujun Luan, Songlin Yang, Kalyan
Sunkavalli, William T Freeman, and Hao Tan. Test-time training done right. arXiv preprint
arXiv:2505.23884, 2025b.

Andrew Zhao, Yiran Wu, Yang Yue, Tong Wu, Quentin Xu, Matthieu Lin, Shenzhi Wang, Qingyun
Wu, Zilong Zheng, and Gao Huang. Absolute zero: Reinforced self-play reasoning with zero
data. In NeurIPS, 2025.

Xiangxin Zhou, Zichen Liu, Anya Sims, Haonan Wang, Tianyu Pang, Chongxuan Li, Liang
Wang, Min Lin, and Chao Du. Reinforcing general reasoning without verifiers. arXiv preprint
arXiv:2505.21493, 2025.

Yuxin Zuo, Kaiyan Zhang, Shang Qu, Li Sheng, Xuekai Zhu, Biqing Qi, Youbang Sun, Ganqu Cui,
Ning Ding, and Bowen Zhou. Ttrl: Test-time reinforcement learning. In NeurIPS, 2025.

Adam Zweiger, Jyothish Pari, Han Guo, Ekin Akyürek, Yoon Kim, and Pulkit Agrawal. Self-
adapting language models. In NeurIPS, 2025.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

APPENDICES

CONTENTS

A Why Imitation Learning is ill-suited for TTC’s 17

B Background 18

B.1 SIFT . 18

B.2 GRPO . 19

C Autobalancing Achievability with TTC’s 19

D Extended Results 22

D.1 Increasing clip-high in GRPO is essential for learning 22

D.2 Performance vs. step . 22

D.3 “RL post-training” baseline restricted to the test environment 22

D.4 Extended comparison and combination of TTC-RL with Maj-TTRL 24

D.5 Additional benchmarks . 25

D.6 Further results and ablations . 25

D.7 Unsuccessful attempts . 25

E Experiment Details 28

E.1 Dataset . 28

E.2 System prompts . 28

E.3 Details of the RL training . 29

E.4 Infrastructure and Training Time . 30

F Qualitative Examples 31

F.1 CodeElo, Question 85 . 31

F.2 AIME 25, question 26 . 32

F.3 TTC for CodeElo . 36

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

A WHY IMITATION LEARNING IS ILL-SUITED FOR TTC’S

0 200 400 600 800

Training Step

0.0

0.2

0.4

Te
st

A
cc

ur
ac

y AMC23
AIME25

Figure 5: Training on the test set with
SFT leads to an initial accuracy drop,
indicating that SFT is ill-suited for TTT.

While we focus on RL-training with a test-time cur-
riculum, the prior works of Hardt & Sun (2024) and
Hübotter et al. (2025) have proposed to instead per-
form supervised fine-tuning on human-produced data
(TTC-SFT), retrieved from a large corpus. Next to being
impractical since requiring reasoning traces for training
tasks, we make the observation that the distribution-shift
of off-policy SFT appears to make it fundamentally
ill-suited for test-time training of LLMs. To test this, we
train a Qwen2.5-7B-Instruct model (Qwen et al., 2024)
on the test sets of the AMC23 and AIME25 math compe-
titions, using expert traces generated by QwQ-32B (Qwen,
2025) using the SFT pipeline from OpenThinker3 (Guha
et al., 2025). OpenThinker3-7B is simply the fine-tuned
Qwen2.5-7B-Instruct when trained to convergence on a curated training set of QwQ-32B (Yang
et al., 2025) traces (Guha et al., 2025). Although OpenThinker3 demonstrates that at convergence,
an SFT-trained Qwen2.5-7B-Instruct can achieve strong performance, Figure 5 shows that even
when training directly on the test set, it takes hundreds of gradient steps before the accuracy starts
to increase, while initially dropping to close to 0%. Intuitively, even though perplexity decreases
smoothly throughout training, the model’s behavior undergoes phase transitions, and begins by only
reproducing superficial reasoning patterns such as repeatedly generating “Wait, ...”:

Excerpts from reasoning traces for AIME 25 after 200 SFT steps

. . . be 2025. Wait, actually, actually, actually, actually, actually, actually, actually, actually,
actually, actually, . . .
. . . numerator.\n\nWait, numerator numerator is numerator denominator * denominator numer-
ator.\n\nWait, numerator numerator . . .

0 2 4 6

Training Epoch

0.6

0.8

Te
st

A
cc

ur
ac

y GMS8K

Figure 6: Training Llama-3.2-1B-
Instruct on the GSM8K test set with
SFT. After the first full epoch, the
performance has dropped significantly
compared to the initial model, before
then overfitting to the SFT data.

This phenomenon is closely related to recent observations
that off-policy SFT appears to induce a greater distribu-
tion shift of the policy than on-policy RL (Shenfeld et al.,
2025), indicating that TTC-SFT is less robust and may
even be less efficient than TTC-RL.

Validating this phenomenon with expert solutions in
GSM8K. To validate that this behavior is because of
the behavior SFT rather than the specifics of QwQ-32B-
generated reasoning traces, we perform a similar experi-
ment on GSM8K (Cobbe et al., 2021). GSM8K’s test set
has not only verified numerical answers, but also human-
generated expert reasoning traces. In Figure 6, we train
Llama-3.2-1B-Instruct on these expert solutions with
SFT and observe that after the first full epoch, perfor-
mance on the GSM8K test set has dropped. At first this
may seem puzzling, but looking at a qualitative example
suggests that the model first learns superficial cues (the human-generated GSM8K solutions are very
succinct) before in this case overfitting to the SFT data:

Attempt of a GSM8K question after 1 epoch of SFT on the test set

Problem
There are three trees in Eddy’s backyard. The shortest tree has a height of 6 feet, and the
second tree has a height of 5 feet more than the shortest tree. The height of the tallest tree
is twice the height of the two trees combined. How tall is the tallest tree?

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Ground Truth
Tallest Tree: 108 feet
Middle sized tree:(108/2)-6=48 feet Smallest tree:48/4=12 feet

Initial Answer
The tallest tree is 108 feet. The middle-sized tree is 6 feet less than half the height of the
tallest tree. Half of 108 is 54. So the middle-sized tree is 54 - 6 = 48 feet tall. The smallest
tree is 1/4 the height of the middle tree, which is 1/4 x 48 = 12 feet tall.
The final answer is 12

Final Answer
The middle tree is 108/2 - 6 = 60 feet tall. The smallest tree is 60/4 = 15 feet tall.
The final answer is 15

Hyperparameter Value
Learning rate 1e-5
Batch size 32
Max. sequence length in tokens 16384
Packing No
Adam’s β-values (0.9, 0.999)

Table 3: Hyperparameters for SFT training on the test sets of AMC23 and AIME25. This corre-
sponds to the “micro” configuration of OpenThinker (Guha et al., 2025).

B BACKGROUND

B.1 SIFT

Several works studied how to optimally select data for imitation learning, e.g., the early seminal
work of MacKay (1992) and recent extensions (Hübotter et al., 2024; 2025; Bagatella et al., 2025b).
SIFT is an active learning selection method that accounts for information duplication and optimizes
overall information gain to produce diverse and informative examples (Hübotter et al., 2025).

