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ABSTRACT

The performance of the mini-batch stochastic gradient method strongly depends
on the batch-size that is used. In the classical convex setting with interpolation,
prior work showed that increasing the batch size linearly increases the conver-
gence speed, but only up to a point; when the batch size is larger than a certain
threshold (the critical batchsize), further increasing the batch size only leads to
negligible improvement. The goal of this work is to investigate the relationship
between the batchsize and convergence speed for a broader class of nonconvex
problems. Building on recent improved convergence guarantees for SGD, we
prove that a similar linear scaling and batch-size saturation phenomenon occurs
for training sufficiently wide neural networks. We conduct a number of numerical
experiments on benchmark datasets, which corroborate our findings.

1 INTRODUCTION

Minibatching reduces the number of steps for the stochastic gradient method (SGD) to convergence
since it decreases the variance of the stochastic gradient estimator. Practical implementations of
SGD exploit this reduction together with parallel computation of gradients to reduce the total wall-
clock time to convergence. While batching initially offers a linear reduction in the iteration com-
plexity, an extensively documented experimental observation is that the improvement brought by
minibatching saturates after a certain “critical batch size” for models that nearly interpolate the data
Golmant et al. (2018); Shallue et al. (2018); see Figure 1 for a numerical illustration. Saturation has
also been rigorously proven both for quadratic losses Ma et al. (2018); Zhang et al. (2019), convex
losses Woodworth & Srebro (2021) (for a variant of SGD), and certain classes of nonconvex losses
Yin et al. (2018); Chen et al. (2018); Gower et al. (2019; 2021) under interpolation assumptions.

While the aforementioned theoretical studies are promising, they are not applicable when training
wide neural networks. This work aims to explain why the performance of minibatch SGD with a
large stepsize saturates after a certain critical batch size on wide neural networks. We will prove the
following theorem, stated here informally for the sake of motivation.

Theorem 1.1 (Informal). Consider training a feedforward neural network f(w, x) with width m
and linear output layer using SGD with batchsize b. Then for sufficiently large m > 0, with high
probability over initialization w0, the iteration complexity to reach an ϵ-optimal solution scales as

max
i=1,...,n

∥∇f(w0, xi)∥2/b+ ∥K(w0)∥op +O
(

1
m

)
λmin(K(w0))

· log
( c
ε

)
,

where K(w0) is the Neural Tangent Kernel (NTK) at initialization and m is the width of the network.

Thus the theorem shows that the iteration complexity of minibatch SGD exhibits a linear scaling
in b roughly up to the critical batch size b∗ = max

i=1,...,n
∥∇f(w0, xi)∥2/∥K(w0)∥op, after which

point increasing the batchsize only leads to negligible improvement. Importantly, past the critical
batchsize, the iteration complexity of minibatch SGD matches that of the full-batch gradient method.

Let us briefly explain why the aforementioned works are inapplicable for analyzing training guar-
anties of wide neural networks—a nonconvex problem in general. The works Yin et al. (2018);
Chen et al. (2018), for example, introduce a critical batch size and prove a sublinear convergence
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Figure 1: SVHN on fully-connected neural network with MSE loss. The network has 3 hidden
layers, with 2000 neurons in each. 100k iterations. Left: the training loss curves vs. batch size.
Right: Convergence exponent h(b) and “predicted” curve h̃(b) (defined in Sec. 5) vs. batch size b.

bound for the minibatch SGD under a global Polyak-Łojasiewicz condition (PL) Poljak (1963); Lo-
jasiewicz (1963) with a small stepsize that depends inversely on a certain “condition number.” In
contrast, in the settings of wide-neural networks, it is known that minibatch SGD converges linearly,
the PL condition holds locally, and one may, in fact, use a much larger stepsize, depending only on
the level of smoothness of the objective Liu et al. (2022; 2023). Thus, the guarantees of Yin et al.
(2018); Chen et al. (2018) are inapplicable. Other works analyze minibatch SGD for interpolation
problems both under the PL condition Gower et al. (2021) and a “quasi strong convexity” assump-
tion Gower et al. (2019)—a setting where minibatch SGD is known to converge linearly. As in Yin
et al. (2018), the work Gower et al. (2021) requires a small stepsize inversely proportional to a “con-
dition number” and suggests the optimal minibatch size is proportional to the size of the training
set, which is not true experimentally and does not match the corresponding theoretical behavior in
the quadratic or convex setting Ma et al. (2018); Zhang et al. (2019); Woodworth & Srebro (2021).
On the other hand, it is known that quasi-strong convexity Gower et al. (2019) is never satisfied for
wide neural networks since it entails a locally unique solution.

