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Abstract

We propose MinVIS, a minimal video instance segmentation (VIS) framework that
achieves state-of-the-art VIS performance with neither video-based architectures
nor training procedures. By only training a query-based image instance segmen-
tation model, MinVIS outperforms the previous best result on the challenging
Occluded VIS dataset by over 10% AP. Since MinVIS treats frames in training
videos as independent images, we can drastically sub-sample the annotated frames
in training videos without any modifications. With only 1% of labeled frames, Min-
VIS outperforms or is comparable to fully-supervised state-of-the-art approaches
on YouTube-VIS 2019/2021. Our key observation is that queries trained to be dis-
criminative between intra-frame object instances are temporally consistent and can
be used to track instances without any manually designed heuristics. MinVIS thus
has the following inference pipeline: we first apply the trained query-based image
instance segmentation to video frames independently. The segmented instances are
then tracked by bipartite matching of the corresponding queries. This inference is
done in an online fashion and does not need to process the whole video at once.
MinVIS thus has the practical advantages of reducing both the labeling costs and
the memory requirements, while not sacrificing the VIS performance. Code is
available at: https://github.com/NVlabs/MinVIS

1 Introduction

Video instance segmentation (VIS) aims to simultaneously detect, segment, and track object instances
in videos [1]. The requirement to accurately track object instances through an entire video makes
VIS much more challenging than image instance segmentation. Most of the early approaches for VIS
build on image instance segmentation models, and process videos on a per-frame basis [ 1, 2]. The
segmented object instances for each frame are then matched temporally with a post-processing step.
This post-processing step often involves manually designed heuristics that do not generalize well to
challenging scenarios like occlusions and large appearance deformations.

Recent VIS works address this issue by taking a per-clip approach, where the spatial-temporal
volume of a video is processed as a whole to directly predict the spatial-temporal mask for each
object instance [3—5]. Many of these end-to-end VIS approaches are built upon the recent advances
of Transformers for end-to-end object detection [6]. Given learned embeddings called gueries,
Transformers process the queries jointly with the input video using cross-attention, so that each of the
processed queries can be used to predict the spatial-temporal mask for an object instance in the video.

While these per-clip methods have led to considerable improvements for VIS, using attention to
process the whole video, especially longer ones, requires large memory and computation. It is
also not straightforward to adapt per-clip methods from offline to online processing to reduce the
computational requirements. This limits their practical application, and maintaining the effectiveness
of these per-clip methods while improving their efficiency remains an active research direction [7, 8].
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Figure 1: (a) MinVIS trains a query-based image instance segmentation model (Image Encoder +
Transformer Decoder) using each frame independently. (b) During inference, the trained image
instance segmentation model is used for video instance segmentation by bipartite matching of query
embeddings across frames. MinVIS does not require further manually designed heuristics for tracking.

Another limitation for existing VIS methods is the requirement on annotation. Annotating object
instance masks for each video frame is prohibitively expensive at scale. While there have been works
that alleviate this annotation requirement through weak supervision or image-based annotation, there
is still a significant performance gap compared to state-of-the-art fully-supervised methods [9, 10].

Our Approach. We simultaneously address both of the aforementioned challenges of computational
and labeling costs by showing that we can achieve state-of-the-art VIS performance by only training
a query-based image instance segmentation model. During inference, MinVIS first applies the
query-based image instance segmentation to video frames independently. The segmented instances
are then associated by bipartite matching of the corresponding queries. MinVIS processes each frame
independently in an online fashion and does not need to process the whole video at once. MinVIS
does not use any video-based training procedure and thus does not need annotations for all the frames
in a video. Our contributions are summarized below:

1. We show that video-based architecture and training are not required for competitive VIS perfor-
mances. MinVIS outperforms previous state-of-the-art on YouTube-VIS 2019 and 2021 datasets
by 1% and 3% AP while only training an image instance segmentation model.