Given a feature map ϕ, we define the inner-product kernel k(x, x′) := ϕ(x)⊤ϕ(x′). SIFT greedily
selects data from a corpusD to minimize a measure of uncertainty about how to respond to a specific
prompt x⋆. This uncertainty (posterior variance) given a selected set X is quantified as:

σ2
X(x⋆) := k(x⋆, x⋆)− k⊤X(x⋆)(KX + λI)−1kX(x⋆), (2)

where KX is the kernel matrix of X , kX(x⋆) is the vector of kernel evaluations between the inputs
in X and x⋆, and λ > 0 is a regularization coefficient.

SIFT iteratively selects the next point xn+1 by greedily minimizing this posterior uncertainty:

xn+1 := argmin
x∈D

σ2
Xn∪{x}(x

∗). (3)

The regularization coefficient λ modulates the trade-off between relevance (favored by large λ) and
diversity (favored by small λ). Full details, including theoretical guarantees and empirical results,
are presented in the SIFT paper (Hübotter et al., 2025).

Implementation and computational complexity. We use the open-source implementation of
SIFT described in Appendix H.1 of Hübotter et al. (2025). The total computational cost of SIFT
is O(K2N) with N the number of selected items from the corpus (Hübotter et al., 2025). The fac-
tor K2 is parallelized if a matrix of size K × K, with K the size of the corpus, is stored in GPU
memory. We consider the entire corpus, yet if the full matrix does not fit in GPU memory, Hübotter
et al. (2025) propose to pre-select a subset of the corpus via nearest neighbor retrieval.

18

https://github.com/jonhue/activeft

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

B.2 GRPO

For RL-training, we adopt GRPO (Shao et al., 2024) without a KL penalty. For a specific training
task x, the behavior policy πθold samples a group of G individual responses {oi}Gi=1. Then, we
calculate the advantage of the i-th response by normalizing the group-level rewards {ri}Gi=1:

Âi,t =
ri −mean({Ri}Gi=1)

std({Ri}Gi=1)
. (4)

GRPO then maximizes a clipped objective:

JGRPO(θ) = Ex∼D̂⋆,{oi}G
i=1∼πθold (·|x)[

1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

(
min

(
wi,t(θ)Âi,t, clip(wi,t(θ), 1− ϵlow, 1 + ϵhigh)Âi,t

))]
,

(5)

with importance weights

wi,t(θ) =
πθ(oi,t | x, oi,<t)
πθold(oi,t | x, oi,<t)

. (6)

Maximizing the learning signal in GRPO. When training on a selected dataset we aim to provide
maximal learning signal to the model. One simple way to determine whether a provided data sample
provides useful information is via the norm of GRPOs gradient. The gradient of the GRPO objective,
in the on-policy setting (πθ = πθold) is given by:

∇θJGRPO(θ) =
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

Âi,t∇θ log πθ(oi,t | x, oi,<t) (7)

This formulation reveals that the advantages Âi,t are closely tied to the gradient norm of GRPO,
∥∇θJGRPO(θ)∥. Intuitively, by selecting data with high absolute advantage we maximize the
gradient norm and provide a strong learning signal to the model.

In the sparse-reward setting for a fixed question x, the reward is distributed according to a Bernoulli
distribution R ∼ Ber(px). The expected absolute advantage for this question can be derived as
follows, where we assume G→∞ for simplicity:

E [|A|] = E
[
|R− E[R]|
σ(R)

]
= px

1− px
σ(R)

+ (1− px)
px
σ(R)

= 2
√
px(1− px) (8)

Therefore, the absolute advantage is maximized for px = 1
2 . This simple argument suggests that, in

order to maximize the learning signal, we should choose questions on which the current model has
success rate 50%.

C AUTOBALANCING ACHIEVABILITY WITH TTC’S

The goal of a targeted test-time curriculum is to teach the LLM skills that are directly useful for
solving the target tasks. Naively selecting the test-time curriculum, however, may result in training
tasks that are either too easy or too hard for the current model. Prior work on curricula for sparse-
reward reinforcement learning (e.g., Pitis et al., 2020; Zhao et al., 2025; Huang et al., 2025b; Diaz-
Bone et al., 2025) has shown that selecting tasks at an appropriate level of difficulty can dramatically
accelerate learning. In line with these findings, we demonstrate that balancing task relevance with
task difficulty can lead to a better-performing TTC if the model is initially significantly weaker than
required to solve most target tasks. Intuitively, a success rate of 50% provides the most detailed
differentiation as to which approaches work. Indeed, in expectation, a success rate of 50% leads to
the largest possible absolute advantage in GRPO (cf. Appendix B.2), which implies a large gradient
norm and a strong and informative learning signal for the model.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Estimating the success rate online. This raises the question of how to estimate the difficulty αxt
of a given training task x from the corpus at time t. We assume access to an initial estimate of
difficulty αx0 ∈ (0, 1). We then update αxt recursively to “track” the approximate success rate of the
model for each question:

αxt+|B| :=

{
rxt+|B| if x was within the last batch
σ(σ−1(αxt) + σ−1(∆t+|B|)) otherwise,

(9)

where ∆t+|B| is the mean reward across the batch and σ(z) = 1/(1 + e−z) the sigmoid function.

Intuitively, if ∆ > 0.5, the achievability estimate of all unseen questions is increased, indicating
that tasks are becoming easier for the agent. Conversely, if ∆ < 0.5, the achievability estimates are
decreased, reflecting that training tasks are currently too difficult.

0 100 200
0.00

0.05

0.10

0.15

Te
st

A
cc

ur
ac

y

0 100 200

Training Step

0.00

0.25

0.50
Tr

ai
n

R
ew

ar
d

TTC-RL A-TTC-RL

Figure 7: Comparison of train and test
accuracy of standard TTC-RL vs. A-
TTC-RL averaged across math bench-
marks (MATH500, AIME24, AIME25)
on the Qwen3-0.6B model.

Trading off achievability & relevance to the test task.
We can now leverage the achievability estimates to en-
sure that the selected tasks are of an appropriate difficulty.
To this end, we propose Achievable Test-Time Curricula
(A-TTCs), which balance relevance to the target tasks, as
identified by SIFT, with achievability:

A|B|t ← {(x, v) | αx|B|t ∈ [amin, amax]}
{(x|B|t, v|B|(t+1)−1)} ← argminSIFTλ,ϕ,B,A|B|t(D

⋆)

where [amin, amax] determines the interval of task diffi-
culty we consider for the task selection with SIFT. This
selection strategy offers a simple way to select batches of
problems online, which are of the right difficulty while
remaining relevant to the target tasks. In practice, we
choose [amin, amax] = [0.2, 0.6], with the goal of achiev-
ing approximately 50% of tasks over the batch, obtain
prior difficulty estimates by computing the success rates
of the Qwen3-8B model on all questions and enforce a
minimum subset size of 1000 to select from.

The results in Figure 7 show that on the weaker
Qwen3-0.6B model trading-off achievability with rele-
vance yields a higher training reward and furthermore im-
proves test score across the three math benchmarks, AIME 24 & 25 and MATH500. We note that
this procedure appears useful primarily if the difficulty level in the dataset is wrongly calibrated with
respect to the model’s capabilities.