2 MAIN ASSUMPTIONS AND KNOWN RESULTS

The guarantees proved in this work apply to nonlinear least squares problems, with wide neural
networks as the primary example. More specifically, throughout this work, we consider the problem:

min
w∈Rd

L(w) = 1

2n

n∑
i=1

(fi(w)− yi)
2 =

1

2
∥F (w)∥2, (2.1)

where fi : Rd → R are some differentiable functions and y ∈ Rn is a fixed vector. We will work in
the interpolation regime, as summarized in the following assumption.
Assumption 1 (Interpolation). There exists some point w̄ satisfying fi(w̄) = yi for all i = 1, . . . , n.

When n is large, the standard procedure for solving the problem 2.1 is the minibatch stochastic
gradient method (SGD). In each iteration, the algorithm uniformly samples a batch of indices S ⊂
{1, . . . , n} of a fixed size m := |S| and performs the update

wt+1 = wt − η · g(wt;S) where g(wt;S) =
1

|S|
∑
i∈S

(fi(wt)− yi)∇fi(wt).

The vector g(w, S) is called the stochastic gradient estimator. The rate of convergence of minibatch
SGD is strongly influenced by the second moment of the stochastic gradient estimator g(w, S).
Namely, a typical assumption is that there exists a constant β > 0 such that the estimate

ES ∥g(w, S)∥2 ≤ 2β · L(w), (2.2)

holds for all w in some ball Br(w0). From a high level, much of the paper will be devoted to
estimating β in terms of |S| under a number of assumptions.
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In addition to the interpolation Assumption 1, we impose the following assumption throughout the
work. To simplify notation, we let S denote the set of interpolating solutions

S ≜ argmin
w

L(w).

Assumption 2. Fix a point w0 ∈ Rd and parameters r, α, L > 0 satisfying the following.

1. (Existence) The ball Br(w0) intersects the solution set S.

2. (Quadratic growth) The estimate holds:

L(w) ≥ α
2 · dist2(w, S) ∀w ∈ Br(w0). (2.3)

3. (Lipschitz) The gradient of each loss function ∇fi is L-Lipschitz continuous on B2r(w0).

We now review convergence guarantees for SGD based on these two assumptions, recently devel-
oped in (Liu et al., 2023, Theorems 2.5, 3.1). Specifically we will focus on the problem of nonlinear
least squares 2.1 where the the Lipschitz constant of ∇fi is small. This setting nicely models training
of wide neural networks, as we will explain in Section 4.
Theorem 2.1 (Convergence of minibatch SGD; Liu et al. (2023)). Suppose that Assumptions 1 and
2 hold, the estimate 2.2 holds for all w ∈ Br(w0), and that L is small in the sense that L ≤ α

16r
√
β

.

Fix constants δ1 ∈ (0, 1
3 ) and δ2 ∈ (0, 1), and assume dist2(w0, S) ≤ δ21r

2. Consider applying
minibatch SGD with stepsize η = 1

2β . Then with probability at least 1 − 5δ1 − δ2, the estimate
dist2(wt, S) ≤ ε · dist2(w0, S) holds after

t ≥ 4β

α
log

(
1

εδ2

)
iterations.

In the next section we estimate the value β for nonlinear least squares problems (Theorem 3.3).
Combining this estimate with Theorem 2.1, we will obtain in Theorem 4.1 scaling laws for how the
iteration complexity of minibatch SGD depends on the selected batchsize.