2. We show that image instance segmentation models capable of segmenting occluded instances are
also well suited to track occluded instances in videos in our framework. MinVIS outperforms its
per-clip counterpart by over 13% AP on the challenging Occluded VIS (OVIS) dataset, which is
over 10% improvement compared to the previous best performance on the dataset.

3. Our image-based approach allows us to significantly sub-sample the required segmentation
annotations in training without any change to the model. With only 1% of labeled frames, MinVIS
outperforms or is comparable to fully-supervised state-of-the-art approaches on all three datasets.

Our key observation is that queries trained to be discriminative between intra-frame object instances
are temporally consistent and can be used to track instances without being trained with video-based
loss functions. MinVIS achieves this by requiring its image instance segmentation model to generate
masks by convolving query embeddings with features of the whole input image, including regions
of other object instances. A query is thus trained to only have high responses on features of its
corresponding instance. Other query embeddings should instead have low responses on these features
because instance masks are non-overlapping. This design encourages the query embeddings for
different instances in a frame to be well-separated. On the other hand, the query embeddings that
segment the same instance from two consecutive frames still need to be similar enough since the
instance’s image features to be convoluted do not change drastically between frames. This leads to
temporally consistent query embeddings for tracking without the need of video-based training.

MinVIS thus has the following design for inference: We first apply a query-based image instance
segmentation model on video frames independently. The segmented instances are then associated
between frames by bipartite matching of the corresponding query embeddings. This post-processing
step does not need any additional heuristics based on mask overlaps or classification scores as in
previous works [, 1 1]. This is because query embeddings already contain these information to track
the instances. An overview of MinVIS’s training and inference is shown in Figure 1.



Since video frames are treated as independent images to train MinVIS, there is no requirement
to annotate all the frames in a video for training. This allows us to significantly sub-sample and
reduce the annotation without any change to our model. We find that on YouTube-VIS 2019/2021
datasets [ 1], where there are less variations between video frames, using only 1% of labeled frames
leads to less than 3% drop in AP for MinVIS.

We further evaluate MinVIS on the Occluded VIS (OVIS) dataset [12]. One common critique of
per-frame approaches is that their tracking heuristics based on mask overlaps would not work when
there are heavy occlusions. This is not the case for MinVIS, as we do not use any manually designed
heuristics. We show that our query-matching approach generalizes to occluded scenarios. MinVIS
with Swin Transformers backbone [13] achieves 39.4% AP on OVIS, which is over 10% improvement
from the previous best result on the dataset [14]. We further show that our image-based strategy leads
to easier and better learning on OVIS. MinVIS outperforms its per-clip counterpart by over 13% AP.

2 Related Work

Video Instance Segmentation. Per-frame approaches for VIS process each frame independently
and later track instances by post-processing. MaskTrack R-CNN [1] adds a tracking head to Mask
R-CNN [15] for VIS. MaskProp [16] instead adds a mask propagation head to propagate object
instance masks. CrossVIS [2] uses crossover learning to improve instance representation across video
frames. QueryTrack [ 1] adds a contrastive tracking head to QueryInst [17] for instance association.
Concurrent work IDOL [18] shows that per-frame models can still outperform per-clip models. Our
approach also builds on image instance segmentation models, but unlike previous approaches, we
need neither additional parameters nor additional losses to apply to VIS. Our query embeddings from
image instance segmentation can directly be used for tracking without video-based training.

Recent per-clip approaches build on the success of Detection Transformer (DETR) [6]. VisTR [4]
adopts the query-based approach of DETR to VIS, and there has been several follow-up works, such
as Mask2Former-VIS [3] and SeqFormer [5]. One limitation of these approaches is the need to
process the whole video at once. IFC [7] reduces the overhead of temporal message passing by
using memory tokens. TeViT [8] uses a parameter-shared self attention to efficiently model temporal
contexts. We also use a query-based approach, but instead of using cross-attention to process the
whole video, we process each frame independently while not losing VIS performance. Our use of
queries to associate instances is also related to other works that build on DETR for tracking in related
fields. For example, MOTR [19] and TrackFormer [20] use identity preserving track queries for
multi-object tracking (MOT).