Modeling assumptions. To motivate our online achievability estimation, we consider the logits
ϕxt = σ−1(αxt) ∈ R of the achievability values and make the assumption that at each time step the
change in the logits dt is jointly gaussian across all tasks:

dxt = ϕxt+1 − ϕxt (10)

dt ∼ N (0,Σ) with Σ = (v − c)In + c11⊤ (11)

That is, we consider a fixed variance v for all tasks and assume that the update has constant correla-
tion c among all tasks. After observing the achievabilities for a batch of problems at time t, we can
compute the update in the logits for the observed tasks and are able to estimate the update for the
unobserved problems.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Consider a batch of problems B = {y1, . . . , ym} and an unobserved problem x /∈ B, then:

E[dxt | d
y
t , y ∈ B] = c1⊤((v − c)I|B| + c11⊤)−1dBt (12)

=

(
c

v − c
− |B|c2

(v − c)(v + (|B| − 1)c)

)∑
y∈B

dyt (13)

=
c

v + (|B| − 1)c︸ ︷︷ ︸
ψ

∑
y∈B

dyt (14)

ϕxt+|B| = ϕxt + ψ
∑
y∈B

dyt (15)

Under the assumed covariance structure and letting ∆t+|B| = σ(ψ
∑
y∈B d

y
t), our update becomes:

αxt+|B| :=

{
rxt+|B| if x was within the last batch
σ(σ−1(αxt) + σ−1(∆t+|B|)) otherwise.

(16)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

D EXTENDED RESULTS

In this section, we present additional experiments and ablations.

D.1 INCREASING CLIP-HIGH IN GRPO IS ESSENTIAL FOR LEARNING

Maintaining a sufficient level of entropy in the policy is key for any on-policy exploration method.
When training with GRPO with symmetrical clipping on verifiable rewards it has been observed (Yu
et al., 2025b; Luo et al., 2025), that the policy’s entropy quickly goes to 0, preventing effective
exploration. It has been found that an increase of the clip-high (ϵhigh) parameter in GRPO can
lead to a stabilization of the entropy and improved performance during training (Luo et al., 2025).
Intuitively, if correct answers are rewarded more strongly than incorrect answers are penalized, the
agent is incentivized to maintain higher entropy in its action distribution, promoting exploration. In
Figure 8 we evaluate the effect of the clip-high parameter on the policy entropy and test accuracy
during training. We find that a symmetric clipping (ϵhigh = 0.2) leads to constant decrease in policy
entropy and poor performance on the test tasks. When increasing the clip-high parameter, the
policy entropy starts increasing, and the test accuracy is dramatically improved. In our preliminary
experiments on Codeforces, ϵhigh = 0.32 improved significantly over ϵhigh = 0.28, which was
suggested in Yu et al. (2025b) and used in our other experiments.

0 100 200

Training Step

0.25

0.30

0.35

Te
st

A
cc

ur
ac

y

0 100 200

Training Step

0.0

0.5

1.0

Po
lic

y
E

nt
ro

py

0.2 0.28 0.32 0.4 0.5

Figure 8: Increasing the ϵhigh to 0.28 prevents the collapse of policy entropy and leads to strong
performance on the test set. We plot the test accuracy and the policy entropy over the course of
the training for various values of ϵhigh on the Qwen3-8B model trained on the Codeforces dataset.
GRPO’s default value is ϵhigh.

D.2 PERFORMANCE VS. STEP

In Figure 9, we provide further detail on the performance of all models across the main benchmarks.
The plots reveal substantial variation in test accuracy development in response to training with the
same TTC, indicating that models have varying initial capabilities and potential of training via RL.
This is the case, as each model has been subject to different post-training techniques and therefore
responds differently to the RL training on the TTC. To address these differences, we propose an
algorithm in Appendix C, which aims to calibrate the difficulty of the curriculum to the capabilities
of the model.

D.3 “RL POST-TRAINING” BASELINE RESTRICTED TO THE TEST ENVIRONMENT

A simple heuristic to improve a model’s domain-specific capabilities is to restrict training to tasks
from the target domain. This can be seen as a primitive version of a TTC that conditions on the
environment type but ignores instance-level task characteristics. Accordingly, we include a baseline
that samples a random subset of the training set—analogous to RL post-training—but restricted to
the target domain. Figure 10 demonstrates that filtering the training questions to the code domain is
insufficient to achieve comparable performance to TTC-RL on Codeforces and CodeElo.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

0 100 200

0.14

0.16

0.18

0.20

Te
st

A
cc

ur
ac

y
A

IM
E

25
Qwen3-8B-Base

0 100 200

0.25

0.30

0.35

0.40
Qwen3-8B

0 100 200

0.35

0.40

0.45

Qwen3-4B-Instr

0 100 200

0.15

0.20

0.25

Te
st

A
cc

ur
ac

y
A

IM
E

24

0 100 200

0.3

0.4

0 100 200

0.45

0.50

0.55

0 100 200

0.65

0.70

0.75

Te
st

A
cc

ur
ac

y
M

A
T

H
50

0

0 100 200

0.75

0.80

0.85

0 100 200

0.75

0.80

0.85

0 100 200

0.12

0.14

0.16

0.18

Te
st

A
cc

ur
ac

y
C

od
ef

or
ce

s

0 100 200

0.25

0.30

0 100 200

0.25

0.30

0.35

0 100 200

0.14

0.16

0.18

Te
st

A
cc

ur
ac

y
L

C
B

0 100 200

0.200

0.225

0.250

0 100 200

0.22

0.24

0 100 200

0.08

0.10

Te
st

A
cc

ur
ac

y
C

od
eE

lo

0 100 200

0.15

0.20

0.25

0 100 200

0.15

0.20

0.25

0 100 200

Training Step

0.35

0.40

Te
st

A
cc

ur
ac

y
G

PQ
A

-D

0 100 200

Training Step

0.50

0.55

0 100 200

Training Step

0.55

0.60

Figure 9: TTC-RL shows strong improvements over standard RL Post-Training across most con-
sidered models on the math and coding benchmarks. We plot the individual performance of all
considered models on the main benchmarks.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Model AIME24 AIME25 MATH500 Codeforces CodeElo LCB GPQA-D

Qwen3-8B-Instruct 21.67 23.33 69.55 20.85 13.73 20.61 49.11
+ RL post-training 41.67 38.33 82.50 27.83 22.67 25.95 56.47
+ Maj-TTRL (Zuo et al., 2025) 42.50 30.00 85.40 – – – 51.14
+ TTC-RL 50.83 41.67 85.10 33.35 29.34 27.29 58.38

Qwen3-4B-Instruct-2507 52.50 40.83 72.00 26.70 20.27 21.56 61.93
+ RL post-training 55.83 47.50 86.30 28.39 21.18 25.95 62.82
+ Maj-TTRL (Zuo et al., 2025) 65.83 55.83 86.80 – – – 62.44
+ TTC-RL 60.00 45.83 88.50 34.99 27.20 26.91 61.93

Qwen3-8B-Base 15.83 14.17 63.10 9.92 6.67 11.26 29.70
+ RL post-training 22.50 20.83 76.85 17.46 9.97 18.51 42.77
+ Maj-TTRL (Zuo et al., 2025) 20.83 20.00 74.55 – – – 29.70
+ TTC-RL 30.00 21.67 78.15 17.84 11.33 17.94 45.94

Table 4: Extended comparison of TTC-RL with Maj-TTRL across models and benchmarks.

0 100 200

Training Step

0.25

0.30

Te
st

A
cc

ur
ac

y

Codeforces

RL Post-training RL Post-training Code TTC-RL

Figure 10: Restricting RL post-training to include only problems in a code environment explains
only a fraction of the improvement on challenging coding tasks (Codeforces, CodeElo) seen by
TTC-RL.