3 ESTIMATING β AND THE CRITICAL BATCH SIZE FOR SGD

We begin with the following lemma that decomposes the second moment ES ∥g(w, S)∥2 into a sum
of two terms—the first decays linearly in |S| and the second is the squared norm of ∇L(w).
Lemma 3.1 (Decomposition of the second moment). The inequality holds:

ES ∥g(w, S)∥2 ≤ 1

|S|
Ei[(fi(w)− yi)

2∥∇fi(w)∥2] + ∥∇L(w)∥2.

Proof. Let 1i∈S and 1i,j∈S denote the indicator functions of the events {i ∈ S} and {i, j ∈ S},
respectively. We then successively deduce

ES ∥g(w, S)∥2 = ES

∥∥∥∥∥ 1

|S|
∑
i∈S

(fi(w)− yi)∇fi(w)

∥∥∥∥∥
2

=
1

|S|2
ES

∥∥∥∥∥
n∑

i=1

(fi(w)− yi)∇fi(w)1i∈S

∥∥∥∥∥
2

=
1

|S|2
n∑

i=1

(fi(w)− yi)
2∥∇fi(w)∥2P (i ∈ S)

+
1

|S|2
∑
i ̸=j

(fi(w)− yi)(fj(w)− yj)⟨∇fi(w),∇fj(w)⟩P (i, j ∈ S),

where the last inequality follows from expanding the square and using linearity of expectation. A
simple computation shows that P (i ∈ S) = (1− (1− 1

n )
|S|) ≤ |S|

n , where the last estimate follows
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from Bernoulli’s inequality. Similarly for i ̸= j, we compute P (i, j ∈ S) = P (i ∈ S | j ∈
S)P (j ∈ S) ≤ |S|−1

n−1 · |S|
n ≤ |S|2

n2 . Plugging this back into the equation and recognizing that the last
term is bounded by ∥∇F (w)⊤F (w)∥2 completes the proof.

Next, we estimate β for the problem of linear least squares, which slightly sharpens the analogous
result in Ma et al. (2018). We include it here as motivation for general nonlinear least squares 2.1.
Theorem 3.2 (Linear least squares). Consider the problem 2.1 in the setting where fi(w) = x⊤

i w
for some vectors xi ∈ Rd satisfying the moment bound:

Ei∥xi∥2xix
⊤
i ⪯ γ · Eixix

⊤
i . (3.1)

Suppose moreover that we are in the interpolation regime, that is there exists some w̄ satisfying
F (w̄) = 0. Then equation 2.2 holds for all w with

β =
γ

|S|
+

1

n
∥X∥2op,

where X denotes the matrix having xi as its rows.

Proof. Define the displacement vector v = w− w̄ and note that we may write fi(w)− yi = ⟨xi, v⟩.
Therefore applying Lemma 3.1 we obtain

ES ∥g(w, S)∥2 ≤ 1

|S|
v⊤Ei[∥xi∥2xix

⊤
i ]v +

∥∥∥∥ 1nX⊤Xv

∥∥∥∥2
≤ γ

|S|
v⊤Ei[xix

⊤
i ]v +

1

n2
∥X∥2op∥Xv∥2

=

(
2γ

|S|
+

2

n
∥X∥2op

)
· L(w),

thereby completing the proof.

A few comments are in order. First, the condition 3.1 roughly stipulates that the second-order
moment of xi is bounded by a multiple of the first-order moment. Conditions of this type have been
used extensively in the literature, such as Ma et al. (2018); Dieuleveut et al. (2017); Jain et al. (2018).
In particular, 3.1 holds automatically with γ = maxi=1,...,n ∥xi∥2, and this choice is optimal if xi

are pairwise orthogonal—often a good approximation in the regime of interest d ≫ n. Conversely
taking the trace of both sides of 3.1 shows that any valid γ must be larger than 1

n

∑n
i=1 ∥xi∥2.