Reducing Supervision for Video Instance Segmentation. Annotating instance masks for each video
frame can be prohibitively expensive. Compared to video object segmentation [21-23] and image
instance segmentation [24—27], there have been less works on reducing supervision for VIS [28].
FlowIRN [10] extends IRN [24] with motion and temporal consistency cues to have a weakly-
supervised VIS framework that only requires classification labels. SOLO-Track [9] learns to track
instances without video annotations. It uses instance contrastive learning on SOLO [29] to learn grid
cell embeddings for instance tracking. We make the same observation that disciminating between
instances within frames is beneficial or even sufficient for instance tracking. However, unlike our
query-based association, the grid cell embeddings still need threshold-based post-processing and
additional loss functions to better handle birth and death of objects.

3 Method

MinVIS is a minimal VIS framework that does not require video-based training and thus can be easily
applied to real-world applications that only have sparse image instance segmentation annotations.
MinVIS is a two stage approach: (1) image instance segmentation on each frame independently,
(2) associating instances between frames by matching queries. We will first discuss the image
instance segmentation architecture in MinVIS. We will then discuss the temporal association of object
instances. Finally, we will discuss training and reducing supervision for MinVIS.
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Figure 2: (a) MinVIS’s main architectural constraint is to require the segmentation masks M be
generated by convolving the query embeddings () with the final feature map F_;. This makes the
query embeddings discriminative between each instances. (b) MinVIS’s image-based approach allows
direct annotation subsampling of training videos without any modification to the model.

3.1 Image Instance Segmentation Architecture for VIS

MinVIS builds on the query-based transformer architectures for detection and segmentation [0, 17, 30,
31], which has the following main components: (1) Image Encoder that learn to extract features from
input images. (2) Transformer Decoder that processes the outputs of Image Encoder to iteratively
update the query embeddings. (3) Prediction Heads that use the final query embeddings to predict
desired outputs (e.g., segmentation masks, class labels). The queries play an important role for the
success of such end-to-end pipeline for set prediction with unknown number of outputs. The number
of queries are selected as the maximum number of output instanes of the model. During inference, a
subset of queries predict & outputs to dynamically adjust the number of valid outputs.

An overview of MinVIS’s image instance segmentation is shown in Figure 2(a). Given an image
X € RHEW | the Image Encoder £ extracts a set of features F = £(X) from the image. F =

{Fy ... F_1}is a sequence of multi-scale feature maps F; € R7:Wi:Ci_ [, denotes the final output

of £. The N initial query embeddings Q € RM:C are learnable parameters, where N is a large
enough number of outputs. The Transformer Decoder T then take both F' and Qto iteratively obtain
Q=T(F, Q), Q € RN, While most recent works focus on the design of 7 to better process F'
for (2, MinVIS’s architectural constraints are on the Prediction Heads. There are two outputs for each
instance: classification and segmentation mask. The classification scores O = C(Q), 0 € RV-E
for K classes are the output of Classification Head C, and () should contain the class information
for each instance. For segmentation masks M € RYN-H:W MinVIS requires that M be generated
by convolving the query embeddings Q) with the final feature map F_;. The shape for F_ is thus
H,W,C. We have M = o(Q x F_1), where o(-) is the sigmoid function.

The constraint to have () convolve with the whole feature map F_; is important for MinVIS. Consider
two queries (); and (; that corresponds to two distinct object instances and thus non-overlapping
masks. This formulation ensures that (); should only have high inner products with features in
F_; that are covered by the mask of instance 7. Since the instance masks are non-overlapping, Q);
should instead have low inner products with these features. This implicitly constrains the query
embeddings to be discriminative between each other. On the other hand, if we apply this pipeline
to two consecutive frames X and X*+1. Then Q! should still have higher inner product with Q***
compared to Q;H. This is because Qf“ and Q;H are also discriminative between each other, while

Q! and Qﬁ“ both need to have high inner products with features of the same instance, which do
not change drastically between consecutive frames. We visualize our learned query embeddings
in Figure 3. Each plot is for a video. Query embeddings belonging to the same instance (from
different frames) have the same color. These embeddings are already grouped by instances without
any video-based training. Further details are in Section 4.2.