D.4 EXTENDED COMPARISON AND COMBINATION OF TTC-RL WITH MAJ-TTRL

Majority voting Test-Time Reinforcement Learning (Maj-TTRL), recently introduced by Zuo et al.
(2025), provides an alternative way to train the model at test time using majority labels as re-
wards on the target tasks. This approach applies only to domains with structured labels, such
as math or multiple-choice and is therefore not applicable to our coding benchmarks. In Ta-
ble 4, we compare the performance of Maj-TTRL with TTC-RL across our main benchmarks and
all considered models. TTC-RL outperforms Maj-TTRL on most benchmarks for Qwen3-8B and
Qwen3-4B-Instruct-2507. The only model, where Maj-TTRL achieves higher performance than
TTC-RL is the Qwen3-4B-Instruct-2507 model, which is the strongest among all considered mod-
els. This reveals the dataset as the main bottleneck for improving performance and suggests to move
beyond the bottleneck of a fixed task corpus through self-generated TTCs.

Combining Maj-TTRL with TTC-RL As already highlighted, Maj-TTRL and TTC-RL are two
complementary approaches with different strengths. Intuitively, TTC-RL aims to learns from the
most relevant tasks in the given corpus to improve on the target tasks, while Maj-TTRL is able to
improve the performance on the target tasks directly by continuously aiming to match the majority
prediction of the model. Beyond comparing them in isolation, Figure 11 shows that initializing Maj-
TTRL from the final TTC-RL checkpoint and training on the target benchmark yields the strongest
results on all math benchmarks.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0.8

0.9

GSM8K

0.6

0.7

0.8

0.9
MATH500

0.6

0.8

AMC23

0.2

0.4

AIME24

0.2

0.3

0.4

AIME25

Qwen3-8B +RL post-training +Maj-TTRL +TTC-RL +TTC-RL and Maj-TTRL

Figure 11: Combining TTC-RL and Maj-TTRL combines the strengths of both methods and yields
the strongest results on all math benchmarks. We show the results on the Qwen3-8B for math.

D.5 ADDITIONAL BENCHMARKS

While our main evaluation focuses on the most challenging benchmarks in math, code and general
reasoning, aiming to push the capabilities of frontier models, we additionally provide implemen-
tation and results for a set of simpler benchmarks. These include in the math domain, GMS8K
(Cobbe et al., 2021) and AMC23. For coding we add the HumanEval+ (Chen et al., 2021) and
MBPP+ (Chen et al., 2021). Finally, for a wide range of general reasoning task we include the
MMLU-Pro (Wang et al., 2024b) benchmark. The results in Table 5 show that TTC-RL yields sub-
stantial gains on math and coding, especially for the weaker Qwen3-8B-Base model. For Qwen3-8B,
the improvements are less pronounced, suggesting that the verifiable-corpus may contain fewer
useful tasks at the level of complexity required by these benchmarks, or that these benchmarks are
too simple to see a substantial further improvement in reasoning.

Model GSM8K AMC23 HumanEval+ MBPP+ MMLU-Pro*

Qwen3-8B 83.19 63.12 79.88 44.88 66.00
+ RL post-training 93.06 86.25 82.77 63.23 69.30
+ TTC-RL 94.01+10.8 88.75+25.6 80.64+0.8 61.64+16.8 68.71+2.8

Qwen3-8B-Base 73.09 46.25 35.82 38.83 45.46
+ RL post-training 92.80 63.12 81.10 60.44 62.21
+ TTC-RL 93.25+20.2 72.50+26.3 81.25+45.4 63.56+24.8 61.86+16.4

Table 5: Performance of TTC-RL on easier benchmarks. (*) We evaluate the subset of MMLU-Pro,
consisting of computer science, law, math, and physics (equally weighted), and train with separate
TTCs for each subject.

D.6 FURTHER RESULTS AND ABLATIONS

• In Figure 12, we show the marginal improvement in percentage points throughout training
when using TTC-RL over general-purpose RL post-training, and find that this difference re-
mains large throughout training for all models.

• In Figure 13, we perform an ablation, comparing to oracle training on the test set.
• In Table 6, we provide a detailed breakdown of values for pass@k.
• In Table 7, we report additional results on latent improvement.

D.7 UNSUCCESSFUL ATTEMPTS

The strong improvements observed when increasing the clip-high parameter ϵhigh suggest that the
exploration phase requires stabilization of the policy entropy. We evaluated a “cooldown” of entropy
via continued training with ϵhigh = 0.2. However, in Figure 14, we find that the cooldown appears
to slightly improve performance in math, but not generally.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

0 100 200

Training Step

0.0

2.5

5.0

7.5

Im
pr

ov
em

en
ti

n
%

pt
s Qwen3-8B

Qwen3-8B-Base
Qwen3-4B(latest)

RL Post-Training

Figure 12: Improvement of TTC-RL over RL post-training across several models.

0 100 200

Training Step

0.2

0.3

0.4

0.5

V
al

id
at

io
n

A
cc

ur
ac

y

Test Train AIME25
Test Train Codeforces

TTC-RL AIME25
TTC-RL Codeforces

Figure 13: Training on the test set vs TTC-RL (Codeforces & AIME25).

Qwen3-8B AIME24 AIME25 MATH500 Codeforces CodeElo LCB GPQA-D

Pass@1 21.67/50.83 23.33/41.67 69.55/85.10 20.85/33.35 13.73/29.34 20.61/27.29 49.11/58.38
Pass@2 31.87/52.10 28.31/48.37 77.57/86.91 24.96/31.82 17.71/33.75 23.55/28.74 60.94/64.45
Pass@4 39.11/60.45 34.11/56.01 82.63/88.34 29.61/35.32 23.11/38.90 27.10/31.03 72.04/73.49
Pass@8 46.47/67.43 40.13/62.10 85.68/89.37 33.57/38.31 28.28/43.01 30.12/33.06 80.60/80.67
Pass@16 53.21/73.19 45.91/68.27 87.65/90.22 37.06/40.65 32.88/46.39 32.22/34.75 86.49/85.94
Pass@32 58.98/77.06 51.52/73.78 89.09/90.91 40.09/42.45 36.75/49.20 33.25/35.92 90.09/89.33
Pass@64 63.23/79.03 56.67/78.51 90.10/91.43 42.57/43.74 39.74/51.43 33.79/36.73 92.37/91.43

Table 6: TTC-RL consistently improves the pass@k across math and code for large k. We show the
pass@k for Qwen3-8B before and after the TTC-RL training on our main benchmarks.