Theorem 3.2 establishes a linear scaling of β in the batchsize up to the critical batchsize

b∗ =
γ

1
n∥X∥2op

,

past which point β becomes nearly identical to 1
n∥X∥2op—which is exactly is equal to the optimal

choice of β for the full-batch gradient S = {1, . . . , n}. Next, we extend Theorem 3.2 to the setting of
nonlinear least squares 2.1 in the case when the gradient of each function fi(w) has a small Lipschitz
constant. The reader should keep in mind the direct parallel with the linear case (Theorem 3.2).
Theorem 3.3 (Nonlinear least squares). Suppose that Assumptions 1 and 2 hold and that for some
γ > 0 the random vector xi := ∇fi(w0) satisfies the moment bound

Ei∥xi∥2xix
⊤
i ⪯ γ · Eixix

⊤
i . (3.2)

Then equation 2.2 holds for all w ∈ Br(w0) with

β =
16γ + 200γL2r2

α

|S|
+ 4L2r2 + 4∥∇F (w0)∥2op.

Proof. Throughout, we let w ∈ Br(w0) be arbitrary. Lemma 3.1 yields the estimate

ES ∥g(w, S)∥2 ≤ 1

|S|
Ei[(fi(w)− yi)

2∥∇fi(w)∥2]︸ ︷︷ ︸
=:P1

+ ∥∇F (w)⊤F (w)∥22︸ ︷︷ ︸
P2

.
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We may upper bound P2 as
P2 ≤ ∥∇F (w)∥2op∥F (w)∥2 = 2∥∇F (w)∥2opL(w). (3.3)

Note moreover that
∥∇F (w)−∇F (w0)∥2op ≤ ∥∇F (w)−∇F (w0)∥2F

≤ 1

n

n∑
i=1

∥∇fi(w)−∇fi(w0)∥22 ≤ L2∥w − w0∥2.

Therefore we deduce P2 ≤ 4(∥∇F (w0)∥2op +L2∥w−w0∥2)L(w). It remains to bound P1. To this
end, note ∥∇fi(w)∥2 ≤ 2∥∇fi(w0)∥2 + 2L2∥w − w0∥2. Therefore, we may estimate

P1 ≤ 2Ei(fi(w)− yi)
2∥∇fi(w0)∥2 + 2L2 · Ei(fi(w)− yi)

2∥w − w0∥2

= 2Ei(fi(w)− yi)
2∥∇fi(w0)∥2 + 4L2∥w − w0∥2 · L(w). (3.4)

Now let w̄ denote a closest point to w in argminL and note that by the triangle inequality w̄ lies in
B2r(w0). Using the fundamental theorem of calculus, we may write

fi(w)− yi = fi(w)− fi(w̄) =

∫ 1

0

⟨∇fi(w̄ + t(w − w̄)), w − w̄⟩ dt

= ⟨∇fi(w0), w − w̄⟩+ E,

(3.5)

where |E| ≤ L
2 ∥w − w̄∥(3∥w0 − w∥+ ∥w0 − w̄∥) ≤ 5rL

2 ∥w − w̄∥. Therefore, we may estimate

Ei(fi(w)− yi)
2∥∇fi(w0)∥2 ≤ 2Ei⟨∇fi(w0), w − w̄⟩2∥∇fi(w0)∥2

+ 2Ei∥∇fi(w0)∥2E2. (3.6)
Observe that setting v = w − w̄ we may write

Ei⟨∇fi(w0), w − w̄⟩2∥∇fi(w0)∥2 = v⊤
[
Ei∥∇fi(w0)∥2∇fi(w0)∇fi(w0)

⊤] v
≤ γ · v⊤

[
Ei∇fi(w0)∇fi(w0)

⊤] v (3.7)

= γ · Ei⟨∇fi(w0), v⟩2

≤ γ · Ei(2(fi(w)− yi)
2 + 2E2) (3.8)

= 4γL(w) + 2γE2, (3.9)
where the equation 3.7 follows from equation 3.2 and equation 3.8 follows from equation 3.5. There-
fore, combining equations 3.4, 3.6, and 3.9 we conclude

P1 ≤ (8γ + 4Ei∥∇fi(w0)∥2) · E2 + (16γ + 4L2∥w − w0∥2) · L(w). (3.10)
Next note that upon taking the trace in the definition of γ, we have Ei∥∇fi(w0)∥2 ≤ γ. Moreover,
using the quadratic growth condition, we see that

E2 ≤ 25L2r2

4
∥w − w̄∥2 ≤ 50L2r2

4α
· L(w). (3.11)

Combining the estimates 3.10 and 3.11 completes the proof.