While not all image instance segmentation models satisfy our architectural constraints (e.g., ROI-
based architectures), we believe these are rather flexible designs that are compatible with various
query-based instance segmentation models. We use Mask2Former [30] in this work. The Image
Encoder £ includes both the backbone and the pixel decoder of Mask2Former. We also find that
having fully-connected layers to further process () before convolution is beneficial to the performance.
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Figure 3: Visualizing our learned query embeddings with only image-based training. Each plot is
for a video, and query embeddings of the same instance (from different frames) have the same color.
Query embeddings are already grouped into clusters by instance without any video-based training.

3.2 Tracking by Query Matching

MinVIS is a per-frame two-stage approach, which requires a post-processing step to temporally
associate instances. This post-processing often involves heuristics like mask overlaps, which does not
generalize well to scenarios with heavy occlusions. Unlike previous two-stage approaches, MinVIS
associate instances solely based on the query embeddings (). Given two consecutive frames X*
and X*t1. We have Q' = T(F*,Q), where F* = £(X"), and similarly for Q**'. Q! is the query
embedding for instance ¢. Tracking in MinVIS is done by the assignment of applying the Hungarian

algorithm on a score matrix S, where S;; = cos(Q?, Q?’l). cos(+, ) is the cosine similarity.

This approach is less affected by occlusions because each instance is represented by a query that does
not have a spatial extent. In addition, we do not need heuristics to handle the birth and death of object
instances in this framework. Since the number of queries is larger than the number of instances, there
are queries that produce empty masks. The death of an object instance happens when its embedding
is matched to such a null query. On the other hand, the birth of an instance is correctly handled if the
matched query embeddings have been null before the actual birth of the object instance.

3.3 Training with Less Supervision for VIS

Since the matching process does not need training, only the image instance segmentation model needs
to be trained. There are two outputs of the model: classification scores O € RY-¥ and segmentation
masks M € RV-HW for N queries, K object classes, and image size H, WW. We can process the
groundtruth video instances to groundtruth image instances O* € RYK and M* € REHW | where
L is the number of groundtruth instances (N >> L) and O is a one-hot vector of groundtruth class.
Given a loss function £(O;, M;, O;f7 M ;‘) between predicted instance 7 and groundtruth instance j,
we first use bipartite matching to find the assignments between predicted and groundtruth instances
that minimize the overall loss function, and train on those matched predictions with the loss function.

More specifically, there are two terms in the loss function: L£.s and L,,4s,. We use cross entropy
loss for L and binary cross entropy plus dice loss [32] for £,,,4s% as in previous works [30]. Both
terms are purely image-based. The groudtruth video instances are first processed to instances for
each frame independently. Therefore, even if there are only sparse frames labeled with instance, we
can still train our model with the annotated frames. This provide a straightforward way to reduce the
supervision for VIS. Figure 2(b) shows the annotation sub-sampling to reduce supervision.



4 Experiments

Datasets. We evaluate MinVIS on three datasets: YouTube-VIS 2019/2021 [1] and Occluded VIS
(OVIS) [12]. The YouTube-VIS datasets contain 40 object classes. YouTube-VIS 2019 contains
2238/302/343 videos for training/validation/testing, while YouTube-VIS 2021 expands the dataset to
2985/421/453 videos for training/validation/testing, and includes higher quality annotations. OVIS
has 25 object classes and contains 607/140/154 for training/validation/testing. While the number
of videos is smaller, OVIS has more objects per frame, and the videos are also longer. This leads
to more annotated instance masks compared to the YouTube-VIS datasets. In addition, OVIS also
has much higher Bounding-box Occlusion Rate (0.22 v.s. 0.06/0.07) compared to the YouTube-VIS
datasets, which indicates heavier occlusions between object instances.