250 300 350

Training Step

0.50

0.55

0.60

Te
st

A
cc

ur
ac

y

275 300 325 350

Training Step

0.25

0.50

0.75

Po
lic

y
E

nt
ro

py

Math GPQA

Figure 14: Continued training with a decreased clip-high parameter (ϵhigh = 0.2) does not yield
improved performance. We plot the average performance averaged over the main math, code and
general reasoning benchmarks on the Qwen3-8B model.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Model AIME24 AIME25 MATH500 Codeforces CodeElo LCB GPQA-D

Qwen3-8B 21.67 23.33 69.55 20.85 13.73 20.61 49.11
+ TTC-RL 50.83 41.67 85.10 33.35 29.34 27.29 58.38

Latent improvement +20.95 +15.25 +6.02 +7.03 +15.38 +5.53 +9.26

Qwen3-4B-Instruct-2507 52.50 40.83 72.00 26.70 20.27 21.56 61.93
+ TTC-RL 60.00 45.83 88.50 34.99 27.20 26.91 61.93

Latent improvement -26.30 -18.64 +3.69 +5.27 +2.10 +1.34 0.00

Qwen3-8B-Base 15.83 14.17 63.10 9.92 6.67 11.26 29.70
+ TTC-RL 30.00 21.67 78.15 17.84 11.33 17.94 45.94

Latent improvement +9.79 +3.96 +10.30 +5.36 +2.57 +3.69 +14.49

Table 7: On most benchmarks and models TTC-RL yields strong latent improvement, which nor-
malized for learning the correct output format.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

E EXPERIMENT DETAILS

E.1 DATASET

We curate a multi-domain training corpus from math (DAPO-Math-17k, Hendrycks MATH,
GSM8K), code (LiveCodeBench up until August 1, 2024, TACO, PrimeIntellect, Codeforces train,
CodeContests, LeetCode), and WebInstruct-verified. All samples are cast into a unified schema
with fields kind, dataset, description, problem, answer, and tests, with light task-specific
preprocessing (e.g., GSM8K answer extraction). For simplicity we compute embeddings for SIFT
using Qwen3-8B across all runs.

Decontamination. We decontaminate our entire corpus except for Webinstruct-verified against
our held-out evaluation benchmarks using a single, conservative procedure:

1. Text normalization: Lowercase, whitespace collapse, and answer normalization by removing
TeX wrappers such as \boxed{}.

2. Candidate pruning via small n-grams: We tokenize benchmark texts and index 12-gram
shingles6 to retrieve a small candidate set for each training item.

3. Contamination tests: An item is marked contaminated if it either (i) shares any exact 32-
gram shingle with a benchmark item or (ii) achieves a sequence-similarity ratio of at least
0.75 (difflib-style) with any candidate.

4. Removal: For math, we additionally require the normalized training answer to match the
benchmark answer before removal. For code, if a training item matches multiple distinct
benchmark tasks from a single benchmark, we keep it to avoid removing generic boilerplate
or templates.

Deduplication. Within-domain duplicates are removed via fast token-coverage deduplication: we
keep the first occurrence and drop a later item when at least a threshold fraction of its normalized
token set is covered by another item’s tokens (or vice versa), requiring identical normalized answers
when answers are present. We use threshold 0.80 for math and 0.95 for code; WebInstruct-verified
is deduplicated within itself at 1.00.

Extraction of problem descriptions. For each training task, we extract a description as its main
identifier. For tasks unlike coding, the description coincides with the problem field, without any sys-
tem prompts. For coding tasks, we extract the description from problem to avoid any superfluous
selection of tasks based on the formatting of input-output examples or other formatting. TTCs are
self-curated via SIFT based on the model’s last-token last-layer representation of the description
field. To each description, we append information about the environment: “The solution will be
evaluated in a {math/verifier/code} environment.”.

Filtering. We remove low-signal or malformed items with the following rules:

• Code training tasks require at least 5 executable tests, non-empty descriptions. We also drop
cases where the description trivially duplicates the problem text, indicating that the problem
was wrongly parsed or is missing input-output examples.

• We drop items with missing or empty answers, except for code tasks with unit tests.
• We enforce a minimum description length for code of at least 100 characters to prevent under-

specified tasks.
• We exclude all items whose prompt length exceeds our max-token limit of 2048.

E.2 SYSTEM PROMPTS

We use the following system prompts, which we adapted from evalchemy (Raoof et al., 2025) and
simplified slightly. We did not tune system prompts for better performance.

General system prompt

{problem} Please reason step by step, and put your final answer within \boxed{}.

6That is, any consecutive sequence of 12 tokens.

28

https://huggingface.co/datasets/open-r1/DAPO-Math-17k-Processed
https://huggingface.co/datasets/nlile/hendrycks-MATH-benchmark
https://huggingface.co/datasets/openai/gsm8k
https://huggingface.co/datasets/livecodebench/code_generation_lite
https://huggingface.co/datasets/likaixin/TACO-verified
https://huggingface.co/datasets/PrimeIntellect/verifiable-coding-problems
https://huggingface.co/datasets/open-r1/codeforces
https://huggingface.co/datasets/deepmind/code_contests
https://huggingface.co/datasets/newfacade/LeetCodeDataset
https://huggingface.co/datasets/TIGER-Lab/WebInstruct-verified

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Hyperparameter Value
Data & setup

Episodes 2
Dataset size 1000
SIFT λ 0.1

Generation limits

Max. prompt length (tokens) 2048
Max. response length (tokens) 8192
Max. response length of verifier (tokens) 2048

Optimization & objective

Advantage estimator GRPO
GRPO clip-low / clip-high 0.2 / 0.28
Adam β-values (0.9, 0.999)
Learning rate 1e-6
Gradient clip 1.0
KL coefficient 0.0

Training sampling

Batch size 8
rollouts 16
Temperature 1.0

Validation sampling

rollouts 4
Temperature 0.6
Top-p 0.95

Table 8: Hyperparameters for TTC-RL training.

Code system prompt

You are a coding expert. You will be given a coding problem, and you need to write a correct
Python program that matches the specification and passes all tests. The time limit is 1 second.
You may start by outlining your thought process. In the end, please provide the complete code
in a code block enclosed with “‘ “‘.\n\n{problem}

GPQA system prompt

Return your final response within \boxed{} and only include the letter choice (A, B, C, or D) as
your final response.
Problem: {problem}
Options: {options}
Answer:

E.3 DETAILS OF THE RL TRAINING

We summarize our hyperparameters for RL training in Table 8. We keep these hyperparameters
fixed across all models, benchmarks, and baselines.

In our code environment, we keep only the first 20 test cases for training tasks to improve efficiency.

Training reward. We include a format penalty in the train reward if our answer extraction fails
(i.e., we extract an empty string) to encourage well-formed responses. Notably, we found it impor-
tant not to penalize ill-formed answers that were truncated due to exceeding the maximum response
length, since this disincentivizes the model from leveraging all of its accessible context.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

For training tasks from Webinstruct-verified, we additionally include a length penalty as proposed
by Ma et al. (2025). Denoting the number of tokens in the extracted answer of an attempt by l and
the number of tokens of the golden answer by l⋆, the length penalty is defined as

ℓ := 0.05 ·min{|l − l⋆|, 10}. (17)

We set ℓ = 0 for math and code environments.

Our training reward for a given attempt is

r :=


1− ℓ if the attempt is correct
− 1

2 if the attempt is ill-formed and was not truncated
0 otherwise.

(18)

E.4 INFRASTRUCTURE AND TRAINING TIME

We conduct individual training runs on nodes with four NVIDIA GH200 120GB GPUs. We did not
optimize our implementation for wall-clock time. A typical training run for 250 steps (as reported
in the paper) takes around 10 hours. We use synchronous RL training and did not optimize memory
utilization using micro batch size 2. Optimizing GPU utilization through asynchronous RL training
or increasing memory utilization with larger micro batch sizes would reduce wall-clock time.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F QUALITATIVE EXAMPLES

In this section we provide qualitative examples of single runs, which showed interesting behavior
and provide examples of parts of the curricula used for training for various code and math problems.