Theorem 3.3 imposes a number of nontrivial assumptions. First, the gradient of each function fi
has to be Lipschitz continuous with constant L. In particular, for the ensuing results to be mean-
ingful, L must be very small; this is the case for wide neural networks as we discuss in Section 4.
Second, the theorem imposes the quadratic growth condition 2.3; this again is automatic for wide
neural networks. The final assumption equation 3.2 is directly analogous to equation 3.1 in the linear
case. In particular, we may set γ = maxi=1,...,n ∥∇fi(w0)∥2. Importantly, this quantity is com-
putable because it depends only on gradient of fi at the center point w0. Under these assumptions,
Theorem 3.3 establishes a linear scaling of β in the batchsize up to the critical batchsize

b∗ =
4γ + 50γL2r2

α

∥∇F (w0)∥2op + L2r2
≈ 4γ

∥∇F (w0)∥2op
for L ≈ 0.

Past this batchsize, β becomes nearly identical to 4(∥∇F (w0)∥2op+L2r2). In particular, observe that
∥∇F (w0)∥2op is exactly equal to the optimal choice of β for the full-batch gradient S = {1, . . . , n}
on the linearized problem minw ∥F (w0) +∇F (w0)(w − w0)∥2 at w0.
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4 CONSEQUENCES FOR NONLINEAR LEAST SQUARES AND WIDE NEURAL
NETWORKS.

In particular, combining Theorems 2.1 and Theorem 3.3 yields a precise expression for how the
batchsize effects the iteration complexity of minibatch SGD— the content of the following theorem.
Theorem 4.1 (Batchsize and iteration complexity). Suppose that Assumptions 1 and 2 hold, and
suppose that L is small in the sense that

L ≤ α

16r
√
β

where β ≜
16γ + 200γL2r2

α

|S|
+ 4L2r2 + 4∥∇F (w0)∥2op.

Fix constants δ1 ∈ (0, 1
3 ) and δ2 ∈ (0, 1), and assume dist2(w0, S) ≤ δ21r

2. Consider applying
minibatch SGD with stepsize η = 1

2β . Then with probability at least 1 − 5δ1 − δ2, the estimate

dist2(wt, S) ≤ ε · dist2(w0, S) holds after t ≥ 4β
α log

(
1

εδ2

)
iterations.

Thus assuming that L is small and ignoring log factors, the iteration complexity of SGD is roughly

γ/α

|S|
+

∥∇F (w0)∥2op
α

+O(L).

Thus we see a linear scaling of the complexity up to the critical batchsize, after which point it roughly
coincides with the complexity of solving the problem minw ∥F (w0) +∇F (w0)(w − w0)∥2.

We next discuss consequences of Theorem 4.1 for a nonlinear least squares problem arising from
fitting a wide neural network. Setting the stage, an l-layer (feedforward) neural network f(w;x),
with parameters w, input x, and linear output layer is defined as follows:

α(0) = x,

α(i) = σ
(

1√
mi−1

W (i)α(i−1)
)
, ∀i = 1, . . . , l − 1

f(w;x) = 1√
ml−1

W (l)α(l−1).

Here, mi is the width (i.e., number of neurons) of i-th layer, α(i) ∈ Rmi denotes the vector of i-th
hidden layer neurons, w := {W (1),W (2), . . . ,W (l),W (l+1)} denotes the collection of the param-
eters (or weights) W (i) ∈ Rmi×mi−1 of each layer, and σ is the activation function, e.g., sigmoid,
tanh, linear activation. We also denote the width of the neural network as m := mini∈[l] mi, i.e.,
the minimal width of the hidden layers. The neural network is usually randomly initialized, i.e.,
each individual parameter is initialized i.i.d. following N (0, 1). Henceforth, we assume that the
activation functions σ are twice differentiable, Lσ-Lipschitz, and βσ-smooth.
Remark 4.1. The order notation Ω(·) and O(·) will suppress multiplicative factors of polynomials
(up to degree l) of the constants Cz , Lσ and βσ .