Metrics. We follow previous works and use Average Precision (AP) and Average Recall (AR) as
evaluation metrics [1]. AP is computed based on 10 intersection-over-union (IoU) thresholds from
50% to 95% with 5% increment. The reported AP and AR are first computed for each object class
and then averaged over all classes. All three datasets have public evaluation servers.

Baselines. We focus on results using ResNet50 and Swin-L backbones. ResNet50 is still the most
widely used backbone for VIS, while Swin-L gives the best performances. Not all methods report
both backbones on all three datasets. We include results that are available. For YouTube-VIS datasets,
we include recent state-of-the-art results from SeqFormer [5], TeViT [8], and Mask2Former-VIS [3].
These are all Transformer-based per-clip approaches as this paradigm has been recently dominating
the field. On the other, out of of these methods, only TeViT is applied to OVIS. Therefore, we further
compare to CMaskTrack R-CNN [12], CrossVIS [2], and STC [33]. These are all methods that allow
online processing. Even TeViT uses a near online inference for OVIS [34]. This is because OVIS has
longer videos that would lead to out-of-memory for most of the per-clip approaches.

Out of all the baselines, Mask2Former-VIS [3] is the most related to MinVIS, as MinVIS is built on
Mask2Former in this work. Mask2Former-VIS thus can be seen as the per-clip version of ours and is
an important baseline for comparison. Therefore, we further apply Mask2Former-VIS on the OVIS
dataset. Due to memory constraints, the videos in OVIS are first split into clips of length 30. We use
the same post-processing as MinVIS to merge the outputs from these clips.

Implementation Details. Unless otherwise noted, our hyper-parameters follow Mask2Former-
VIS [3]. All models are pre-trained with COCO instance segmentation [35]. For OVIS, we use the
same hyper-parameters as YouTube-VIS 2019 except training for 10k iterations instead of 6k. For
training losses, the weights are 5.0 for £, and 2.0 for L;s. All results of MinVIS are averaged
over 3 random seeds. We sub-sample training to X% by uniformly sampling frames in the video.
We set a minimum of 1 frame per video. Since YouTube-VIS datasets often have videos less than a
hundred frames. Our 1% results are better seen as one frame per video results for YouTube-VIS.

4.1 Main Results

YouTube-VIS 2019. The results for YouTube-VIS 2019 are shown in Table 1. MinVIS achieves
highest AP and most other metrics for both ResNet-50 and Swin-L backbones. SeqFormer shows
that it is beneficial to jointly train with images from COCO [35] that contain YouTubeVIS categories
(+C80k in table). TeViT proposes messenger shift transformer (MsgShifT) that are as efficient
as ResNet backbones, while improving the VIS performances. Our ResNet-50 results match or
outperform their results without further modifications. Compared to the state-of-the-art Mask2Former-
VIS, which can be seen as the per-clip approach to apply Mask2Former to VIS, MinVIS consistently
outperforms by around 1% for both backbones. MinVIS with X% means sub-sampling the annotated
frames for each video in training. Since there are less temporal variations for videos in YouTube-VIS
2019, MinVIS with 1% of training frames only reduces AP by 2.6%. This significantly reduces the
annotation effort while not sacrificing much performance.

YouTube-VIS 2021. The results for YouTube-VIS 2021 are shown in Table 2. On this more
challenging dataset, the performance improvements for MinVIS increase compared to YouTube-VIS
2019. Without better backbone like TeViT and additional training data like SeqFormer, our ResNet-
50 results outperform by a large margin for all metrics. This is the also case for Swin-L. MinVIS
outperforms previous state-of-the-art Mask2Former-VIS by 2.7%. By using only 1% of training
frames, MinVIS’s AP decrease by only 2.4%, which means that our 1% result still outperforms



Table 1: YouTube-VIS 2019 results. C80k indicates joint training with COCO images that have
YouTube- VIS categories. MinVIS with X% means sub-sampling the annotated frames in training.

