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Abstract

Deep reinforcement learning has shown its advantages in real-time
decision-making based on the state of the agent. In this stage, we solved
the task of using a real robot to manipulate the cube to a given trajec-
tory. The task is broken down into different procedures and we propose
a hierarchical structure, the high-level deep reinforcement learning model
selects appropriate contact positions and the low-level control module
performs the position control under the corresponding trajectory. Our
framework reduces the disadvantage of low sample efficiency of deep re-
inforcement learning and lacking adaptability of traditional robot control
methods. Our algorithm is trained in simulation and migrated to reality
without fine-tuning. The experimental results show the effectiveness of
our method both simulation and reality.

1 Introduction

Our method relies on two points:

(1) Manually set contact points is impossible to following different goal trajec-
tory while grasping object stably. Such, we introduce the reinforcement learning
to generate appreciate contact points by observing the object state and next goal
position.

(2) Classic robot control method performs stably and accurately in the task of
joint position control and trajectory following.

Therefore, we use a hierarchical control framework that utilize reinforcement
learning as high-level planner and classic control methods as low-level controller.
We broke down the task of grasping and moving the cube in given trajectory into
three primitives: selecting three suitable contact points, moving the tip to the
contact points of the cube, and finally lifting the cube to the given trajectory.

2 Method

In this report, we complete the task with a reinforcement learning method and
PD position controller. Our framework is shown in Fig .1. Reinforcement learn-
ing selects appropriate contact points, and the control algorithm completes the
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Figure 1: The overall framework of our approach

(a) 2D diagram (b) 3D sketch

Figure 2: 2D and 3D sketch of the selected contact position, the orange area in
the first diagram means the available contact area to select

movement according to the generated trajectory. Considering the safe contact
points, we set the available contact area in 60% of one cube face from the center,
as shown in Fig. 2, and corresponding expected contact positions are generated
by the reinforcement learning and executed by a low-level PD controller.

The framework that we use is SAC[4]. In the environment of move the cube
on a given trajectory, the robot need to move the target object to the desired
position fast and stably. When a reasonable contact point is selected, the sub-
sequent control algorithm is more likely to reach the target point stably. On
the contrary, if an unreasonable contact point is selected, it is difficult for the
low-level controller algorithm to move the block to the target point, so we use
the distance between the block and the trajectory as a reward to help the agent
learn to choose the right contact point.

r = 0.001 exp(−300 ‖pgoal − pcube‖2) (1)

We generate the corresponding trajectory according to the current fingertip
position and the target point. In order to keep the movement stable, we adopted
fifth-order polynomials[8].

The robot is asked to avoid a discontinuous jump in acceleration at both t = 0
and t = T . Our solution limits the terminal position, velocity, and acceleration,
but adding these constraints to the problem formulation requires the addition of
design freedoms in the polynomial, yielding a quintic polynomial of time, s(t) =
a0 + · · ·+ a5t

5. We can use the six terminal position, velocity, and acceleration
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constraints to solve uniquely for s(0) = ṡ(0) = s̈(0) = ṡ(T ) = s̈(T ) = 0 and
s(T ) = n, which yields a smooth motion. In the final step, the PD controller and
inverse dynamics are used to keep the corresponding fingertips to the desired
trajectory.

3 Result and Discussion

We test the performance of our method by training in a simulation environment
and running multiple experiments in different situations in the simulation and
real systems. In the results of the experiments, our method is compatible with
both stability and adaptability as shown in Fig. 3.

At the same time, due to the addition of fifth-order polynomials, the movement
of the square is relatively smooth and no jitters. At the same time, high-
level reinforcement learning can select contact points suitable for the current
situation according to different positions and states, which enables the model to
have stronger adaptability. Moreover, this hierarchical control method reduces
the need for training samples and training time in the training process and
alleviates the sim-real problems. Our method demonstrates the potential of
reinforcement learning and control methods in robotic tasks to a certain extent.
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Figure 3: Rewards comparison of different policies. From left to right: Trajec-
tory Planning(TP) only, TP + Contact Planning(CP), TP+CP+Domain Ran-
domization(DR). Top bar-graph shows the reward for RL training, and bottom
one shows the reward of the contest

The next step of the research needs to consider the challenges that the algorithm
faces small. The algorithm needs to maintain the awareness of environmental
changes, such as how to avoid collisions with the dice that have been arranged
and complete high-level planning. We plan to introduce world models[3, 5, 6]
to increase the ability of the agent to control the environment. When there is
a big difference between simulation and reality, we will also add the sim-real
algorithm[9, 1, 2, 7].

Video Attachments Playlist: https://youtu.be/Jr176xsn9wg
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