Given a dataset D = {(xi, yi)}ni=1, we fit the neural network by solving the least squares problem
2.1 with fi(w) ≜ fi(w, xi). We assume that all the the data inputs xi are bounded, i.e., ∥xi∥ ≤ C for
some constant C. We now aim to show that when the width m is sufficiently large, the assumptions
of Theorem 4.1 hold, and consequently deduce the linear scaling plus saturation phenomenon. With
this in mind, we review a few basic facts about wide neural networks.

Define the Neural Tangent Kernel K(w0) = ∇F (w0)∇F (w0)
⊤ at the random initial point

w0 ∼ N(0, I) and let λ0 be the minimal eigenvalue of K(w0). The value λ0 is positive with
high probability in Du et al. (2018; 2019). Namely, under a mild non-degeneracy condition on the
data set, the smallest eigenvalue λ∞ of NTK of an infinitely wide neural network is positive (see
Theorem 3.1 of Du et al. (2018)). Moreover, if the width satisfies m = Ω(n

2·2O(l)

λ2
∞

log nl
ϵ ), then with

probability at least 1− ϵ the estimate λ0 > λ∞
2 holds (Du et al., 2019, Remark E.7). Of course, this

is a worst case bound and for our purposes we only need to ensure that λ0 is positive. It will also be
important to know that ∥F (w0)∥2 = O(1), which indeed occurs with high probability as shown in
Jacot et al. (2018). To simplify notation, let us lump these two probabilities together and define

p ≜ P{λ0 > 0, ∥F (w0)∥2 ≤ C}.
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Next, we require the following theorem, which shows that when the width m is sufficiently large,
the function w 7→ f(w, x) is nearly linear on Br(w0). This in particular provides an upper bound
on L, which can be made arbitrarily small by increasing m.

Theorem 4.2 (Transition to linearity Liu et al. (2020) and the PŁ condition Liu et al. (2022)). Given
r > 0, with probability 1−p−2 exp(−ml

2 )−(1/m)Θ(lnm) of initialization w0 ∼ N(0, I), it holds:

∥∇2f(w, x)∥op = Õ
(

r3l√
m

)
∀w ∈ Br(w0), ∥x∥ ≤ C. (4.1)

Validity of quadratic growth and the fact that Bw(w0) intersects S was proved in (Liu et al., 2023,
Theorem 3.4); we record this result next.

Theorem 4.3 (Quadratic growth for wide NNs). With probability 1−p−2 exp(−ml
2 )−(1/m)Θ(lnm)

with respect to the initialization w0 ∼ N(0, I), as long as

m = Ω̃

(
nr6l+2

λ2
0

)
and r = Ω

(
1√
λ0

)
,

quadratic growth 2.3 holds on Br(w0) with parameter λ0/2 and Br(w0) ∩ S is nonempty.

Theorems 4.2 and 4.2 directly imply that the assumptions of Theorem 4.1 are valid. A direct appli-
cation of Theorem 4.1 yields the main result of the section.

Theorem 4.2 (Minibatch SGD for wide neural networks). Fix constants δ1 ∈ (0, 1
3 ), δ2 ∈ (0, 1),

ε > 0 and t ∈ N. Then with probability 1− p− δ1 − δ2 − 2 exp(−ml
2 )− (1/m)Θ(lnm), as long as

m = Ω̃

(
nr6l+2

λ2
0

)
and r = Ω

(
1

δ1
√
λ0

)
, (4.2)

both Assumptions 1 and 2 hold and minibatch SGD with a constant stepsize η = 1
β finds a point wt

satisfying dist2(wt, S) ≤ ε · dist2(w0, S) after at most after

t ≥ 8β

λ0
log

(
1

εδ2

)
iterations,

where

β ≜
16 · max

i=1,...,n
∥∇f(w, xi)∥2

|S|
+ 4∥∇F (w0)∥2op +O

(
r6l+2

m

(
1 +

1

λ0|S|

))
. (4.3)

Note that the width requirements in the theorem are nearly identical to those for the full batch
gradient descent Liu et al. (2022), with the exception being that the requirement r = Ω

(
1√
λ0

)
is

strengthened to r = Ω
(

1
δ1

√
λ0

)
. That is, the radius r needs to shrink by the probability of failure.