Method Backbone Training AP AP5y AP;3; AR; ARy
TeViT [8] R50 Full 42.1 678 448 413 494
TeViT [8] MsgShifT  Full 46.6 713 516 449 543
SeqFormer [5] R50 Full 451 669 505 456 546
SeqFormer [5] R50 Full+C80k 474 69.8 51.8 455 548
Mask2Former-VIS [3] R50 Full 464 68.0 50.0 - -

MinVIS R50 Full 474 69.0 521 457 55.7
TeViT [8] Swin-L Full 568 80.6 63.1 520 633
SeqFormer [5] Swin-L Full+C80k 59.3 82.1 664 51.7 644
Mask2Former-VIS [3] Swin-L Full 604 844 670 - -

MinVIS Swin-L Full 61.6 833 68.6 548 66.6
MinVIS Swin-L 1% 59.0 81.6 647 540 64.0
MinVIS Swin-L 5% 593 814 658 538 64.1
MinVIS Swin-L 10% 61.0 83.0 677 546 66.1

Table 2: YouTube-VIS 2021 Results. MinVIS’s performance improvement increases on the more
challenging YouTube-VIS 2021. Our 1% results already outperform previous state-of-the-art.

Method Backbone Training AP AP5g AP;; AR; ARy
TeViT [8] MsgShifT  Full 379 61.2 421 351 446
SeqFormer [5] R50 Full+C80k 40.5 624 437 36.1 48.1
Mask2Former-VIS [3] R50 Full 40.6 609 418 - -

MinVIS R50 Full 442 66.0 48.1 39.2 51.7
SeqFormer [5] Swin-L Full+C80k 51.8 74.6 582 428 58.1
Mask2Former-VIS [3] Swin-L Full 52.6 764 572 - -

MinVIS Swin-L Full 553 766 62.0 459 60.8
MinVIS Swin-L 1% 529 749 589 447 583
MinVIS Swin-L 5% 543 763 60.1 454 595
MinVIS Swin-L 10% 549 763 619 453 60.1

previous state-of-the art. We also see that on YouTube-VIS datasets, reducing the annotations by 10x
does not significantly affect the performances (-0.6% AP for 2019 and -0.4% AP for 2021).

Occluded VIS (OVIS). The results for OVIS are shown in Table 3. Mask2Former-VIS* denotes
our application of Mask2Former-VIS to OVIS. Since videos in OVIS can have up to hundreds of
frames, we apply Mask2Former-VIS to non-overlapping sliding windows of length 30. The outputs
from these clips are then merged by our post-processing. MinVIS is an online method and does not
need modification to apply to OVIS. MinVIS shows significant improvement compared to existing
works on OVIS. With ResNet-50 backbone, MinVIS outperforms previous state-of-the-art TeViT with
MsgShifT backbone by 7.6% AP. With Swin-L backbone, MinVIS outperforms previous best result
MaskTrack R-CNN*+SWA by 10.5% AP, which is the winner of the 1st OVIS Challenge. Their key
observation is that sampling frames that are far apart in OVIS leads to drastically different features
and makes it hard to train MaskTrack R-CNN. This is in contrast to YouTube-VIS datasets, in which
the videos are shorter and there are less temporal variations within the video. We observe the same
phenomenon when training Mask2Former-VIS*. However, the limited sampling reference frame
strategy of MaskTrack R-CNN*+SWA still does not work in this case. Mask2Former-VIS* uses a
fully end-to-end loss instead of an explicit tracking loss to learn temporal association, which makes
the learning even harder in OVIS. On the other hand, MinVIS is image-based and does not need to
worry about the temporal sampling strategy to train the model. This is contrary to common belief
that per-frame approaches are worse for scenarios with heavy occlusions. Instead, our image-based
approach leads to easier and better learning on OVIS. We show that an image instance segmentation
model that can segment occluded instances in each frame is also good at associating such instances



Table 3: OVIS Results. MinVIS significantly outperform existing approaches on OVIS. Our image-
based framework leads to easier and better learning on this dataset with heavy occlusions.