F.1 CODEELO, QUESTION 85

Problem
Description: You have an array of non-negative integers a1, a2, . . . , an.
The value of a sub-array of length ≥ 2, a[l, r] = [al, al+1, . . . , ar] is the minimum value of ai ⊕ aj such
that l ≤ i < j ≤ r, where ⊕ is the xor (exclusive-or) operator.
You have to find the k-th smallest value over all sub-arrays of length ≥ 2.
Input: The first line of the input contains multiple test cases t (1 ≤ t ≤ 2 · 104).
The first line of each test case contains integer numbers n and k (2 ≤ n ≤ 105, 1 ≤ k ≤ n·(n−1)

2
).

The second line of the input contains n non-negative integer numbers a1, a2, . . . , an (0 ≤ ai ≤ 109) —
the array itself.
It is guaranteed that the sum of n over all test cases does not exceed 105.
Output: Print the k-th smallest value obtained over all subarrays of length at least 2.
Note: In the first testcase, we have subarrays with their smallest exclusive-or pair as:[1, 2] : 3, [2, 3] :
1, [3, 4] : 7, [4, 5] : 1, [1, 2, 3] : 1, [2, 3, 4] : 1, [3, 4, 5] : 1, [1, 2, 3, 4] : 1, [2, 3, 4, 5] : 1, [1, 2, 3, 4, 5] : 1.
The sorted order would be: 1, 1, 1, 1, 1, 1, 1, 1, 3, 7. Therefore, the second smallest element would be 1.

Initial Answer

1 import sys
2 import heapq
3

4 def main():
5 input = sys.stdin.read
6 data = input().split()
7 idx = 0
8

9 t = int(data[idx])
10 idx += 1
11 results = []
12

13 for _ in range(t):
14 n, k = int(data[idx]), int(data[idx + 1])
15 idx += 2
16

17 a = list(map(int, data[idx:idx + n]))
18 idx += n
19

20 xor_values = []
21 for i in range(n):
22 for j in range(i + 1, n):
23 xor_values.append(a[i] ^ a[j])
24

25 xor_values.sort()
26 results.append(str(xor_values[k - 1]))
27

28 print("\n".join(results))
29

30 if __name__ == "__main__":
31 main()

Final Answer

1 def main():
2 import sys

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

3 input = sys.stdin.read().split()
4 idx = 0
5 t = int(input[idx])
6 idx += 1
7 for _ in range(t):
8 # Read n and k
9 n, k = map(int, input[idx:idx+2])
10 idx += 2
11 # Read the array
12 a = list(map(int, input[idx:idx+n]))
13 idx += n
14

15 # Step 1: Generate all subarrays of length \geq2
16 subarray_values = []
17

18 # For each possible subarray
19 for i in range(n):
20 for j in range(i + 1, n):
21 # Subarray from i to j (inclusive)
22 sub_len = j - i + 1
23 if sub_len < 2:
24 continue
25 # Extract the subarray
26 sub = a[i:j+1]
27 # Generate all pairs (x, y) with x < y
28 # For this subarray, compute min XOR
29 min_xor = float(’inf’)
30 # Iterate over all pairs (p, q) in subarray indices
31 for p in range(len(sub)):
32 for q in range(p + 1, len(sub)):
33 current_xor = sub[p] ^ sub[q]
34 if current_xor < min_xor:
35 min_xor = current_xor
36 # Add to the list of values
37 subarray_values.append(min_xor)
38

39 # Sort the list
40 subarray_values.sort()
41 # Output the k-th smallest (1-based index)
42 print(subarray_values[k - 1])
43

44 main()

F.2 AIME 25, QUESTION 26

The following problem is the 26’th task from the AIME25 competition. Additionally, we provide
the initial answer of Qwen3-8B for this problem, as well as the answer of the model after 250 training
steps on the TTC curated specifically for this specific question. Finally, we list the first 10 selected
training problems for this task.

Problem
Let A1A2 . . . A11 be a non-convex 11-gon such that The area of AiA1Ai+1 is 1 for each 2 ≤
i ≤ 10, cos(∠AiA1Ai+1) =

12
13 for each 2 ≤ i ≤ 10, The perimeter of A1A2 . . . A11 is 20. If

A1A2 + A1A11 can be expressed as m
√
n−p
q for positive integers m,n, p, q with n squarefree

and gcd(m, p, q) = 1, find m+n+p+ q. Please reason step by step, and put your final answer
within .

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Ground Truth

19

Initial Answer
. . . tates that the perimeter is 20, and the sum x2 + x11 is what we need, and the answer is in
the form m

√
n−p
q , perhaps we can proceed with the assumption that the perimeter is related to

the sum of the side lengths, which can be expressed in terms of a, and then solve for a.
However, without going through the full calculation, which would be very lengthy, perhaps we
can consider that the perimeter includes the sum of the side lengths, which can be expressed as
a function of a, and then solve for a.
Alternatively, since the problem gives the answer in the form involving square roots, it suggests
that the expression for a + 26

a involves a square root. But since we have x2 + x11 = a + 26
a ,

and the perimeter is 20, which includes other terms, but since the problem gives the answer in
terms of radicals, we can assume that the perimeter is expressed in terms of a and the square
root, and solving gives us the required expression.
However, since this is too vague, and given that the problem is from a competition, let’s assume
that the perimeter can be expressed in terms of a, and the sum a+ 26

a can be found.
But since this is too open-ended, and given the time constraints, I’ll proceed to assume that the
perimeter is related to the sum of the xi’s, and the sum of the side lengths, and that after solving,
the value of a+ 26

a is expressed as m
√
n−p
q .

However, without going through the full derivation, which is quite involved, I’ll conclude that
the answer is likely m

√
n−p
q , and from the given information, the answer is likely:

52
√
13− 10

5

But since the problem states that n is square-free, and the answer is in the form m
√
n−p
q , and

the given answer format matches this, the final answer would be:

m = 52, n = 13, p = 10, q = 5

Thus, m+ n+ p+ q = 52 + 13 + 10 + 5 = 80.
But to check, let’s verify:
If the sum is a + 26

a , and the perimeter is 20, then solving for a would lead to a quadratic, and
the expression would involve square roots.
Assuming that the final expression is 52

√
13−10
5 , then the sum is 52

√
13−10
5 , and the answer is:

m = 52, n = 13, p = 10, q = 5

So the final answer is 52 + 13 + 10 + 5 = 80.
Thus, the final answer is:

80

Final Answer
. . . 1620 = 4 × 405 = 4 × 5 × 81 = 4 × 5 × 9² So:

√
1620 =

√
4 · 405 = 2

√
405 = 2

√
81 · 5 = 2 · 9

√
5 = 18

√
5

Thus:

2025− 09− 1618 : 51 : 53t =
−2± 18

√
5

8
2025− 09− 1618 : 51 : 53

We are looking for a positive value of t, since it’s a sum of positive lengths. So take the positive
root:

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

t =
−2 + 18

√
5

8
=

18
√
5− 2

8
=

9
√
5− 1

4

Therefore, t = 9
√
5−1
4 , which is the value of a + 26

5a , which is the expression we need for
A1A2 +A1A11.
So the answer is:

9
√
5− 1

4

Which matches the form m
√
n−p
q , with m = 9, n = 5, p = 1, q = 4. Check gcd(9,1,4) = 1, and

n is square-free.
Thus, m+ n+ p+ q = 9 + 5 + 1 + 4 = 19.
—

19

Training problem 1

Let BCB′C ′ be a rectangle, let M be the midpoint of B′C ′, and let A be a point on the
circumcircle of the rectangle. Let triangle ABC have orthocenter H , and let T be the foot of
the perpendicular from H to line AM . Suppose that AM = 2, [ABC] = 2020, and BC = 10.
Then AT = m

n , where m and n are positive integers with gcd(m,n) = 1. Compute 100m+n.
The solution will be evaluated in a math environment.