The special case of this theorem with batchsize of |S| = 1 appeared in (Liu et al., 2023, Cor. 3.4).

The third term in equation 4.3 is negligible in the regime of interest for m 4.2. Thus, we see
that increasing the batchsize linearly decreases the iteration complexity roughly up to the critical
batchsize b∗ = max

i=1,...,n
∥∇f(w, xi)∥2/∥∇F (w0)∥2op, after which point the iteration complexity of

SGD matches that of the full-batch gradient method on the linearized problem.

5 EXPERIMENTAL RESULTS

In this section, we numerically illustrate the saturation effects in mini-batch SGD when using large
batch sizes—a phenomenon extensively explored in Golmant et al. (2018); Shallue et al. (2018).
In our experiments, the stepsize is held constant across varying batch sizes b. Although the optimal
stepsize does depend on b, we opt for a fixed stepsize to circumvent extensive hyperparameter tuning.
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(a) MNIST 4k iterations (b) MNIST 4k iterations

(c) CIFAR-10 12k iterations (d) CIFAR-10 12k iterations

(e) CIFAR-10 100k iterations (f) CIFAR-10 100k iterations

(g) SVHN 20k iterations (h) SVHN 20k iterations

Figure 2: Left: the training loss vs. batch size. Right: Convergence exponent h(b) vs. batch size b.
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Figure 3: Training loss curves vs. batch size for NanoGPT.

In our experiments we examine the convergence exponent h(b), defined through the expression
L(wT ) = L(w0) exp(−h(b)T ) where T is the total number of training iterations. We provide an
empirical estimate of h by plotting the function h̃(b) defined through linearly interpolating 1/h(1)
and 1/h(n) according to the formula 1

h̃(b)
= 1

b · 1
h(1) +

b−1
b · 1

h(n) .

In our experiments, we consider several configurations of neural networks and training durations.
For the MNIST dataset, we use a fully-connected NN with 3 hidden layers, each having 1000 neu-
rons. The network is trained for 4k iterations using MSE loss (see Figure 2a). For CIFAR-10, we
employ a ResNet-28 architecture and also use MSE loss. Two training durations are considered: 12k
iterations (Figure 2c) and 100k iterations (Figure 2e). Finally, for the SVHN dataset, we again use a
fully-connected NN but with 3 hidden layers and 2000 neurons in each layer. The network is trained
for 20k iterations with MSE loss (Figure 2g). Additionally, we investigate the NanoGPT architec-
ture, a 6-layer Transformer with 6 heads per layer and 384 feature channels. This character-level
GPT has a context size of up to 256 characters and is trained on the works of Shakespeare, converted
into a continuous string. Each training sample consists of a 256-character substring (Figure 3).

We demonstrate the saturation effect in two ways: First, the iteration-wise training loss curves be-
come closer as the batch size increases; especially for large batch sizes, iteration-wise training loss
curves are almost identical. Second, the empirically estimated convergence exponent h(b) aligned
well with the theoretically predicted/interpolated h̃(b), and both curves flatten for large batch sizes.

6 CONCLUSION

In this work, we established a quantitative relationship between batch size and iteration complexity
for training wide neural networks with SGD. Specifically, we have shown both theoretically and
empirically that the iteration complexity scales linearly with batch size up to a critical batch size,
after which further increasing the batch size leads to negligible improvements. This scaling behavior
aligns with previous results in convex optimization as well as experimental observations in deep
learning. Our analysis helps provide a theoretical justification for the common heuristic of choosing
the largest batch size that still fits in memory and scales training efficiently. Beyond this critical
batch size, diminishing returns are incurred by using larger mini-batches.
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