Method Backbone Training AP APsg AP7ys AR; ARy
TeViT [8] MsgShifT  Full 174 349 150 112 218
CrossVIS [2] R50 Full 149 327 12.1 103 198
CMaskTrack R-CNN [12] R50 Full 154 339 13.1 9.3 20.0
STC [33] R50 Full 15,5 335 134 110 20.8
Mask2Former-VIS* R50 Full 173 373 15.1 105 235
MinVIS R50 Full 25.0 455 24.0 139 29.7
MaskTrack R-CNN*+SWA [14] Swin-L Full 289 563 26.8 13,5 340
Mask2Former-VIS* Swin-L Full 25.8 46.5 244 137 322
MinVIS Swin-L Full 394 615 413 181 433
MinVIS Swin-L 1% 317 549 313 163 36.1
MinVIS Swin-L 5% 357 60.1 358 17.3 399
MinVIS Swin-L 10% 372 607 38.0 173 41.1

Mask2Former-VIS*
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Figure 4: Qualitative results on OVIS. MinVIS stably tracks all the sheep in the video. Using mask
overlap based heuristics instead leads to multiple identity switches in tracking. Mask2Former-VIS*
uses per-clip training that is difficult to optimize on the challenging OVIS dataset.

across frames. Figure4 shows qualitative results. MinVIS stably tracks all the sheep in the video.
Using mask overlap based heuristics instead of query matching leads to multiple identity switches
in tracking. Mask2Former-VIS* does not have as good segmentation masks because its training is
interfered by heavy occlusions and large appearance deformations between frames in OVIS.

Figure 5 shows additional qualitative results on failure cases of MinVIS on the OVIS dataset. As
discussed in Section 3.2, MinVIS does not use heuristics to handle the birth and death of object
instances. The death of an object instance is correctly handled if its query is matched to a query in
the next frame that produces an empty mask. Despite its simplicity and effectiveness, the drawback
of this approach is that there is nothing stopping the model from matching the disappearing query
to a query with a non-empty mask. From ¢3 to ¢ in the top row of Figure 5, as the fish in the lower
left leaves the frame, MinVIS associates it to a mask covering the tail of a nearby fish. From ¢4 to
t5, when the fish in the upper left leaves the frame, MinVIS again associates it to a mask covering
the head of a nearby fish. Since the associated masks are non-empty, MinVIS fails to correctly
handle the death of these instances. On the other hand, when the two dogs in the bottom row of
Figure 5 are covered in t2, MinVIS correctly associates their queries to empty masks. MinVIS further
correctly handles the object births in ¢t3. However, MinVIS is limited by the segmentation of the
image segmentation model, which fails to segment the close-up person.



Figure 5: Failure cases of MinVIS on OVIS. When an object instance disappear from a video, MinVIS
can fail by associating its query embedding to a wrong mask without overlap (top). This is because
we do not use mask overlap heuristics in our work. On the other hand, we are also limited by the
image instance segmentation model, which might not work well on close-up objects (bottom).

Table 4: Comparison of post-processing. Heuristics based on mask over laps lead to significant AP
drop on OVIS. Our query matching approach has simpler design without loss of performance.

Method Dataset AP AP5y, AP;5; AR; ARy

heuristics only YouTube-VIS 2019 582 79.2 64.1 513 63.6
heuristics + query ~ YouTube-VIS 2019 61.3 82.8 68.7 543 66.3
query only YouTube-VIS 2019 61.6 83.3 68.6 548 66.6

heuristics only YouTube-VIS 2021 52.7 753 573 444 583
heuristics + query ~ YouTube-VIS 2021 55.1 762 619 46.0 60.7

query only YouTube-VIS 2021 553 76.6 62.0 459 60.8
heuristics only Occluded VIS 317 56.0 313 158 358
heuristics + query  Occluded VIS 39.1 625 408 17.7 434
query only Occluded VIS 394 615 413 181 433

4.2 Analyzing Query Matching

The success of MinVIS depends on whether query matching is good for tracking instances. We
conduct ablation studies by comparing it to manually designed heuristics. We use the bipartite
matching heuristics in Section 3.3 for tracking by treating instances in the last frame as groundtruth.
The results are in Table 4. Using heuristics lead to around 3% AP drop on both YouTube-VIS 2019
and 2021. It leads to more significant drop on OVIS (7.7%) due to heavier occlusions. We also
combine query matching and heuristics with equal weights, which has mixed results. Our query only
approach is simpler and more generalizable without loss of performance.