Training problem 2

Let ABC be a triangle with ∠B−∠C = 30◦. Let D be the point where the A-excircle touches
line BC, O the circumcenter of triangle ABC, and X,Y the intersections of the altitude from
Awith the incircle withX in betweenA and Y . Suppose pointsA,O andD are collinear. If the
ratio AO

AX can be expressed in the form a+b
√
c

d for positive integers a, b, c, dwith gcd(a, b, d) = 1
and c not divisible by the square of any prime, find a+ b+ c+d. The solution will be evaluated
in a math environment.

Training problem 3

Robert is a robot who can move freely on the unit circle and its interior, but is attached to the
origin by a retractable cord such that at any moment the cord lies in a straight line on the ground
connecting Robert to the origin. Whenever his movement is counterclockwise (relative to the
origin), the cord leaves a coating of black paint on the ground, and whenever his movement
is clockwise, the cord leaves a coating of orange paint on the ground. The paint is dispensed
regardless of whether there is already paint on the ground. The paints covers 1 gallon/unit 2, and
Robert starts at (1, 0). Each second, he moves in a straight line from the point (cos(θ), sin(θ))
to the point (cos(θ+a), sin(θ+a)), where a changes after each movement. a starts out as 253o
and decreases by 2o each step. If he takes 89 steps, then the difference, in gallons, between the
amount of black paint used and orange paint used can be written as . . .

Training problem 4

There are n players in a round-robin ping-pong tournament (i.e. every two persons will play
exactly one game). After some matches have been played, it is known that the total number
of matches that have been played among any n − 2 people is equal to 3k (where k is a fixed
integer). Find the sum of all possible values of n. The solution will be evaluated in a math
environment.

Training problem 5

Let △ ABC be a triangle with AB = 4 and AC = 7
2 . Let ω denote the A-excircle of △ ABC.

Let ω touch lines AB, AC at the points D, E, respectively. Let Ω denote the circumcircle of

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

△ ADE. Consider the line ℓ parallel to BC such that ℓ is tangent to ω at a point F and such
that ℓ does not intersect Ω. Let ℓ intersect lines AB, AC at the points X , Y , respectively,
with XY = 18 and AX = 16. Let the perpendicular bisector of XY meet the circumcircle
of △ AXY at P , Q, where the distance from P to F is smaller than the distance from Q toF .
Let ray

−−→
PF meet Ω for the first time at the point Z. If PZ2 = m

n for relatively prime positive
integers m, n, find m+ n. The solution will be evaluated in a math environment.

Training problem 6

13 LHS Students attend the LHS Math Team tryouts. The students are numbered 1, 2, . . . , 13.
Their scores are s1, s2, . . . , s13, respectively. There are 5 problems on the tryout, each of which
is given a weight, labeledw1, w2, . . . , w5. Each score si is equal to the sum of the weights of all
problems solved by student i. On the other hand, each weight wj is assigned to be 1∑

si

, where

the sum is over all the scores of students who solved problem j. (If nobody solved a problem,
the score doesn’t matter). If the largest possible average score of the students can be expressed
in the form

√
a
b , where a is square-free, find a + b. The solution will be evaluated in a math

environment.

Training problem 7

Let ABCDE be a pentagon with area 2017 such that four of its sides AB,BC,CD, and EA
have integer length. Suppose that ∠A = ∠B = ∠C = 90o, AB = BC, and CD = EA. The
maximum possible perimeter of ABCDE is a + b

√
c, where a, b, and c are integers and c is

not divisible by the square of any prime. Find a + b + c. The solution will be evaluated in a
math environment.

Training problem 8

Let △ ABC be a triangle with AB = 4 and AC = 7
2 . Let ω denote the A-excircle of △ ABC.

Let ω touch lines AB, AC at the points D, E, respectively. Let Ω denote the circumcircle of
△ ADE. Consider the line ℓ parallel to BC such that ℓ is tangent to ω at a point F and such
that ℓ does not intersect Ω. Let ℓ intersect lines AB, AC at the points X , Y , respectively,
with XY = 18 and AX = 16. Let the perpendicular bisector of XY meet the circumcircle
of △ AXY at P , Q, where the distance from P to F is smaller than the distance from Q toF .
Let ray

−−→
PF meet Ω for the first time at the point Z. If PZ2 = m

n for relatively prime positive
integers m, n, find m+ n. The solution will be evaluated in a math environment.

Training problem 9

Point P is in the interior of△ABC. The side lengths of ABC are AB = 7, BC = 8, CA = 9.
The three feet of perpendicular lines from P to sides BC, CA, AB are D, E, F respectively.
Suppose the minimal value of BC

PD + CA
PE + AB

PF can be written as a
b

√
c, where gcd(a, b) = 1

and c is square-free, calculate abc. The solution will be evaluated in a math environment.

Training problem 10

Billy the baker makes a bunch of loaves of bread every day, and sells them in bundles of size
1, 2, or 3. On one particular day, there are 375 orders, 125 for each bundle type. As such,
Billy goes ahead and makes just enough loaves of bread to meet all the orders. Whenever Billy
makes loaves, some get burned, and are not sellable. For nonnegative i less than or equal to the
total number of loaves, the probability that exactly i loaves are sellable to customers is inversely
proportional to 2i (otherwise, it’s 0). Once he makes the loaves, he distributes out all of the
sellable loaves of bread to some subset of these customers (each of whom will only accept their
desired bundle of bread), without worrying about the order in which he gives them out. If the
expected number of ways Billy can distribute the bread is of the form ab

2c−1 , find a+ b+ c. The
solution will be evaluated in a math environment.

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

F.3 TTC FOR CODEELO

In the following, we list the 10 most relevant problems selected by SIFT to improve performance on
the CodeElo benchmark.

Training problem 1

There are n monsters standing in a row. The i-th monster has ai health points.

Every second, you can choose one alive monster and launch a chain lightning at it. The lightning
deals k damage to it, and also spreads to the left (towards decreasing i) and to the right (towards
increasing i) to alive monsters, dealing k damage to each. When the lightning reaches a dead
monster or the beginning/end of the row, it stops. A monster is considered alive if its health
points are strictly greater than 0.

For example, consider the following scenario: there are three monsters with health equal to
[5, 2, 7], and k = 3. You can kill them all in 4 seconds:

- launch a chain lightning at the 3-rd monster, then their health values are [2,−1, 4];
- launch a chain lightning at the 1-st monster, then their health values are [−1,−1, 4];
- launch a chain lightning at the 3-rd monster, then the . . .

Training problem 2

Eshag has an array a consisting of n integers.

Eshag can perform the following operation any number of times: choose some subsequence
of a and delete every element from it which is strictly larger than AV G, where AV G is the
average of the numbers in the chosen subsequence.

For example, if a = [1, 4, 3, 2, 4] and Eshag applies the operation to the subsequence con-
taining a1, a2, a4 and a5, then he will delete those of these 4 elements which are larger than
a1+a2+a4+a5

4 = 11
4 , so after the operation, the array a will become a = [1, 3, 2].

Your task is to find the maximum number of elements Eshag can delete from the array a by
applying the operation described above some number (maybe, zero) times.

A sequence b is a subsequence of an array c if b can be obtained from c by deletion of several
(possibly, zero or all) elements. The solution will be evaluated in a code environment.

Training problem 3

There are n squares drawn from left to right on the floor. The i-th square has three integers
pi, ai, bi, written on it. The sequence p1, p2,
dots, pn forms a permutation.

Each round you will start from the leftmost square 1 and jump to the right. If you are now on
the i-th square, you can do one of the following two operations:

1. Jump to the i+1-th square and pay the cost ai. If i = n, then you can end the round and pay
the cost ai.
2. Jump to the j-th square and pay the cost bi, where j is the leftmost square that satisfies
j > i, pj > pi. If there is no such j then you can end the round and pay the cost bi.

There are q rounds in the game. To make the game more difficult, you need to maintain a square
set S (initially it is empty). You must pass through these squares during the round (other squares
can also be passed through). The square set S for . . .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Training problem 4

YouKn0wWho has an integer sequence a1, a2, . . . an. Now he will split the sequence a into one
or more consecutive subarrays so that each element of a belongs to exactly one subarray. Let k
be the number of resulting subarrays, and h1, h2, . . . , hk be the lengths of the longest increasing
subsequences of corresponding subarrays.

For example, if we split [2, 5, 3, 1, 4, 3, 2, 2, 5, 1] into [2, 5, 3, 1, 4], [3, 2, 2, 5], [1], then h =
[3, 2, 1].

YouKn0wWho wonders if it is possible to split the sequence a in such a way that the bitwise
XOR of h1, h2, . . . , hk is equal to 0. You have to tell whether it is possible.

The longest increasing subsequence (LIS) of a sequence b1, b2, . . . , bm is the longest sequence
of valid indices i1, i2, . . . , ik such that i1, i2, . . . , ik and bi1 , bi2 , . . . , bik . For ex . . .

Training problem 5

Eve is a beginner stand-up comedian. Her first show gathered a grand total of two spectators:
Alice and Bob.

Eve prepared a1 + a2 + a3 + a4 jokes to tell, grouped by their type:

type 1: both Alice and Bob like them;

type 2: Alice likes them, but Bob doesn’t;

type 3: Bob likes them, but Alice doesn’t;

type 4: neither Alice nor Bob likes them.

Initially, both spectators have their mood equal to 0. When a spectator hears a joke he/she likes,
his/her mood increases by 1. When a spectator hears a joke he/she doesn’t like, his/her mood
decreases by 1. If the mood of a spectator becomes negative (strictly below zero), he/she leaves.

When someone leaves, Eve gets sad and ends the show. If no one leaves, and Eve is out of
jokes, she also ends the show.

Thus, Eve wants to arrange her jokes in such a way that the show lasts as long as possible. Help
her to calculate the maximum number of jokes she can tell before the show ends. The solution
will be evalu . . .

Training problem 6

Solve the following coding problem using the programming language python:

zscoder has a deck of n+m custom-made cards, which consists of n cards labelled from 1 to n
and m jokers. Since zscoder is lonely, he wants to play a game with himself using those cards.

Initially, the deck is shuffled uniformly randomly and placed on the table. zscoder has a set S
which is initially empty.

Every second, zscoder draws the top card from the deck. If the card has a number x written on
it, zscoder removes the card and adds x to the set S. If the card drawn is a joker, zscoder places
all the cards back into the deck and reshuffles (uniformly randomly) the n+m cards to form a
new deck (hence the new deck now contains all cards from 1 to n and the m jokers). Then, if S
currently contains all the elements from 1 to n, the game ends. Shuffling the deck doesn’t take
time at all.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

What is the expected number of seconds before the game ends? We can sho . . .

Training problem 7

n pupils, who love to read books, study at school. It is known that each student has exactly one
best friend, and each pupil is the best friend of exactly one other pupil. Each of the pupils has
exactly one interesting book.

The pupils decided to share books with each other. Every day, all pupils give their own books
to their best friends. Thus, every day each of the pupils has exactly one book.

Your task is to use the list of the best friends and determine the exchange of books among pupils
after k days. For simplicity, all students are numbered from 1 to n in all tests. The solution will
be evaluated in a code environment.

Training problem 8

You are given a rooted tree, consisting of n vertices. The vertices are numbered from 1 to n,
the root is the vertex 1.

You can perform the following operation at most k times:

choose an edge (v, u) of the tree such that v is a parent of u;

remove the edge (v, u);

add an edge (1, u) (i. e. make u with its subtree a child of the root).

The height of a tree is the maximum depth of its vertices, and the depth of a vertex is the number
of edges on the path from the root to it. For example, the depth of vertex 1 is 0, since it’s the
root, and the depth of all its children is 1.

What’s the smallest height of the tree that can be achieved? The solution will be evaluated in a
code environment.

Training problem 9

Back in time, the seven-year-old Nora used to play lots of games with her creation ROBO-
Head-02, both to have fun and enhance his abilities.

One day, Noras adoptive father, Phoenix Wyle, brought Nora n boxes of toys. Before unpacking,
Nora decided to make a fun game for ROBO.

She labelled all n boxes with n distinct integers a1, a2, . . . , an and asked ROBO to do the
following action several (possibly zero) times:

Pick three distinct indices i, j and k, such that ai|aj and ai|ak. In other words, ai divides both
aj and ak, that is aj mod ai = 0, ak mod ai = 0.
After choosing, Nora will give the k-th box to ROBO, and he will place it on top of the box pile
at his side. Initially, the pile is empty.
After doing so, the box k becomes unavailable for any further actions. Being . . .

Training problem 10

This is an interactive problem

You are given a grid n× n, where n is odd. Rows are enumerated from 1 to n from up to down,
columns are enumerated from 1 to n from left to right. Cell, standing on the intersection of row

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

x and column y, is denoted by (x, y).

Every cell contains 0 or 1. It is known that the top-left cell contains 1, and the bottom-right cell
contains 0.

We want to know numbers in all cells of the grid. To do so we can ask the following questions:

x1y1x2y2 ,̈ where 1 ≤ x1 ≤ x2 ≤ n, 1 ≤ y1 ≤ y2 ≤ n, and x1 + y1 + 2 ≤ x2 + y2. In other
words, we output two different cells (x1, y1), (x2, y2) of the grid such that we can get from the
first to the second by moving only to the right and down, and they aren’t adjacent.

As a response to such question you will be told if there exists a path between (x1, y1) and
(x2, y2), going only to the right or down, numbers in cells of which form a palindrome.

For example, paths, shown in gr . . .

39

	Introduction
	Related Work
	Test-Time Curricula
	Results
	TTCs are complementary to existing approaches to test-time scaling
	TTCs effectively specialize models

	Further Analysis
	Estimating ``real'' improvement
	Towards continual self-improvement at test-time
	On contamination and reward hacking

	Discussion
	Why Imitation Learning is ill-suited for TTC's
	Background
	SIFT
	GRPO

	Autobalancing Achievability with TTC's
	Extended Results
	Increasing clip-high in GRPO is essential for learning
	Performance vs. step
	``RL post-training'' baseline restricted to the test environment
	Extended comparison and combination of TTC-RL with Maj-TTRL
	Additional benchmarks
	Further results and ablations
	Unsuccessful attempts

	Experiment Details
	Dataset
	System prompts
	Details of the RL training
	Infrastructure and Training Time

	Qualitative Examples
	CodeElo, Question 85
	AIME 25, question 26
	TTC for CodeElo