We visualize the learned query embeddings by t-SNE [36] in Figure 3. Each plot is for a video in the
training set. We visualize the training set to see the effect of an image only objective (to segment
instances in an image) on query embeddings across different frames. Query embeddings of the same
instance have the same color. We obtain the instance IDs for queries by bipartite matching its outputs
to groundtruth instances, which have consistent IDs across frames. Without any video-based tracking
objective, query embeddings of the same instances are already grouped into distinct clusters, even for
the OVIS dataset. This supports our design of only using image-based objectives. In Appendix ??,
we further visualize query embeddings on videos not used in training.

4.3 Effect of Video-based Training

While we have shown that MinVIS achieves state-of-the-art VIS performance without video-based
training, it is interesting to see how we can leverage video annotation when it is available. We use
the video annotation to supervise our matching as in previous per-frame works [1, 2, 11]. Given
two sampled frames, we use a hinge loss to ensure that the correct associations of queries have the
highest inner products compared to that of other queries between the two frames [11]. The results are



Table 5: Results for adding supervision to query matching. The supervision can provide dataset
dependent benefit if the temporal hyper-parameters are selected properly.

Method Dataset AP AP5qg AP7; AR; ARy
MinVIS YouTube-VIS 2019 61.6 833 68.6 548 66.6
+ Supervised Matching  YouTube-VIS 2019 61.0 82.1 67.6 543 66.1
+ Limited Range YouTube-VIS 2019 60.7 825 67.0 541 655
MinVIS YouTube-VIS 2021 553 76.6 62.0 459 60.8
+ Supervised Matching  YouTube-VIS 2021 544 757 60.6 455 595
+ Limited Range YouTube-VIS 2021 552 77.0 615 454 60.1
MinVIS Occluded VIS 394 615 413 181 433
+ Supervised Matching  Occluded VIS 3877 612 39.6 179 424
+ Limited Range Occluded VIS 396 632 410 18.2 43.0

in Table 5. The “Supervised Matching” rows mean directly applying the matching supervision to
the original frame sampling process. In our case, this means that the two sampled frames might be
separated up to 20 frames. As pointed out in previous works, frames that are far separated increase
the training difficulty and can hurt model performances especially with occlusions [14]. We thus also
consider the “Limited Range” training to only sample consecutive frames for supervised matching,
as we only need to match consecutive frames. From the results, directly applying “Supervised
Matching” hurt performances on all three datasets. Adding “Limited Range” recovers most of
the performances for YouTube-VIS 2021 and OVIS. On OVIS, it even marginally outperforms the
original MinVIS. However, this improvement does rely on the dataset dependent sampling range. We
believe it is possible and important to use video-based training to further improve MinVIS, although
this would take away MinVIS’s practical advantages of only needing sparse annotations and having a
simple training pipeline. Appendix ?? discusses further limitations of not using video information in
training.

5 Conclusion

We show that a purely image-based training procedure can lead to competitive performances for
VIS. Our key finding is that instance tracking naturally emerges in query-based image instance
segmentation models with proper architectural constraints. In addition to improving state-of-the-art
approaches on YouTube-VIS 2019/2021, we show that this is particularly beneficial for OVIS. The
image-based objective reduces the learning difficulty and leads to better performances. MinVIS only
requires sparse frame annotations, which makes it much more applicable to real-world scenarios. We
believe a promising direction to extend MinVIS is to explore ways to better leverage the video frames
that are not annotated to further improve our performances with sub-sampled annotations.
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